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ABSTRACT OF THE DISSERTATION

Characterization of the gut microbial community and FEscherichia coli in inflammatory
bowel disease

by

Xin Fang

Doctor of Philosophy in Bioengineering

University of California San Diego, 2020

Professor Bernhard O. Palsson, Chair

Dysbiosis of the gut microbiome, including elevated abundance of putative bacterial trig-
gers, such as Fscherichia coli (E. coli), is observed in inflammatory bowel disease (IBD). In this
dissertation, we characterized the gut microbial community, one of its members - E. coli, and
their implications in IBD. First, the evaluation of the entire gut microbial community of a cohort
of IBD patients suggested that intestinal surgery has a significant impact on gut microbiome, in-
cluding lowered diversity and stability, changes in bile acid levels and elevated E. coli abundance.

This result calls for systematic evaluation of IBD treatment and careful consideration of treat-
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ment options. We then focused on E. coli through extracting de novo assemblies of dominant
E. coli strains from time-series metagenomics data of an IBD patient. Analysis suggest that the
E. coli community is highly dynamic with changing dominant strains, and certain strain-specific
features may be correlated with pathogenicity and disease progression. Third, we characterized
the metabolic functions of E. coli clinical isolates from IBD patients using comparative genomics
analysis and genome-scale models. We identified metabolic genes that are specific to strains in
B2 phylogroup that are more prevalent in IBD patients, which potentially enable colonization to
human gut. Lastly, we evaluated the most updated transcription regulatory network (TRN) of
E. coli, as it enables adaptation to various conditions including the inflamed digestive tract of
IBD patients. We found that the TRN has robust core functional modules, and has significantly
expanded in the past decade, but still has limited coverage, motivating more high-throughput
experiments to fill in knowledge gaps. In conclusion, this dissertation broadened the understand-
ing of FE. coli and gut microbiome in IBD, and provided valuable insight for clinical practice and

potential intervention strategies.
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Chapter 1

Introduction

1.1 Inflammatory Bowel disease and the dysbiotic gut micro-

biome

Inflammatory Bowel Disease (IBD) is a complex disease mediated by immune systems,
which is usually manifested by chronic inflammation of the digestive tract [1]. Two subtypes
of IBD exist - Crohn’s Disease (CD) that can affect any part of the digestive tract, but mostly
affect distal ileum and colon; and Ulcerative Colitis (UC) that only affects the colon. IBD affects
around 1.5 million Americans, 2.2 million people in Europe and even more worldwide. The
incidence of IBD was traditionally more common in developed countries in Europe and North
America. However, in recent years, an increasing number of IBD cases have appeared in other
regions such as Asia, likely due to urbanization and improved hygiene conditions [2].

Various types of treatment have been developed for IBD, yet as of today IBD cannot
be cured. It can only be managed to minimize symptoms. Commonly used medications of

IBD include anti-inflammatory agents such as corticosteroids, aminosalicylates and other im-



munomodulators [3, 4]. Antibiotics including ciprofloxacin and metronidazole are also effective
in killing pathogens that may be responsible for inducing inflammatory responses. Biological
agents such as anti-TNF and Integrin-inhibitors have also been proven effective in managing the
symptoms. Surgical treatment is a common option for patients that do not respond to medication
treatments, which usually involves resection of the inflamed parts of the digestive tract [3, 4].

IBD is an extremely complex disease that has many risk factors, including but not limited
to host genetics, environmental factors, lifestyles and gut microbiome [2]. Previous studies have
identified more than 200 risk locis in IBD patients that could potentially predispose them to
this disease [5]. However, environmental factors as we discussed in an earlier paragraph such as
hygiene conditions, as well as lifestyle factors including stress level, smoking and diet were all
shown to contribute to IBD development [2]. Previous life experiences including breastfeeding
and exposure to antibiotics may also be related to IBD [2].

In this dissertation we focus on the dysbiotic gut microbiome of IBD, as inflammation
likely is a result of the dysregulated immune response to the gut flora in a susceptible host.
Dysbiosis of the gut microbiome has been consistently observed in both UC and CD patients,
which usually involves the reduced bacterial diversity, an increase in Proteobacteria level, and
decline in Firmicutes, which is usually a major member of the gut microbiome in healthy in-
dividuals [6]. Specifically, E. coli - a member of the Proteobacteria group is considered one of
the potential bacterial triggers in IBD and usually has an elevated abundance in IBD patients
compared to healthy individuals. Specifically, a pathotype of E. coli - adherent-invasive E. coli
(AIEC) has been implicated in IBD. Strains belonging to this pathotype are able to attach to
intestinal epithelial cells and survive and replicate within macrophages, yet no unique genetic

determinant has been identified in this pathotype [7]. In this dissertation, we aim to deepen our



understanding of the IBD gut microbiome and the implication of E. coli in IBD.

1.2 Studying gut microbiome using next-generation sequencing

Two commonly used DNA-based approaches to study microbial communities are based
on gene amplicon or marker genes (e.g. 16S rRNA) and shotgun metagenomics data. 16S
rRNA studies were used as the primary methodology to study the taxonomic composition of the
microbial community in the earlier days of microbiome studies, due to the high cost in sequencing
in the past [8]. 16S rRNA are present in all living organisms, and it is a commonly used marker
gene because it has both conserved regions that are good candidates for PCR primers and fast-
evolving regions that can differentiate between organisms. While 16S data is useful in revealing
taxonomic profiles in microbial communities, it has limited taxonomic resolution and potential
to characterize functional profiles of the target community [9]. Therefore, researchers have slowly
migrated to using whole metagenomics sequencing data.

Shotgun metagenomics data has been gaining its popularity in recent years due to the
development of sequencing technology, bioinformatic softwares and drop in sequencing cost. In-
stead of focusing only on the marker genes, shotgun metagenomics data targets the whole genome,
therefore has a higher cost in data generation. When given adequate sequencing depth, it can
produce much more detailed information on the microbiome including species or strain level
taxonomic profiles, assembly of the whole metagenome and functional annotation of genes and
pathways [10]. Metagenomics data can also be used to extract novel genomes of unknown organ-
isms [11]. In two of the projects in this dissertation, we utilized metagenomics data generated
from the stool samples from IBD patients.

For organisms with known culture conditions, it is also possible to isolate, culture and



sequence them from the gut microbial community, as did for E. coli clinical isolates in IBD
in this dissertation [12, 13]. The genome sequences of these isolates are usually more accurate
and cheaper to generate than the de novo assemblies extracted from metagenomics data. These
strains isolated also enable further experimental characterizations such as growth capabilities,
invasion abilities, and other phenotypes of interest [12, 13].

More next-generation data types are also on the horizon to be used to study the micro-
biome. Metatranscriptomics data uses RNA sequencing to delineate the gene expression levels of
the organisms in the microbiome. It differs from the metagenomics data, as metatranscriptomics
data describes the functional output of the microbiome, while metagenomics data characterizes
the functional potentials of the gut microbial community [9]. There have also been attempts in
generating long reads or using hybrid approaches instead of traditional short read sequencing to
produce metagenomics data. These approaches may have great potential to reduce the assembly

error rate, yet challenges still need to be addressed before they can be adopted widely [8].

1.3 Interpreting next-generation sequencing data using systems

biology approaches

In addition to applying traditional statistical analysis to the next-generation sequencing
data such as diversity analysis, identification of differentially abundant species, genes and path-
ways, we also incorporated systems-biology approaches into the projects in this dissertation, such
as the GEnome-scale Models (GEMs).

Genome-scale network reconstructions are built from curated and systematized knowledge

[14, 15] that enables them to quantitatively describe genotype-phenotype relationships. GEMs



are mathematical representations of reconstructed networks that facilitate computation and pre-
diction of multi-scale phenotypes through the optimization of an objective function of interest
[16, 17]. GEMs have been successfully implemented for a wide range of applications [18, 19],
including metabolic engineering [20], drug development [21], prediction of enzyme functions [22],
understanding community interactions [23], and human disease [24, 25].

Flux balance analysis (FBA) is the most widely used [26] approach to characterize GEMS.
GEMs are able to simulate metabolic flux while incorporating multiple constraints to ensure the
feasibility of a simulated phenotype, such as the metabolic network topology, a steady-state
assumption (e.g., the internal metabolites must be produced and consumed in a mass-balanced
manner), and other bounds on reaction flux (e.g., nutrient uptake rates, enzyme capacities,
protein/gene expression). FBA can identify a single or multiple optimal flux distributions that
optimize the objective function in the solution space. FBA and many other GEM analysis
methods are available through COBRApy [27] in python or COBRA Toolbox in MATLAB [28].

In this dissertation, we built GEMs for E. coli strains of interest from IBD patients, either
based on the genome sequences of clinical isolates or the de novo assembly from metagenomics
data. GEMs of E. coli strains were used to generate growth predictions on different nutrient
sources, depict the metabolic functions and provide mechanistic insights. GEMs have been
shown to be a valuable tool to interpret genomic and metagenomic analysis in the context of
known knowledge bases, and provide deeper understanding of the organisms of interest.

GEM-based community modeling workflows and reconstructions are also being developed
to understand the complex interactions within gut microbiome. 773 GEMs for human gut bacteria
were generated to enable the exploration of microbial community metabolism [29]. A workflow

has also been developed to construct personalized gut microbiome community models based on



the metagenomics data [30]. Although this approach was not used in this dissertation, this could

be a promising future direction to explore.



Chapter 2

Intestinal surgery impact gut
microbiome in inflammatory bowel

disease

2.1 Abstract

2.1.1 Background

Many studies have investigated the role of the microbiome in inflammatory bowel disease
(IBD), but few have focused on surgery specifically, or its consequences on the metabolome that
may differ by surgery type and require longitudinal sampling. Our objective was to characterize
and contrast microbiome and metabolome changes following different surgeries for IBD, including

ileocolonic resection and colectomy.



2.1.2 Methods

The UC San Diego IBD Biobank was used to prospectively collect 332 stool samples from
129 subjects (50 ulcerative colitis; 79 Crohn’s disease). Of these, 21 with Crohn’s disease had
ileocolonic resections, and 17 had colectomies. We used shotgun metagenomics and untargeted
LC/MS/MS metabolomics to