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Abstract. We define a certain merging operation that given two d-polytopes P and Q such
that P has a simplex facet and Q has a simple vertex produces a new d-polytope P ▷Q
with f0(P ) + f0(Q)− (d+ 1) vertices. We show that if for some 1 ⩽ i ⩽ d− 1, P and Q
are (d − i)-simplicial i-simple d-polytopes, then so is P ▷Q. We then use this operation
to construct new families of (d− i)-simplicial i-simple d-polytopes. Specifically, we prove
that for all 2 ⩽ i ⩽ d − 2 ⩽ 6 with the exception of (i, d) = (3, 8) and (5, 8), there is an
infinite family of (d − i)-simplicial i-simple d-polytopes; furthermore, for all 2 ⩽ i ⩽ 4,
there is an infinite family of self-dual i-simplicial i-simple 2i-polytopes. Finally, we show
that for every d ⩾ 4, there are 2Ω(N) combinatorial types of (d − 2)-simplicial 2-simple
d-polytopes with at most N vertices.
Keywords. Connected sums, face lattice, face numbers, Gosset–Elte polytopes, self-dual
polytopes
Mathematics Subject Classifications. 52B05, 52B11

1. Introduction

A polytope is the convex hull of finitely many points inRd. For brevity, we refer to d-dimensional
polytopes as d-polytopes. While polytopes have been studied since antiquity, many central ques-
tions about them remain wide open. In this paper we present progress on one of these questions.

A d-polytope P is called simplicial if every facet of P contains exactly d vertices. Similarly,
a d-polytope P is simple, if every vertex of P is in exactly d facets. (Equivalently, P is simple
if its dual P ∗ is simplicial.) Much progress has been made on the study of simplicial and simple
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polytopes, but much less is known about general d-polytopes that are neither simplicial nor
simple already when d = 4. We refer the reader to [Grü03, Zie95] as excellent books on the
theory of polytopes, to [BL81, Sta80] for one of the most celebrated results on the face numbers
of simplicial polytopes, and to [Bay87, BZ18, PW06, Zie02, Zie04] for results on general 4-
polytopes.

Let 1 ⩽ i ⩽ d − 1. A d-polytope P is called i-simplicial if all of its i-faces are simplices,
and it is i-simple if its dual P ∗ is i-simplicial (equivalently, if every (d − i − 1)-face of P is
contained in exactly i + 1 facets). In particular, the class of (d − 1)-simplicial d-polytopes
coincides with the class of simplicial d-polytopes, while the class of (d− 1)-simple d-polytopes
is the class of simple d-polytopes. The d-simplex is both simple and simplicial, and it is known
that a j-simplicial i-simple d-polytope must be a simplex if i+ j > d. The question of whether
j-simplicial i-simple d-polytopes exist when i, j > 1, and especially when i+ j = d, was raised
in the mid-1960s. Such polytopes can be compared to rare combinatorial objects like designs,
and the constructions presented in this paper substantially advance our state of knowledge.

Let 2 ⩽ i ⩽ d− 2. While various conjectures (see, for instance [Grü03, Exercise 9.7.7(iii)])
suggest that there should be a large number of (d− i)-simplicial i-simple d-polytopes, not many
examples are known. The first infinite family of 2-simplicial 2-simple 4-polytopes was con-
structed by Eppstein, Kuperberg, and Ziegler [EKZ03]. Their approach was generalized by
Paffenholz and Ziegler [PZ04] who established the existence of infinite families of (d − 2)-
simplicial 2-simple d-polytopes for all d ⩾ 4. Notably, the minimum number of vertices in their
d-dimensional construction is 2(d+1), realized by conv(Σ∪Σ∗), where Σ is a d-simplex whose
(d− 3)-faces are tangent to the unit sphere Sd−1. Additional infinite families of 2-simplicial 2-
simple 4-polytopes were constructed by Paffenholz and Werner [PW06]: all their polytopes are
elementary (i.e., have gtoric2 = 0) and have at least one simplex facet.

As for larger values of i, the d-dimensional demicube with d ⩾ 4 (also known as the
half-cube) is 3-simplicial (d − 3)-simple while its dual is (d − 3)-simplicial 3-simple (see
[Grü03, Exercise 4.8.18]). Furthermore, the Gosset–Elte polytopes that arise from Wythoff’s
construction provide finitely many examples of (d− i)-simplicial i-simple d-polytopes for d ⩽ 8
and 2 ⩽ i ⩽ d−2 [Cox63]. These are essentially all known to-date examples of (d−i)-simplicial
i-simple d-polytopes with 2 ⩽ i ⩽ d − 2. In particular, it is not known whether a 5-simplicial
5-simple 10-polytope exists. In light of this, we further pose the following questions.

Question 1.1.

1. Let d ⩾ 4. What is the minimum number of vertices that a non-simplex (d−2)-simplicial
2-simple d-polytope can have?

2. Let d ⩾ 6 and let 3 ⩽ i ⩽ d/2. Are there infinite families of (d − i)-simplicial i-simple
d-polytopes? What is the minimum number of vertices that such a non-simplex polytope
can have?

The goal of this paper is to provide new infinite families of (d − i)-simplicial i-simple d-
polytopes for some values of i and d. To achieve this, we define a certain merging operation
that given two d-polytopes P and Q, where P has a simplex facet and Q has a simple vertex,
outputs a new d-polytope. This operation is modeled on a familiar notion of connected sums of
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simplicial polytopes, but designed in a way that preserves the property of being (d−i)-simplicial
i-simple. Using this operation, we establish the following results:

1. There exist infinite families of (d − i)-simplicial i-simple d-polytopes for all pairs (i, d)
such that 2 ⩽ i ⩽ d − 2 ⩽ 6 and (i, d) is not (3, 8) or (5, 8); see Theorem 5.1. This
partially answers Question 1.1(2) and [Kal97, Problem 19.5.23].

2. There exist infinite families of self-dual i-simplicial i-simple 2i-polytopes for 2 ⩽ i ⩽ 4;
see Theorem 5.4. This partially answers [Kal97, Problem 19.5.24].

3. For all d ⩾ 4, there are 2Ω(N) combinatorial types of (d − 2)-simplicial 2-simple d-
polytopes with at most N vertices; see Theorem 6.13.

To prove the last result, we construct a higher-dimensional analog of the unique 2-simplicial
2-simple 4-polytope with nine vertices. (This 4-polytope is called P9 in [PW06]; it has the
minimum number of vertices among all non-simplex 2-simplicial 2-simple 4-polytopes.) We
then apply the merging operation to produce new infinite families of (d−2)-simplicial 2-simple
d-polytopes.

As for the second result, several examples of (non-simplex) self-dual 2-simplicial 2-simple 4-
polytopes were known before, among them polytopes P9 and P10 from [PW06]. In fact, [Paf06]
provides a (different) infinite family of self-dual 2-simplicial 2-simple 4-polytopes, that, for in-
stance, includes the 24-cell. An interesting infinite family of self-dual d-polytopes that are nei-
ther j-simplicial nor i-simple (for any d ⩾ 3 and j, i > 1) is the family of multiplexes constructed
by Bisztriczky [Bis96].

The outline of the paper is as follows. We review several definitions related to polytopes and
face lattices in Section 2. Section 3 serves as a warm-up section where we discuss the minimum
number of vertices that a non-simplex 3-simplicial 2-simple 5-polytope can have. In Section 4,
we introduce and study the merging operation that applies to pairs of polytopes one of which has
a simplex facet and another a simple vertex. This operation has several interesting properties;
see, for instance, Theorem 4.6 and Theorem 4.12. Sections 5 and 6 form the most crucial part
of this paper: there, we utilize the merging operation and its properties to provide our promised
constructions of new (d − i)-simplicial i-simple d-polytopes. Specifically, in Section 5.1, we
construct infinite families of (d − i)-simplicial i-simple d-polytopes for d ⩽ 8. In Section 5.2,
we construct infinite families of self-dual i-simplicial i-simple 2i-polytopes for i ⩽ 4. In Sec-
tion 6.1, we revisit the 2-simplicial 2-simple 4-polytopes providing several new constructions.
Finally, in Section 6.2, we produce a higher-dimensional analog of P9 and use it to construct
exponentially many (in N ) combinatorial types of (d− 2)-simplicial 2-simple d-polytopes with
at most N vertices.

2. Preliminaries

A polytope P ⊆ Rd is the convex hull of a finite set of points in Rd. The dimension of P
is the dimension of the affine span of P . For brevity, we say that P is a d-polytope if P is
d-dimensional. In what follows, we always assume that P ⊆ Rd is a d-polytope.
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A hyperplane H ⊆ Rd is a supporting hyperplane of P if P is contained in one of the two
closed half-spaces determined by H . A (proper) face of P is the intersection of P with any
supporting hyperplane of P . A face of a polytope is by itself a polytope. We refer to (d − 1)-
faces of P as facets of P , to (d−2)-faces as ridges, to 1-faces as edges, and to 0-faces as vertices.
We denote by V (P ) the vertex set of P . If V (P ) consists of d + 1 affinely independent points,
then P is a d-simplex; we denote it by σd.

The face poset of P , L(P ), is the set of faces of P (including P and ∅) ordered by inclusion,
and two polytopes P and Q have the same combinatorial type if L(P ) and L(Q) are isomorphic.
The face poset of P is a lattice. We usually write the maximum element of L(P ) (namely, P )
as 1̂ and the minimum element (namely, ∅) as 0̂. For a subset S of L(P ), we let ∨S and ∧S
denote the join and the meet of elements of S, respectively.

By using translation, if necessary, we can always assume that the origin, 0, lies in the interior
of P . The set

P ∗ = {y ∈ Rd : ytx ⩽ 1, ∀x ∈ P}

is then a polytope called the dual polytope of P ; see [Zie95, Chapter 2]. The dual construction
has the following properties: for every d-polytope P ⊆ Rd (with 0 in the interior of P ), P ∗∗ = P
and there are order-reversing bijective maps ϕ :L(P )→L(P ∗) and ϕ :L(P ∗)→L(P ∗∗)=L(P ),
which by slight abuse of notation we denote by the same symbol, such that ϕ(ϕ(G)) = G for
all G ∈ L(P ) ⊔ L(P ∗). If L(P ) is self-dual, that is, if there is an order reversing bijection
from L(P ) to itself, then we say that P is a self-dual polytope.

Let 1 ⩽ i ⩽ d− 1. A d-polytope P is i-simplicial if all of its i-faces are simplices; equiva-
lently, if all of its i-faces have i + 1 vertices. Similarly, P is i-simple if every (d − i − 1)-face
is contained in exactly i+ 1 facets. The class of (d− 1)-simplicial d-polytopes is known as the
class of simplicial d-polytopes, while the class of (d − 1)-simple d-polytopes is known as the
class of simple d-polytopes. In particular, if P is i-simplicial, then the interval [0̂, τ ] is a Boolean
lattice for any face τ with dim τ ⩽ i. Likewise, if P is i-simple, then [τ, 1̂] is Boolean for any
face τ with dim τ ⩾ d− i− 1. Hence P is i-simplicial if and only if P ∗ is (d− i)-simple.

If v is a vertex of P , then the vertex figure of P at v, denoted P/v, is the polytope obtained
by intersecting P with a hyperplane H that has v on one side and all other vertices of P on the
other side. The combinatorial type of P/v does not depend on the choice of H . In fact, L(P/v)
is exactly the interval [v, 1̂] in L(P ). We say that a vertex v of a d-polytope P is simple if P/v
is a simplex, or equivalently, if v belongs to exactly d facets of P .

If P is a simplicial polytope, then the collection of vertex sets of faces of P , including ∅ but
not including P itself, forms an abstract simplicial complex ∂P called the boundary complex
of P . When V is a finite set, we let ∂V := {τ ⊂ V : τ ̸= V } denote the boundary complex of
an abstract simplex with vertex set V .

Consider a d-polytope P ⊂Rd×{0}⊂Rd×Rd′ and a d′-polytope Q⊂{0}×Rd′ ⊂Rd×Rd′

such that the origin is in the relative interior of bothP andQ. The polytopeP⊕Q :=conv(P∪Q)
is called the free sum of P and Q. All faces of P⊕Q are of the form conv(F ∪G), where F ̸= P
is a face of P and G ̸= Q is a face of Q. Consequently, if P and Q are simplicial polytopes then
the boundary complex of P ⊕Q coincides with the join of ∂P and ∂Q:

∂(P ⊕Q) = ∂P ∗ ∂Q := {σ ∪ τ : σ ∈ ∂P, τ ∈ ∂Q}.
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For a d-polytope P , we let f(P ) = (f0(P ), f1(P ), . . . , fd−1(P )) be the f -vector of P ;
here fi(P ) denotes the number of i-faces of P . Also, for 0 ⩽ i < j ⩽ d − 1, we let fi,j(P )
denote the number of pairs of faces Fi ⊂ Fj of P such that dimFi = i and dimFj = j.

To conclude this section, we note that for all 0 ⩽ i ⩽ d − 1, fi(P ) = fd−i−1(P
∗). This is

immediate from the existence of an order-reversing bijection ϕ : L(P ) → L(P ∗).

3. A warm-up: the minimum number of vertices

As mentioned in the introduction, for every d ⩾ 4, there exists a (d − 2)-simplicial 2-simple
d-polytope with 2(d + 1) vertices. Furthermore, for d = 4, there is a 2-simplicial 2-simple 4-
polytope with only 9 vertices. Are there non-simplex (d − 2)-simplicial 2-simple d-polytopes
with fewer than 2d + 2 vertices for d > 4? (Cf. Question 1.1(1).) The goal of this warm-up
section is to answer this question for d = 5; see Proposition 3.3. To do this, we first establish a
criterion that the f -vectors of (d− i)-simplicial i-simple d-polytopes (if they exist) must satisfy;
cf. [Grü03, Exercise 9.7.7(ii)]. We include the proof for completeness.

Lemma 3.1. Let d ⩾ 2 and 1 ⩽ i ⩽ d− 1. Let P be a (d− i)-simplicial d-polytope. Then P is
i-simple if and only if (d− i+ 1)fd−i(P ) = (i+ 1)fd−i−1(P ).

Proof. If P is (d − i)-simplicial, then every (d − i)-face of P is a simplex; hence, every
(d − i)-face contains d − i + 1 faces of dimension d − i − 1. This means that
fd−i−1,d−i(P ) = (d− i+ 1)fd−i(P ). On the other hand, a (d− i− 1)-face of any d-polytope is
contained in at least i + 1 faces of dimension d − i. Thus, fd−i−1,d−i(P ) ⩾ (i + 1)fd−i−1(P ),
and we conclude that (d − i + 1)fd−i(P ) = fd−i−1,d−i(P ) ⩾ (i + 1)fd−i−1(P ). Furthermore,
equality holds if and only if every (d − i − 1)-face is in exactly i + 1 faces of dimension d − i
which happens if and only if P is i-simple.

Corollary 3.2. For all i ⩾ 1, an i-simplicial 2i-polytope P is i-simple if and only
if fi−1(P ) = fi(P ).

Proposition 3.3. The minimum number of vertices that a non-simplex 3-simplicial 2-simple 5-
polytope can have is 12.

Proof. There exists a 3-simplicial 2-simple 5-polytope with 2(5 + 1) = 12 vertices. Thus,
we only need to show that there is no non-simplex 3-simplicial 2-simple 5-polytope with fewer
than 12 vertices.

It is known (see [PW06]) that every non-simplex 2-simplicial 2-simple 4-polytope has
at least 9 vertices, and the only such polytope with 9 vertices is the polytope denoted by P9

in [PW06]. Since vertex figures of 3-simplicial 2-simple 5-polytopes are 2-simplicial 2-simple,
it follows that a non-simplex 3-simplicial 2-simple polytope Q must have at least 10 vertices.

Assume that f0(Q) = 10. Then each vertex figure is either the 4-simplex σ4 or P9, and so
each vertex of Q has degree 5 or 9. Since Q is not simple, at least one of the vertex figures
of Q is P9. Consider Q∗; it has 10 facets each of which is either σ4 or P9. (This is because
both σ4 and P9 are self-dual.) Now consider a facet F of Q∗ that is isomorphic to P9. It has 7
non-simplex facets (one cross-polytope, also known as an octahedron, and six bipyramids); see
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Construction 6.1. Each of these seven 3-faces must lie in F and one additional facet ofQ∗, which
cannot be a simplex. This shows that Q∗ has at least eight facets isomorphic to P9. Then in Q,
at least 8 out of 10 vertices are of degree 9. This implies that all vertices of Q have degree ⩾ 8.
Consequently, all vertices of Q have degree 9, and so f1(Q) =

(
10
2

)
= 45.

Since Q is 3-simplicial 2-simple, 4f3(Q) = 3f2(Q) by Lemma 3.1. Furthermore, since Q is
3-simplicial and since the toric h-vector of a 5-polytope is symmetric [Sta87],

0 = gtoric3 (Q) = f2(Q)− 4f1(Q) + 10f0(Q)− 20.

Finally, by the Euler relation,

f0(Q)− f1(Q) + f2(Q)− f3(Q) + f4(Q) = 2.

This uniquely determines the f -vector of Q: f(Q) = (10, 45, 100, 75, 12). But then we must
have 75 = f3(Q) ⩽

(
f4(Q)

2

)
= 66, which is a contradiction.

Similarly, if f0(Q) = 11, then f2(Q) = 4f1(Q) − 10f0(Q) + 20 = 4f1(Q) − 90, which is
not a multiple of 4. On the other hand, 4f3(Q) = 3f2(Q) still holds, so f3(Q) is not an integer,
which is again a contradiction.

While a 2-simplicial 2-simple 4-polytope with 9 vertices is unique, this is not the case with
3-simplicial 2-simple 5-polytopes with 12 vertices. (For instance, in Section 6 we will see that
there is such a polytope with a simplex facet.) For d ⩾ 6, Question 1.1(1) remains unsolved. It
would be very interesting to shed any light on whether the answer is 2d+2 or smaller than 2d+2.

4. The merging operation

Throughout, let d ⩾ 2. Recall that a connected sum of two simplicial d-polytopes1 is a simplicial
d-polytope. In other words, taking connected sums preserves the property of being (d − 1)-
simplicial 1-simple. Is there an analogous operation that preserves the property of being (d− i)-
simplicial i-simple for an arbitrary 2 ⩽ i ⩽ d−1? The goal of this section is to discuss one such
operation that can be applied to two d-polytopes as long as one of them has a simplex facet and
another one has a simple vertex. The order in which we list the vertices will be important for
our construction. Specifically, we write [a1, . . . , am] to denote the polytope conv(a1, . . . , am)
whose vertices are ordered as a1, . . . , am. We will mainly use this notation to describe faces of
a given polytope. For brevity, we also write the edge [u, v] as uv.

4.1. The definition and basic properties

We start with setting up a few notations, conventions and definitions that will be repeatedly
used throughout this section. Let P1 and P2 be two d-polytopes such that P1 has a simplex
facet F := [u1, . . . , ud] and P2 has a simple vertex v whose neighbors are ordered as u′

1, . . . , u
′
d.

1The connected sum of two simplicial polytopesP andQ is defined by gluing them along a common facet whose
hyperplane separates P and Q. To guarantee that the result is a polytope we first apply an appropriate projective
transformation to P (or Q); see [RG96, Lemma 3.2.4].
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We adopt the following notation: for 1 ⩽ j ⩽ d, let Hj be the facet of P1 that is adjacent to F
along the ridge Gj := [u1, . . . , ûj, . . . , ud]. Similarly, for 1 ⩽ j ⩽ d, let H ′

j be the facet of P2

that contains all the edges of P2 incident with v but vu′
j .

By applying a projective transformation to P1, we may assume that the hyperplanes

aff(F ), aff(H1), . . . , aff(Hd)

define a d-simplexΣ that contains P1. (The existence of such a projective transformation follows
from the proof of [RG96, Lemma 3.2.4].) Denote the vertex of Σ that does not lie in F by u.
By applying the unique affine transformation that maps v to u, and u′

k to uk for 1 ⩽ k ⩽ d, we
may further assume that the d-simplices Σ′ = [v, u′

1, . . . , u
′
d] and Σ coincide, and in particular

that P1 ⊆ Σ = Σ′ is a convex subset of P2.
Finally, let P ′

2 := conv(V (P2)\v) and F ′ := [u′
1, . . . , u

′
d] be two subpolytopes of P2. Note

that if P2 is a d-simplex, then P ′
2 is F ′, and otherwise, F ′ is a facet of P ′

2.

Definition 4.1. Under the above assumptions on P1 and P2, define a new d-polytope P1▷P2

obtained from P2 by replacing Σ′ = Σ with P1. Alternatively, P1▷P2 is the union of P1 and P ′
2

where we identify uk with u′
k for 1 ⩽ k ⩽ d. (Observe that P1 and P ′

2 share the facet F = F ′,
lie on the opposite sides of F and that their union is a polytope.) The new polytope is called the
merge of P1 and P2 along F and v.

Example 4.2. Consider two polygons P1 and P2 whose boundary complexes are cycles

(u1, . . . , un, u1) and (v0, v1, . . . , vk, v0).

Then the merge of P1 and P2 along the edge F = u1un and the vertex v0 is the polygon whose
boundary complex is the cycle (v1 = u1, u2, . . . , un−1, un = vk, vk−1, . . . , v2, v1 = u1). In other
words, in dimension two, P1▷P2 is exactly the connected sum of P1 and P ′

2 = conv(V (P2)\v0).

Figure 4.1 illustrates how to merge two 3-polytopes.
Remark 4.3. For d ⩾ 3, the set of facets of P1▷P2 consists of

• old facets: all facets of P1 with the exception of F,H1, . . . , Hd, and all facets of P2 with
the exception of H ′

1, . . . , H
′
d;

• new facets: for each 1 ⩽ j ⩽ d, Hj and H ′
j merge into a single facet Hj ▷H ′

j where the
merge is along Gj = [u1, . . . , ûj, . . . , ud] and v (with the neighbors of v in H ′

j ordered
as u′

1, . . . , û
′
j, . . . u

′
d).

Remark 4.4. The description of facets of P1▷P2 leads to the following observation: the combi-
natorial type of P1▷P2 may depend on the ordering of vertices of F and neighbors of v. That
is, letting F = [uσ(1), . . . , uσ(d)] and relabeling the neighbors of v as vσ′(1), . . . , vσ′(d), for some
permutations σ, σ′ of [d] := {1, 2, . . . , d}, may result in a polytope with a different combinato-
rial type; see Section 6 for examples. This is analogous to the situation with the connected sum
of two simplicial polytopes.
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u1

u2

u3

u u′
2

u′
1

v

u′
3

u1 = u′
1

u2 = u′
2

u3 = u′
3

Figure 4.1: P1 ⊆ Σ, P2 ⊇ Σ′, and P1▷P2, where the merge is along [u1, u2, u3] ∼= [u′
1, u

′
2, u

′
3]

and v.

It follows from Definition 4.1 that if P1 is a simplex, then P1▷P2 = P2, and similarly if P2

is a simplex, then P1▷P2 = P1. In all other cases, F is not a facet of P1▷P2 and v is not
a vertex of P1▷P2. Furthermore, if both P1 and P2 are simplicial and P2 has a simple ver-
tex v, then the merge of P1 and P2 along any facet F of P1 and v is the connected sum of P1

and P ′
2 = conv(V (P2)\v).

We summarize this discussion in the following lemma.

Lemma 4.5. Let d ⩾ 2. Let P1 be a d-polytope with a simplex facet and let P2 be a
d-polytope with a simple vertex. Then f0(P1▷P2) = f0(P1) + f0(P2) − (d + 1). In partic-
ular, f0(P1▷P2) ⩾ max{f0(P1), f0(P2)} and equality holds if and only if at least one of P1

and P2 is a simplex. In the case that one of P1 and P2 is a simplex, P1▷P2 is equal to the other
polytope.

The following theorem and corollary explain the significance of the merging operation.

Theorem 4.6. Let d ⩾ 2 and 1 ⩽ i, j ⩽ d− 1, and let P1 and P2 be d-polytopes with a simplex
facet and a simple vertex, respectively. If P1 and P2 are j-simplicial, then so is P1▷P2. If P1

and P2 are i-simple, then so is P1▷P2.

Proof. We first discuss j-simplicial polytopes. The proof is by induction on d. The statement
holds for j = 1 for any d (since all polytopes are 1-simplicial). Hence the statement holds
for d = 2.

Now, assume the statement holds for d − 1 and any 1 ⩽ j ⩽ d − 2. We prove that the
statement holds for d and any 1 ⩽ j ⩽ d − 1. Let P1 and P2 be two j-simplicial d-polytopes.
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If one of them is a simplex, there is nothing to prove. Also, if j = d − 1, then P1▷P2 is the
connected sum of two simplicial polytopes P1 and P ′

2, which is (d− 1)-simplicial.
Thus assume that 2 ⩽ j ⩽ d − 2 and that neither P1 nor P2 is a simplex. Let τ be a j-face

of P1▷P2. Then either τ is a j-face of P1 or it is a j-face of P2 or it is a j-face of Hk ▷H ′
k for

some k. In the first two cases, τ is a simplex because P1 and P2 are j-simplicial. In the last case,
it is a simplex because both Hk and H ′

k are j-simplicial, and so τ is a simplex by the induction
hypothesis.

We now discuss i-simple polytopes. The proof is again by induction on d. The statement
holds for i = 1 and any d (since all polytopes are 1-simple). Hence the statement holds for d = 2.
Now assume the statement holds for d− 1 and any 2 ⩽ i ⩽ d− 2. Let 2 ⩽ i ⩽ d− 1 and let P1

and P2 be two i-simple d-polytopes. To see that P1▷P2 is i-simple, let τ be a (d − i − 1)-face
of P1▷P2. There are two possible cases.

Case 1: τ is a face of one of Hk ▷H ′
k. Since P1 and P2 are i-simple, Hk and H ′

k are (i − 1)-
simple (d − 1)-polytopes. Thus, by the induction hypothesis, Hk ▷H ′

k is an (i − 1)-simple
(d− 1)-polytope. Since τ is a face of Hk ▷H ′

k of dimension d− i− 1 = (d− 1)− (i− 1)− 1,
it follows that there are exactly i facets of Hk ▷H ′

k (and hence ridges of P1▷P2) that contain τ .
Each of these i ridges is contained in two facets of P1▷P2: Hk ▷H ′

k and one additional facet.
Thus, τ is contained in exactly i+1 facets of P1▷P2, namely, Hk ▷H ′

k and the i additional facets
just described.

Case 2: τ is not contained in any Hk ▷H ′
k (for k = 1, . . . , d). Then either τ is a face of P1

not contained in any of F,H1, . . . , Hd, or τ is a face of P2 that does not contain v and is not
contained in any of H ′

1, . . . , H
′
d. In the former case, the facets of P1▷P2 that contain τ are the

facets of P1 that contain τ and there are i+1 of them since P1 is i-simple. Similarly, in the latter
case, the facets of P1▷P2 that contain τ are the facets of P2 that contain τ and there are i+ 1 of
them.

Corollary 4.7. Let d ⩾ 2 and 1 ⩽ i ⩽ d− 1. Let P be a (d− i)-simplicial i-simple d-polytope
such that (1) P is not a simplex, (2) P has a simplex facet F , and (3) P has a simple vertex v not
contained in F. Finally, let P ▷P be the merge of P with itself along F and v. Then P ▷P is a
(d− i)-simplicial i-simple d-polytope that has a simplex facet and a simple vertex not contained
in that facet; furthermore, f0(P ▷P ) > f0(P ). Consequently, there exists an infinite family of
(d− i)-simplicial i-simple d-polytopes obtained by iterative merging with P .

Proof. Consider two copies of P : P1 and P2. Denote the copy of F in Pj by Fj , and the copy
of v in Pj by vj . Merge P1 and P2 along F1 and v2. By Theorem 4.6, P1▷P2 is (d− i)-simplicial
and i-simple; it has a simplex facet F2 and a simple vertex v1 /∈ F2.

This corollary implies that to find infinitely many (d− i)-simplicial i-simple d-polytopes, it
suffices to find the “building blocks” — those with simplex facets and simple vertices. Hence
we propose the following question that strengthens Question 1.1(2).

Question 4.8. Let d ⩾ 4 and 2 ⩽ i ⩽ d − 2. Are there infinite families of (d − i)-simplicial
i-simple d-polytopes, each of which has a simplex facet and a simple vertex?
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4.2. The face lattice

In this subsection, we assume that P1 and P2 are two (d− i)-simplicial i-simple d-polytopes that
will be merged along a simplex facet F = [u1, . . . , ud] of P1 and a simple vertex v of P2. Our
goal is to describe the face lattice of P1▷P2, L(P1▷P2). We continue using notation introduced
in Section 4.1. The following definitions depend on P1, P2 but also on d and i.

Definition 4.9. Consider the following two subposets of L(P1) and L(P2):

L(P1)
− := L(P1)\{σ : σ ⊆ F, dimσ ⩾ d− i},

L(P2)
− := L(P2)\{σ : v ∈ σ, dimσ < d− i},

and let L(P1)
− ⊔ L(P2)

− be their disjoint sum, i.e., the disjoint union of L(P1)
− and L(P2)

−

with the original partial orders on L(P1)
− and L(P2)

−, and no other comparable pairs.

Definition 4.10. Let L be the following quotient poset of L(P1)
− ⊔ L(P2)

−. As a set, it
is (L(P1)

− ⊔ L(P2)
−) / ∼, where

[uk : k ∈ S] ∼ [u′
k : k ∈ S] for all S ⊆ [d], |S| ⩽ d− i,

and ∩k∈S Hk ∼ ∩k∈SH
′
k for all S ⊆ [d], |S| ⩽ i.

The partial order onL is inherited fromL(P1)
−⊔L(P2)

−: [τ ] < [σ] if there are representatives τ ′
and σ′ of the equivalence classes [τ ] and [σ] such that τ ′ < σ′ in L(P1)

− ⊔ L(P2)
−.

The main result of this subsection —Theorem 4.12— asserts that L is the face lattice
of P1▷P2. The proof relies on the following lemma.

Lemma 4.11. Let S ⊆ [d].

1. If |S| ⩽ i, then ∩k∈SHk is a (d − |S|)-face of P1 not contained in F , while ∩k∈SH
′
k is a

(d− |S|)-face of P2 containing v.

2. If |S| ⩽ d − i, then [uk : k ∈ S] is an (|S| − 1)-face of P1 and [u′
k : k ∈ S] is an

(|S| − 1)-face of P2.

3. If H is a facet of P1 that is not one of F,H1, . . . , Hd, then H shares with F at most d−i−1
vertices, andH does not contain any intersection of the form∩k∈SHk, for S ⊆ [d], |S| ⩽ i.
Hence, L(H) is equal to [0̂, H] computed in both L(P1)

− and L.

4. If H is a facet of P2 that does not contain v, then H does not contain any intersection of
the form ∩k∈SH

′
k. Thus L(H) is equal to [0̂, H] computed in both L(P2)

− and L.

Proof. For part (1), we only need to show that ∩k∈SHk is (d−|S|)-dimensional and that it is not
contained in F . Consider τ := (∩k∈SHk)∩F = ∩k∈S(Hk∩F ). Since F is a (d−1)-simplex, τ
is a face of P1 of dimension d− |S| − 1. Now, since |S| ⩽ i, and so d− |S| − 1 ⩾ d− i− 1, the
assumption that P1 is i-simple implies that the interval [τ, 1̂] is a Boolean lattice whose coatoms
are Hk, for k ∈ S, and F . This, in turn, implies the desired properties of ∩k∈SHk.
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For part (2), since F is a simplex facet of P1, [uk : k ∈ S] must be a simplex (|S| − 1)-face
of P1. Also, since v is simple, the edges vu′

k for k ∈ S determine an |S|-face of P2, and this face
must be a simplex since P2 is (d− i)-simplicial. Thus [u′

k : k ∈ S] is an (|S| − 1)-face of P2.
For part (3), note that ifH contained d−i vertices of F , say, u1, . . . , ud−i, then [u1, . . . , ud−i]

would be a (d− i− 1)-face of P1 contained in at least i+ 2 facets, namely, F , Hd−i+1, . . . , Hd,
andH; this is impossible sinceP is i-simple. Similarly, ifH contained, say, the faceH1∩· · ·∩Hi,
then this (d− i)-face would be in at least i+1 facets, namely, H1, . . . , Hi, and H , which is again
a contradiction.

Part (4) follows from the fact that v ∈ ∩k∈SH
′
k but v /∈ H , and from the definition of L(P2)

−

and L.

Let S be a subset of [d]. Note that 0̂P1 = ∨k∈∅uk ∼ ∨k∈∅u
′
k = 0̂P2 is the minimum

element of L, while 1̂P1 = ∧k∈∅Hk ∼ ∧k∈∅H
′
k = 1̂P2 is the maximum element. Furthermore,

Lemma 4.11 implies that if |S| ⩽ d − i, then ∨k∈Suk ∈ L(P1) and ∨k∈Su
′
k ∈ L(P2) are

both elements of L(P1)
− ⊔ L(P2)

−, and that they have the same rank. Similarly, if |S| ⩽ i,
then ∧k∈SHk and ∧k∈SH

′
k both belong to L(P1)

− ⊔ L(P2)
− and have the same rank there. We

are now ready to prove that L is the face lattice of P1▷P2. Specifically, for S ⊆ [d], |S| ⩽ i, the
class ∧k∈SHk ∼ ∧k∈SH

′
k in L represents the face ∩k∈S(Hk ▷H ′

k) of P1▷P2.
Theorem 4.12. Let d ⩾ 2 and 1 ⩽ i ⩽ d − 1. Let P1 and P2 be (d − i)-simplicial i-simple
polytopes such that P1 has a simplex facet F = [u1, . . . , ud] and P2 has a simple vertex v whose
neighbors are u′

1, . . . , u
′
d. Then L = L(P1▷P2).

Proof. The proof is by induction on d and i. First we consider the case where P1 and P2 are both
(d− 1)-simplicial 1-simple d-polytopes. This case splits into two subcases:

1. IfP2 is not a simplex, thenP1▷P2=P1#P ′
2. The latticeL(P1▷P2) is obtained fromL(P1)

and L(P ′
2) by removing facets [u1, . . . , ud] and [u′

1, . . . , u
′
d] and identifying their boundary

complexes; this agrees with our definition of L(P1)
− ⊔ L(P2)

−/ ∼ = L.

2. If P2 is a simplex, then P1▷P2 is P1. That L is equal to L(P1) in this case, again follows
easily from the definition of L.

This discussion completes the proof of the base case i = 1 and arbitrary d ⩾ 2.
Now assume that the statement holds in dimension⩽ d−1 and consider two (d−i)-simplicial

i-simple d-polytopes P1 and P2, where i ⩾ 2. By definition, L and L(P1▷P2) have the same
coatoms. So it suffices to show that for every facet H of P1▷P2, the interval [0̂, H] in L is equal
to L(H).

First, if H is a facet of P1 not equal to F,H1, . . . , Hd, or H is a facet of P2 that does not
contain v, then by Lemma 4.11, the interval [0̂, H] in L is equal to L(H). For 1 ⩽ k ⩽ d,
both Hk and H ′

k are (d− i)-simplicial (i− 1)-simple (d− 1)-polytopes. In particular,

L(Hk)
− = L(Hk)\{σ : σ ⊆ F\uk, dimσ ⩾ (d− 1)− (i− 1) = d− i},

L(H ′
k)

− = L(H ′
k)\{σ : v ∈ σ, u′

k /∈ σ, dimσ < (d− 1)− (i− 1) = d− i}.

Hence [0, Hk] computed in L(P1)
− is L(Hk)

− and [0, H ′
k] computed in L(P2)

− is L(H ′
k)

−.
Then the inductive hypothesis implies that [0̂, Hk ▷H ′

k] in L is equal to L(Hk ▷H ′
k). This proves

that L = L(P1▷P2).
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One application of Theorem 4.12 is the following result on the f -numbers of P1▷P2.

Corollary 4.13. Let d ⩾ 2 and 1 ⩽ i ⩽ d − 1. Let P1 and P2 be (d − i)-simplicial i-simple
d-polytopes that can be merged along a simplex facet F of P1 and a simple vertex v of P2. Then
for all 0 ⩽ j ⩽ d− 1, fj(P1▷P2) = fj(P1) + fj(P2)−

(
d+1
j+1

)
.

Proof. First assume that 0 ⩽ j ⩽ d− i− 1. By definition of L(P1▷P2), each j-face of F (i.e.,
each (j + 1)-subset of {u1, . . . , ud}), is identified with the corresponding j-face of F ′ (i.e., the
corresponding (j + 1)-subset of {u′

1, . . . , u
′
d}). In addition, all j-faces of P2 that contain v (i.e.,

all (j + 1)-subsets of {v, u′
1, . . . , u

′
d} that contain v) are removed from L(P1▷P2). Hence

fj(P1▷P2) = fj(P1) + fj(P2)−
(

d

j + 1

)
−
(
d

j

)
= fj(P1) + fj(P2)−

(
d+ 1

j + 1

)
.

Similarly, for d − i ⩽ j ⩽ d − 1, by definition of L(P1▷P2), all j-faces of P1 contained
in F (i.e., (j + 1)-subsets of {u1, . . . , ud}) are removed from L(P1▷P2), while for each
(d − j)-subset S of [d], the j-face ∩k∈SHk is identified with the j-face ∩k∈SH

′
k. Hence

fj(P1▷P2) = fj(P1) + fj(P2)−
(

d
j+1

)
−

(
d

d−j

)
= fj(P1) + fj(P2)−

(
d+1
j+1

)
.

5. Applications: part I

5.1. Infinite families of (d− i)-simplicial i-simple polytopes for small d

The goal of this section is to answer Question 4.8 in the affirmative for small values of d. Our
starting point is the uniform 8-polytope 241 constructed within the symmetry of the E8 group. (It
was first discovered by Gosset and Elte; see also [Cox63, Section 11]). This polytope has 17280
simplex facets and it is 4-simplicial and 4-simple. The polytope 241 gives rise to the following
7-polytopes:

• Each nonsimplex facet of 241 is the 7-polytope 231. It is 4-simplicial 3-simple and it has 576
simplex facets.

• Each vertex figure of 241 is the 7-demicube.

Recall that the d-demicube is defined as follows (see [Grü03, Exercise 4.8.18]). Consider the
d-cube Cd = [0, 1]d. For each vertex v in Cd whose coordinates have an even number of ones,
truncateCd along the hyperplane that contains all d vertices adjacent to v. The resulting polytope
is called the d-demicube; we denote it by Qd. This polytope has the following properties:

• When d > 4, Qd has exactly 2d−1 simplex facets (these are the facets defined by truncating
hyperplanes), and 2d non-simplex facets (these are the facets obtained by truncating the
facets of Cd). Moreover, no two simplex facets are adjacent in Qd.

• When d ⩾ 4, Qd is 3-simplicial and (d− 3)-simple.

We are now in a position to prove the main result of this subsection:
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Theorem 5.1. For every element of {(i, d) : 2 ⩽ i ⩽ d − 2 ⩽ 6}\{(3, 8), (5, 8)}, there exists
an infinite family of (d − i)-simplicial i-simple d-polytopes, each of which has a simplex facet
and a simple vertex not in that facet.

Proof. By considering dual polytopes, it suffices to prove the statement for i ⩽ d/2 ⩽ 4. The
case of i = 2 and an arbitrary d ⩾ 4 will be discussed in Section 6. For now, we mention that
for i = 2 and d = 4, the result follows by applying Corollary 4.7 to P9. (For the description
of facets of P9, see Construction 6.1.) Consider the case of i = 3 and d = 6. Since both Q6

and Q∗
6 are 3-simplicial 3-simple, and since Q6 has a simplex facet (in fact, 32 of them) and Q∗

6

has a simple vertex (in fact, 32 of them), the merge of Q6 and Q∗
6, P = Q6▷Q∗

6, is well-defined;
furthermore, P has a simplex facet F and a simple vertex v not contained in F . Hence, Corol-
lary 4.7 applies to P and results in a desired infinite family of 3-simplicial 3-simple 6-polytopes.
Similarly, in the case of i = 3 and d = 7, apply Corollary 4.7 to P = 231▷Q∗

7. Finally, in the
case of i = 4 and d = 8, apply Corollary 4.7 to P = 241▷2∗41.

The proof of Theorem 5.1 provides the following partial answer to Question 4.8.

Corollary 5.2. Let 2 ⩽ i ⩽ 4. There exists an infinite family of i-simplicial i-simple 2i-
polytopes, each of which has a simplex facet and a simple vertex not in that facet.

5.2. Self-dual polytopes

Kalai [Kal97, Problem 19.5.24] asked for which values of i and d there are self-dual i-simplicial
d-polytopes other than the d-simplex. For the rest of this section, assume that d = 2i and con-
sider an i-simplicial i-simple 2i-polytope P with a simplex facet F = [u1, . . . , u2i]. As before,
assume that H1, . . . , Hd are the facets of P adjacent to F , where Hk∩F = [u1, . . . , ûk, . . . , ud].
Let ϕ : L(P ) → L(P ∗), ϕ : L(P ∗) → L(P ) be the order-reversing bijections on the face
lattices. Then P ∗ is an i-simplicial i-simple 2i-polytope with a simple vertex v := ϕ(F ). The
neighbors of v are u′

k := ϕ(Hk) for 1 ⩽ k ⩽ d. Let H ′
k be the facet of P ∗ determined by the

edges vu′
1, . . . , v̂u

′
k, . . . , vu

′
d. In other words, H ′

k = (∨j∈[d]\ku
′
j) ∨ v, and hence

ϕ(H ′
k) =

(
∧j∈[d]\kϕ(u

′
j)
)
∧ ϕ(v) =

(
∧j∈[d]\kHj

)
∧ F = uk.

The next proposition is our main tool for constructing self-dual i-simplicial i-simple 2i-
polytopes. We follow assumptions and notation introduced in the previous paragraph.

Proposition 5.3. The merge of P and P ∗ along F = [u1, . . . , ud] and v (whose neighbors are
ordered as u′

1, . . . , u
′
d) is a self-dual polytope.

Proof. The map ϕ : L(P ) → L(P ∗),L(P ∗) → L(P ) provides us with an order-reversing
involution on L(P ) ⊔ L(P ∗). Since ϕ(Hk) = u′

k and ϕ(H ′
k) = uk, it follows that for S ⊆ [d],

ϕ(∨k∈Suk) = ∧k∈SH
′
k, ϕ(∨k∈Su

′
k) = ∧k∈SHk. (5.1)

In particular, ϕmaps ℓ-faces of F to (d−ℓ−1)-faces containing v. Since d = 2i, it follows that ϕ
induces an order-reversing involution onL(P )−⊔L(P ∗)−. Furthermore, by (5.1), this involution
descends to an order-reversing involution on the quotient L described in Definition 4.10. Thus L
is a self-dual lattice. The result follows since by Theorem 4.12, L = L(P ▷P ∗).
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Theorem 5.4. For all 2 ⩽ i ⩽ 4, there exists an infinite family of self-dual i-simplicial 2i-
polytopes.

Proof. Let 2 ⩽ i ⩽ 4. By Corollary 5.2, there exists an infinite family of i-simplicial i-simple
2i-polytopes each of which has a simplex facet. The result follows by applying Proposition 5.3
to this family.

6. Applications: part II

This section is devoted to (d−2)-simplicial 2-simple d-polytopes for all d ⩾ 4. We show that for
such values of parameters, the answer to Question 4.8 is yes, and, in fact, that for every d ⩾ 4,
there are 2Ω(N) combinatorial types of (d − 2)-simplicial 2-simple d-polytopes with at most N
vertices, each of which has a simplex facet and a simple vertex. Section 6.1 concentrates on a
few constructions for d = 4; Section 6.2 treats the general case.

6.1. Revisitng 2-simplicial 2-simple 4-polytopes

By a result of Paffenholz and Werner [PW06], there exist infinite families of 2-simplicial
2-simple 4-polytopes each of which has a simplex facet and a simple vertex. This solves Ques-
tion 4.8 in the affirmative in dimension d = 4.

In this section, we provide alternative (and more symmetric) constructions. We start by
revisiting the construction from [PW06] of P9 — the unique 2-simplicial 2-simple 4-polytope
with nine vertices — casting it in a way that will help us construct higher-dimensional analogs
of P9 in Section 6.2. We then provide another construction of a highly symmetric 2-simplicial
2-simple 4-polytope with 18 vertices that appears to be new. The promised infinite families are
obtained by merging k copies of P9 (respectively, P18) for all natural numbers k ⩾ 2. The cross-
polytope is featured prominently in our constructions, and we often abbreviate it as CP. (The
notion of a point beyond or beneath a facet is defined in [Grü03, page 78].)

Construction 6.1. To construct P9, start with a regular 4-simplex Σ := [u′
1, u

′
2, u

′
3, u

′
4, u

′
5]. Now

add the vertices u1, u2, u3, v2 in the following way. (Why we label the vertices in this fashion
will become clear in Section 6.2.) For i = 1, 2, 3, place ui in the affine hull of the facet Σ\u′

i

of Σ so that it is positioned beyond the 2-face Σ\u′
iu

′
5 and so that [u1, u2, u3, u

′
1, u

′
2, u

′
3] is a

3-cross-polytope; cf. Definition 6.8 below. (Hence ui can be thought of as a perturbation of
the barycenter of [u′

j, u
′
k, u

′
ℓ], where {i, j, k, ℓ} = [4].) Then position v2 on the intersection of

the affine hulls of [u′
1, u

′
4, u2, u3], [u′

2, u
′
4, u1, u3], and [u′

3, u
′
4, u1, u2] (this intersection is a line)

and beyond the hyperplane aff(u′
4, u1, u2, u3); cf. Definitions 6.7 and 6.9. (Thus, v2 is a special

perturbation of the barycenter of [u1, u2, u3, u
′
4]).

The resulting polytope has nine vertices {v2, u1, u2, u3, u
′
1, . . . , u

′
5}; it is also convenient to

let v1 = u′
4. Figure 6.1 shows part of the Schlegel diagram of P ′

9 = conv(V (P9)\u′
5). The

complete list of facets of P9 is given as follows (cf. Lemma 6.10):

1. a CP with antipodal facets [u1, u2, u3] and [u′
1, u

′
2, u

′
3] (colored in blue) and a simplex

[u′
1, u

′
2, u

′
3, u

′
5];
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2. three bipyramids [u1, u
′
5, u

′
2, u

′
3, u

′
4], [u2, u

′
5, u

′
1, u

′
3, u

′
4], and [u3, u

′
5, u

′
1, u

′
2, u

′
4], where the

pairs of suspension vertices are (u1, u
′
5), (u2, u

′
5), and (u3, u

′
5), respectively;

3. three more bipyramids

[v2, u
′
1, u2, u3, v1] (colored in purple), [v2, u′

2, u1, u3, v1], and [v2, u
′
3, u1, u2, v1],

where the pairs of suspension vertices are (v2, u′
1), (v2, u′

2), and (v2, u
′
3), respectively;

4. another simplex [v2, u1, u2, u3] (colored in orange).

u′
3

u′
2

v1 = u′
4

u′
1

u1

u3

v2

u2

Figure 6.1: Parts of the Schlegel diagrams of P ′
9.

The list of facets shows that P9 is 2-simplicial. The f -vector of P9 is symmetric, namely,
f(P9) = (9, 26, 26, 9). Thus, by Corollary 3.2, P9 is also 2-simple. Furthermore, P9 has two
pairs of a simplex facet and a simple vertex not in that facet: ([v2, u1, u2, u3], u

′
5)

and ([u′
1, u

′
2, u

′
3, u

′
5], v2). Take two copies of P9, P l

9 and P r
9 , and consider the merge P l

9▷P
r
9

along [v2, u1, u2, u3] from P l
9 and u′

5 from P r
9 . Since the facets of P9 containing u′

5 consist of a
simplex and three bipyramids, depending on the order in which we list the neighbors of u′

5, the
cross-polytopal facet of P l

9 will either be merged with a 3-simplex or with a bipyramid of P r
9 ,

resulting in two distinct combinatorial types of 2-simplicial 2-simple 4-polytopes, each of which
has a simplex facet and a simple vertex not in that facet. This observation will allow us to con-
struct exponentially many (in the number of vertices) 2-simplicial 2-simple 4-polytopes. We
will return to this discussion (and provide many more details) in Section 6.2 after we construct
a d-dimensional analog of P9 for all d ⩾ 4; see Theorem 6.13 and Remark 6.14.

How does merging with P9 affect the f -numbers? Let Q be a 2-simplicial 2-simple 4-
polytope that has a simplex facet and a simple vertex not in this facet (for instance, Q = P9).
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Then P9▷Q and Q▷P9 are both defined and by Corollary 4.13,

f(P9▷Q)− f(Q) = f(Q▷P9)− f(Q) = f(P9)−
((

5

1

)
,

(
5

2

)
,

(
5

3

)
,

(
5

4

))
= (9, 26, 26, 9)− (5, 10, 10, 5) = (4, 16, 16, 4).

Recall that the toric g2-number of a 2-simplicial 4-polytope is given by gtoric2 = f1 − 4f0 + 10
and that any polytope with gtoric2 = 0 is called an elementary polytope. It then follows that P9

is an elementary polytope and that gtoric2 (P9▷Q) = gtoric2 (Q▷P9) = gtoric2 (Q). In other words,
if Q is also an elementary polytope, then so are P9▷Q and Q▷P9. (Elementary polytopes play
an important role in the Lower Bound Theorem, see [Kal87].)

It is worth pointing out that if one applies to Q the second construction from [PW06, Sec-
tion 3.2], the resulting polytope I2(Q) has the same f -vector as f(P9▷Q) = f(Q▷P9);
see [PW06, Theorem 3.7]. At the same time, both polytopes P9▷Q and Q▷P9 are different
from I2(Q). Indeed, merging with P9, on the left or on the right, always generates a facet (con-
tributed by the cross-polytopal facet of P9) that is isomorphic to either CP or the connected sum
of CP with another 3-polytope, while in the second construction of [PW06], all new facets are
stacked 3-polytopes with either 4, 5, or 6 vertices.

Our next task is to describe another highly-neighborly 2-simplicial 2-simple 4-polytope with
a simplex facet and a simple vertex. This polytope has 18 vertices and we denote it by P18.

Construction 6.2. We start with a regular 3-simplex F = [v1, v2, v3, v4] in R3 × {0}. Specifi-
cally, let

v1 = (0, 0, 0, 0), v2 = (2, 2, 0, 0), v3 = (2, 0, 2, 0), v4 = (0, 2, 2, 0). (6.1)

Define u = (1, 1, 1, h) for some h > 0. Let 0 < ϵ ≪ 1. For all distinct 1 ⩽ i, j, k ⩽ 4, let

uji,k = uij,k =
1

2
(vi + vj) + ϵ(u+ vk − vi − vj).

That is,

u12,3 = (1 + ϵ, 1− ϵ, 3ϵ, hϵ), u12,4 = (1− ϵ, 1 + ϵ, 3ϵ, hϵ),

u13,2 = (1 + ϵ, 3ϵ, 1− ϵ, hϵ), u13,4 = (1− ϵ, 3ϵ, 1 + ϵ, hϵ),

u14,2 = (3ϵ, 1 + ϵ, 1− ϵ, hϵ), u14,3 = (3ϵ, 1− ϵ, 1 + ϵ, hϵ),

u23,1 = (2− 3ϵ, 1− ϵ, 1− ϵ, hϵ), u23,4 = (2− 3ϵ, 1 + ϵ, 1 + ϵ, hϵ),

u24,1 = (1− ϵ, 2− 3ϵ, 1− ϵ, hϵ), u24,3 = (1 + ϵ, 2− 3ϵ, 1 + ϵ, hϵ),

u34,1 = (1− ϵ, 1− ϵ, 2− 3ϵ, hϵ), u34,2 = (1 + ϵ, 1 + ϵ, 2− 3ϵ, hϵ).

Note that each uij,k can be viewed as a certain perturbation of the barycenter of [vi, vj]
that keeps it in the hyperplane defined by [u, vi, vj, vk]. Note also that the set of vertices
{u1i,j : {i, j} ∈ {2, 3, 4}} forms a hexagon H1 that lies in the plane defined by equations
x1 + x2 + x3 = 2 + 3ϵ, x4 = hϵ. Similarly, the sets of vertices

{u2i,j : {i, j} ⊂ {1, 3, 4}}, {u3i,j : {i, j} ⊂ {1, 2, 4}}, and {u4i,j : {i, j} ⊂ {1, 2, 3}}
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Figure 6.2: Parts of the Schlegel diagrams of P ′
18.

form hexagons H2, H3, H4 in the planes defined by equations

{x1 + x2 − x3 = 2− 3ϵ, x4 = hϵ},
{x1 − x2 + x3 = 2− 3ϵ, x4 = hϵ},

and {−x1 + x2 + x3 = 2− 3ϵ, x4 = hϵ},

respectively. It follows that

aff(v1 ∪H1) = {x ∈ R4 : −hϵ(x1 + x2 + x3) + (2 + 3ϵ)x4 = 0},
aff(v2 ∪H2) = {x ∈ R4 : hϵ(x1 + x2 − x3) + (2 + 3ϵ)x4 = 4hϵ},
aff(v3 ∪H3) = {x ∈ R4 : hϵ(x1 + x3 − x2) + (2 + 3ϵ)x4 = 4hϵ},
aff(v4 ∪H4) = {x ∈ R4 : hϵ(x2 + x3 − x1) + (2 + 3ϵ)x4 = 4hϵ}.

The intersection of these four hyperplanes is the point (1, 1, 1, 3hϵ
2+3ϵ

); we denote it by w.

Define P ′
18 as the convex hull of all 17 vertices {w, v1, . . . , v4, uij,k : 1 ⩽ i, j, k ⩽ 4}.

When ϵ is very small, the polytope P ′
18 has the following 19 facets (see Figure 6.2 for part of the

Schlegel diagram). We used ϵ = 0.05, h = 2 and verified this list with software SAGE.

1. Six simplices of the form [vi, vj, uij,k, uij,m], where {i, j, k,m} = [4]. Parts of four of
them are shown in blue in Figure 6.2.

2. Four simplices of the form [uij,k, uik,j, ujk,i, w], where 1 ⩽ i, j, k ⩽ 4 are distinct. One
such simplex is shown in purple in Figure 6.2.

3. The simplex [v1, v2, v3, v4].
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4. Four polytopes of the form [vi, w, uij,k, uij,m, uik,j, uik,m, uim,j, uim,k]. Each is the suspen-
sion over Hi, with suspension vertices vi and w. (Here {i, j, k,m} = [4].) One such
polytope is shown in orange in Figure 6.2.

5. Four cross-polytopes of the form [vi, vj, vk, uij,k, uik,j, ujk,i], where 1 ⩽ i, j, k ⩽ 4 are
distinct.

To complete the construction of P18, we apply a projective transformation π to P ′
18 to ensure

that the adjacent facets of G = [v1, v2, v3, v4], i.e., the four cross-polytopes from the last item,
intersect at a point w′ beyond G. We let P18 = conv(π(P ′

18) ∪ w′). Then G is not a facet of P18

and each facet [vi, vj, vk, uij,k, uik,j, ujk,i] is replaced by its connected sum with [vi, vj, vk, w
′].

It can be checked that f(P18) = (18, 64, 64, 18). Since P18 is a 2-simplicial 4-polytope that
has f1 = f2, it follows by Corollary 3.2 that P18 is also 2-simple. A direct computation shows
that gtoric2 (P18) = 2. In other words, P18 is not elementary.

Observe that P18 has a simple vertex w′ and many simplex facets not containing w′ (see
the first item in the list). Thus we can iteratively merge P18 with itself and obtain an infinite
sequence of 2-simplicial 2-simple 4-polytopes, each having at least one simplex facet and one
simple vertex. By Corollary 4.13, any polytope obtained by merging k ⩾ 1 copies of P18 will
have 5+13k vertices and gtoric2 = 2k. Other families of 2-simplicial 2-simple 4-polytopes where
the kth polytope has gtoric2 = 2k (but f0 = 10 + 4k) were constructed in [PZ04, Corollary 4.2].

To close this section, we propose the following problem.

Question 6.3. Is there a sequence of 2-simplicial 2-simple 4-polytopes that approximate the unit
ball?

In light of [ANS16, Theorem 3.2], it is natural to conjecture that if such a sequence of 4-
polytopes {Qi} exists, then limi→∞ gtoric2 (Qi) = ∞.

6.2. Many (d− 2)-simplicial 2-simple d-polytopes

In this section we construct a d-dimensional analog of P9 for all d ⩾ 4. We then use this
polytope along with Corollary 4.7 to show that there are 2Ω(N) combinatorial types of (d − 2)-
simplicial 2-simple d-polytopes with at most N vertices and an additional property that each of
these polytopes has a simplex facet and a simple vertex.

As in Section 6.1, the d- and (d − 1)-dimensional cross-polytopes are used frequently, and
we abbreviate them as CP. To start, we introduce the notion of a pseudo-regular CP and prove
some of its properties. Let 0 denote the origin of Rd−1.

Definition 6.4. Let G ⊂ Rd−1 be a regular (d−1)-simplex centered at the origin, let G∗ ⊂ Rd−1

be the dual of G, and let α > 0 be a real number. Assume also that G is contained in the interior
of αG∗, denoted int(αG∗). A d-cross-polytope is called pseudo-regular if it is congruent to
conv(G× {1} ∪ αG∗ × {−1}).

Consider a regular simplex G = [µ1, . . . , µd] ⊂ Rd−1 centered at the origin and let α > 0.
Then αG∗ = [µ′

1, . . . , µ
′
d] ⊂ Rd−1 is also a regular simplex centered at the origin. We label

the vertices in such a way that µ′
i is an outer normal vector to the facet [µ1, . . . , µ̂i, . . . , µd]
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of G. By our assumptions on G, this is equivalent to labeling the vertices so that for all i ∈ [d],
µ′
i = a

∑
j∈[d]\i µj = −aµi, where a is a positive scalar independent of i.

For a nonempty subset I of [d], let GI = [µi : i ∈ I] be a face of G and G′
I = [µ′

i : i ∈ I] be a
face of αG∗; let βI =

1
|I|

∑
i∈I µi be the barycenter of GI and β′

I =
1
|I|

∑
i∈I µ

′
i be the barycenter

of G′
I . Since for all i ∈ [d], µ′

i = a
∑

j∈[d]\i µj = −aµi, it follows that for any proper subset I
of [d],

∑
i∈I µi = − 1

a

∑
i∈I µ

′
i =

1
a

∑
j∈[d]\I µ

′
j . Thus, βI is a positive multiple of β′

[d]\I , and so
the ray from 0 and through βI coincides with the ray from 0 and through β′

[d]\I . Furthermore,
since G is regular, the distance from 0 to βI is the same for all k-subsets I of [d]; we denote it
by ρk and note that ρ1 > · · · > ρd−1. Similarly, for all k-subsets J of [d], the distance from 0
to β′

J is the same number ρ′k, where ρ′1 > · · · > ρ′d−1. Finally, since G ⊂ int(αG∗), ρ′d−1 > ρ1.
To summarize,

ρ′1 > · · · > ρ′d−1 > ρ1 > · · · > ρd−1. (6.2)

Consider the d-cross-polytope CP = conv(G× {1} ∪ αG∗ × {−1}). We label the vertices
of CP by uj = (µj, 1) and u′

j = (µ′
j,−1) (for j = 1, . . . , d), so that G × {1} = [u1, . . . , ud]

and αG∗ × {−1} = [u′
1, . . . , u

′
d]. For a subset I of [d], we denote the barycenter of GI × {1}

by bI and the barycenter of and G′
I ×{−1} by b′I . Finally, we let HI denote the hyperplane in Rd

determined by the following set of d points: {ui : i ∈ I} ∪ {u′
j : j ∈ [d]\I}.

Lemma 6.5. Let 0 ⩽ k ⩽ d. Then all hyperplanes HI , where I ⊆ [d], |I| = k, intersect the
xd-axis at the same point. When 0 < k < d, the dth coordinate of this point is > 1.

Proof. First note that H[d] and H∅ intersect the xd-axis at ed := (0, . . . , 0, 1) and −ed, respec-
tively. Now let I be any k-subset of [d], where 1 ⩽ k ⩽ d− 1. Consider the points bI and b′[d]\I .
Both of them lie in HI ; hence, so does the line ℓ = aff(bI , b

′
[d]\I).

We claim that ℓ intersects the xd-axis. Consequently,

HI ∩ xd-axis = ℓ ∩ xd-axis.

To prove the claim, consider the lines aff(ed, bI) and aff(−ed, b
′
[d]\I). By discussion following

Definition 6.4, these lines are parallel, and thus determine a 2-dimensional plane L. For the rest
of the proof, we work in this plane. It contains ℓ and the xd-axis. Also, since, βI is a positive
multiple of β′

[d]\I , the points bI and b′[d]\I lie on the same side of the xd-axis in L. Finally,
since the distance from bI to the xd-axis is ρk, the distance from b′[d]\I to the xd-axis is ρ′d−k,
and ρ′d−k > ρk, it follows that ℓ and the xd-axis are not parallel. Hence they intersect and the
point of intersection, which we denote by aI = (0, . . . , 0, cI), satisfies cI > 1. This proves the
claim.

To complete the proof of the lemma, it remains to show that cI depends only on |I| = k.
Indeed, consider triangles [aI , ed, bI ] and [aI ,−ed, b

′
[d]\I ]. They are similar; hence,

cI − 1

ρk
=

dist(aI , ed)

dist(ed, bI)
=

dist(aI ,−ed)

dist(−ed, b′[d]\I)
=

cI + 1

ρ′d−k

.

Solving this equation yields cI =
ρ′d−k+ρk

ρ′d−k−ρk
. The result follows.
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Figure 6.3: Left: a pseudo-regular CP of dimension 3 and the points {a0, . . . , a3}. Right: The
polytope P 3,1.

Let 0 ⩽ k ⩽ d. In view of Lemma 6.5, we denote by ak the point of intersection of HI and
the xd-axis, where I is any subset of [d] of size k, and by ck :=

ρ′d−k+ρk

ρ′d−k−ρk
the last coordinate of ak;

see Figure 6.3 for an illustration in dimension 3.

Corollary 6.6. The heights of points a1, . . . , ad satisfy c1 > · · · > cd−1 > cd = 1. In partic-
ular, if q is a point on the xd-axis that lies strictly between ak−1 and ak, then q is beneath the
facetHI = [ui, u

′
j : i ∈ I, j ∈ [d]\I] of theCP if |I| ⩽ k−1, and beyond the facetHI if |I| ⩾ k.

Proof. By equation (6.2), for all 1 ⩽ k ⩽ d− 1, ρ′d−k − ρk > 0. Hence ck =
ρ′d−k+ρk

ρ′d−k−ρk
> 1 = cd.

Furthermore, for 2 ⩽ k ⩽ d− 1,

ck − ck−1 =
ρ′d−k + ρk

ρ′d−k − ρk
−

ρ′d−k+1 + ρk−1

ρ′d−k+1 − ρk−1

=2

(
ρk

ρ′d−k − ρk
− ρk−1

ρ′d−k+1 − ρk−1

)

=2

 1
ρ′d−k

ρk
− 1

− 1
ρ′d−k+1

ρk−1
− 1

 < 0,

where the last step follows from the fact that ρ′d−k > ρ′d−k+1 > ρk−1 > ρk; see eq. (6.2).

Definition 6.7. Let CP = conv(G×{1}∪αG∗×{−1}) be a pseudo-regular d-cross-polytope.
The set {ak = ∩I⊂[d],|I|=kHI : 1 ⩽ k ⩽ d} is called the sequence of points associated with CP.

Our construction of a (d − 2)-simplicial 2-simple polytope starts with a certain d-poly-
tope P d,1 described in Definition 6.8 and proceeds by recursively adding to P d,1 a total of d− 3
additional vertices; see Figure 6.3 for an illustration of P 3,1. As we will see below, one of the
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facets of P d,1 is a pseudo-regular CP (of dimension d − 1). By a slight abuse of notation, we
continue to label the vertices of this facet by u1, . . . , ud−1, u

′
1, . . . , u

′
d−1.

Definition 6.8. Let Σ = [u′
1, . . . , u

′
d+1] be a regular d-simplex. Choose an arbitrary

0 < ϵ ≪ dist(u′
1, u

′
2). For 1 ⩽ i ⩽ d− 1, let pi be the barycenter of the (d− 2)-face Σ\u′

iu
′
d+1,

and let ui := pi + ϵ(pi − u′
d+1). We define P d,1 as conv(u′

1, . . . , u
′
d+1, u1, . . . , ud−1).

Since pi is the barycenter of the (d−2)-face Σ\u′
iu

′
d+1, it follows that [p1, . . . , pd−1] is a reg-

ular (d−2)-simplex and [p1, . . . , pd−1, u
′
1, . . . , u

′
d−1] is a pseudo-regular (d−1)-cross-polytope.

By our choice of ui, [u1, . . . , ud−1] is a regular (d − 2)-simplex obtained from [p1, . . . , pd−1]
by dilation with factor (1 + ϵ) (where ϵ is small) followed by translation in the direction per-
pendicular to aff(p1, . . . , pd−1, u

′
1, . . . , u

′
d−1) = aff(Σ\u′

d+1). In particular, aff(u1, . . . , ud−1)
is parallel to aff(u′

1, . . . , u
′
d−1) and CP := [u1, . . . , ud−1, u

′
1, . . . , u

′
d−1] is also a pseudo-regular

(d− 1)-cross-polytope.
This discussion shows that the polytope P d,1 is the union of the simplex Σ and the pyramid

with apex u′
d over the cross-polytope CP (glued along the simplex [u′

1, . . . , u
′
d]). Furthermore,

for each 1 ⩽ i ⩽ d−1, the points {ui, u
′
1, . . . , û

′
i, . . . , u

′
d, u

′
d+1} lie in the same hyperplane, and,

in this hyperplane, the sets conv(ui, u
′
d+1) and conv(u′

1, . . . , û
′
i, . . . u

′
d) intersect in their relative

interiors. For 1 ⩽ k ⩽ d−1, let Hk be the set of facets H of CP with |H∩{u1, . . . , ud−1}| = k.
(Each such H is a (d − 2)-face of P d,1.) Also, let H+ := H ∩ [u1, . . . , ud−1] and
H− := H ∩ [u′

1, . . . , u
′
d−1]. Let v0 := u′

d+1 and v1 := u′
d. It follows that P d,1 has the fol-

lowing facets:

1. The simplex Σ\u′
d and the pseudo-regular cross-polytope CP.

2. d− 1 bipyramids of the form conv(H ∪ {v0, v1}), where H ∈ H1; the boundary complex
of such facet is ∂(V (H+) ∪ v0) ∗ ∂(V (H−) ∪ v1).

3. 2d−1 − d simplex facets of the form conv(H ∪ v1), where H ∈ ∪2⩽k⩽d−1Hk.

In particular, CP is adjacent to all other facets of P d,1.
Since CP is pseudo-regular, by Lemma 6.5, there is a sequence of points associated with CP

(lying in aff(CP)): ai = ∩F∈Hi
aff(F ), 1 ⩽ i ⩽ d − 1; see Definition 6.7. The points

{ai : 1 ⩽ i ⩽ d − 1} all lie on the line through the barycenters b[d−1] of [u1, . . . , ud−1]
and b′[d−1] of [u′

1, . . . , u
′
d−1], and, according to Corollary 6.6, they appear on this line in the

order a1, . . . , ad−2, ad−1, with ad−2 closest to ad−1 = b[d−1] and a1 farthest from b[d−1].
We are now ready for the main definition of this section:

Definition 6.9. Consider the sequence of points {ai : 1 ⩽ i ⩽ d− 2} associated with the facet
CP = [u′

1, . . . , u
′
d−1, u1, . . . , ud−1] of P d,1. Let v1 = u′

d. Inductively, for 2 ⩽ i ⩽ d− 2, choose
a point vi in the relative interior of the line segment [ai, vi−1] and let P d,i = conv(P d,i−1 ∪ vi).
Finally, let P d = P d,d−2.

The process of adding vertices similar to the one described in Definition 6.9 is illustrated
in Figure 6.4, where the vertices are added to the pyramid over a hexagon. (Unfortunately,
Definition 6.9 itself is non-vacuous only when d ⩾ 4, and as such is hard to illustrate.)
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v2

v1

v3

Figure 6.4: Left: The pyramid over a hexagon H symmetric about the line ℓ. Right: A new
3-polytope obtained by adding vertices v2 and v3, with vi+1 in the interior of the line seg-
ment [qi+1, vi]; here qi+1 is the intersection of affine spans of the appropriate symmetric edges
of H .

Our next goal is to prove that P d is the promised high-dimensional analog of the 4-poly-
tope P9; see Theorem 6.11. This requires describing the facets of P d. We do so by induction,
showing that for 2 ⩽ k ⩽ d − 2, the set of facets of P d,k is obtained from that of P d,k−1 as
follows.

1. For each H ∈ ∪k+1⩽i⩽d−1Hi, the facet conv(H ∪ vk−1) of P d,k−1 gets replaced with the
facet conv(H ∪ vk).

2. For each H ∈ Hk, the facet conv(H ∪ vk−1) of P d,k−1 gets replaced with the facet
conv(H ∪ {vk−1, vk}) whose boundary complex is ∂(V (H+) ∪ vk−1) ∗ ∂(V (H−) ∪ vk).
There are

(
d−1
k

)
such facets.

3. The rest of the facets of P d,k−1 remain unchanged.

In particular, it follows by induction that CP is a facet of P d,k and that it is adjacent to all other
facets of P d,k, and, furthermore, that the collection of facets in item 3 consists of Σ\u′

d, CP, and
for each 1 ⩽ i ⩽ k − 1 and H ∈ Hi, a facet that contains H ∪ vi.

The proof is based on:

Claim 1: For every H ∈ Hk, vk ∈ aff(H ∪ vk−1). This is because ak lies on the hyper-
plane aff(H), and vk ∈ [ak, vk−1].

Claim 2: For i > k and H ∈ Hi, vk is beyond conv(H ∪ vk−1). Indeed, by Corollary 6.6,
in aff(CP), ak is beyond H . Hence in aff(CP ∪ vk−1) = Rd, the point vk ∈ int[ak, vk−1] is
beyond conv(H ∪ vk−1).

Claim 3: vk is beneath the rest of the facets of P d,k−1. First, as easily seen from the definition
of sequences {aj} and {vj}, vk is beneath both Σ\u′

d and CP. Thus it only remains to show that
if G is a facet of P d,k−1 that contains H ∪ vi for some i < k and H ∈ Hi, then vk is beneath G.
This follows from Corollary 6.6 along with another simple induction on j, where i+1 ⩽ j ⩽ k.
For the base case, by Corollary 6.6, in aff(CP), ai+1 is beneath H . Hence, in aff(CP∪vi) = Rd,
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ai+1 is beneath G. Since vi+1 is in the interior of [vi, ai+1], vi+1 is also beneath G. The inductive
step is very similar: by the inductive hypothesis, vj is beneath G and by Corollary 6.6, so is aj+1;
hence vj+1 ∈ [vj, aj+1] is also beneath G. The claim follows.

The above three claims uniquely determine the facets of P d,k. Claim 3 implies that the facets
of P d,k−1 from item 3 in the list are unaffected by adding vk, and hence remain facets of P d,k.

Claim 1 implies that for every H ∈ Hk, the facet conv(H ∪ vk−1) of P d,k−1 is replaced
by a new facet conv(H ∪ {vk, vk−1}). Note that the barycenter bH+ of H+ lies on the line
segment connecting ak and the barycenter bH− of H− (see the proof of Lemma 6.5). Hence,
if vk is an interior point of the line segment [ak, vk−1], then [bH+ , vk−1] and [bH− , vk] intersect
at a point p. This implies that conv(H+ ∪ vk−1) ∩ conv(H− ∪ vk) = p. Thus the boundary
complex of conv(H ∪ {vk, vk−1}) must be ∂(V (H+) ∪ vk−1) ∗ ∂(V (H−) ∪ vk). These facets
are exactly2 the facets of P d,k containing vk−1vk.

Finally, the rest of the facets of P d,k are those arising from H ∈ Hi for i > k. By Claim 2
and the previous paragraph, they must be of the form conv(H ∪ vk), replacing conv(H ∪ vk−1)
of P d,k−1.

We thus obtain the following result (for convenience we let vd−1 = vd−2):

Lemma 6.10. The polytope P d in Definition 6.9 has 3(d− 1) vertices and 2d−1 + 1 facets. The
vertex set of P d is

{u1, . . . , ud−1, u
′
1, . . . , u

′
d−1, u

′
d = v1, u

′
d+1 = v0, v2, . . . , vd−3, vd−2 = vd−1}.

The set of facets of P d naturally splits into the following d subfamilies:

1. F0 consists of the simplex [u′
1, . . . , u

′
d−1, u

′
d+1] and the cross-polytope CP.

2. For 1 ⩽ k ⩽ d − 1, Fk consists of
(
d−1
k

)
polytopes of dimension d − 1 whose bound-

ary complexes are of the form ∂(V (H+) ∪ vk−1) ∗ ∂(V (H−) ∪ vk), where H ∈ Hk. In
particular, Fd−1 = {[u1, . . . , ud−1, vd−2]}.

Theorem 6.11. The d-polytope P d is (d− 2)-simplicial and 2-simple. It has two pairs of a sim-
plex facet and a simple vertex not in that facet; they are ([u1, . . . , ud−1, vd−2], u

′
d+1)

and ([u′
1, . . . , u

′
d−1, u

′
d+1], vd−2).

Proof. Let U = {u1, . . . , ud−1} and let U ′ = {u′
1, . . . , u

′
d−1}. For M = {ui1 , . . . , uik} ⊆ U , we

let M ′ := {u′
i1
, . . . , u′

ik
} ⊆ U ′. Also, for brevity, we write u, uv, uvw instead of {u}, {u, v},

and {u, v, w}.
The description of facets in Lemma 6.10 guarantees that P d is (d− 2)-simplicial. To show

that P d is also 2-simple, it suffices to check that every (d−3)-face τ of P d is contained in exactly
three facets. By examining families Fi, 0 ⩽ i ⩽ d− 1, of Lemma 6.10, we see that there are the
following possible cases:

2To see this, we invite the reader to compute the link of vk−1vk in the polytopal complex generated by these
facets and check that it is a (d − 3)-dimensional pseudomanifold (i.e., every ridge is in two facets). Thus it must
coincide with the link of vk−1vk in the boundary of P d,k.
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1. u′
d+1 ∈ V (τ). In this case, V (τ) ⊂ U ′ ∪ u′

du
′
d+1. If u′

d is also in τ , then τ is contained in
three bipyramids from F1; otherwise, τ is contained in two bipyramids from F1 and the
simplex [u′

1, . . . , u
′
d−1, u

′
d+1] from F0.

2. V (τ) ⊂ U ′. In this case, τ is contained in the cross-polytope and the simplex from F0,
and one bipyramid from F1.

3. V (τ) = K ∪ M ′, where K ⊔ M ⊔ uℓ = U and |K| = i for some 1 ⩽ ℓ ⩽ d − 1 and
1 ⩽ i ⩽ d−2. Then τ is a face of CP from F0, of ∂(K ∪ uℓvi)∗∂(M ′ ∪ vi+1) from Fi+1,
and of ∂(K ∪ vi−1) ∗ ∂(M ′ ∪ u′

ℓvi) from Fi.

4. V (τ) = K ∪M ′ ∪ vi, where 1 ⩽ i ⩽ d − 2 and K ⊔M ⊔ ujuk = U for some 1 ⩽ j <
k ⩽ d− 1. There are two cases:

(a) |K| = i − 1. Then τ is a face of ∂(K ∪ ujukvi) ∗ ∂(M ′ ∪ vi+1) from Fi+1 and of
two facets ∂(K ∪ ujvi−1) ∗ ∂(M ′ ∪ u′

kvi), ∂(K ∪ ukvi−1) ∗ ∂(M ′ ∪ u′
jvi) from Fi.

(b) |K| = i (and so, i < d− 2). Then τ is a face of ∂(K ∪ vi−1) ∗ ∂(M ′ ∪ u′
ju

′
kvi) from

Fi. and of two facets ∂(K ∪ ujvi)∗∂(M ′ ∪ u′
kvi+1), ∂(K ∪ ukvi)∗∂(M ′ ∪ u′

jvi+1)
from Fi+1.

5. V (τ) = K ∪ M ′ ∪ vi−1vi, where 2 ⩽ i ⩽ d − 2 and K ⊔ M ⊔ ujukuℓ = U for some
1 ⩽ j < k < ℓ ⩽ d− 1. There are two cases:

(a) |K| = i− 2. Then τ is contained in three facets from Fi:

∂(K ∪ ukuℓvi−1) ∗ ∂(M ′ ∪ u′
jvi),

∂(K ∪ ujuℓvi−1) ∗ ∂(M ′ ∪ u′
kvi),

and ∂(K ∪ ujukvi−1) ∗ ∂(M ′ ∪ u′
ℓvi).

(b) |K| = i− 1. Then τ is contained in three facets from Fi:

∂(K ∪ uℓvi−1) ∗ ∂(M ′ ∪ u′
ju

′
kvi),

∂(K ∪ ujvi−1) ∗ ∂(M ′ ∪ u′
ku

′
ℓvi),

and ∂(K ∪ ukvi−1) ∗ ∂(M ′ ∪ u′
ju

′
ℓvi).

The result follows.

Remark 6.12. It is worth noting that the polytope P d is d-dimensional and has 3d− 3 vertices.
This is the smallest number of vertices that a non-simplex (d−2)-simplicial 2-simple d-polytope
can have in dimensions d = 3, 4, 5 (cf. Proposition 3.3).

As the last theorem of the paper, we show that iteratively merging n copies of P d from The-
orem 6.11 results in exponentially many (w.r.t. the number of vertices) combinatorially distinct
(d− 2)-simplicial 2-simple d-polytopes. Recall from Theorem 6.11 that
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• The polytope P d has two simple vertices u′
d+1 and vd−2, and two simplex facets F ′ :=

[u′
1, . . . , u

′
d−1, u

′
d+1] and F := [u1, . . . , ud−1, vd−2]; u′

d+1 is a vertex of F ′ but not of F ,
and vd−2 is a vertex of F but not of F ′. All other facets containing u′

d+1 and vd−2 are
bipyramids.

• The CP facet [u1, . . . , ud−1, u
′
1, . . . , u

′
d−1] is adjacent to all other facets of P d.

Let T1 and T2 be two copies of P d with the copy of CP, F , and F ′ in Ti denoted by CPi, Fi,
and F ′

i , respectively, and the copy of u′
d+1 from T2 denoted by w. We merge T1 and T2 along F1

and w. Since CP1 is adjacent to F1, and since w is in one simplex facet (namely F ′
2) and d− 1

bipyramids, exactly as in the 4-dimensional case, there are two ways to merge leading to two
distinct combinatorial types (recall that σd−1 denotes a (d− 1)-simplex):

• In T1▷T2, the facet CP1 gets merged with the simplex F ′
2. The merged facet is then again

a CP. Since CP2 is adjacent to all other facets of T2, including F ′
2, it follows that the

polytope T1▷T2 has two CP facets and that they are adjacent to each other.

• In T1▷T2, the facet CP1 gets merged with a bipyramid, resulting in a facet of the
form CP#σd−1. In this case, T1▷T2 has two “large” facets: CP1#σd−1 and CP2, and
they are adjacent to each other; every other facet has at most d+ 1 vertices.

With these observations in hand, we are ready to prove the following.

Theorem 6.13. There are 2Ω(N) = 2Ω(k) combinatorially distinct (d − 2)-simplicial 2-simple
d-polytopes with N = (3d− 3) + k(2d− 4) vertices.

Proof. Consider k + 1 copies of P d, which we denote by T1, . . . , Tk+1, with the corresponding
copies of the CP facet denoted by CPi. Each Ti has two pairs of a simplex facet and a simple
vertex not in that facet, which in this proof we will denote by (Fi, wi) and (F ′

i , w
′
i). Consider all

polytopes resulting from (· · · ((T1▷T2)▷T3) · · · )▷Tk+1 by the following rules:

• In the first step, we merge T1 and T2 so that the facet CP1 is merged with a bipyramid.
In the ith step where 2 ⩽ i ⩽ k, we have two choices of whether we merge CPi with a
simplex or with a bipyramid.

• In the ith step, when computing the merge of (· · · ((T1▷T2)▷T3) · · · )▷Ti with Ti+1, we
always merge along Fi and wi+1.

Denote by Rk the polytope obtained in the kth step. In the ith step (1 ⩽ i < k), Fi+1 from Ti+1

remains untouched and can be used for the (i + 1)st step. For 1 ⩽ j ⩽ k + 1, we refer to the
facet of Rk resulting from CPj as the jth special facet. By remarks above, for each 2 ⩽ j ⩽ k,
the jth special facet is either a CP or a CP#σd−1; the (k + 1)st special facet is always a CP
while the first special facet is always a CP#σd−1. Furthermore, for all 1 ⩽ i, j ⩽ k + 1, the ith
and jth special facets are adjacent if and only if |i− j| = 1.

We show that this procedure produces at least 2k−1 pairwise non-isomorphic polytopes. First
note that the boundary complexes of all non-special facets of Rk are either simplices, joins of
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two simplices, or stackings over these, and so a non-special facet can never be isomorphic to CP
or CP#σd−1. Associate with Rk its profile which is given by the following abstract graph: the
nodes represent the facets of the form CP and CP#σd−1, and two such nodes are connected by
an edge if the corresponding facets are adjacent; also, label each node with a 0 or 1 depending
on whether it represents a facet that is a CP or a CP#σd−1. The resulting profile is then a
path with k + 1 nodes labeled by 0’s and 1’s; one of the endpoints is always labeled by 1 (the
node representing the 1st special facet) and the other endpoint is always labeled by 0 (the node
representing the (k + 1)st special facet).

There are 2k−1 such 0/1-paths, and we claim that each of them is a valid profile. Indeed,
given such a path, walk along it from the endpoint labeled by 1 to the endpoint labeled by 0 and
read the labels of the nodes. The node at distance i − 1 from the first endpoint corresponds to
the special facet coming from Ti and the label of that node simply tells us whether at the ith step
we should merge CPi with a simplex or with a bipyramid. This claim completes the proof since
isomorphic polytopes have the same profile. In other words, two polytopes with distinct profiles
have different combinatorial types.

Remark 6.14. When d = 4, we can further merge Rk with a 2-simplicial 2-simple 4-polytope
with 10, 11, or 16 vertices. Such polytopes can be found in [PW06, Section 4.1], where they
are denoted by P10, P11, P16 = I1(P11). This allows us to create exponentially many (in N ) 2-
simplicial 2-simple 4-polytopes withN vertices for all sufficiently large integersN (not just those
with N ≡ 1 mod 4). It follows from Corollary 4.13 that all resulting polytopes are elementary.
Hence for d = 4, the number of combinatorially distinct 2-simplicial 2-simple 4-polytopes that
are also elementary grows exponentially with the number of vertices. This strengthens [PZ04,
Corollary 4.2].
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