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RATIONAL HOMOTOPY TYPE AND COMPUTABILITY

FEDOR MANIN

Abstract. Given a simplicial pair (X,A), a simplicial complex Y , and a map f : A → Y , does
f have an extension to X? We show that for a fixed Y , this question is algorithmically decidable
for all X, A, and f if and only if Y has the rational homotopy type of an H-space. As a corollary,
many questions related to bundle structures over a finite complex are decidable.

1. Introduction

When can the set of homotopy classes of maps between spaces X and Y be computed? That
is, when can this (possibly infinite) set be furnished with a finitely describable and computable
structure? A reasonable first requirement is that X and Y should be finite complexes; this ensures
that at least the spaces can be represented as computational objects. Moreover, the question of
whether this set has more than one element is undecidable for X = S1, as shown by Novikov as
early as 19551. Therefore it is also reasonable to require the fundamental group not to play a role;
in the present work, Y is always assumed to be simply connected.2

We answer this question with the following choice of quantifiers: for what Y and n can the set
of homotopy classes [X,Y ] be computed for every n-dimensional X? Significant partial results
in this direction were obtained by E. H. Brown [Brown] and much more recently by Čadek et
al. [Č+14a, Č+14c, Č+14b] and Vokř́ınek [Vok17]. The goal of the present work is to push their
program to its logical limit.

To state the precise result, we need to sketch the notion of an H-space, which is defined precisely
in §3. Essentially, an H-space is a space equipped with a binary operation which can be more or
less “group-like”; if it has good enough properties, this allows us to equip sets of mapping classes
to the H-space with a group structure.

The cohomological dimension cd(X,A) of a simplicial or CW pair (X,A) is the least integer d
such that for all n > d and every coefficient group π, Hn(X,A;π) = 0.

Theorem A. Let Y be a simply connected simplicial complex of finite type and d ≥ 2. Then the
following are equivalent:

(i) For any simplicial pair (X,A) of cohomological dimension d+1 and simplicial map f : A→ Y ,
the existence of a continuous extension of f to X is decidable.

(ii) Y has the rational homotopy type of an H-space through dimension d. That is, there is a
map from Y to an H-space (or, equivalently, to a product of Eilenberg–MacLane spaces) which
induces isomorphisms on πn ⊗Q for n ≤ d.

Moreover, there is a algorithm which, given a simply connected simplicial complex Y , a simplicial
pair (X,A) of finite complexes of cohomological dimension d and a simplicial map f : A→ Y ,

(1) Determines whether the equivalent conditions are satisfied;

1This is the triviality problem for group presentations, translated into topological language. This work was
extended by Adian and others to show that many other properties of nonabelian group presentations are likewise
undecidable.

2The results can plausibly be extended to nilpotent spaces.
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(2) If they are, outputs the set of homotopy classes rel A of extensions [X,Y ]f in the format of
a (perhaps empty) set on which a finitely generated abelian group acts virtually freely and
faithfully (that is, with a finite number of orbits each of which has finite stabilizer).

We give a couple remarks about the statement. First of all, it is undecidable whether Y is simply
connected; therefore, when given a non-simply connected input, the algorithm cannot detect this
and returns nonsense, like previous algorithms of this type.

Secondly, the difference between d + 1 in the first part of the theorem and d in the second is
important: if cd(X,A) = d+1, then we can decide whether [X,Y ]f is nonempty, but there may not
be a group with a natural virtually free and faithful action on it. For example, consider [S1×S2, S2].
This set can be naturally equipped with the structure

[S1 × S2, S2] ∼=
⊔

r∈Z

Z/2rZ;

as such, it has a surjection from Z2, but not an action of it.

1.1. Examples. The new computability result encompasses several previous results, as well as new
important corollaries. Here are some examples of spaces which satisfy condition (ii) of Theorem A:

(a) Any simply connected space with finite homology groups (or, equivalently, finite homotopy
groups) in every dimension is rationally equivalent to a point, which is an H-space. The
computability of [X,Y ] when Y is of this form was already established by Brown [Brown].

(b) Any d-connected space is rationally an H-space through dimension n = 2d. Thus we recover
the result of Čadek et al. [Č+14c] that [X,Y ]f is computable whenever X is 2d-dimensional
and Y is d-connected. This implies that many “stable” homotopical objects are computable.
One example is the group of oriented cobordism classes of n-manifolds, which is isomorphic to
the set of maps from Sn to the Thom space of the tautological bundle over Grn(R

2n+1).
(c) The sphere Sn for n odd is rationally equivalent to the Eilenberg–MacLane space K(Z, n).

Therefore [X,Sn]f is computable for any finite simplicial pair (X,A) and map f : A→ Sn; this
is the main result of Vokř́ınek’s paper [Vok17].

(d) Any Lie group or simplicial group Y is an H-space, so if Y is simply connected then [X,Y ]f is
computable for any X, A, and f .

(e) Classifying spaces of connected Lie groups also have the rational homotopy type of an H-
space [FHT12, Prop. 15.15]. Therefore we have:

Corollary 1.1. Let G be a connected Lie group. Then:
(i) The set of isomorphism classes of principal G-bundles over a finite complex X is com-

putable.
(ii) Let (X,A) be a finite CW pair. Then it is decidable whether a given principal G-bundle

over A extends over X.

In particular, given a representation G→ GLn(R), we can understand the set of vector bundles
with a G-structure. This includes real oriented, complex, and symplectic bundles, as well as
spin and metaplectic structures on bundles.

(f) More generally, some classifying spaces of topological monoids have the rational homotopy type
of an H-space. This includes the classifying space BGn = BAut(Sn) for Sn-fibrations [Mil68,
Appendix 1] [Smith]; therefore, the set of fibrations Sn → E → X over a finite complex X up
to fiberwise homotopy equivalence is computable.

Conversely, most sufficiently complicated simply connected spaces do not satisfy condition (ii).
The main result of [Č+14b] shows that the extension problem is undecidable for even-dimensional
spheres, which are the simplest example. Other examples include complex projective spaces and
most Grassmannians and Stiefel manifolds.
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1.2. Proof ideas. The proof of the main theorem splits naturally into two pieces. Suppose that
Y has the rational homotopy type of an H-space through dimension d, but not through dimension
d+1. We must show that the extension question is undecidable for pairs of cohomological dimension
d + 2. We must also provide an algorithm which computes [X,Y ]f if cd(X,A) ≤ d and decides
whether [X,Y ]f is nonempty if cd(X,A) = d + 1. Both of these build on work of Čadek, Krčál,
Matoušek, Vokř́ınek, and Wagner, in [Č+14b] and [Č+14c] respectively.

To show undecidability of the extension problem for a given Y , we reduce a form of Hilbert’s
Tenth Problem to it. Recall that Hilbert asked for an algorithm to determine whether a system
of Diophantine equations has a solution. Work of Davis, Putnam, Robinson, and Matiyasevich
showed that no such algorithm exists. It turns out that the problem is still undecidable for very
restricted classes of systems of quadratic equations; this was used in [Č+14b] to show that the
extension problem for maps to S2n is undecidable. We generalize their work: extension problems
to a given Y are shown to encode systems of Diophantine equations in which terms are values on
vectors of variables of a fixed bilinear form (or sequence of forms) which depends on Y . We show
that Hilbert’s Tenth Problem restricted to any such subtype is undecidable.

To provide an algorithm, we use the rational H-space structure of the dth Postnikov stage Yd of
Y . In this case, we can build an H-space H of finite type together with rational equivalences

H → Yd → H

as well as an “H-space action” of H on Y , that is, a map act : H × Yd → Yd which satisfies various
compatibility properties. These ensure that the set [X/A,H] (where A is mapped to the basepoint)
acts via composition with act on [X,Yd]

f . When cd(X,A) ≤ d, the obvious map [X,Y ]f → [X,Yd]
f

is a bijection; when cd(X,A) = d+ 1, this map is a surjection. This gives the result.

1.3. Computational complexity. Unlike Čadek et al. [Č+14c, ČKV17], whose algorithms are
polynomial for fixed d, and like Vokř́ınek [Vok17], we do not give any kind of complexity bound on
the run time of the algorithm which computes [X,Y ]f . In fact, there are several steps in which the
procedure is to iterate until we find a number that works, with no a priori bound on the size of
the number, although it is likely possible to bound it in terms of dimension and other parameters
such as the cardinality of the torsion subgroups in the homology of Y . There is much space to both
optimize the algorithm and discover bounds on the run time.

1.4. The fiberwise case. In a paper of Čadek, Krčál, and Vokř́ınek [ČKV17], the results of
[Č+14c] are extended to the fiberwise case, that is, to computing the set of homotopy classes of
lifting-extensions completing the diagram

(1.2)

A
f

//
� _

i
��

Y

p
��
��

X

>>
⑥

⑥

⑥

⑥ g
// B,

where X is 2d-dimensional and the fiber of Y
p
−→ B is d-connected. Vokř́ınek [Vok17] also remarks

that his results for odd-dimensional spheres extend to the fiberwise case. Is there a corresponding

fiberwise generalization for the results of this paper? The näıve hypothesis would be that [X,Y ]fp

is computable whenever the fiber of Y
p
−→ B is a rational H-space through dimension n. This is

false; as demonstrated by the following example, rational homotopy obstructions may still crop up
in the interaction between base and fiber.

Example 1.3. Let B = S6 × S2 and Y be the total space of the fibration

S7 → Y
p0
−→ B × (S3)2
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whose Euler class (a.k.a. the k-invariant of the corresponding K(Z, 7)-bundle) is

[S6 × S2] + [(S3)2 × S2] ∈ H8(B × (S3)2).

Then the fiber of p = π1 ◦ p0 : Y → B is the H-space (S3)2 × S7, but the intermediate k-invariant
given above has a term which is quadratic in the previous part of the fiber.

Given a system of s polynomial equations each of the form
∑

1≤i<j≤r

a
(k)
ij (xiyj − xjyi) = bk,

with variables x1, . . . , xr, y1, . . . , yr and coefficients bk and a
(k)
ij , we form a space X ′ by taking

∨
r S

3

and attaching s 6-cells, the kth one via an attaching map whose homotopy class is
∑

1≤i<j≤r

a
(k)
ij [idi, idj],

where idi is the inclusion map of the ith 3-sphere. We fix a map f ′ : X ′ → S6 which collapses the
3-cells and restricts to a map of degree −bk on the kth 6-cell. This induces a map f = f ′× id from
X = X ′ × S2 to B.

A lift of f to B × (S3)2 corresponds to an assignment of the variables xi and yi. The existence
of a further lift to Y is then equivalent to whether this assignment is a solution to the system of
equations above. Since the existence of such a solution is in general undecidable by [Č+14b, Lemma
2.1], so is the existence of a lift of f through p.

The correct fiberwise statement should relate to rational fiberwise H-spaces, as discussed for
example in [LS12]. However, some technical difficulties have thus far prevented the author from
obtaining such a result.

1.5. Structure of the paper. I have tried to make this paper readable to any topologist as well
as anyone who is familiar with the work of Čadek et al. Thus §2 and 3 attempt to introduce all the
necessary algebraic topology background which is not used in Čadek et al.’s papers: a bit of rational
homotopy theory and some results about H-spaces. For the benefit of topologists, I have tried to
separate the ideas that go into constructing a structure on mapping class sets from those required to
compute this structure. The construction of the group and action in Theorem A is discussed in §4.
In §5, we introduce previous results in computational homotopy theory from [Č+14c,ČKV17,FV20],
and in §6 we use them to compute the structure we built earlier. Finally, in §7 and 8, we prove the
negative direction of Theorem A.

Acknowledgements. I would like to thank Shmuel Weinberger for explaining some facts about
H-spaces, and Marek Filakovský, Lukáš Vokř́ınek, and Uli Wagner for other useful conversations
and encouragement. I was partially supported by NSF grant DMS-2001042.

2. Rational homotopy theory

Rational homotopy theory is a powerful algebraicization of the topology of simply connected
topological spaces first introduced by Quillen [Qui69] and Sullivan [Sul77]. The subject is well-
developed, and the texts [GM81] and [FHT12] are recommended as a comprehensive reference. This
paper requires only a very small portion of the considerable machinery that has been developed, and
this short introduction should suffice for the reader who is assumed to be familiar with Postnikov
systems and other constructs of basic algebraic topology.

The key topological idea is the construction of rationalized spaces: to any simply connected CW
complex X one can functorially (at least up to homotopy) associate a space X(0) whose homology
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(equivalently, homotopy) groups are Q-vector spaces.3 There are several ways of constructing
such a rationalization, but the most relevant to us is by induction up the Postnikov tower: the
rationalization of a point is a point, and then given a Postnikov stage

K(πn(X), n) // Xn
//

��
��

E(πn(X), n + 1)

��
��

Xn−1
kn

// K(πn(X), n + 1),

one replaces it with

K(πn(X) ⊗Q, n) // Xn(0)
//

��
��

E(πn(X) ⊗Q, n+ 1)

��
��

Xn−1(0)
kn⊗Q

// K(πn(X) ⊗Q, n+ 1).

This buildsXn(0) given Xn−1(0), and thenX(0) is the homotopy type of the limit of this construction.
We say two spaces are rationally equivalent if their rationalizations are homotopy equivalent.

The second key fact is that the homotopy category of rationalized spaces of finite type (that is,
for which all homology groups, or equivalently all homotopy groups, are finite-dimensional vector
spaces) is equivalent to several purely algebraic categories. The one most relevant for our purpose
is the Sullivan DGA model.

A differential graded algebra (DGA) over Q is a cochain complex of Q-vector spaces equipped with
a graded commutative multiplication which satisfies the (graded) Leibniz rule. A familiar example
is the algebra of differential forms on a manifold. A key insight of Sullivan was to associate to every
space X of finite type a minimal DGAMX constructed by induction on degree as follows:

• MX(1) = Q with zero differential.
• For n ≥ 2, the algebra structure is given by

MX(n) =MX(n+ 1)⊗ ΛHom(πn(X);Q),

where ΛV denotes the free graded commutative algebra generated by V .
• The differential is given on the elements of Hom(πn(X);Q) (indecomposables) by the dual
of the nth k-invariant of X,

Hom(πn(X);Q)
k∗n−→ Hn+1(X;Q),

and extends to the rest of the algebra by the Leibniz rule. Although it is only well-defined
up to a coboundary, this definition makes sense because one can show by induction that
Hk(MX(n− 1)) is naturally isomorphic to Hk(Xn−1;Q), independent of the choices made
in defining the differential at previous steps.

Note that from this definition, it follows that for an indecomposable y of degree n, dy is
an element of degree n+1 which can be written as a polynomial in the indecomposables of
degree < n. In particular, it has no linear terms.

The DGAMX is the functorial image of X(0) under an equivalence of homotopy categories.
Many topological constructions can thus be translated into algebraic ones. This paper will use

the following:

• The Eilenberg–MacLane space K(π, n) corresponds to the DGA ΛHom(π,Q) with genera-
tors concentrated in dimension n and zero differential.
• Product of spaces corresponds to tensor product of DGAs. In particular:

3It’s worth pointing out that this fits into a larger family of localizations of spaces, another of which is used in the
proof of Lemma 3.3.
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Proposition 2.1. The following are equivalent for a space X:
(a) X is rationally equivalent to a product of Eilenberg–MacLane spaces.
(b) The minimal model of X has zero differential.
(c) The rational Hurewicz map π∗(X) ⊗Q→ H∗(X;Q) is injective.

Finally, we note the following theorem of Sullivan:

Theorem 2.2 (Sullivan’s finiteness theorem [Sul77, Theorem 10.2(i)]). Let X be a finite com-
plex and Y a simply connected finite complex. Then the map [X,Y ] → [X,Y(0)] induced by the
rationalization functor is finite-to-one.

Note that this implies that if the map Y → Z between finite complexes induces a rational
equivalence, then the induced map [X,Y ]→ [X,Z] is also finite-to-one.

3. H-spaces

A pointed space (H, o) is an H-space if it is equipped with a binary operation add : H ×H → H
satisfying add(x, o) = add(o, x) = x (the basepoint acts as an identity). In addition, an H-space is
homotopy associative if

add ◦(add, id) ≃ add ◦(id, add)

and homotopy commutative if add ≃ add ◦τ , where τ is the “twist” map sending (x, y) 7→ (y, x).
We will interchangeably denote our H-space operations (most of which will be homotopy associative
and commutative) by the usual binary operator +, as in x+ y = add(x, y).

A classic result of Sugawara [Sta70, Theorem 3.4] is that a homotopy associative H-space which
is a connected CW complex automatically admits a homotopy inverse x 7→ −x with the expected
property add(−x, x) = o = add(x,−x).

Examples of H-spaces include topological groups and Eilenberg–MacLane spaces. If H is simply
connected, then it is well-known that it has the rational homotopy type of a product of Eilenberg–
MacLane spaces. Equivalently, from the Sullivan point of view, H has a minimal modelMH with
zero differential; see [FHT12, §12(a) Example 3] for a proof. On the other hand, a product of
H-spaces is clearly an H-space. Therefore we can add “X is rationally equivalent to an H-space”
to the list of equivalent conditions in Prop. 2.1. We will generally use the sloppy phrase “X is a
rational H-space” to mean the same thing.

It is easy to see that an H-space operation plays nice with the addition on higher homotopy
groups. That is:

Proposition 3.1. Let (H, o, add) be an H-space. Given f, g : (Sn, ∗)→ (H, o),

[f ] + [g] = [add ◦(f, g)] ∈ πn(H, o).

Another important and easily verified fact is the following:

Proposition 3.2. If (H, o, add) is a homotopy associative H-space, then for any pointed space
(X, ∗), the set [X,H] forms a group, with the operation given by [ϕ] · [ψ] = [add ◦(ϕ,ψ)]. If H is
homotopy commutative, then this group is likewise commutative.

Moreover, suppose that H is homotopy commutative, and let A → X be a cofibration (such as

the inclusion of a CW subcomplex), and f : A → H a map with an extension f̃ : X → H. Then
the set [X,H]f of extensions of f forms an abelian group with operation given by

[ϕ] + [ψ] = [ϕ+ ψ − f̃ ].

Throughout the paper, we denote the “multiplication by r” map

id+ · · ·+ id︸ ︷︷ ︸
r times

: H → H
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by χr. The significance of this map is in the following lemmas, which we will repeatedly apply to
various obstruction classes:

Lemma 3.3. Let H be an H-space of finite type, and let α ∈ Hn(H) be a cohomology class of finite
order. Then there is an r > 0 such that χ∗

rα = 0.

In other words, faced with a finite-order obstruction, we can always get rid of it by precomposing
with a multiplication map.

Lemma 3.4. Let H be a simply connected H-space of finite type. Then for every r > 0,

χ∗
r(H

∗(H)) ⊆ rH∗(H) + torsion.

Proof. By Prop. 3.1, χr induces multiplication by r on πn(H). Therefore by Prop. 2.1(c), it induces
multiplication by r on the indecomposables of the minimal model MH . Therefore it induces
multiplication by some rk on every class in Hn(H;Q). �

Combining the two lemmas gives us a third:

Lemma 3.5. Let H be a simply connected H-space of finite type. Then for any r > 0 and any
n > 0, there is an s > 0 such that

χ∗
s(H

n(H)) ⊆ rHn(H).

Proof of Lemma 3.3. I would like to thank Shmuel Weinberger for suggesting this proof.
Let q be the order of α. By Prop. 3.1, for f : Sk → H, (χq)∗[f ] = q[f ].
Let H[1/q] be the universal cover of the mapping torus of χq; this should be thought of as

an infinite mapping telescope. By the above, the homotopy groups of H[1/q] are Z[1/q]-modules
(the telescope localizes them away from q). This implies, see [Sul05, Thm. 2.1], that the reduced
homology and cohomology groups are also Z[1/q]-modules.

Now we would like to show that for some t, (χ∗
q)
tα = 0, so that we can take r = qt. Suppose

not, so that (χ∗
q)
tα is nonzero for every t. Clearly every element in the sequence

α, χ∗
qα, (χ

∗
q)

2α, . . .

has order which divides q; moreover, since there are finitely many such elements, the sequence
eventually cycles. Extrapolating this cycle backward gives us a nonzero element of

Hn(H[1/q]) = lim
←−

(
· · ·

χ∗

q
−→ Hn(H)

χ∗

q
−→ Hn(H)

)

which likewise has order dividing q. Since the cohomology groups of H[1/q] are Z[1/q]-modules,
this is a contradiction. �

Note that this proof does not produce an effective bound on t. This prevents our algorithmic
approach from yielding results that are as effective as those of Vokř́ınek in [Vok17].

We will also require the similar but more involved fact.

Lemma 3.6. Let H be an H-space of finite type, U a finite complex, and n > 0. Let i2 : U → H×U
be the obvious inclusion u 7→ (∗, u).

(i) Suppose that α ∈ Hn(H × U) is torsion and i∗2α = 0. Then there is an r > 0 such that
(χr, id)

∗α = 0.
(ii) Suppose that H is simply connected and α ∈ Hn(H ×U) is such that i∗2α = 0. Then for every

r > 0,

(χr, id)
∗α ∈ rHn(H × U) + torsion.

7



(iii) Suppose that H is simply connected, and consider

G = ker i∗2 ⊆ H
n(H × U).

Then for every r > 0 there is an s > 0 such that

(χs, id)
∗G ⊆ rHn(H × U).

Proof. We use the Künneth formula, which gives a natural short exact sequence

0→
⊕

k+ℓ=n

Hk(H)⊗Hℓ(U)→ Hn(H × U)→
⊕

k+ℓ=n+1

Tor(Hk(H),Hℓ(U))→ 0.

To demonstrate (i), we will first show that there is an r0 such that (χr0 , id)
∗α is in the im-

age of
⊕

k+ℓ=nH
k(H) ⊗ Hℓ(U). In other words, we show that the projection of (χr0 , id)

∗α to⊕
k+ℓ=n+1Tor(H

k(H),Hℓ(U)) is zero. Now, this group is generated by elementary tensors η ⊗ ν

where η ∈ Hk(H) and ν ∈ Hℓ(U) are torsion elements. By Lemma 3.3, for each such elementary
tensor, we can pick r(η) such that χ∗

r(η)η = 0 and therefore

(χr(η), id)
∗(η ⊗ ν) = 0 ∈ Tor(Hk(H),Hℓ(U)).

We then choose r0 to be the least common multiple of all the r(h)’s.
Now fix a decomposition of each Hk(H) and Hℓ(U) into cyclic factors to write χr0α as a sum

of elementary tensors. Since i∗2α = 0, there are no summands of the form 1 ⊗ u; moreover, each
summand is itself torsion. For every other elementary tensor h⊗ u, we can use Lemma 3.3 (if h is
torsion) or Lemma 3.4 (otherwise, since then u is torsion) to find an s(h, u) such that χ∗

s(h,u)h⊗u = 0.

Finally, we can take r to be the product of r0 with the least common multiple of the s(h, u)’s.
This completes the proof of (i).

To demonstrate (ii), we only need to apply Lemma 3.4 to Hk(H) for all 0 < k < n. Finally, (iii)
follows from (i) and (ii). �

4. The algebraic structure of [X,Y ]f

We start by constructing the desired structure on [X,Y ]f when Y is a rational H-space. From
the previous section, such a Y is rationally equivalent to a product of Eilenberg–MacLane spaces.
In particular, it is rationally equivalent to H =

∏∞
n=2K(πn(Y ), n), which we give the product

H-space structure. We will harness this to prove the following result.

Theorem 4.1. Suppose that Y is a rational H-space through dimension d, denote by Yd the dth
Postnikov stage of Y , and let Hd =

∏∞
d=2K(πn(Y ), n). Suppose (X,A) is a finite simplicial pair

and f : A→ Y a map. Then [X,Yd]
f admits a virtually free and faithful action by [X,Hd]

f induced
by a map Hd → Yd.

Before proving this, we see how computing this structure gives the algorithms of Theorem A.
If (X,A) has cohomological dimension d+1, then there is no obstruction to lifting an extension

X → Yd of f to Y , as the first obstruction lies in Hd+2(X,A;πd+1(Y )). Therefore [X,Y ]f is
nonempty if and only if [X,Yd]

f is nonempty.
If (X,A) has cohomological dimension d, then in addition every such lift is unique: the first

obstruction to homotoping two lifts lies in Hd+1(X,A;πd+1(Y )). Therefore [X,Y ]f ∼= [X,Yd]
f .

4.1. An H-space action on Yn. Denote the nth Postnikov stages of Y and H by Yn and Hn,
respectively, and the H-space zero and multiplication on Hn by on and by + or addn : Hn ×Hn →
Hn. We will inductively construct the following additional data:

(i) Maps Hn
un−→ Yn

vn−→ Hn inducing rational equivalences such that vnun is homotopic to the
multiplication map χrn for some integer rn.

8



(ii) A map actn : Hn × Yn → Yn defining an H-space action, that is such that actn(o, x) = x and
the following diagram homotopy commutes:

(4.2)

Hn ×Hn × Yn
(addn,id)

//

(id,actn)
��

Hn × Yn

actn
��

Hn × Yn
actn

// Yn,

which is “induced by un” in the sense of the homotopy commutativity of

(4.3)

Hn ×Hn

(id,un)
//

addn

��

Hn × Yn
(χrn ,vn)

//

actn
��

Hn ×Hn

addn

��

Hn
un

// Yn
vn

// Hn.

Note that when we pass to rationalizations, the existence of such a structure is obvious: one takes
un(0) to be the identity, actn(0) = addn(0), and vn(0) to be multiplication by rn.

4.2. The action of [X/A,Hd] on [X,Yd]
f . Now suppose that we have constructed the above struc-

ture. Then addd induces the structure of a finitely generated abelian group on the set [X/A,Hd],
which we identify with the set of homotopy classes of mapsX → Hd sending A to o ∈ Hd. Moreover,
this group acts on [X,Yd]

f via the action [ϕ] · [ψ] = [actd ◦(ϕ,ψ)].
It remains to show that this action is virtually free and faithful. Indeed, notice that pushing this

action forward along vd gives the action of of [X/A,Hd] on [X,Hd]
vdf via [ϕ] · [ψ] = rd[ϕ] + [ψ],

which is clearly virtually free and faithful. This implies that the action on [X,Yd]
f is virtually free.

Moreover, the map vd ◦ : [X,Yd]
f → [X,Hd]

vdf is finite-to-one by Sullivan’s finiteness theorem.
Thus the action on [X,Yd]

f is also virtually faithful.

4.3. The Postnikov induction. Now we construct the H-space action. For n = 1 all the spaces
are points and all the maps are trivial. So suppose we have constructed the maps un−1, vn−1, and
actn−1, and let kn : Yn−1 → K(πn(Y ), n + 1) be the nth k-invariant of Y . For the inductive step,
it suffices to prove the following lemma:

Lemma 4.4. There is an integer q > 0 such that we can define un to be a lift of un−1χq, and
construct vn and a solution actn : Hn × Yn → Yn to the homotopy lifting-extension problem

(4.5)

Hn ×Hn

(id,un)

��

addn
// Hn

un
// Yn

��
��

Hn × Yn

actn❡❡❡❡❡❡❡❡❡❡

22❡❡❡❡❡❡❡❡❡❡

(χq ,id)
// Hn × Yn // // Hn−1 × Yn−1

actn−1
// Yn−1

so that the desired conditions are satisfied.

Proof. First, since Y is rationally a product, kn is of finite order, so by Lemma 3.3 there is some
q0 such that knun−1χq = 0, and therefore

Hn

��
��

û
// Yn

��
��

Hn−1

un−1χq0
// Yn−1;

is a pullback square. We will define un = χq2q1 û, with q1 and q2 to be determined and q = q2q1q0.
9



Now we construct actn. We will in fact construct a lifting-extension

Hn ×Hn

(id,û)

��

(χq1
,id)
// Hn ×Hn

addn
// Hn

û
// Yn

��
��

Hn × Yn

âct❡❡❡❡❡❡❡❡❡❡

22❡❡❡❡❡❡❡❡❡❡

(χq1q0
,id)
// Hn × Yn // // Hn−1 × Yn−1

actn−1
// Yn−1.

It is easy to see that then for any q2 > 0, actn = âct ◦ (χq2 , id) satisfies (4.5).
Note that the outer rectangle commutes since we know (4.3) holds in degree n − 1. Moreover,

the obstruction O ∈ Hn+1(Hn × Yn,Hn × Hn;πn(Y )) to finding the lifting-extension is of finite
order since (id, un) : Hn ×Hn → Hn × Yn is a rational equivalence. We will show that when q1 is
large enough, this obstruction is zero.

The obstruction group fits into the exact sequence

· · · → Hn(Hn×Hn;πn(Y ))
δ
−→ Hn+1(Hn×Yn,Hn×Hn;πn(Y ))

rel∗
−−→ Hn+1(Hn×Yn;πn(Y ))→ · · · ,

and so the image rel∗O in Hn+1(Hn × Yn;πn(Y )) is torsion. By Lemma 3.6(i), that means that
(χs, id)

∗(rel∗O) = 0 for some s > 0.
Now we look at the preimage α ∈ Hn(Hn ×Hn;πn(Y )) of (χs, id)

∗O. Applying Lemma 3.6(iii),
we can find a t such that χ∗

tα ∈ ker δ and therefore

δ((χt, id)
∗α) = (χst, id)

∗O = 0.

Thus for q1 = st, we can find a map âct completing the diagram.
Now we ensure that (4.2) commutes by picking an appropriate q2. Note that the diagram

Hn ×Hn × Yn
(addn,id)

//

(id,âct)
��

Hn × Yn

âct
��

Hn × Yn
âct

// Yn

commutes up to finite order; namely, the sole obstruction to commutativity is a torsion class
in Hn+1(Hn × Hn × Y ;πn(Yn)). Therefore we can again apply Lemma 3.6(i), this time with
H = Hn ×Hn and U = Yn, to find a q2 which makes the obstruction zero. Finally, (4.2) implies
that actn |{o}×Yn is homotopic to the identity, so we modify actn by a homotopy to make it the
identity on the nose.

All that remains is to define vn. But we know that un is rationally invertible, and so we can find
some vn such that vnun is multiplication by some rn. Moreover, for any such vn, the right square
of (4.3) commutes up to finite order. Thus by increasing rn (that is, replacing vn by χr̂vn for some
r̂ > 0) we can make it commute up to homotopy. �

5. Building blocks of homotopy-theoretic computation

We now turn to describing the algorithms for performing the computations outlined in the
previous two sections. This relies heavily on machinery and results from [Č+14c], [ČKV17], and
[FV20] as building blocks. This section is dedicated to explaining these building blocks.

Our spaces are stored as simplicial sets with effective homology. Roughly speaking this means a
computational black box equipped with:

• Algorithms which output its homology and cohomology in any degree and with respect to
any finitely generated coefficient group.

10



• A way to refer to individual simplices and compute their face and degeneracy operators.
This allows us to, for example, represent a function from a finite simplicial complex or
simplicial set to a simplicial set with effective homology.

Now we summarize the operations which are known to be computable from previous work.

Theorem 5.1. (a) Given a finitely generated abelian group π and n ≥ 2, a model of the Eilenberg–
MacLane space K(π, n) can be represented as a simplicial set with effective homology and a com-
putable simplicial group operation. Moreover, there are algorithms implementing a chain-level
bijection between n-cochains in a finite simplicial complex or simplicial set X with coefficients
in π and maps from X to K(π, n) [Č+14c, §3.7].

(b) Given a finite family of simplicial sets with effective homology, there is a way of representing
their product as a simplicial set with effective homology [Č+14c, §3.1].

(c) Given a simplicial map f : X → Y between simplicial sets with effective homology, there is
a way of representing the mapping cylinder M(f) as a simplicial set with effective homology.
(In [ČKV17] this is remarked to be “very similar to but easier than Prop. 5.11”.)

(d) Given a map p : Y → B, we can compute the nth stage of the Moore–Postnikov tower for p, in
the form of a sequence of Kan fibrations between simplicial sets with effective homology [ČKV17,
Theorem 3.3].

(e) Given a diagram

A� _

��

// Pn

��
��

X //

==
③

③

③

③

Pn−1

where Pn → Pn−1 is a step in a (Moore–)Postnikov tower as above, there is an algorithm to
decide whether a diagonal exists and, if it does, compute one [ČKV17, Prop. 3.7].

(f) Given a fibration p : Y → B of simply connected simplicial complexes and a map f : X → B, we
can compute any finite Moore–Postnikov stage of the pullback of p along f [ČKV17, Addendum
3.4].

(g) Given a diagram

A
f

//
� _

i
��

Y

p
��
��

X

>>
⑥

⑥

⑥

⑥ g
// B,

where A is a subcomplex of a finite complex X and p is a fibration of simply connected complexes
of finite type, we can compute whether two maps u, v : X → Y completing the diagram are
homotopic relative to A and over B [FV20, see “Equivariant and Fiberwise Setup”].

(h) Given a diagram

A
f

//

��

i
��

Y

p

��

X

>>
⑥

⑥

⑥

⑥ g
// B

where A is a subcomplex of a finite complex X, Y and B are simply connected, and p has finite

homotopy groups, we can compute the (finite and perhaps empty) set [X,Y ]fp of homotopy
classes of maps completing the diagram up to homotopy.

Proof. We prove only the part which is not given a citation in the statement.
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Part (h). Let d = dimX. One starts by computing the dth stage of the Moore–Postnikov tower
of p : Y → B using (f). From there, we induct on dimension. At the kth step, we have computed
the (finite) set of lifts to the kth stage Pk of the Moore–Postnikov tower. For each such lift, we use
(e) to decide whether it lifts to the (k + 1)st stage, and compute a lift u : X → Pk+1 if it does.
Then we compute all lifts by computing representatives of each element of Hk+1(X,A;πk+1(p))
and modifying u by each of them. Finally, we use (g) to decide which of the maps we have obtained

are duplicates and choose one representative for each homotopy class in [X,Pk+1]
f
p . We are done

after step d since [X,Pd]
f
p
∼= [X,Y ]fp . �

6. Computing [X,Y ]f

We now explain how to compute the group and action described in §4. We work with a represen-
tation of (X,A) as a finite simplicial set and a Postnikov tower for Y , and perform the induction
outlined in that section to compute [X,Yd]

f for a given dimension d. The algorithm verifies that Y
is indeed a rational H-space through dimension d; however, it assumes that Y is simply connected
and returns nonsense otherwise.

6.1. Setup. Let d be such that Yd is a rational H-space. Since the homotopy groups of Y can be
computed, we can use Theorem 5.1(a) and (b) to compute once and for all the space

Hd =

d∏

n=2

K(πn(Y ), n),

and the binary operation addd : Hd × Hd → Hd is given by the product of the simplicial group
operations on the individual K(πn(Y ), n)’s. The group of homotopy classes [X/A,Hd] is naturally

isomorphic to
∏d
n=2H

n(X,A;πn(Y )), making this also easy to compute. Finally, given an element
of this group expressed as a word in the generators, we can compute a representative map X → Hd,
constant on A, by generating the corresponding cochains of each degree on (X,A) and using them
to build maps to K(πn(Y ), n).

We then initialize the induction which will compute maps ud, vd, and actd and an integer rd
satisfying the conditions of §4. Since H1 = Y1 is a point, we can set r1 = 1 and u1, v1, and act1 to
be the trivial maps.

6.2. Performing the Postnikov induction. The induction is performed as outlined in §4.3,
although we have to be careful to turn the homotopy lifting and extension problems into genuine
ones. Suppose that maps un−1, vn−1, and actn−1 as desired have been constructed, along with a
map

Hactn−1 : Hn ×M(un−1)→ Yn−1

which restricts to addn−1 on Hn−1 × Hn−1 and actn−1 on Hn−1 × Yn−1 (here M(f) refers to the
mapping cylinder of f). There are five steps to constructing the maps in the nth step:

1. Find q0 such that un−1χq0 lifts to a map û : Hn → Yn.
2. Find q1 such that the diagram

(Hn ×Hn) ∪ (on ×M(û))
��

��

addn ∪ id
// M(û)

project
// Yn

��
��

Hn ×M(û)

Ĥact❝❝❝❝❝❝❝❝❝❝❝❝❝

11❝❝❝❝❝❝❝❝❝❝❝❝❝

(χq1q0
,id)

// Hn ×M(û) // // Hn−1 ×M(un−1)
Hactn−1

// Yn−1

12



has a lifting-extension along the dotted arrow. Note the modifications to diagram (4.5) which
are designed to make it commute on the nose rather than up to homotopy and to make sure
that âct(o, x) = x. Here M(f) represents the mapping cylinder of the map f .

3. Find q2 such that Ĥact|Hn×Yn ◦(χq2 , id) makes the diagram (4.2) commute up to homotopy. Now
we can set

Hactn = Ĥact ◦ (χq2 , id); actn = Hactn |Hn×Yn ; un = ûχq1q2 .

4. Find q3 so that the diagram

Hn+1
// //

χq3

33
M(un+1) //❴❴❴ Hn+1

can be completed by some v̂.
5. Find q4 so that setting

vn+1 = v̂χq4 and rn+1 = rkq0q1q2q3q4

makes the diagram (4.3) commute.

The first step is done by determining the order of the k-invariant kn+1 ∈ H
n+2(Yn;πn+1(Y )). If

this order is infinite, then Y is not rationally a product of Eilenberg–MacLane spaces, and the
algorithm returns failure. Otherwise we compute q0 by trying various multiples of the order.

The rest of the steps are guaranteed to succeed for some value of qi, and each of the conditions
can be checked using the operations of Theorem 5.1, so this part can be completed by iterating
over all possible values until we find one that works.

6.3. Computing the action. Let G = [X/A,Hd]; we now explain how to compute [X,Y ]f as a
set with a virtually free and faithful action by G.

First we must decide whether there is a map X → Hd extending vdf : A→ Hd. If the set [X,Yd]
f

has an element e, then vdf has an extension vde, so if we find that there is no such extension, we
return the empty set. Otherwise we compute such an extension ψ0.

Lemma 6.1. We can determine whether an extension ψ0 : X → Hd of vdf exists, and compute
one if it does.

Proof. Recall that Hd =
∏d
n=2K(πn(Y ), n). Write projn for the projection to the K(πn(Y ), n)

factor. Then the extension we desire exists if and only if for each n < d, the cohomology class in
Hn(A;πn(Y )) represented by projn vdf has a preimage in Hn(X;πn(Y )) under the map i∗.

We look for an explicit cocycle σn ∈ Cn(X;πn(Y )) whose restriction to A is projn vdf . We
can compute cycles which generate Hn(X;πn(Y )) (because X has effective homology) as well
as generators for δCn−1(X;πn(Y )) (the coboundaries of individual (n − 1)-simplices in X). Then
finding σn or showing it does not exist is an integer linear programming problem with the coefficients
of these chains as variables.

Now if σn exists, then it also determines a map X → K(πn(Y ), n). Taking the product of these
maps for all n ≤ d gives us our ψ0. �

We now compute a representative aN for each coset N of rdG ⊆ G. Since this is a finite-index
subgroup of a fully effective abelian group, this can be done algorithmically, for example by trying
all words of increasing length in a generating set until a representative of each coset are obtained.
For each aN , we compute a representative map ϕN : X → Hd which is constant on A. Then the
finite set

S = {ψN = ψ0 + vdudfN : N ∈ G/rdG}

contains representatives of the cosets of the action of [X/A,Hd] on [X,Hd]
vdf obtained by pushing

the action on [X,Y ]f forward along vd.
13



Now, for each element of S we apply Theorem 5.1(h) to the square

A
f

//

i
��

Yd

vd

��

X

>>
⑥

⑥

⑥

⑥ ψN
// Hd

to compute the finite set of preimages under vd in [X,Yd]
f . To obtain a set of representatives of

each coset for the action of [X/A,Hd] on [X,Yd]
f , we must then eliminate any preimages that are

in the same coset. In other words, we must check whether two preimages ψ̃ and ψ̃′ of ψN differ by
an element of [X/A,Hd]; any such element stabilizes vdψ, and so its order must divide rd. Since
there are finitely many elements whose order divides rd, we can check for each such element ϕ in
turn whether [ϕ] · [ψ̃] ≃ [ψ̃′].

Finally, to finish computing [X,Yd]
f we must compute the finite stabilizer of each coset. This

stabilizer is contained in the finite subgroup of [X/A,Hd] of elements whose order divides rd.
Therefore we can again go through all elements of this subgroup and check whether they stabilize
our representative.

7. Variants of Hilbert’s tenth problem

In [Č+14b], the authors show that the existence of an extension is undecidable by using the
undecidability of the existence of solutions to systems of diophantine equations of particular shapes:

Lemma 7.1 (Lemma 2.1 of [Č+14b]). The solvability in the integers of a system of equations of
the form

∑

1≤i<j≤r

a
(q)
ij xixj = bq, q = 1, . . . , s or(Q-SYM)

∑

1≤i<j≤r

a
(q)
ij (xiyj − xjyi) = bq, q = 1, . . . , s(Q-SKEW)

for unknowns xi and (for (Q-SKEW)) yi, 1 ≤ i ≤ r, is undecidable.

For our purposes, we will need to show the same for systems of one more form, as well as an
infinite family generalizing it.

Lemma 7.2. The solvability in the integers of a system of equations of the form

(Q-DIFF)

r∑

i,j=1

a
(q)
ij xiyj = cq, q = 1, . . . , s

for unknowns xi and yi, 1 ≤ i ≤ r, is undecidable. More generally, for any (not all zero) family of
m× n matrices {Bp}p=1,...,t, the solvability in the integers of a system of equations of the form

(Q-BLIN{Bp})

r∑

i,j=1

a
(q)
ij ~u

T
i Bp~vj = cpq, q = 1, . . . , s, p = 1, . . . , t

for unknowns ui1, . . . , uim and vj1, . . . , vjn, 1 ≤ j ≤ r, is undecidable.

Proof. Systems of the form (Q-DIFF) are a subset of those of the form (Q-SYM). In fact, the
proof in [Č+14b] of the undecidability of (Q-SYM) only uses systems of the form (Q-DIFF), and
so proves that (Q-DIFF) is undecidable.

To show that (Q-BLIN{Bp}), for any {Bp}p=1,...,t which are not all zero, is undecidable, we show
that a system of the form (Q-DIFF) can be simulated with one of the form (Q-BLIN{Bp}). This

proof is closely related to that of the undecidability of (Q-SYM) in [Č+14b].
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First, suppose that r = 1, so we just have one matrix B. We first show that we replace B wth
an invertible square matrix.

Lemma 7.3. Given an m× n matrix B, there is a square invertible matrix B′ such that for every
choice of {aij} and cq, the system

r∑

i,j=1

aij~u
T
i B~vj = cq, q = 1, . . . , s

has a solution if and only if the system
r∑

i,j=1

aij(~u
′
i)
TB′~v′j = cq, q = 1, . . . , s

has a solution.

Proof. The rows of B generate a subgroup of Zn, and by plugging in different ~ui we can get any
vector in that subgroup. So let B′′ be an t×n matrix whose rows are linearly independent vectors
generating that subgroup. Then the set of possible values of (~u′i)

TB′′ is the same as the set of
possible values of ~uTi B.

Now the columns of B′′ generate a subgroup of full rank in Zt, and by plugging in different ~vj
we can get any vector in that subgroup. So let B′ be a t × t matrix whose columns are linearly
independent vectors generating that subgroup. Then the set of possible values of B′~v′j is the same

as the set of possible values of B′′~vj. �

Thus we may assume from the start that m = n and B = (bkℓ) is invertible. Moreover, by
shuffling indices we may assume that b11 is nonzero.

Now consider a general system of the form (Q-DIFF). We use it to build a system of the form
(Q-BLIN{B}) with variables

ui1, . . . , uin and vj1, . . . , vjn, 1 ≤ i ≤ r,

zkℓ and wkℓ, 1 ≤ k, ℓ ≤ n.

Define n× n matrices Z = (zkℓ) and W = (wkℓ). Then the equations of our new system are

(7.4)





r∑

i,j=1

a
(q)
ij ~u

T
i B~vj = b11cq, q = 1, . . . , s,

ZTBW = B,

(~uTi BW )ℓ = 0, i = 1, . . . , r, ℓ = 2, . . . , n,

(ZTB~vj)k = 0, j = 1, . . . , r, k = 2, . . . , n.

We show that this has a solution if and only if (Q-DIFF) does. It is easy to see that {xi, yj}1≤i,j≤r
is a solution to (Q-DIFF) if and only if

Z =W = In, ~ui = xi~e1, ~vj = yj~e1,

where ~e1 is the basis vector (1, 0, . . . , 0), is a solution to (7.4). In particular, if (Q-DIFF) has a
solution, then so does (7.4). Conversely, suppose that we have a solution for (7.4). Since they are
integer matrices and B is invertible, Z and W must both have determinant ±1. Therefore Z−1 and
W−1 are also integer matrices. Then (7.4) also has the solution

~u′i = Z−1~ui, ~v′j =W−1~vj , Z ′ =W ′ = In,

which gives us a corresponding solution for (Q-DIFF).
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Now we take on the general case. Write Bp = (b
(p)
kℓ ); again by reshuffling indices we can assume

that b
(1)
11 6= 0. We again use the variables

ui1, . . . , uim and vj1, . . . , vjn, 1 ≤ i ≤ r,

zkℓ and wkℓ, 1 ≤ k ≤ m, 1 ≤ ℓ ≤ n

and the very similar system of equations

(7.5)





r∑

i,j=1

a
(q)
ij ~u

T
i Bp~vj = b

(p)
11 cq, q = 1, . . . , s, p = 1, . . . , t,

ZTBpW = Bp, p = 1, . . . , t,

(~uTi BpW )ℓ = 0, p = 1, . . . , t, i = 1, . . . , r, ℓ = 2, . . . , n,

(ZTBp~vj)k = 0, p = 1, . . . , t, j = 1, . . . , r, k = 2, . . . ,m.

Once again, (Q-DIFF) has a solution {xi, yj}1≤i,j≤r if and only if (7.5) has the solution

Z = Im, W = In, ~ui = xi~e1, ~vj = yj~e1.

Conversely, any solution to (7.5) is also a solution to the subsystem consisting of equations involving
B1; by the argument above this can be turned into a solution for (Q-DIFF). �

8. Undecidability of extension problems

Theorem 8.1. Let Y be a simply connected finite complex which is not a rational H-space. Then
the problem of deciding, for a finite simplicial pair (X,A) and a map ϕ : A → Y , whether an
extension to X exists is undecidable. Moreover, cd(X,A) = d + 1, where d is the smallest degree
such that Yd is not a rational H-space.

Proof. We reduce from the problem (Q-BLIN{Bp}), for an appropriate set of matrices Bp. For each
instance of this problem, we construct a pair (X,A) and map f : A → Y such that an extension
exists if and the instance has a solution.

Fix a minimal model MY for Y and a basis of generators for the indecomposables Vk in each
degree k which is dual to a basis for πk(Y )/torsion. Since Y is not a rational H-space, there is some
least d such that the differential in the minimal modelMY is nontrivial. Recall that for a minimal
model, each nonzero term in the differential is at least quadratic. For each of the generators η of
Vd, dη is a polynomial in the lower-degree generators. Denote by P-degree the degree of an element
of the minimal model as a polynomial in these generators, as opposed to the degree imposed by
the grading. Of all the terms in all these polynomials, we choose one with the smallest P-degree
and write it as Cαβµ, where C is a rational coefficient, α and β are elements of Vd1 and Vd2 ,
respectively, and µ is some shorter monomial, perhaps 1.

Some of the dη may have other terms of the form α′β′µ, for various α′ and β′. We write

dη = Pη(~α, ~β)µ + νη,

with νη consisting of all the terms which either have higher P-degree or are not multiples of µ.
We note here the connection, first investigated in [AA78], between the differential in the minimal

model and higher-order Whitehead products. Given spheres Sn1 , . . . , Snt , their product can be
given a cell structure with one cell for each subset of {1, . . . , t}. Define their fat wedge Vti=1S

ni

to be this cell structure without the top face. Let N = −1 +
∑t

i=1 ni, and let τ : SN → Vti=1S
ni

be the attaching map of the missing face. By definition, α ∈ πN (Y ) is contained in the rth-order
Whitehead product [α1, . . . , αt], where αi ∈ πni

(Y ), if it has a representative which factors through
a map

SN
τ
−→ Vti=1S

ni
fα
−→ Y
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such that [fα|Sni ] = αi. Note that there are many potential indeterminacies in how higher-
dimensional cells are mapped, so [α1, . . . , αt] is a set of homotopy classes rather than a unique
class.

Some properties of the Whitehead product set [α1, . . . , αt] are easy to deduce. It is nonempty if all
the (t−1)st-order product sets [α1, . . . , α̂i, . . . , αt] contain zero. Moreover, higher order Whitehead
products are multilinear, in the sense that

[cα1, . . . , αt] ⊇ c[α1, . . . , αt],

and the factors commute or anticommute as determined by the grading.
The main theorem of [AA78], Theorem 5.4, gives a formula for the pairing between an inde-

composable η ∈ Vn and any element of an rth-order Whitehead product set, assuming that every
term of dη has P-degree at least r. This formula is somewhat complicated, but is r-linear in the
pairings between factors of the terms of dη and factors of the Whitehead product. In particular,
let µ = γ1 · · · γt, and let e1, . . . , et be the generators of π∗(Y ) dual to the γi. Then any element f
of the Whitehead product set [a, b, e1, . . . , et], for a ∈ πd1(X) and b ∈ πd2(X), satisfies

(8.2) 〈η, f〉 = P ′
η(〈αi, a〉, 〈βi, b〉)

where P ′
η is an integer bilinear form in the two arguments, and αi and βi range over generators of

Vd1 and Vd2 , respectively, which occur in terms of η of the form αiβiµ (these are the same set if
d1 = d2.)

In general, Whitehead product sets may be empty. However, since the rational homotopy of Y
below n is that of a product of Eilenberg–MacLane spaces, for any a1, . . . , as whose degrees add up
to ≤ d + 1, there are integers p1, . . . , ps such that [p1a1, . . . , psas] is nonempty, and if the degrees
add up to ≤ d then there are p1, . . . , ps such that 0 ∈ [p1a1, . . . , psas]. In particular, we can fix
integers p1, . . . , pt such that [p1e1, . . . , ptet] contains zero, as well as integers ρ1 and ρ2 such that
for any g1 ∈ πd1(Y ) and g2 ∈ πd2(Y ), [ρ1g1, ρ2g2, p1e1, . . . , ptet] is nonempty.

Let η1, . . . , ηr be the generators of Vd, g1, . . . , gm a generating set for ρ1πd1(Y )/torsion, h1, . . . , hn
a generating set for ρ2πd2(Y )/torsion, and for p = 1, . . . , r, let Bp be the matrix which gives P ′

ηp
in

terms of those two bases. Now given a system of the form (Q-BLIN{Bp}), we will build a (d+ 1)-
dimensional pair (X,A) and a map f : A → Y such that the extension problem has a solution if
and only if the system does. We define

A =

s∨

q=1

Sdq ∨

t∨

i=1

Sni ,

where ni is the degree of ei, and let f : A→ Y send

• Sni to Y via a representative of piei;
• Sdq to Y via an element whose pairing with ηp is cpq.

Finally, we build X from A′ = A ∨
∨r
i=1 S

d1
i ∨

∨r
j=1 S

d2
j as follows:

• Add on cells so that for every i and j, X includes the fat wedge V(Sd1i , S
d2
j , S

n1 , . . . , Snt),

and these fat wedges only intersect in A′. Let ϕij : Sd → X be the attaching map of the
missing (d+ 1)-cell for the (i, j)th fat wedge.

• Add on spheres Sd1′i together with the mapping cylinder of a map Sd1i → Sd1′i of degree ρ1,

and spheres Sd2′j together with the mapping cylinder of a map Sd2j → Sd2′j of degree ρ2.

• Then, for each q, add a (d+1)-cell whose boundary is a representative of ρ([Sdq ]−
∑r

i,j=1 a
(q)
ij [ϕij ]),

where ρ is the exponent of the torsion part of πd(Y ).

It is easy to see that Hn(X,A) = 0 for n > d.
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We claim that (X,A) and f pose the desired extension problem. Indeed, any extension of f to

f̃ : X → Y sends each Sd1i to an element of ρ1πd1(Y ) and each Sd2j to an element of ρ2πd2(Y ), as
constrained by the mapping cylinders. Now if we write

(8.3) f̃∗[S
d1
i ] = torsion +

m∑

k=1

ukgk and f̃∗[S
d1
j ] = torsion +

n∑

ℓ=1

vℓhℓ,

then the (d + 1)-cells force, via (8.2), a relationship between the uk, vℓ, and cpq which is exactly
(Q-BLIN{Bp}).

Conversely, given uk and vℓ satisfying (Q-BLIN{Bp}), there is an extension f̃ : X → Y satisfying
8.3. To see this, note that there is clearly an extension to the fat wedges and the mapping cylinders.

Moreover, under any such extension, f∗[S
d
q ] and

∑r
i,j=1 a

(q)
ij f̃∗[ϕij ] ∈ πd(Y ) are rationally equivalent;

thus when multiplied by ρ they are equal, and the map extends to the (d+ 1)-cells of X. �
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