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Systems/Circuits

Dynamic Encoding of Speech Sequence Probability in
Human Temporal Cortex

Matthew K. Leonard,' Kristofer E. Bouchard,'>* ©Claire Tang,* and Edward F. Chang'

Department of Neurological Surgery, University of California, San Francisco, San Francisco, California 94158, 2Department of Physiology, University of
California, San Francisco, San Francisco, California 94158, 3Computational Research Division, Lawrence-Berkeley National Laboratory, Berkeley, California
94720, and *Neuroscience Graduate Program, University of California, San Francisco, San Francisco, California 94158

Sensory processing involves identification of stimulus features, but also integration with the surrounding sensory and cognitive context.
Previous work in animals and humans has shown fine-scale sensitivity to context in the form of learned knowledge about the statistics of
the sensory environment, including relative probabilities of discrete units in a stream of sequential auditory input. These statistics are a
defining characteristic of one of the most important sequential signals humans encounter: speech. For speech, extensive exposure to a
language tunes listeners to the statistics of sound sequences. To address how speech sequence statistics are neurally encoded, we used
high-resolution direct cortical recordings from human lateral superior temporal cortex as subjects listened to words and nonwords with
varying transition probabilities between sound segments. In addition to their sensitivity to acoustic features (including contextual
features, such as coarticulation), we found that neural responses dynamically encoded the language-level probability of both preceding
and upcoming speech sounds. Transition probability first negatively modulated neural responses, followed by positive modulation of
neural responses, consistent with coordinated predictive and retrospective recognition processes, respectively. Furthermore, transition
probability encoding was different for real English words compared with nonwords, providing evidence for online interactions with
high-order linguistic knowledge. These results demonstrate that sensory processing of deeply learned stimuli involves integrating
physical stimulus features with their contextual sequential structure. Despite not being consciously aware of phoneme sequence statis-
tics, listeners use this information to process spoken input and to link low-level acoustic representations with linguistic information

about word identity and meaning.
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Introduction

In auditory perception, listeners are tuned to the statistical prop-
erties of the sensory environment (Winkler et al., 2009), includ-
ing learned knowledge about the structure of acoustic sequences
(Furl et al., 2011; Yaron et al., 2012; Tremblay et al., 2013). On
both short (Ulanovsky et al., 2003) and long (Kiebel et al., 2009)
time scales, neurons and neural populations throughout the audi-
tory system process sequential information (Margoliash and For-
tune, 1992; Brosch and Schreiner, 2000; Gelfand and Bookheimer,
2003; Gentner and Margoliash, 2003; Bouchard and Brainard,
2013), in addition to discrete elements of sequences. Speech is an
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important sequential auditory input for human communication, yet
it is presently unknown how discrete speech features (Chang et al.,
2010; Mesgarani et al., 2014) are processed as sequences that com-
prise words.

Languages are defined not only by the physical characteristics
of individual speech sounds (the acoustics of phonemes), but also
by the sequential arrangements of these phonemes (phonotac-
tics) (Vitevitch and Luce, 1999). For example, hearing the sound
/k/ followed by /uw/ (“koo”) is more common than hearing /k/
followed by /iy/ (“kee”). Thus, in English, /k/ predicts /uw/ more
strongly than /iy/, which is less likely to be the next sound (see Fig.
1A). In both cases, the two phonemes in the sequence are condi-
tionally predictable from each other, assuming the listener has
learned the statistics of English phoneme sequences (although
listeners may not be consciously aware of these distributions). While
there is an ongoing debate regarding the behavioral role of phonot-
actics in speech perception (Lipinski and Gupta, 2005; Vitevitch and
Luce, 2005), there is currently a lack of neurobiological data exam-
ining how language-level statistical structure is encoded in the brain
at fine temporal and spatial scales. Specifically, it is unknown how
the encoding of phonotactic statistics relates to the encoding of both
lower-level acoustic and higher-level lexical features.

Here we used high-density electrocorticography (ECoG) to
examine how sequences of phonemes are encoded in real time.
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Participants listened to a set of 26 con- A
sonant-vowel-consonant (CVC) words and
pseudowords that allowed us to compare re-
sponses with the same sounds in different
phonotactic contexts (see Fig. 1B). We
hypothesized that, as the speech signal un-
folds, neural populations track spectro-
temporal, phonetic, and phonotactic
information. We specifically examined
how modulation of neural responses by
various phonotactic measures (having
controlled for acoustic tuning as mea-
sured by various spectrotemporal and
phonetic models) indicates different real-
time neural processing strategies, which
contribute to the capability for rapidly un-
derstanding speech.

Materials and Methods

Participants. Four human subjects (2 female)
were implanted with a high-density 256-
electrode array (4 mm pitch) subdurally over
the left (language-dominant) hemisphere as
part of clinical treatment for epilepsy. All sub-
jects reported normal hearing and were within
normal range on a battery of neuropsycholog-
ical language tests. They gave written informed
consent before surgery.

Stimuli and tasks. Subjects were told to listen
to each CVC stimulus (Fig. 1B) and wait for a
visual cue (2 s after the onset of the stimulus)
before repeating what they heard aloud. The purpose of the behavioral
response was to ensure that participants were awake and paying attention
to the sounds. Each block of the task consisted of 43 stimuli (26 of which
make up the balanced set used in the ECoG analyses; the remainder were
distractor stimuli made up of other phonemes to preserve some natural
distribution of speech statistics). Subjects 1, 2, and 4 heard each CVC
(randomized order) 8 times, whereas Subject 3 heard them 10 times. The
stimuli were generated using the built-in speech synthesizer in Mac OS X
(“Alex” voice), were highly intelligible, and had a mean length of 491 *
28 ms. To calculate the English transition probabilities, we used a large
speech corpus (Vaden et al., 2009) to generate the conditional probability
of one phoneme given another based on individual and co-occurrence
counts (Perruchet and Desaulty, 2008) (e.g., Py, 4 for the C,V transition)
as follows:

P.. = P(VIC)

Figure 1.

P(C,V)
P(C))

P(V[C) = (1)

Similar logic was used to calculate the P, transition probabilities (e.g.,
for the VC, transitions) as follows:

P(VC,y)
P(Cy)

P(V|C,) = (2)

Pg.q and Py, were obtained for both the C,V and VC, transitions;
however, we chose to focus on the effects of P, 4 in the C,V transition,
and Py, in the VC, transition because those comparisons captured the
most interesting dynamics (for a description of position-dependent and
position-independent phonotactic effects, see Results).

It is well established that the brain is sensitive to higher-order regular-
ities, such as the frequency of whole words in the language (Dahan et al.,
2001; Prabhakaran et al., 2006). To obtain a probability measure that was
not influenced by higher-order statistics, we controlled for lexical fre-
quency by dividing the right sides of Equations 1 and 2 by the sum of the
log lexical frequencies of words ( W) containing each biphone (C,V or
VC,), for example:

Leonard et al. e Speech Sequence Probability Encoding

Task Stimuli

P... = P(C|V)

Phonotactic transition probabilities. 4, Based on co-occurrence statistics in English, the probability of hearing a given
phoneme can be deduced from its neighboring phonemes. Two sequences, /k/-/iy/ (top spectrogram) and /k/-/uw/ (bottom
spectrogram), have different transition probabilities between the consonant and the vowel. The probability that /k/ is followed by
/iy/ or Juw/ in English (Pg,4) is indicated by the thickness of the arrows in the left diagram. Likewise, the probability that /iy/ or
/uw/is preceded by /k/ in English (P,,) is indicated by the thickness of the arrows in the right diagram. Py, (prediction of future
phonemes) and Py, (analysis of preceding phonemes) can be different from each other even for the same sequences, and thus
reflect different statistics of the language. In both cases, conditional probabilities are normalized by the marginal probabilities of
individual phonemes. B, In the present study, participants heard CVC words and pseudowords (e.g., /s-aa-k/) that had varying Py, 4
and Py, transition probabilities. All CVC combinations are shown in the schematic diagram, with lines reflecting Py, q for the C,V
transition and P, for the VG, transition (C,V Py, and VG, P, , not shown).

Dlog(P(C,V E W) (3)

This procedure is equivalent to including a term for lexical frequency in
the linear models described below. It provides an estimate of phoneme-
level transition probabilities that are not biased by the fact that more
frequent words inherently contain more frequent transitions, and vice
versa. We hypothesized that such a control would enhance the ability to
detect pure phonotactic effects, given previous work showing that
phoneme-level segmentation is influenced by higher-order statistics at
the lexical level (Kurumada et al., 2013).

In a separate task, subjects listened passively to 484 unique naturally
spoken sentences (2 repetitions of each sentence) from the TIMIT data-
base (Garofolo et al., 1993), which were used to estimate spectrotemporal
receptive fields for each electrode. As an additional control analysis to
verify the generality of any observed phonotactic effects, forward and
backward transition probabilities were calculated on all phoneme tran-
sitions in TIMIT, and the same linear regression analyses described below
were performed.

Data acquisition and preprocessing. Electrocorticographic data were
recorded from 256 electrodes simultaneously as broadband local field
potentials with a multichannel amplifier optically connected to a digital
signal processor sampled at 3052 Hz (TuckerDavis Technologies). Of-
fline, each electrode was inspected for artifacts or excessive noise, which
was not included in the final analyses. High-gamma band (HG) signals
were extracted by averaging the analytic amplitude of 8 logarithmically
spaced bands from 70 to 150 Hz (Crone et al., 1998; Bouchard et al.,
2013). The data were downsampled to 400 Hz (and then to 100 Hz to
generate STRF residuals) and segmented into epochs with 500 ms pre-
stimulus and 1000 ms poststimulus periods. The HG analytic amplitude
was converted to z-scores relative to the prestimulus baseline for each
electrode individually. Preliminary analyses in other frequency bands (8,
0, o, and B) did not reveal significant effects, possibly due to spatial
averaging and lower signal-to-noise (Jerbi et al., 2009). Future analyses
specifically designed to examine phonotactic encoding in these frequen-
cies may elucidate the relationships between low- and high-frequency
activity for these types of sublexical features.



Leonard et al. ® Speech Sequence Probability Encoding

J. Neurosci., May 6, 2015 - 35(18):7203—7214 + 7205

A stimuli B ECoG Grid C single-elec ECoG HG D Predicted Acoustic E Residual HG
! Response Response
ikl

TIMIT SentenCV
s

“Bricks are an alternative.”

Linear STRF Model

:j : F
Adaptation STRF Model

Acoustic-phonetic '

odel . ﬁa

Feature

'-;- | Linear Regression Models

Figure2.

Procedure for obtaining residual portion of HG cortical response after acoustic controls. A, CVC stimuli varying on phonotactic probability measures are presented aurally to each subject.

In a separate experiment, the same subjects hear sentences from the TIMIT database, used to estimate single-electrode spectrotemporal receptive fields (STRFs). B, ECoG is recorded from left
hemisphere frontal, temporal, and parietal areas with a 256 electrode grid with 4 mm spacing. C, For each electrode, time-varying HG activity is calculated relative to stimulus onset (blue arrow) and
is converted to z-scores relative to prestimulus baseline. D, Acoustic response (red line) is predicted for both the linear and adaptation spectrotemporal models by convolving the stimulus
spectrogram with the STRF for each electrode. The acoustic—phonetic feature model controls for fine-scale acoustics by representing each stimulus as a binary matrix of phonetic features. E, Acoustic
model predicted responses are subtracted from recorded HG signal on each electrode to isolate the portion of the signal not explained by the spectrotemporal model. F, These residuals are submitted
to linear regression models to determine the effects of phonotactic probability independent of acoustic effects explained by each control.

Cortical surface and electrode visualization. Electrodes were localized
on each individual brain by aligning the preoperative MRI volume with
the postoperative CT scan. Using FreeSurfer (Dale et al., 1999), each
subject’s cortical surface was reconstructed from the anatomical T1-
weighted MRI volume. Electrode locations were projected onto the indi-
vidual cortical surface and verified by comparison with intraoperative
photographs. Using a nonlinear transformation that matches individual
cortical folding patterns to a spherical atlas, the 3D coordinates of each
electrode were projected onto a common brain in the MNI coordinate
space (cvs_avg35_inMNI152) (Fischl etal., 1999). Finally, each electrode
was projected out onto a convex hull that approximates the interior of the
dural surface (Dykstra et al., 2012), preserving each individual grid’s
conformity to the pial surface. This method allows electrodes from mul-
tiple patients to be visualized on a single brain, with relative locations
(e.g., anterior-lateral superior temporal gyrus [STG]) conserved from
the original subject’s anatomy.

Acoustic controls. Human STG neural populations are acutely sensitive
to the acoustic and phonetic properties of spoken input (Chang et al.,
2010; Mesgarani et al., 2014). Given that phonotactic information is
hypothesized to reflect the relationships between individual speech
sounds, it is important to attempt to understand how acoustic and
phonotactic encoding contribute separately to neural activity. This is
particularly important given that speech is not simply the concatena-
tion of individual phonemes but is produced through an overlapping
sequence of multiple articulatory gestures and related acoustic fea-
tures. This phenomenon, known as coarticulation (Hardcastle and
Hewlett, 1999), provides extemporaneous cues to the identity of the
phonemes being heard, in some cases to a greater extent than the
transition probabilities between those phonemes (McQueen, 1998;
Johnson and Jusczyk, 2001; Newman et al., 2011). To be able to
examine phonotactic encoding separately from both general acoustic
tuning properties of electrodes and these finer-scale nonlinear acous-
tic properties, we performed several control analyses using a series of
acoustic models (Fig. 2).

Figure 3 compares the amount of variance explained by each of these
models. First, we examined phonotactic encoding with no acoustic con-
trol (NONE). Across all time points, this model accounted for a mean of
~5% of the variance (Fig. 3A) and showed a similar time course as the
other models, albeit with overall lower R? values (Fig. 3B, sparse dotted
line). Although still showing significant phonotactic effects (p < 0.05,
corrected), the model with no acoustic control accounted for less vari-
ance than each of the other three models (p < 10 ~9), and critically,
accounted for less explained variance than phonotactic features when
they were controlled for acoustics (p < 0.009). This suggests that pho-
notactic and acoustic features described by these controls contribute
nonoverlapping information.

The second control analysis used the linear STRF (STREF, ), calculated
for each electrode based on responses to the TIMIT stimuli according to
previously described procedures (Theunissen et al., 2001; Mesgarani and
Chang, 2012). Electrodes with relatively strong STRF, correlations (r >
0.1) were selected to generate residual responses on the phonotactic task
by subtracting the linear STRF prediction from the HG response to each
CVC stimulus (Fig. 2). Varying this threshold did not qualitatively
change the results, except for very weak or negative correlations, which
introduced artifacts into the residual responses. For the analyses compar-
ing the time courses of STRF; and phonotactic effects, we calculated the
moment-by-moment correlation between the predicted and actual re-
sponses on the phonotactic task, having removed the phonotactic effects
from the STRF; model, and the STRF, effects from the phonotactic
model. This control (STRF R* + phonotactic R?) accounted for a mean
of ~11% of the variance across all time points (Fig. 3A), with peaks at
~200 and 550 ms (Fig. 3B, dashed line).

It is possible that the linear STRF does not fully capture the spectro-
temporally dependent context effects (Machens et al., 2004; Ahrens et al.,
2008; Sadagopan and Wang, 2009; David and Shamma, 2013) in acoustic
responses that might confound analyses of phonotactic transition prob-
abilities. To test this, we applied an input nonlinearity to the STRF cal-
culation, which models the neural response taking into account a time
delay, 7, and magnitude, v, of synaptic depression (Ahrens et al., 2008;
David and Shamma, 2013). Each Mel-frequency spectral band in the
stimulus was filtered through a series of functions that varied Tand v, and
then the linear STRF was estimated for the reverse correlation between
each depression spectrogram and the neural response. Values of 7and v
that provided the strongest correlation between the predicted and actual
responses were selected for each electrode, and the optimal adaptation
STRF (STRF,) was removed from the neural response to examine the
residual effects of phonotactics, as in the linear model. The STRF,, mod-
els the effects of synaptic depression to understand how the cumulative
spectrotemporal input influences activity over time (David and Shamma,
2013). Phonological perception may be heavily influenced by neural ad-
aptation mechanisms (Steinschneider and Fishman, 2011), and the fine-
scale dynamics of coarticulatory acoustics may be encoded in such a manner.
This is because coarticulation is the outcome of a dynamic and overlapping
process of phonetic feature sequencing, where the acoustics of a given speech
sound are directly influenced by neighboring speech sounds.

For individual electrodes, the optimal combination of adaptation pa-
rameters resulted in higher R* values for predicting neural activity from
stimulus acoustics compared with the STRF; model (~19%-5% increase).
However, across electrodes and time points, the STRF, model (STRF,
R? + phonotactic R?) did not perform differently compared with other
acoustic controls (mean = ~11%, p > 0.3; Fig. 3A). The time course of
the total variance explained by the STRF, model (Fig. 3B, solid line) was
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nearly identical to the STRF; model, and the
individual contributions of acoustic and prob-
ability effects had the same dynamics as in the
linear model (compare Fig. 3C with Fig. 8B).
Because no model perfectly captures the
acoustic sensitivities of individual electrodes,
we used a fourth control that examines acous-
tic encoding in a different and complementary
manner. Rather than modeling acoustics based
on spectrotemporal features derived from a
large spoken corpus, this control models
acoustic sensitivity using a linear model based
on acoustic—phonetic features (Mesgarani et
al., 2014). Each CVC stimulus was parameter-
ized as a binary vector of consonant features
(“plosive,” “fricative,” “nasal,” “velar,” “alveo-
lar,” and “voiced”) and vowel features
(“tongue frontness,” and “tongue height”). Be-
cause of linear dependence between features,
the matrix of »n stimuli X p features was re-
duced in dimensionality using principal com-
ponents analysis. The first k PCs, accounting
for ~96% of the variance, were used to
describe the set of acoustic features. The two
phonotactic features, Py 4 and Py, were ap-
pended to the reduced feature matrix, and thus
fit simultaneously with the acoustics. To obtain
the percentage of the explained variance attrib-
uted to each feature set (acoustics vs phonotac-
tics), the strength of the linear weights was used
as a relative measure across features as follows:

k
Percent Explained Variance = RZEB;

4)

Where k is either the number of acoustic or
phonotactic features, (3; is the linear weight as-
sociated with each feature, and R? is the total
variance explained by the full model. This
model provides a means for capturing the co-
articulatory dynamics of the sounds through
the encoding of combinations of phonetic
features of the sounds in the triphone (e.g.,
fricative consonant — high-front vowel —
plosive consonant; /s-iy-k/). For example,
whereas the steady-state portion of the vowel
can be accounted for primarily through the
encoding of vocalic place features, its transi-
tion from the first consonant is a dynamic

combination of those features with the consonantal place of articula-

tion features.

The FEAT model (phonetic features R* + phonotactic features R?)
accounted for a mean of ~10% of the variance in the neural response
over all time points, which was not significantly different from the two
STRF models ( p > 0.3; Fig. 3A). Additionally, the time course of the total
variance explained by the FEAT model was similar to the STRF models,
with slightly higher R? values early in the word, and lower R? values

Leonard et al. e Speech Sequence Probability Encoding
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Figure3.  Controls foracoustic selectivity and dynamic coarticulation. To examine the encoding of phonotactic statistics having
controlled for a given electrode’s spectrotemporal tuning or phonetic feature preferences, we used a variety of acoustic models. We
compared the encoding of Py, 4 and Py, transition probabilities with no acoustic control (NONE), after removing STRF,, after
removing the effects of an STRF that accounts for neuronal adaptation through synaptic depression (David and Shamma, 2013)
(STRF,), and through a phonetic feature encoding model (FEAT) that explains acoustic selectivity as a linear combination of
phonetic features, such as fricatives, plosives, high-back vowels, etc. A, Across all time points and significant electrodes in each
model, the STRF,, STRF,, and FEAT models explained more of the total variance in the neural signal than the NONE model (p <
10 ~°) but did not differ significantly from each other (p > 0.3). B, At each time point, the percentage of total variance in the
neural signal explained by each acoustic model plus P, 4 and Py, transition probabilities showed similar time courses for all four
controls. The NONE model (sparse dotted line) had lower R2 values compared with the other three models, except well after
acoustic offset (~650 ms). The two STRF models had nearly identical time courses (solid and dashed lines), with the STRF, model
performing slightly better on average early in the word. The FEAT model (dense dotted line) showed a similar time course, but with
aless pronounced peak around word offset (~500 ms). €, For the STRF, model, we compared the percentage of explained variance
for the acoustic versus phonotactic probability (PROB) features and found nearly identical dynamics as in the STRF, model (Fig. 8B).
D, Acoustic and probability encoding in the FEAT model showed similar dynamics as the two STRF models, although with a less
pronounced lag between acoustic and phonotactic features. In all four models, Py, and Py, explain a significant amount of the
neural data, suggesting that, when both gross and fine-scale acoustics (e.g., coarticulation) are controlled, phonotactic probability
still shows significant modulatory effects on the neural response.

Linear phonotactic model. Preliminary analyses revealed that phonot-
actic effects were apparent only in the temporal lobe, and not on elec-
trodes over frontal or parietal cortex. To reduce the number of
statistically dependent comparisons, we restricted the electrodes to those
on the temporal lobe, below the Sylvian fissure (125-142 electrodes per
subject). The residual nonacoustic HG response to all CVC stimuli was
regressed against the transition probability measures at each time point,
generating time courses of the linear weights (B-coefficients) for each
condition (e.g., P q and Py,.):

around word offset (Fig. 3B, dense dotted line). The relative explained

variance of acoustic and phonotactic features was similar to the STRF

HGj; = Bo + BiiPpva + BijPokw + € (5)

models; however, the lag between the two feature sets was less clear,

particularly for the early peak (Fig. 3D).

We did not find evidence from any of these control analyses that the
phonotactic effects we observed in lateral temporal lobe electrodes could
be explained by acoustic sensitivity. Furthermore, despite controlling for
acoustics in different ways, the residual phonotactic effects did not differ
across acoustic control models. Therefore, because of its widespread use
and relative simplicity, we used the linear STRF as the primary acoustic

control in all subsequent analyses.

where HG on the ith electrode at the jth time point is equal to the best
least-squares estimate of the sum of the forward (Pg,4) and backward
(Pyx.) probabilities. We also calculated model statistics, including R>
and p values (significance was determined based on a Bonferroni cor-
rected a < 0.05, unless described otherwise; the correction was done
across electrodes and time points for an effective p < 10 ~¢). The transi-
tion probabilities were either the lexical frequency controlled or uncon-
trolled values described above.
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k-means clustering analysis. To determine whether the different types
of transition probability correlation effects (e.g., negative, positive, early,
late) indicated distinct categories of responses, we submitted the P, 4 and
Py B-coefficient time courses for each electrode to k-means clustering
analysis. Because we were interested in the separability of full time courses,
rather than individual data points, we minimized distance-to-centroid val-
ues using the point-by-point sample correlation in MATLAB’s kmeans func-
tion. Visual examination of peak correlation effects indicated that k = 3
clusters were appropriate for this analysis.

Effects of lexicality. To examine lexical effects at the single-electrode
level, we constructed a linear model that included lexicality (real vs pseu-
doword) and its interactions with frequency-controlled Py, 4 and Py, as
follows:

HGij =Bo+ Bijpfwd + BijPlzkw + BijL + BijLwad + BijLPbkw + €
(6)

where L is a binary indication of lexical status.

For the across-electrode population decoding analysis, we first used
principal component analysis on the n = 38 electrodes X k = 26 X 91
data points (all time points for each token concatenated) to find optimal
weighted combinations of the 38 significant electrodes, and then used the
top 25 PCs, which accounted for ~94% of the variance. To further re-
duce the dimensionality of the predictors, we took a random subsam-
pling approach, which was necessary to make the regression matrices well
formed. It is possible that the effect of lexicality is present in the data but
is a relatively small modulator of STG responses compared with acoustics
and phonotactics. Because PCs are ordered according to decreasing ex-
plained variance, random subsets of 15 of the top 25 PCs were drawn
(with replacement). This random subset of PCs was entered into a ridge
regression (L2-regularized linear regression) model for each time point.
The model separately estimated Py, and Py, probabilities for real and
pseudowords as optimal linear combinations of the randomly selected
PCs. We used leave-one-out cross-validation on each of the 26 tokens to
measure model performance. The whole procedure was repeated 200
times with different random subsets of 15 PCs, and the optimal subset
was defined as minimizing the model R* during a baseline (—200 to 100
ms) and maximizing the peak R? for the rest of the trial (100-900 ms).
The optimal time courses were averaged into 100 ms bins for plotting
clarity. R? values for this optimal set were calculated 15 times with a
resampling (with replacement) procedure, and two-sample ¢ tests (with
Bonferroni correction) were performed on each time bin between real
and pseudowords for P4 and Py, conditions.

Results

We examined the encoding of two distinct types of phonotactic
information. Figure 1A shows two examples of CV sequences in
English, /k/-/uw/ and /k/-/iy/. In English, both sequences are pos-
sible; however, the probability of each vowel following the con-
sonant is different, as indicated by the thickness of the arrows
connecting the phonemes. Figure 1A (left) shows the forward
probability of the consonant transitioning to the vowel (Pgq4)-
Ps.q quantifies the probability of upcoming phonemes given the
present phoneme [e.g., P(fuw/|/k/) > P(/iy/|/k/)]. Figure 1A
(right) shows the same sequence, but with the transitions reflect-
ing the backward probability of the vowel transitioning from the
consonant (Py.,). Py, quantifies the probability of preceding
phonemes given the present phoneme [e.g., P(/k/|/iy/) > P(/k/|/
uw/)]. Both transition probability measures represent the
English-specific statistics of how often certain sounds co-occur,
and in which order (see Materials and Methods). As this example
illustrates, Py, 4 and Py, can have different values even for the
same phoneme sequence, which allows us to disambiguate en-
coding of one from the other. Indeed, for 931 biphones that occur
in a naturally spoken English corpus (Garofolo etal., 1993), while
P;.q and Py, are significantly correlated (r = 0.42, p < 107'7),
only ~16% of the variability in one can be predicted from the
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other. Although most previous investigations of phonotactics
have focused on P4 transition probabilities, it has been sug-
gested in multiple domains that Py, is also a useful statistical cue
for processing sequences and that it provides information not
contained in the Pg,4 distributions (Perruchet and Desaulty,
2008; Pelucchi et al., 2009; Bouchard and Brainard, 2013). There-
fore, finding sensitivity to either one or both probability mea-
sures would imply encoding of fundamentally different aspects of
the phonotactic structure of the language (Grossberg, 1987).

In the present study, we used a set of CVC words and pseudo-
words that had varying P4 and Py, transition probabilities,
calculated from a large English corpus (Vaden et al., 2009). We
calculated both P, 4 and Py, transition probabilities on both the
C,V and VG, transitions for all CVC stimuli in the task. Figure 1B
illustrates an example of these values, showing the P, 4 and Py,
transition probabilities for the C,V and VC, transitions (thicker
lines indicate higher probabilities), respectively, of all CVC
combinations.

Temporal lobe neural responses are modulated by both the
acoustics and sequence statistics of speech

We examined neural responses in the lateral superior temporal
lobe, a well-characterized region that is known to be sensitive to
the acoustics of speech. Population neural responses in STG rep-
resent aspects of the stimulus spectrogram that are important for
understanding spoken input (Pasley et al., 2012), and single elec-
trodes show sensitivity to acoustic features that give rise to pho-
netic contrasts (Chang et al., 2010; Mesgarani et al., 2014). We
focused our analyses on stimulus-evoked neural activity in the
HG frequency range (70-150 Hz; see Materials and Methods),
which are known to be strongly associated with the fine-scale
dynamics of speech (Crone et al., 1998; Steinschneider et al.,
2011).

We found that responses in STG electrodes were sensitive to
the specific sounds in this stimulus set. Figure 4A shows re-
sponses from two electrodes to all C;-V-* (left plots) and *-V-C,
(right plots) combinations. Electrode e199-4 showed a stronger
response to the nasal phoneme /n/ (blue lines in left plot) when in
position C; compared with all other phonemes (100-300 ms:
Welch’s t test: p < 0.0001). Similarly, electrode e150-1 showed
stronger responses to the plosive /k/ than to either the nasal or
fricative sounds in position C,. To measure the auditory tuning
of HG responses, we calculated the linear STRF (STRF, ) for each
electrode, which reflects the combination of frequencies over
time that are most strongly correlated with the activity on that
electrode (Theunissen et al., 2001). The STRF for €199-4 showed
strong sensitivity to lower frequencies that are typically associated
with nasal phonemes, whereas electrode e150-1 showed a pattern
that was consistent with the short burst associated with unvoiced
plosive phonemes (brief low- and high-frequency increases in
power, followed by a mid-range decrease), including the /k/ pho-
neme in the present task (Fig. 4B).

This sensitivity to specific phonemes does not fully describe
the way in which speech is produced or heard. In particular,
speech is not simply the concatenation of invariant acoustic
units, but rather the acoustics of adjacent phonemes blended
with each other in both the forward and backward directions,
resulting in smooth trajectories through the speech sequence (co-
articulation) (Hardcastle and Hewlett, 1999). We observed that
the neural responses to these sounds differed depending on the
phoneme sequence in which they occurred. The preference for
/n/ on e199-4 was not apparent when the nasal occurred in posi-
tion C,, regardless of the sound that preceded it (400—600 ms:
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Phoneme selectivity and modulatory effects of phonotactics on cortical responses. 4, Mean (== SEM) HG cortical responses to all CVC combinations in two example STG electrodes. Each

electrode shows preferential responses to specific speech sounds (see color grid); however, contextual effects are apparent (e.g., €199-4is most active when /n/ is the first phoneme). Dashed vertical
lines indicate average V and C, phoneme onsets. B, Linear STRFs, modeling each electrode’s preferred acoustic frequencies, demonstrate that selectivity is driven by phoneme acoustics. C, Py, 4 and
Py transition probabilities modulate neural activity not explained by the linear STRF in electrodes from A, B. Time courses of linear weights (red and blue lines =95% Cl) show significant effects

during CV transition, vowel, and word offset time periods (p << 0.05; gray shading).

Welch’s t test: p = 0.80) (Fig. 4A, right plot), and the response to
/k/ at 150-1 was influenced by either the upcoming or preceding
vowel (gradient from dark to light red). As described in Materials
and Methods, we performed several control analyses to account
for coarticulatory and other linear and nonlinear acoustic differ-
ences between stimuli. We found that, with and without these
controls, we obtained robust and consistent sequence statistics
effects that could not be explained by acoustic or coarticulatory
features. Given a lack of differences between acoustic controls, we
used the most straightforward and widely used model (the linear
STRF) as our primary control in subsequent analyses.

To examine the encoding of transition probabilities, we re-
moved the portion of the HG signal explained by the linear STRF,
leaving the residual activity that was not explained by the control
model (i.e., responses in Fig. 44 minus predicted responses from
STRFsin Fig. 4B; see Fig. 2 and Materials and Methods). For each
electrode and moment in time (10 ms), we used regression to fit
a linear model to predict the residual activity as an optimal
weighted combination of forward (Pg,4) and backward (P,,)
probabilities. Figure 4C shows that both probability measures
modulated HG activity in a dynamic fashion. For example, from
~100 to 200 ms, higher Pg,4 values evoked smaller responses in
€199-4 (linear weights < 0, negative modulation). In contrast,
e150-1 showed positive modulation (linear weights > 0) with
Pgq from ~200 to 400 ms and with Py, from ~400 to 600 ms.
These results suggest that STG neural responses are modulated by
the phonotactics of speech beyond auditory sensitivities captured
by the acoustic controls.

Temporal lobe encoding of forward and backward

transition probabilities

Across all four participants, HG activity at 32 of 531 electrodes
showed significant probability effects (p < 0.05, corrected for
multiple comparisons; actual threshold of p < 10~°), and the
optimal linear combination of P, 4 and Py, explained up to 49%
of the residual response variability after accounting for the linear

effects of stimulus acoustics as modeled by the STRF. All signifi-
cant electrodes in these analyses were confined to middle and
posterior lateral STG, and posterior middle temporal gyrus; how-
ever, there was no apparent spatial organization for Pgq Vs Py,
in that region (Fig. 5A). Therefore, the encoding of speech se-
quence statistics takes place in a spatially distributed network.

The effect of probability on temporal lobe responses was also
distributed throughout the stimulus duration and differed across
electrodes, with some sites showing modulation around the C,V
transition, some during the vowel, some around and beyond
word offset, and some both early and late in the word (Fig. 5B). At
time points of maximal explained variance (R?), visual inspec-
tion of peak R* time points revealed that these electrodes could be
categorized into three distinct effects: a negative modulation of
neural responses by Pg,4, @ positive modulation by P4, and a
positive modulation by Py ... To examine the distinctiveness of
these patterns, we used k-means clustering on the time courses of
regression weights associated with P4 and Py, (e.g., Fig. 4C)
for all 32 electrodes and found that they were indeed separable
(Fig. 5C). These effects were temporally distinct, with the neg-
ative Py 4 peak occurring on average 75 ms earlier than the
positive Pg 4 peak (independent-samples ¢ test: p < 0.005),
which in turn occurred earlier than the positive modulation by
Pyiw- Therefore, negative effects precede positive effects.

The analyses above focused on position-specific effects of Py, 4
and Py, transition probabilities; however, it is likely the case that
both values are encoded for both phoneme transitions. We fur-
ther examined the effects of P, 4 and Py, transition probabilities
independent of their positions in the word. We constructed sep-
arate linear models for each probability measure calculated on
both the C,V and VC, transitions (Fig. 6). Across both phoneme
transitions, Pg,4 peak effects (Fig. 6A,B) occurred significantly
earlier than Py, effects (Fig. 6C,D) (independent-samples t test:
p <1079, illustrating that these two probability measures exert
different influences on neural processing. Furthermore, we ob-
served that negative modulations based on P, 4 were unique to
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Figure 5.  Phonotactic effects for all temporal lobe electrodes. A, Significant electrodes in
these analyses were primarily on STG with no apparent spatial organization along either the
posterior—anterior or dorsal—ventral axes. Electrodes are colored based on whether Py, 4 (blue)
or Py, (red) showed the greatest contribution to the linear regression model. Shapes represent
the four different subjects. B, Percentage explained variance (R?) over time for each of the 32
significant electrodes across all subjects. Black boxes represent significant time points at cor-
rected p << 0.05, and electrodes are sorted according to significance onset time. C, Py, and Py,
linearregression weight time courses (== SEM) for each electrode were classified using k-means
clustering with k = 3. The first cluster shows a negative peak at ~ 170 ms, followed by cluster
2 with a positive peak at ~240 ms. Cluster 3 shows a positive peak around stimulus offset
(~530 ms). For main effects of Py, 4 and Py, across both phoneme transitions, see Figure 6.

the C,V transition (Fig. 6B), confirming that negative effects pre-
cede positive effects.

To examine the generality of the main findings, we performed
the same linear regression analysis on data obtained while the
participants listened passively to naturally spoken sentences from
the TIMIT database. Like with the controlled CVC stimuli, we
observed robust phonotactic effects confined mostly to STG in
118 electrodes (corrected p < 0.05; Fig. 7A). The time course of
Pf.q and Py, modulation was similar to that in the CVC task,
with negative Pg,q modulation peaking around the phoneme
transition, followed by positive Py, 4 modulation (Fig. 7B). Py,
modulation showed smaller, but simultaneous, effects with Py, 4.
The sentential context of these data may contribute to the fact
that the effects begin well before the acoustic phoneme transition
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(t = 0), although similar effects were observed in the CVC task,
where higher-level linguistic information was not available.
These results demonstrate that, even in the presence of a richer
and much more variable set of acoustic and linguistic cues (Mc-
Queen, 1998; Johnson and Jusczyk, 2001; Newman et al., 2011),
sublexical transition probabilities significantly modulate neural
responses to speech.

Together, these results suggest that lateral temporal lobe re-
sponses to speech sequences are modulated by the local transition
probabilities of the language. The temporally specific pattern of
Pg.q and Py, effects suggests that learned phoneme sequence
statistics play a role in real-time speech processing, possibly pro-
viding a link between lower-level acoustic and higher-order lin-
guistic representations.

Dynamics of acoustic and transition probability encoding

As shown in Figure 4, the responses of many of the STG elec-
trodes were sensitive to both the acoustics of phonemes and the
transition probabilities between phonemes. To understand the
relationship between acoustic and phonotactic encoding in STG,
we compared the amount of explained variability (R?) in the
STRF, model (after removing the effects of phonotactics; Fig. 84,
black lines) versus the phonotactic model (PROB, after removing
the effects of acoustics explained by the linear STRF; Fig. 8A, gray
lines) (see Materials and Methods). The four representative elec-
trodes in Figure 8A show that effects of acoustics and phonotac-
tics could occur sequentially or near-simultaneously and that
some electrodes were more sensitive to one or the other effect.
For example, the top left electrode shows greater STRF; than
PROB effects, whereas the bottom right electrode shows the op-
posite pattern.

We found that STG dynamically encodes both the acoustics
and transition probabilities of the speech stimuli. Across all elec-
trodes, average R” values tended to be slightly higher for the
STRF; model than for the PROB model only during early times,
from ~100 to 200 ms. Then, at intermediate times during the
words (~200-500 ms), the R* values were nearly identical. Fi-
nally, probability effects persisted after the offset of the stimulus
(~500-800 ms), whereas the effects of acoustics subsided by
~600 ms (Fig. 8B). This further suggests a separation between
transition probabilities and acoustic sensitivity, as we observed
phonotactic effects well after the acoustic input ceased, and after
the acoustic models no longer had significant predictive power.
The time course of significant R values for the STRF; model
appeared to precede the effects for phonotactics, suggesting that
phonotactic encoding lags acoustic encoding. Indeed, cross-
correlation analysis between these R* time courses on each elec-
trode revealed a modal peak lag of ~120 ms, with acoustic
encoding preceding phonotactic encoding (Fig. 8C). While the
majority of electrodes (~63%) showed peak acoustic effects ear-
lier, the rest were either nearly simultaneous or showed probabil-
ity effects first. Simultaneous effects in single electrodes may
reflect modulation of acoustic responses based on context (Mes-
garani and Chang, 2012), whereas lagged effects suggest that
probabilities are processed at an intermediate stage between
acoustics and lexical recognition (Vitevitch et al., 1999).

Lexical encoding and transition probabilities

It has been suggested that, because of their intermediacy between
acoustic and word-level representations, phonotactics may be
ideal for constraining the lexical possibilities consistent with in-
coming acoustic input (Pitt and McQueen, 1998). Indeed, the
fact that phonotactic encoding tended to be lagged relative to
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Figure6. Linearregression for Py, 4 and Py, separately on both C;V and VG, transitions. Separate linear models were constructed for each probability measure calculated on both transitions. A,

R time courses for the Py, s model show effects that begin around the C,V transition and mostly end by the V, transition. B, In the Py,,; model, peak effects from the C,V transition are negative at
the earliest time points, followed by a positive effect (green crosses). The VG, transition effects are positive (orange crosses) and occur significantly later than both the negative and positive ¢,V
effects (independent-samples ¢ test: p < 10 ~*). €, R time courses for the P, model show effects that begin toward the end of the vowel and persist beyond word offset. D, In the P,,.,, model,
the majority of effects are positive, and there is a slight trend for C,V effects to precede G,V effects (independent-samples t test: p = 0.1). Across both phoneme transitions, P, peak effects occur
significantly earlier than P, effects (independent-samples ttest:p << 10 ~'°). Because Py, effects precede Py, effects and because negative modulation is unique to the first transition, we chose

to focus most of our other analyses on Py, , in the C,V transition and Py, in the VG, transition.

acoustic encoding suggests that sensitivity to language-level pho-
neme statistics may mediate low-level acoustic and higher-level
lexical representations. Therefore, we next examined how transi-
tion probability encoding relates to the transformation from local
acoustic representations into abstract lexical representations of
words in the superior temporal lobe.

To explore the potential for phoneme transition probabilities
to mediate this transformation, we examined how transition
probability modulations were affected by lexical features. Ap-
proximately half the stimuli were real words (e.g., /s-aa-k/),
whereas the rest were pseudowords (e.g., /s-aa-n/), which have
the same acoustic, phonetic, and syllabic structure as real English
words but lack any association with lexical or semantic features.
This comparison allowed us to examine whether transition prob-
ability effects differ depending on whether a word is part of the
listener’s lexicon. Across all temporal lobe electrodes (n = 531),
we observed only two instances where average HG amplitude was
different between real and pseudowords (false discovery rate-
corrected p < 0.05). Thus, no general magnitude differences were

found between words and pseudowords in single temporal lobe
electrodes with our stimulus set, even at more anteroventral sites
that models of word processing predict should show such differ-
ences (Obleser et al., 2007; Davis and Gaskell, 2009; Leaver and
Rauschecker, 2010; DeWitt and Rauschecker, 2012). This may be
due to the relatively short CVC stimuli used in the present task,
the fact that the pseudowords (e.g., /s-aa-n/) are relatively word-
like, and the spatial resolution afforded by ECoG, which may be
finer than the broader patterns of differential activity elicited by
these two stimulus types.

We next examined whether transition probability encoding
differed depending on lexical status at the neural population
level. Figure 9A shows that Py, 4 (blue lines) and Py, (red lines)
transition probabilities can be decoded from optimal linear com-
binations of activity across electrodes that showed significant ef-
fects of transition probability and lexicality (Fig. 9B; see Materials
and Methods), demonstrating that the patterns observed in indi-
vidual electrodes (e.g., Fig. 5) are also reflected in population
responses. The fact that transition probability distributions can
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Figure 7.  Phonotactic effects during passive listening to sentences. 4, A total of 118 elec-
trodes showed significant (corrected p << 0.05) effects, mostly confined to STG. Most electrodes
showed peak effects for Pg,,q (blue dots) while also showing smaller Py, effects (red dots).
Shapes represent the four different subjects. B, The time course of linear weights from the
regression model shows a strong correspondence with the same analysis in the CVC task.
Around the time of the phoneme transition (t = 0), there is a negative peak for P, 4, followed
by a positive peak for Pg, 4. Py, effects were also present in continuous speech, although they
were weaker and largely simultaneous with Py, effects.

be decoded from neural activity also further supports the claim
that these distributions are robustly encoded in temporal lobe
neural networks. When population activity is examined sepa-
rately for words (solid lines) and pseudowords (dashed lines),
Pf.q and Py, are decoded with different accuracies throughout
the word (p < 0.05, corrected), with more pronounced differ-
ences in lexical status for P, during the vowel and around word
offset (red lines).

Although we observed no general magnitude differences be-
tween real words and pseudowords for individual electrodes, the
neural population results suggest that there are direct interac-
tions between transition probabilities and lexical status. There-
fore, we analyzed single-electrode HG with a linear model that
included lexicality (real vs pseudo) and its interactions with P4
and Py, transition probabilities. This analysis showed significant
interaction effects in multiple electrodes throughout the word
(p < 0.05, corrected; Fig. 9B); however, there was no clear tem-
poral structure. Overall, these results show that lexicality is not a
feature of the stimulus that is determined in the lateral superior
temporal cortex at a single time point or neural population but
rather is heterogeneously distributed across both time and corti-
cal sites as a function of phoneme transition probabilities.

We also examined another lexical variable that is known to be
a major modulator of neural activity: lexical frequency (Prabha-
karan et al., 2006). In the above analyses, phoneme transition
probability values were controlled for the effect of lexical fre-
quency; however, we also examined the amount of explained
variance when P, 4 and Py, were not controlled for how often
words occur in English (raw transition probabilities, as calculated
in, e.g., Saffran et al., 1996). In the single-electrode phonotactic
regression models (e.g., Fig. 5), controlling for lexical frequency
resulted in a distribution of R values that was significantly higher
compared with when Py, 4 and Py, were not controlled for lexical
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acoustic offset (~491 ms). ¢, Histogram of temporal lags to peak cross-correlation between
STRF, and PROB R? time courses, showing modal peak lag of ~120 ms, with STRF, generally
preceding PROB effects.

frequency (Wilcoxon rank-sum test: p < 10 ~'% Fig. 9C). This
demonstrates that, in addition to sublexical phonotactic statistics
and lexical status, single electrodes are also sensitive to the fre-
quency of a whole word occurring in English.

Discussion

Speech is a complex sensory stimulus that unfolds extremely rap-
idly, making it remarkable that listeners understand words in
real-time. For speech perception, neural populations must en-
code the spectrotemporal features of the acoustic signal that cor-
respond to different categories of sounds (Mesgarani etal., 2014).
However, understanding discrete sounds as sequences in words
requires significant temporal integration of surrounding contex-
tual information.

We found that the lateral superior temporal lobe not only
encodes the spectrotemporal and phonetic feature characteristics
of speech sounds, but also dynamically encodes multiple statistics
of English phoneme sequences. Remarkably, the pattern of P, 4
and Py, modulation was temporally specific, corresponding to
relevant landmarks, such as phoneme onsets and transitions.
Given that the most illustrative effects were for P, 4 and Py, in
the C,V and VG, transitions, respectively, we focused our main
analyses on these combinations. Early in the word, responses
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Transition probability and lexicality. A, Linear regression was used to predict Py, (blue) and Py, (red) from the population of recorded activity for real (solid) and pseudowords

(dashed). Decoding performance was significantly different for real and pseudowords for both P, ; and Py, throughout the trial. *p << 0.05 (corrected for multiple comparisons). Error bars indicate
SD. B, Percentage of explained variance (R?) time courses for a linear model, including lexicality (real vs pseudowords) and its interactions with Py,,4 and P,,,,. Black boxes represent full model
significance at corrected p << 0.05. Colored shading represents time windows where interactions have non-0 contributions to the model (8 # 0, p << 0.05). ¢, Median R% values (*95% Cl) are
significantly greater for transition probabilities when lexical frequency is controlled, indicating neural population sensitivity to the frequency of whole words occurring in English.

were negatively modulated by P4, consistent with predictive
coding frameworks (Friston, 2005; Kiebel et al., 2009; Yildiz et al.,
2013) that explain neural activity in terms of minimizing the
difference between bottom-up sensory input and top-down pre-
dictions of that input (prediction error). In this specific context,
when neural circuits encounter a phoneme that is not likely given
the forward transition probability from the previous phoneme,
they generate a response that is inversely proportional in magni-
tude to the phonotactic prediction. This negative modulation
based on prediction was not observed during the VC, transition,
suggesting that predictive strategies are most useful early in the
word, when there is less information about the word’s identity.

Encoding prediction error early in the word facilitates the
recognition of subsequent segments in the sequence. According
to precision encoding accounts, larger prediction errors increase
the uncertainty of predictions, which are updated as more infor-
mation arrives (Bastos et al., 2012). For example, in an oddball
paradigm where a sequence of frequent stimuli is interspersed
with rare deviants, large mismatch negativity responses are gen-
erated when deviants are presented. The fact that repetition of
deviant stimuli extinguishes the mismatch negativity suggests
that predictability is directly dependent on the local statistics of
the stimulus context (Garrido et al., 2009) and that the recogni-
tion and encoding of stimuli in a sequence are closely related to
the encoding of both prediction error and precision. The negative
Pg.q modulation, followed by positive Py 4 modulation for the
C,V transition, is consistent with this framework of the recogni-
tion process through predictive coding. Unlike the oddball para-
digm, however, which is designed to elicit responses to stimulus
sequences that reflect relatively short time scale learning (on the
order of minutes), natural languages contain statistical regulari-
ties in the sequencing of phonemes that require long-term expo-
sure to those sequence statistics (on the order of years). The
present results demonstrate that prediction error and precision
encoding are used to process sensory input in the context of
deeply learned implicit knowledge.

We also observed responses that suggest that the current ele-
ment in a sequence is recognized in the context of the elements
that preceded it (Py,,). Enhanced responses for sequences with

more likely backward transition probabilities are consistent with
such a retrospective process. It has been suggested that responses
that scale positively with the degree to which observations match
expectations may reflect the physical structure of the underlying
neural network, and may be outcomes of a Hebbian associative
learning process (Hebb, 1949; Dan and Poo, 2004; Bouchard and
Brainard, 2013). In the context of speech, the massive experience
that humans have with the sound sequences of their own language
may allow this type of mechanism to engrain phonotactics in speech
processing circuits over the course of years of learning. This results in
stronger associations between co-occurring phonemes, where rec-
ognition of current input based on the probability of preceding input
is therefore expected to generate neural responses that increase in
proportion to the degree to which sensory inputs match expecta-
tions. Here, we demonstrate that this recognition process is facili-
tated not only by sequential bottom-up input, but also by the learned
local dependencies represented by phonotactic distributions.

These results contribute to an active debate over the role of
STG in speech perception. Whereas existing models suggest that
the primary role of dorsal STG is spectrotemporal analysis
(Hickok and Poeppel, 2007; Obleser et al., 2007; Turkeltaub and
Coslett, 2010), recent work using multivariate analyses and high-
resolution recording methods have indicated a broader set of
functions (Leonard and Chang, 2014). In other auditory tasks,
both posterior and anterior STG population activity has been
shown to encode a relatively fine-scale representation of the spec-
trotemporal profile of speech sounds (Pasley et al., 2012; Stein-
schneider, 2013; Mesgarani et al., 2014), while at the same time
showing sensitivity to contextual processes, such as attention
(Mesgarani and Chang, 2012), phonetic category (Formisano et
al., 2008; Chang et al., 2010; Steinschneider et al., 2011), and
lexical-semantic content (Travis et al., 2013). These findings sug-
gest that cortical sensory responses at single electrodes through-
out the STG (particularly in anterior-lateral regions) are strongly
and dynamically context-dependent, and phonotactic modula-
tion may represent a linguistic instantiation of this principle.

There are additional outstanding questions related to how
phonotactic encoding fits into the speech perception hierarchy.
Numerous studies have demonstrated a hemispheric asymmetry
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for higher-order speech processing, with the strongest activity
evoked in the left hemisphere (Poeppel et al., 2008). Given that
phonotactic encoding occurs between acoustic and lexical pro-
cessing, it will be critical for future studies to examine the role of
the right hemisphere, and in particular right posterior STG, in the
encoding of speech sequence statistics.

It is important to note that, in the context of the current
experiments, coarticulation and other nonlinear acoustic effects
cannot be ruled out definitively. Other studies in both auditory
(Yaronetal.,2012; Bouchard and Brainard, 2013; Tremblay et al.,
2013) and visual (Yang and Shadlen, 2007) modalities have dem-
onstrated sequence probability effects with discrete stimuli, sug-
gesting that neural populations are sensitive to statistical
structure independent of other acoustic cues. In the present
study, we were specifically interested in how these effects mani-
fest in a natural stimulus, such as speech (as opposed to pure
tones, for example). Even when spoken stimuli have been used in
previous studies, they have been presented as concatenated sylla-
bles, which does not allow for a direct examination of the neural
processes that interpret continuous acoustic input as auditory
objects, such as words. Any examination of phonotactics with
speech stimuli necessarily involves coarticulation, as it is impos-
sible to produce truly noncoarticulated stimuli at the level of
single phonemes. We used a set of complementary controls to
account for these acoustic cues; however, additional studies will
be required to more fully characterize the nonlinearities of acous-
tic representations in STG. For example, auditory cortex is sensi-
tive to the acoustic similarity of adjacent sounds, which cause
both facilitation and inhibition through forward and backward
masking (Brosch and Schreiner, 1997). These complex temporal
dependencies may play an additional role in acoustic processing
beyond the spectrotemporal tuning and phonotactic encoding
demonstrated here. Ultimately, it is likely that both bottom-up
coarticulatory and recurrent or top-down phonotactic informa-
tion is involved in speech comprehension in complex and inter-
active ways. The present results are an initial description of the
STG representation of fine-scale dynamics of multiple sources of
information that can only be examined with spoken stimuli, pro-
viding testable hypotheses for future work.

Finally, our results provide unique insight into a fundamental
problem for neural encoding: How are sensory signals abstracted
into entities that have behaviorally relevant meaning? The ana-
tomical pathways that carry signals from the peripheral sensory
organs to the cortex show characteristics of hierarchical process-
ing (Chechik et al., 2006; Kikuchi et al., 2010; Chechik and
Nelken, 2012), where upstream representations are less sensitive
to variability in the input. Abstraction is presumably critical for
speech, where variability across speakers, accents, and environ-
ments must be overcome to access representations of words. It
has been suggested previously that sublexical statistics (e.g., pho-
notactics) play a key role in word identification (Pitt and Samuel,
1995; Saffran et al., 1996; Vitevitch et al., 1999). Here, we showed
that phonotactics and lexical status have interactive effects on
STG activity throughout the course of neural processing. These
results argue that lexical access is not a binary process, that it can
begin well before the uniqueness point of a word (Marslen-
Wilson, 1987; Pitt and Samuel, 1995), and that transition proba-
bilities (themselves abstract features of the stimulus, as they are
not physically encoded in the input) mediate acoustic and word-
level representations. This is consistent with the view that distrib-
uted lexical representations (Gaskell and Marslen-Wilson, 1997)
are an emergent phenomenon from multiple bottom-up and
contextual sources of information (Elman, 2009). Generally

J. Neurosci., May 6, 2015 - 35(18):7203-7214 + 7213

speaking, neural representations of temporally specific probabi-
listic quantities are ideally situated to link incoming sensory sig-
nals and their intended abstract representations. Therefore, our
results suggest that encoding of local contextual statistics via the
coordinated effects of predictive, precision, and retrospective
recognition processes may be a general principle of neural pro-
cessing in high-level sensory areas.
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