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Abstract

Data faults in sensor networks must be marked to en-
sure accurate inferences. We introduce a two phase semi-
realtime end-to-end Bayesian fault detection system for sen-
sor networks. The first phase selects a subset of agreeing
sensors from which a model of expected behavior is de-
rived. The second phase uses this subset to derive and tag
questionable sensor data. To accurately model the data,
we use a hierarchical Bayesian space-time (HBST) model,
as compared to the linear autoregressive modeling used in
previous works. Applying this system to simulated and real
world data, results are excellent when the phenomenon is
well modeled by the HBST model. It achieves high detec-
tion rates and almost zero false detection rates. Results also
indicate that in cases of critically low spatial sampling den-
sity a more accurate model is required.

1 Introduction

Sensor networks have enabled new ways of observing
the environment. Scientists are now able to access vast
amounts of data to draw inferences about environmental be-
haviors [2] [3] [16] [8]. But, as sensor networks mature, the
focus on data quality has also increased. Since the sensor
nodes are left exposed to the sometimes harsh environment,
they may fail or malfunction during a deployment, leading
to faulty data and bad inferences. Thus, it is important to
ensure data integrity and identify when data is faulty.

There has been significant effort in ensuring the integrity
of data communications in large distributed ad-hoc net-
works, e.g. [5] [19] [24]. However, none of these focus
on the problem of the integrity of the data itself.

Many deployment experiences show that this is a ma-
jor issue that needs to be addressed. For example, with the
goal of creating a simple to use sensor network application,
[1] observes the difficulty of obtaining accurate sensor data.

Following a test deployment, they note that failures can oc-
cur in unexpected ways and that calibration is a difficult
task. Using this system, the authors of [23] deployed a sen-
sor network with the goal of examining the micro-climate
over the volume of a redwood tree. The authors discov-
ered that there were many data anomalies that needed to
be discarded post deployment. Only 49% of the collected
data could be used for meaningful interpretation. Also, in a
deployment at Great Duck Island, [21] 3% to 60% of data
from each sensor classified as faulty. In both cases, these
faults had to be manually identified with human knowledge
of what was the expected beahvior of the phenomenon.

Additionally, [25] evaluates a sensor network in a vol-
cano monitoring environment with high data quality re-
quirements as measured by yield and data fidelity, conclud-
ing that sensor networks must still improve. Post deploy-
ment analysis of a wireless sensor network in [22] exposed
many network packet losses in addition to several node level
data problems.

With such high data fault rates, it is difficult to draw
meaningful scientific inferences. In addition, any scientific
conclusion would have an elevated uncertainty associated
with it due to the high rate of sensor data faults. Therefore,
to reduce this uncertainty and to aid scientists, we have de-
veloped an effective system using Bayesian methods to de-
tect these faults.

Our approach pairs the Bayesian maximum a posterior
(MAP) selection of an agreeing subset of sensors presented
in [13] with the hierarchical Bayesian space-time (HBST)
modeling approach first presented in [26] and adapted for
sensor network fault detection in [14]. We develop a semi-
realtime system to model and detect sensor network faults.
With the improved accuracy that HBST modeling gives,
we are able to effectively detect sensor network data faults
while keeping the false detection rates low.

Also, since data faults are defined by a model of desired
behavior, we will see how model accuracy and sensor de-
ployment density factor into the performance of our fault
detection system. Sensor deployment density is defined rel-



ative to the variability of the phenomenon. We will see that
in cases of sufficient sampling densities, our model is accu-
rate and our fault detection system performs well. However,
when there is low sensor density, a much more accurate
model must be used to capture spatial trends and patterns.

This paper is organized as follows. First, we discuss the
previous work that focused on fault detection in sensor net-
works in section 2. We also discuss the general approaches
for MAP sensor selection and HBST modeling as detailed
in [13] and [14]. In section 3, we first discuss the assump-
tions that we make and how some may differ from previous
papers. In section 4, we introduce the end-to-end Bayesian
implementation of our fault detection system which is bro-
ken up into two phases. We then apply our method to the
three different datasets to see the effectiveness of this end-
to-end Bayesian system in section 5. The results show that
this system can be very effective in some situations, but
when an environment is under-sampled and the model is
inaccurate, then this system has trouble.

2 Previous Work

The field of fault detection techniques in sensor networks
has been growing as the use of sensor networks gains trac-
tion. To aid in fault detection, the most commonly seen
sensor network data faults in environmental monitoring sit-
uations are detailed in [15] and [18]. [18] presents a few
fault types and evaluates different approaches to detect these
faults. [15] lays out modeling issues, features and indica-
tions of sensor data faults emphasizing that modeling ex-
pected behavior is crucial in detecting faults. Taking ad-
vantage of expected spatial and temporal correlations is a
key component of effective detection systems, but this is
not easily exploited. However, we will incorporate HBST
modeling into our system to detect faults more effectively
than existing methods.

[4] uses models of real-world processes based on sensor
readings to answer queries to a sensor network for data. Us-
ing time-varying multivariate Gaussians to model data, the
authors respond to a predetermined set of query types, treat-
ing the sensor network like a database. To some extent this
shields the user from faulty sensors. However, the authors
point out that more complex models should be used to de-
tect faulty sensors and give reliable data in the presence of
faults.

[11] discusses a cross-validation method of detecting in
the presence of faults using a minimization of multiple un-
specified sensor fusion functions. This requires heavy cal-
culations with each additional datum. [10] uses a basic ap-
proach by dividing samples into temporal granules and co-
located sensors into spatial granules. Each granule is then
expected to be measuring similar data and anything outside
of this is considered to be a fault. [12] uses linear autore-

gressive models to characterize data for error correction,tar-
geting transient “soft” failures. With these linear models,
the authors develop a predictive error correction technique
using current data to decide past data.

Bayesian techniques are not new in the fault detection
application. In [6], Bayesian updating for the distribution
of an individual sensor’s readings using prior distributions
is employed. However, the prior knowledge of the phe-
nomenon that is to provide the prior distribution is not given
in detail, and the method does not explicitly take advan-
tage of any spatial or temporal modeling. [7] uses spatio-
temporal correlations to learn contextual information statis-
tically. This contextual information is used in a Bayesian
framework to detect faults. However, these Bayesian meth-
ods do not directly model the phenomenon.

In [13], a Bayesian maximum a posterior (MAP) crite-
rion was used to select a subset of sensors whose local tem-
poral trends agreed the best. However, this approach was
limited in its success due to a lack of accurate models for the
phenomenon of interest. The system relied upon linear au-
toregressive (AR) models which required careful selection
of the window over which the data was modeled. Loose as-
sumptions on the smoothness of the phenomenon field and
the correlation among sensors also proved to be inaccurate
when the system was applied to real data. We will how-
ever use a similar approach to selecting a subset of agreeing
sensors for fault detection in our end-to-end Bayesian fault
detection system.

In our end-to-end Bayesian sensor fault detection sys-
tem, we use hierarchical Bayesian space-time modeling
(HBST) to model the phenomenon of interest. The model-
ing method we use is based upon the framework developed
in [26]. In [14], this framework was adapted for sensor net-
work data fault detection and shown to be much more ef-
fective than linear AR modeling, which was heavily used
in [13]. While HBST modeling is far more complex and
computationally expensive than linear AR modeling, by au-
diting sensors on daily scale instead of with each new in-
coming data value, this computational cost becomes incon-
sequential.

3 System and Assumptions

In this paper, we make several assumptions on the sys-
tem that are true for most current sensor networks. First
we assume all of the data fromS sensors is forwarded to
the fusion center where data processing and fault analysis
occurs. This assumption is implicitly or explicitly made in
several of the works presented in section 2 including [15],
[18], [10], and [11]. Corrupted or missing data communi-
cation packets are ignored and treated as unavailable.

Since we use HBST modeling to model the phenomenon,
assumptions on the spatial and temporal behavior are de-



fined by the model setup as presented in section 4. The as-
sumptions we make apply specifically to temperature data,
however the HBST model can be easily changed for dif-
ferent types of phenomena and assumptions. Sensor mea-
surements are assumed to include normal additive noise as
well as the phenomenon process. The phenomenon process
itself is composed of several components in addition to nor-
mal additive noise. The phenomenon is assumed to have a
long term diurnal trend with an additional day to day linear
trend. Each sensor has a site specific mean that is assumed
to have a spatial linear trend. The phenomenon also has a
time dynamic term which is assumed to be a diagonal vector
autoregressive process.

Unlike [13], there is no assumption placed on the dura-
tion of faults. Faults may be as transient as a single outlier
sample point, or they may persist throughout the deploy-
ment lifetime of the sensor network. Also, we make the
restriction on the system that a minimum of⌊S

2
⌋ + 1 sen-

sors must not be faulty at any given time. This is to avoid
any confusion and to have a firm majority of sensors in the
agreeing subset.

Also, since we use HBST modeling, we use the binning
technique first introduced in [14] to have synchronous data.
Real world data from all sensors are not usually synchro-
nized so the data arriving to the fusion center cannot be eas-
ily vectorized. Most common space-time statistical tools as-
sume that samples occur at regularly defined time intervals
in a synchronized manner so that they may be easily placed
in vectors at each time instant. In order to adapt real world
data to such a scheme we “bin” the data by time instances
for each sensor.

For one sensor, examining the regularly defined time in-
stant at timeti, we look at the interval surrounding this,
which is of the sizer, wherer is the difference between
time instancesti andti+1. If within the intervalti − r

2
and

ti + r
2

there is one sensor value for this sensor then the out-
put at timeti for this sensor is exactly this sensor value. If
there are multiple sensor values within this interval, thenthe
output at timeti is the mean of all these values. However,
if there is no data point, then a line between the two nearest
surrounding data points is used to interpolate all values in
between.

This process requires the data to be sufficiently sam-
pled such that linear interpolation in between data points
provides a good approximation. This primarily means that
there are no large gaps in sensor data, otherwise interpola-
tion will fail to effectively estimate data. We have observed
this system to be effective for our data.

This process is shown to be an effective and accurate
way of synchronizing data in [14] where the energy differ-
ence between the original data and synchronized data was
insignificant.

4 End-to-end Bayesian implementation

We first introduce the end-to-end Bayesian implementa-
tion, and then we will discuss how this system improves
upon the previous systems. We divide our end-to-end
Bayesian implementation into two phases. The first phase
will use a Bayesian MAP criterion to determine a set of
agreeing subsets in a similar manner to [13]. The second
phase will make a final determination as to whether certain
data is faulty or not.

Since we use the same HBST modeling technique as
[14], the primary weakness of our system is that the poste-
rior simulation of the model parameters using MCMC tech-
niques and Gibbs sampling is computationally expensive.
Thus, we seek to minimize the frequency that we calculate
parameters by specifying a semi-realtime detection system.
By having this semi-realtime system, we can exploit the ca-
pabilities of HBST modeling while minimizing the impact
of the high computation cost. Instead of performing cal-
culations with each new incoming data value as is done in
systems such as those in [13], [11], and [12], calculations
are to be performed at regular time intervals at a time scale
larger than the sensing intervals.

That is, sensor data integrity audits occur much less fre-
quently than sensor samples are taken. For example, while
the sensor data used in this paper measures the phenomenon
on a scale of every 5 minutes, we will audit sensors every
one day. This reflects logistical realities, in that it is unlikely
for sensor replacement to be on the sensing time scale in the
environmental sensing context, i.e. sensor replacement or
repair does not usually occur immediately. Also it is com-
mon for a sensor to temporarily report questionable data and
then return to normal [15]. Therefore, by having the audit
occur at larger intervals, a sensor that returns to normal op-
erating conditions will not be as frequently tagged.

4.1 Phase One

We begin the first phase by modeling data from all of the
sensors over the course of the modeling window of sizeT ,
which is usually one day in our case. We use the HBST
modeling approach of developed in [26] and adapted in
[14]. Following the model development of [14], to adapt
the HBST modeling to the data sets we are working with,
we assume that sensors are deployed in a line. That is, we
only have one spatial dimension in addition to the time di-
mension as we have easy access to multiple datasets with
one spatial dimension. Considering two or three correlated
spatial dimensions is possible, but doing so adds complexity
and increases convergence time because of the multiplica-
tion of parameters.

The measurement processZt is composed of the phe-
nomenon process with additive normal noise, givingZt a



distribution:

Zt|{Yt, σ
2
Z} ∼ N (Yt, σ

2
ZI)

The phenomenon process,Yt, consists of a site specific
mean,µ(s), which has a first order linear trend in space,
a daily harmonic with an additional linear day-to-day lin-
ear trend in time,Mt(s), a time dynamic “diagonal” vector
autoregressive processX, and some additive normal noise
with varianceσ2

Y . This gives

Yt|{µ,Mt,Xt, σ
2
Y } ∼ N (µ + Mt + Xt, σ

2
Y I)

We define the site specific mean to be a simple first order
spatial regression. At a given physical location,ls for sensor
s we define:

µ(s) = µ1 + µ2ls

Here,µ1 is the overall mean of the phenomenon andµ2 rep-
resents small corrections according to spatial trends. These
two parameters ofµ are modeled as independent normal
random variables with fixed and specified priors.

µ1 ∼ N (µ̄1, σ
2
µ1

)

µ2 ∼ N (µ̄2, σ
2
µ2

)

The daily harmonic with spatially varying amplitudes
and phases with an additional linear trend is defined as:

Mt(s) = (f1 + f2ls) cos(ωt) + (g1 + g2ls) sin(ωt) + h1t

whereω = 2π for a daily harmonic (whent is defined in
units of days).f1,f2,g1,g2 define how the harmonic varies
spatially. We add theh1 term to account for the day to day
weather trend over the modeling window.

We assume all of the parameters inMt to be independent
normal random variables with fixed and specified priors.

f1 ∼ N (f̄1, σ
2
f1

)

f2 ∼ N (f̄2, σ
2
f2

)

g1 ∼ N (ḡ1, σ
2
g1

)

g2 ∼ N (ḡ2, σ
2
g2

)

h1 ∼ N (h̄1, σ
2
h1

)

We model the time dynamic term as a “diagonal” vector
autoregressive process:

Xt = HXt−1 + ǫX

where
H = aI

giving

Xt|{Xt−1,H, σX} ∼ N (HXt−1, σ
2
XI)

We assume thata is the same for all locations and it is nor-
mally distributed:

a ∼ N (ā, σ2
a)

We specify the variances of theX, Y andZ to have an
inverse gamma distribution, which is the conjugate prior to
the normal distribution.

σ2
Z ∼ Γ−1(αZ , βZ)

σ2
Y ∼ Γ−1(αY , βY )

σ2
X ∼ Γ−1(αX , βX)

The prior values for the parameters of these distributions are
fixed and specified. Note that the prior distribution choices
were made for ease in analytically deriving the conditional
distributions. Alternative prior distributions can be used but
may affect the complexity in the derivations of the condi-
tional distributions for use in the Gibbs sampler as discussed
in the following section.

With this model, we can generate samples from the dis-
tributions for each of the parameters using a Gibbs sampler.
Gibbs sampling is a form of Markov chain Monte Carlo
simulation and is a computationally efficient way of draw-
ing samples from a target joint posterior distribution. Fur-
ther information on the Gibbs sampler can be found in [9].
Details on the derivations of the full conditional distribution
required by the Gibbs sampler are can be found in [14].

Once we have the parameters of this model, we can then
begin the selection of the subset of agreeing sensors. For
this step, we use the time dynamic termXt as the basis
of our decision. The time dynamic term removes all mod-
eled trends, and only leaves unmodeled time dynamics to
compare. This assumes that we have captured all of the
space-time processes in our HBST model, resulting in the
assumption that all time dynamic variations should be the
same for each location.

We let the symbol̂represent the sample mean across all
samples for the simulated posterior parameters. The first
task is to estimate the covariance of thisX̂ term. Note that
in our model, we modeled the vector autoregressive noise
term to be independent spatial white noise for simplicity
and simulation convergence reasons. However, here we no
longer assume thatXt has no instantaneous spatial interac-
tion, correcting for this deficiency. So, we first must deter-
mine the expected mean before we can estimate the covari-
ance forX̂.

We define the mean for sensors to be determined by all
other sensors excludings. This allows for each sensor to be
judged relative to the collective group without the possibil-
ity of self influence. That is, for sensors = 1, . . . , S at time
t = 1, . . . , T we define the mean to be:

X̄t(s) =
1

S − 1

( s−1∑

r=1

X̂t(r) +

S∑

r=s+1

X̂t(r)
)



With this mean, we estimate the components of the covari-
ance,Λ for X̂ as:

Λnm =
1

T

T∑

t=1

(X̂t(n) − X̄t(n))(X̂t(m) − X̄t(m))

We evaluate the likelihood for all size⌊S
2
⌋ + 1 subsets,

φ. Each subset is represented by a vectorφ whose compo-
nents are{0, 1} which represent exclusion and inclusion in
the subset. We define the covariance for a particular sub-
setφ, Λφ to beΛ with the appropriate rows and columns
removed as indicated byφ. Similarly, the meanX̄t,φ and
dataX̂t,φ, has the appropriate values of the vector removed
indicated byφ. For each subset, we calculate the likelihood
f(X̂t(s)|φ) to be:

f(X̂t(s)|φ) =
1

(2π)
K

2 |Λφ|
1

2

exp
(
−

1

2
×

(X̂t,φ − X̄t,φ)T Λ−1

φ (X̂t,φ − X̄t,φ)
)

K is the number sensors in the subset.
In order to calculate the posterior probability,P (φ|X̂t),

at time instantt to use in the maximum a posteriori crite-
rion we now only need the prior probabilitiesP (φ). Ini-
tially, this can be set to be a uniform distribution indicating
that there is no prior knowledge as to whether one sensor
or subset is better than the others. This distribution is then
updated each successive day according to the results of the
fault detection in the second phase of the end-to-end sys-
tem. Given the prior and the likelihood, the MAP criterion
for a time instantt can be computed as:

P (φ|X̂t) =
f(X̂t(s)|φ)P (φ)∑

all φ

f(X̂t(s)|φ)P (φ)
(1)

Finally, to select the overall best agreeing subset,φ̃, used
to develop a model of expected behavior, we average over
all t = 1, . . . , T this posterior value and select the maxi-
mum:

φ̃ = arg max
all φ

Et[P (φ|X̂t)]

4.2 Phase Two

We can now use the agreeing subset of sensors,φ̃, to de-
velop the model of expected behavior for all sensors. Using
just the sensors included iñφ, we reapply our HBST model-
ing technique to obtain new samples from the distributions
for the model parameters. The new parameters based off of
this subset, are averaged across all of the Gibbs sampling
draws to produce the mean of all distributions,X̃t, σ̃2

X , σ̃2
Y ,

σ̃2
Z , µ̃1, µ̃2, f̃1, f̃2, g̃1, g̃2, andh̃1.

For the determination of a data fault, we modify the fault
detection method presented in [14]. We determine the upper
and lower bounds of the processZl(s, t) andZu(s, t) and
compare the actual data to these bounds.

We calculate 95% confidence intervals around the time
dynamic term for each sensor iñφ because each sensor was
originally assumed to have the same dynamics. However,
we recognize that our model is imperfect and there are still
unmodeled dynamics. So we take the minimum and maxi-
mum limits of these 95% confidence intervals to determine
an overall lower and upper bound onXt. Thus, if a sensor’s
data ultimately lies within the boundsZl(s, t) andZu(s, t),
then it behaves similarly to at least one of the sensors in the
agreeing subset that defines the expected behavior.

The lower and upper bounds of the time dynamic term
at a timet using the estimates of̃Xt for the sensors in the
subset̃φ are:

Xl(s, t) = min
all n∈φ̃

(X̃t(n) − 2σ̃X)

Xu(s, t) = max
all n∈φ̃

(X̃t(n) + 2σ̃X)

Since we are comparing real dataZt with the bounds,
we must also correct for spatial and temporal trends. So,
for each sensors at locationls, we estimate the following:

µ̃(s) = µ̃1 + µ̃2ls

M̃t(s) = (f̃1 + f̃2ls)cos(ωt) + (g̃1 + g̃2ls)sin(ωt) + h̃1t

whereω = 2π. Finally, the lower and upper bounds are:

Zl(s, t) = µ̃(s) + M̃t(s) + Xl(s, t) − 2(σ̃Y + σ̃Z)

Zu(s, t) = µ̃(s) + M̃t(s) + Xu(s, t) + 2(σ̃Y + σ̃Z)

With the bounds calculated, we then compare the data
Zt(s) to see if it is within the bounds. If data is not within
the bounds, it is tagged as being faulty.

Once all of the data is tagged, we can then update the
prior distribution of the subsets for the next day’s posterior
calculation using the proportion of data for each sensor not
tagged as being faulty. Using the actual results of how fre-
quently a sensor is not tagged is a good indicator of a set’s
probability of agreeing.

The prior distribution update occurs as follows. Given
the vector of data with the rates that each individual sensor
has been tagged,τ , it is simple to calculate the fraction of
samples that are correct for each sensor:1 − τ . We can
normalize this into the probability that each sensor should
be included in the agreeing subset:

ηi =
1 − τi∑

all j

(1 − τj)



To determine the next day’s subset prior we simply apply
these probabilities to each set and normalize them:

P (φ) =
φT η∑

all φ

φT η

This distribution can then be used for the following day’s
phase one calculation of equation 1.

4.3 Comparison system

The end-to-end Bayesian system presented here is based
upon elements of [13] and [14]. For the testing of the end-
to-end Bayesian system we will compare our system to the
HBST modeling system as presented in [14]. We compare
against this system because it was already shown to be ef-
fective in detecting faults while reducing the false detection
rates in comparison to linear autoregressive modeling used
in [13].

The HBST modeling system introduces a rudimentary
tagging technique upon which we have the second phase of
the end-to-end Bayesian system. The HBST modeling sys-
tem determines the lower and upper bounds ofZt(s) using
just the two spatially adjacent sensors to determine mini-
mum and maximumX(s, t) values.

This simplistic system has two drawbacks which are
eliminated by the use of a MAP agreeing sensor subset se-
lection phase. The first is that the HBST modeling system
may include the use of faulty sensors in the judgment of an-
other sensor. This is non-ideal, and as we will see in the
results, this can have a detrimental effect on the accuracy of
fault detection. The MAP agreeing sensor subset does not
contain faulty sensors.

The second issue is that edge sensors in the HBST mod-
eling system see significantly higher false detection rates.
This is due to the fact that only one sensor defines the
bounds for an edge sensor instead of two. However, now
that we have a whole subset of sensors that are trusted,
there are multiple sensors defining the bounds, reducing the
false detection significantly. Note though, for cases where
an edge sensor is not in the agreeing subset, this sensor
still may have slightly elevated false detection rates thanthe
other sensors just because it is on the edge.

If one were to consider two and three dimensional sensor
deployments, the fraction of nodes which are on the edge
increases. Thus, use of a system as proposed here that em-
ploys a larger subset of the sensors to judge the edge sensors
becomes even more important.

5 Results

To show the gains that we get from having an end-to-end
Bayesian system, we apply our method to three datasets and

compare the results to the HBST modeling system.
One data set is artificially generated and used as a toy ex-

ample to illustrate under ideal conditions the performance
of our system. The second data set is the cold air drainage
data set from sensors that have been deployed at James Re-
serve in California. The last set of data is from a series of
buoys deployed at Lake Fulmor, also at James Reserve. For
this last set of data, we use the temperature measurements
that are at the surface of the water.

Since we use the same underlying modeling as [14], all
gains in performance are a direct result of the selection of
an agreeing subset of sensors using MAP selection.

5.1 Simulated Data

We first use simulated data to test the system under ideal
and well defined conditions. Spatial structure is well de-
fined and matches very well to the assumptions made in our
fault tagging scheme. We show results from data with no
faults as well as injected faults to show the best performance
of each system. Data from six sensors over three days ex-
hibit a site specific mean, diurnal harmonics, a long term
trend, and an additional unmodeled harmonic. A sample
from three sensors of this data is presented in figure 1.
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Figure 1. Simulated data. A sample of three
days from three sensors.

We apply our end-to-end Bayesian fault detection system
and the HBST Modeling system to the data presented. Prior
distributions are calculated and updated for the next day.
Results for false detection rates are presented in table 1.

Table 1. False detection rates for simulated
data with no faults

End-to-end HBST

Overall 0 0.2079

Excluding Edge Nodes 0 0.0014

Just Edge Nodes 0 0.6210

The end-to-end Bayesian system makes no errors in false



detections. In each of the days, the agreeing subset con-
sisted of the four middle nodes while neither edge sensor
ever was in the agreeing subset. This is expected behavior
because edge nodes agree the least with rest of the sensors.
Even though these nodes were not in the agreeing set, there
is still a lack of any false detection with these nodes indicat-
ing that the added sensors in the decision helped reduce the
false detection rates. Also note the elevated false detection
rates due to the edge node cases for the HBST modeling
system. The end-to-end Bayesian system does not suffer
from this deficiency.
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Figure 2. Simulated data with injected faults.

We next compare the the performance of our method
when there are faults included in the data. One day was
selected to have faults injected, and we tested the detection
of each fault independently. We inject two types of com-
mon faults as defined in [18] and [15] at arbitrary locations.
In figure 2 we show three sensors, two with faults, and one
with no faults. One sensor has a “stuck-at” fault injected,
and the other has outliers. After applying the end-to-end
Bayesian system to this data, we obtain results that are sum-
marized in figure 3.

Figure 3. Fault detection rates for simulated
data with injected faults

The detection success rate for both fault cases is the
same for both fault detection systems indicating that we
have not lost any detection capabilities using the end-to-end
Bayesian system. At the same time, the false detection rate
has significantly dropped. There were no false detections

in the case of the outlier, and the stuck-at fault case saw a
96.3% reduction in the false detection rate. Also, we note
that when there were faults, the selection of the best agree-
ing subset always excluded the sensors containing the fault.
These results show that the end-to-end Bayesian system is
capable of detecting faults with a very low false detection
rate.

5.2 Cold Air Drainage Data

Now, we examine the application of the end-to-end
Bayesian system to real data. First we examine the case
where data does not exhibit any apparent errors. We exam-
ine the false detection rate of six sensors deployed in James
Reserve over the course of five days. Figure 4 shows tem-
perature data from the first three sensors starting on Septem-
ber 17, 2005 over the course of five days.
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Figure 4. Data from three deployed sensors

The results after application of the end-to-end Bayesian
system to this data are summarized in figure 5 We see that

Figure 5. Fault detection rates for cold air
drainage data with no faults

there is a significant difference in the overall false detec-
tion rate over the course of the five days. The end-to-
end Bayesian system reduces the false detection rate from
25.2% for the HBST modeling system down to 1.8%.

Looking further, dropping the edge nodes from consid-
eration to get the HBST modeling system’s best overall per-
formance, the HBST modeling system still has a 11.0%



overall false detection rate. Alternatively, when we disre-
gard the edge nodes the end-to-end Bayesian system has no
false detection over the course of five days. Also, in days
4 and 5 an edge node was included in the agreeing sub-
set. This resulted in no false detection for the included edge
node and no increase in false detection for any middle node.

Examining the temperature at the peak of each day, we
see that the temperature is highly variable and dynamic.
One possible cause of this is the passage of sunflecks where
the sensor may be exposed to sun and shade alternatively
due to forest coverage, wind, clouds, and passage of time
during the day. This causes temperature readings to rise and
fall in unexpected ways [20] [17]. The HBST system of [14]
is unable to cope with these dynamics and sees higher false
detection rates during these periods. However, the end-to-
end Bayesian system is able to handle these dynamics.

Day 4 does not exhibit these highly variable peak tem-
peratures likely due to a either overcast weather or rain. The
HBST modeling system performs its best during this day.
For this day, we see that the end-to-end Bayesian system
performance gives a 99.0% decrease in false detection rate.
The end-to-end Bayesian system drops the false detection
from 11.9% down to 0.1%.

The results for this non-faulty cold air drainage data
show that the end-to-end Bayesian system is very capable
of reducing false detection, even when there are many small
unmodeled dynamics. Through the use of more sensors in
developing a model of expected behavior, these unmodeled
dynamics end up being averaged out leading to lower false
detection rates. If the goal is to detect such phenomena,
then increasing the spatial sampling density is required to
detect these small scale dynamics.

To ensure that this false detection reduction does not
come at the expense of a decrease in detection rate, we ap-
ply the end-to-end Bayesian system to the two faults de-
picted in figure 6. Figure 6(a) shows data from three sensors
for one day, Sept. 25, 2005, with one sensor giving likely
faulty data, with high noise and readings distant from other
sensors. The other two sensors that are physically located
around this sensor are also shown. Figure 6(b) shows data
from three neighboring sensors on Sept. 16, 2005 where
two independent neighboring sensors exhibit outliers at the
same instant. There is no conclusive reason for why this
happened, but it is important to tag such an anomaly.

The results of applying our end-to-end Bayesian method
to this data are summarized in figure 7. We see that both sys-
tems are very capable of detecting the faults. In both cases,
the outliers from sensors 5 and 6 were detected perfectly
even though they occurred at the same time, but the end-
to-end Bayesian system had no false detections while the
HBST modeling system had a false detection rate of 1.5%.

When examining the data with the noisy sensor, we see
that both the end-to-end Bayesian system and the HBST
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(a) Data from a faulty sensor
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Figure 6. Two examples of faults in real data

Figure 7. Fault detection rates for cold air
drainage data with faults

modeling system were able to detect the faulty sensor very
well. The end-to-end Bayesian system was slightly better at
detection with 96.5% detection versus 95.8% detection with
the HBST modeling system.

However, the biggest improvement was in the reduction
of false detections in the presence of the noisy data of fig-
ure 6(a). The end-to-end Bayesian system improved on the
HBST modeling system performance by 88.7%, reducing
the false detection rate down to 2.3%. Note that all of the
false detection for the end-to-end system was in sensor 1,
with an individual rate of 11.6% false detection. This is
expected because it is an edge sensor and since sensor 2
is faulty, the closest sensor in the agreeing subset is sen-
sor 3. This is much improved in comparison to the HBST
modeling system result. For the HBST modeling system,
most (but not all) of the false detection was also in sensor 1,
but the rate of false detection in this individual sensor was
97.9%. This is due to the fact that the only sensor involved
in judging sensor 1 is the faulty sensor 2 in the HBST mod-
eling system.

The results of the application of the end-to-end Bayesian



system to the cold air drainage, both non-faulty and faulty,
indicate that this approach can be an effective way of deter-
mining sensor network data faults. This system is capable
of effectively detecting data faults while maintaining low
false detection rates.

5.3 Lake Fulmor Data

We now apply the end-to-end Bayesian system to the
data from five nodes deployed across Lake Fulmor in James
Reserve. We use temperature data collected at the surface
from sensors deployed on buoys between August 28th and
September 1st, 2006. Figure 8 shows data from three of the
five sensors used in this test. Node 3 shows aberrant behav-
ior starting at approximately day 2.65. This fault at the end
of the data set is due to the battery failing on this particular
node.
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Figure 8. Data from three buoys at lake Ful-
mor

The results of the application of the two fault detection
systems to this data are presented in figure 9.

Figure 9. Detection rates for Lake Fulmor
Data

The end-to-end Bayesian system has decreased the over-
all false detection in comparison to the HBST modeling
system. The higher overall false detection in HBST mod-
eling system is also linked to the higher detection rate, par-
tially explaining the lower detection rate of the end-to-end
Bayesian system. Also, we note that the false detection rate

for sensor 1 is very high for both end-to-end Bayesian and
HBST modeling systems.

Closer examination of the data reveals that the temper-
atures do not behave in a consistent clear spatially linear
trend. To illustrate this point, figure 10 shows sensors 1 and
4 from the original data dataset. Sensor 1 clearly goes be-
tween being approximately2

3

◦

C warmer than sensor 4 to
the same or even1

2

◦

C cooler than sensor 4.
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Figure 10. Data from two nodes in the Lake
Fulmor data showing a inconsistent spatial
trend

This behavior suggests that the phenomenon is incor-
rectly modeled. The linear spatial trend in the data is in-
consistent, so it may be more useful to consider a higher
order model for this data. However, the type and form of
this model is unclear and not easily determined from the
given data because of the low deployment density. This sug-
gests the need for a second experiment with higher deploy-
ment densities to better derive a spatial model of the phe-
nomenon. The main effect of this inaccurate spatial model
is an increase in false detection coupled with a decrease in
detection.

Sensor 1 is the most egregious of sensors causing the
data to exhibit this non-linear behavior. If we reapply the
end-to-end Bayesian system to the data disregarding sen-
sor 1 we get significantly different results. With just sen-
sors 2 through 4, the detection rate of the fault rises from
68.6% to 71.4%. The false detections for all sensors have
all dropped to zero. The increase in detection and decrease
in false detection indicates that the four sensors behave ina
much more spatially linear manner.

The results of the application of the end-to-end Bayesian
system to the Lake Fulmor data give mixed results. While
overall fault detection rates dropped even in comparison to
the HBST modeling system, this also resulted in a drop in
detection rate.

These results also emphasize that a higher deployment
density is required to accurately model a phenomenon that
has high variability. The relatively low deployment density
was sufficient to model the temperature field for the cold
air drainage experiment in section 5.2 due to the low spa-
tial variability. Meanwhile, the deployment density for the



Lake Fulmor experiment was not high enough to capture
the higher spatial variability of the phenomenon. Without a
higher deployment density it is difficult to determine what
kind of spatial model should be used to sufficiently capture
the phenomenon.

5.4 Effect of Prior Distribution

To show the effect of having the prior distribution up-
dated by the final tagged proportion, we also tested the Lake
Fulmor data without the prior distribution updating that was
described in section 4.2. Table 2 show the sensors included
in the agreeing subset when we exclude and include the use
of the calculated prior distribution updates.

Table 2. Sensors included in the agreeing
subset with and without prior distributions
being used.

Day No Priors Using Priors

1 2,4,5 2,4,5

2 2,3,4 2,3,4

3 1,4,5 2,4,5

Examination of the results show that on the third day,
sensor 1 is included in the agreeing subset. This is the sen-
sor that does not follow the linear spatial trend. This sensor
also exhibited a 75.7% tag rate on day 2 which is very high
and suggests that this sensor should not be in an agreeing
subset. Additionally, when we excluded the use of prior dis-
tributions, the detection rate of the fault in day three drops
to 22.9%.

These results show that the inclusion and updating of
prior distributions in the manner presented in section 4.2
is effective and crucial to the success of our algorithm. It
validates the usage of a Bayesian MAP selection approach.
It also ensures the exclusion of faulty or ill-modeled sensors
from the agreeing subset, and because of this it improves the
accuracy of the fault detection system.

6 Conclusion

We have shown the effectiveness of an end-to-end
Bayesian modeling system using a MAP sensor subset se-
lection combined with HBST modeling. By combining and
improving elements of the approaches [13] and [14], several
issues hurting detection performance are resolved.

However, we also see that accurate modeling is still very
important as evidenced in the Lake Fulmor data of section
5.3. Also the relationship between accurate models and
sampling density plays an important role in fault detection.

High density deployments relative to the spatial variability
of the phenomenon generally do not require complex accu-
rate models. However the cost and challenges in deploy-
ing many sensors have limited this type of deployment in
practice. Thus with lower density deployments we require
better models. HBST modeling works best for deployments
such as the ones presented here when sampling density is
relatively low and simple modeling methods are no longer
effective.

Fortunately, Bayesian techniques are particularly
amenable to model updates as new data is collected. In the
future, we seek to include an update to the model definition
in an overall design approach and incorporate this into
an iterative design for a sensor network deployment.
This design update may include increasing deployment
density to allow for better modeling of phenomena with
high variability. In future work, we can further include
Bayesian elements in this system by using Bayesian
decisions in the selection of the models used in specific
situations. Also, there may be other advanced statistical
modeling techniques that may prove useful for other types
of phenomena.
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