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ABSTRACT OF THE DISSERTATION

Large-scale Electronic Structure Method Development

by

Minh Nguyen
Doctor of Philosophy in Chemistry
University of California, Los Angeles, 2024

Professor Daniel Neuhauser, Chair

Electronic structure theory seeks to describe the behavior of electrons in atomic and molecular
systems. Due to the intractable nature of solving the molecular Schrgdinger’s equation, approxi-
mations are made. The main challenge is to create methods that are accurate enough to gain insight
while also being efficient enough to run calculations in a reasonable amount of time. In this balanc-
ing act, many strategies have been developed to allow for electronic structure calculations of large
systems. Much progress has been made from calculating the states of isolated one-electron sys-
tems to now being able to simulate dynamic processes in large extended systems. This dissertation
seeks to contribute to the development of novel methods to enable more efficient large-scale elec-
tronic structure calculations. A major theme of the dissertation is the use of stochastic techniques
to reduce the computational scaling of methods.

Chapter 2 discusses these techniques and highlights the improvement in computational scal-
ing when implemented with density functional theory (DFT) and many-body perturbation theory
within the GW approximation. Many improvements to stochastic DFT (sDFT) have been made

over the years, incorporating techniques such as embedding to reduce the required number of

il



statistical samples. Chapter 3 continues in the same line of work and introduces the concept of
tempering and its application in sDFT. The core idea of tempering is to rewrite the electronic den-
sity into the sum of a cheaper "warm” term and a smaller more expensive “cold” term. This results
in a significant reduction in the statistical fluctuations and systematic deviation compared to sDFT
for the same computational effort.

Chapter 4 discusses the gapped filtering method and its application in the stochastic GW (sGW)
approximation. In gapped-filtering, a short Chebyshev expansion accurately represents the density-
matrix operator. The method optimizes the Chebyshev coefficients to give the correct density
matrix at all energies except within the gapped region where there are no eigenstates. Gapped
filtering reduces the number of required terms in the Chebyshev expansion compared to traditional
expansion methods, as long as one knows or can efficiently determine the HOMO and LUMO
positions such as in SGW.

Another direction in this dissertation is laying the foundations to implement the projector aug-
mented wave (PAW) method into stochastic quantum methods. Compared to norm-conserving
pseudopotentials (NCPP), PAW has the advantage of lower kinetic energy cutoffs and larger grid
spacing at the cost of having to solve for non-orthogonal wavefunctions. Orthogonal PAW (OPAW)
was earlier developed with DFT to allow the use of PAW when orthogonal wavefunctions are de-
sired. To make OPAW viable for post-DFT stochastic methods, time-dependent wavefunctions are
required. For this purpose, chapters 5 and 6 detail OPAW and its implementation in the real-time

time-dependent (TD) DFT framework.
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1 Introduction

The modern electronic structure problem consists of solving the nonrelativistic Schrodinger equa-
tion for atoms and molecules under the Born-Oppenheimer approximation where the are nuclei
fixed in space. The equation relates the Hamiltonian, H , which contains information necessary for
calculating the total energy of a many-body system, to the wavefunctions, W, which provide math-
ematical descriptions of quantum states. For molecular systems, the time-independent Schrodinger

equation under the Born-Oppenheimer approximation is

HY = [T+ Vi + VoW = “Z%V““emznim v, ()
i <j

where ¢ and j are indices over the atoms of the system, T is the kinetic energy operator, Vet i
the external potential that comes from the interaction of the electrons with the atomic nuclei and
applied electric fields, and V.. is the electron-electron interaction. All units used in this dissertation
are atomic units unless otherwise noted. The many-electron wavefunction, ¥(r4, ..., 7y ), depends
on the coordinates of all electrons in the system simultaneously. Because of the last term in the
Hamiltonian, the many-body equation is not separable into one-body equations making, analytic
solutions nearly impossible except for single electron systems such as Hy . Thus it is necessary to
employ further approximations to make the problem more tractable.

Many electric structure theories start with the Hartree-Fock (HF) method where W is approxi-
mated by a single Slater determinant and the total energy minimized. The HF method is an example
of a mean-field theory in which the complicated electron-electron interactions are replaced with an
electron interacting with an effective potential created by the other electrons. This scheme reduces
the many-body problem into one-body equations, greatly simplifying the calculation. In HF, the
wavefunctions are solutions to the HF equations, but the equations themselves are defined by the

wavefunctions i.e. the equations require self-consistency. The self-consistent field (SCF) method



iteratively solves the HF equations by creating a first-iteration guess Hamiltonian to calculate a
set of wavefunctions which then are used to calculate a second-iteration Hamiltonian for the next
SCF cycle. This cycle repeats until the wavefunctions are converged, meaning an error metric such
as the difference in the total energy between cycles does not change significantly between SCF
cycles.

There are many theories that use the HF method as their starting point including configuration
interaction, Mgller-Plesset perturbation theory, and coupled cluster. These theories tend to be
more suitable for smaller systems such as gas-phase molecules while other theories have to be
used for larger systems. Density functional theory (DFT), another mean-field theory, has found

large success in calculating properties and processes in solids and larger molecular systems.

1.1 Density functional theory

The core idea of DFT is that ground state properties can be exactly determined by the electronic
density, n(r). The foundations of DFT are the Hohenberg-Kohn theorems[9]. The first theorem
states that the ground state of any interacting particle system is a functional of the density. The sec-
ond theorem shows that the ground state density minimizes the energy functional. Although exact
in theory, the explicit form of the energy functional has not been discovered, thereby, necessitating
approximations. The orbital-free DFT approach tries to directly approximate the energy functional;
however, it suffers from a lack of accuracy mainly due to the lack of good approximations to the
kinetic energy functional.

Kohn and Sham (KS) proposed an alternative method in their seminal work in which they
convert the many-body problem to a set of fictitious KS states, [¢;), interacting in a mean-field
whose density is equal to that of the fully interacting problem [10]. With these fictitious states, the

accuracy of approximating the kinetic energy was greatly improved compared to orbital-free DFT.



The total electronic energy in the KS framework can be expressed as

Bln] = 5 3 (V20 + Buln] + Bealn] + Excln), @

2

where Ey[n| is the Hartree energy that is derived from classical electrostatic interactions, Fe[n]
is the energy from the interaction of electrons with the nuclei and external electric fields, and
Exc[n] encapsulates the remaining energy. The majority of Exc[n] comes from electron-electron
exchange and correlation effects and some from the difference between the true kinetic energy and
the fictitious one.

Much work has been done to develop approximations to the exchange correlation functional,
the simplest being the local density approximation (LDA) where the functional is a simple function
of the density. More complex approximations include non-local information such as the general-
ized gradient approximations (GGA) which uses the gradient of the density, and meta-GGAs which
further includes the kinetic energy density.

KS-DFT has been very successful in a wide range of problems in chemistry, physics, and
biology [11, 12]. The awarding of the Nobel prize to Walter Kohn for his work highlights the
significance and impact of DFT [13]. The KS equations are solved for the KS states and are

derived through taking functional derivatives of the energy functional in Eq. (2):

Hys i) = € |[s) 3)

where the KS Hamiltonian is
~ 1 9
HKS = —§V + Vext + [/H[TL]—{— vxc[’n,]. (4)

The potential terms are functional derivatives of their corresponding energy functionals. From



these KS states, the electronic density is defined as

n(r) = Zfilwi(m?, (5)

where f; is the occupation number of the ¢’th state. For spin unpolarized systems, f; = 2 for
1 < Noee Where Ny is the number of occupied states.

The KS equations are solved using a self consistent field similar to HFE. In the traditional KS
formulation, matrix diagonalization of the Hamiltonian is employed to solve for the eigenstates.
This diagonalization gives a nominal scaling of O(N?)—O(N?) where N is the number of particles

in the system.

1.2 GW Approximation

For applications in which electron correlation is significant such as strongly correlated materials
and excited states, more sophisticated theories than DFT are needed. For example, DFT calcula-
tions of the fundamental band gap tend to underestimate experimental values as much as 1-3 eV or
more [14]. The fundamental band gap is the energy difference of between adding and subtracting
one electron from a system, i.e., the difference between the first ionization energy and the first
electron affinity of a neutral solid. Band gaps are experimentally measured using (inverse) photoe-
mission spectroscopy in which electrons are (added to) ejected from a system. In these processes,
the independent particle picture breaks down due to strong Coulomb interactions. Post-DFT meth-
ods such as many-body perturbation theory (MBPT) provide better estimates of the gap.

Before expanding on MBPT, it is useful to introduce the concept of quasiparticles (QPs). QPs
are fictitious particles that describe the collective phenomena of interacting systems and behave
similarly to independent particles. For an example of a QP, consider a photoemission experiment
in which an electron is ejected. Due to exchange and correlation effects such as electron repulsion,

the resulting collective behavior of the remaining electrons create a Coulomb hole that can be



treated as a positively charged independent particle. The interaction between holes is attenuated
by the reduction in total charge and thus the interaction between QPs are screened and weaker than
the bare Coulomb interaction between electrons. The effective interaction is small enough that the
independent particle approximation is justified for QPs.

The MBPT approach describes the behavior of QPs and accounts for electron correlation by
treating it as a perturbation of the HF states. A key quantity in MBPT is the Green’s function,
G, which describes the evolution of system when particles are added and removed from it. Hedin
derived a set of equations (Hedin’s equations) that expand many-body Green’s function in terms
of simpler quantities, in particular, the non-interacting Green’s function Gy [15]. From Hedin’s

equations comes the QP equation:

( - %VQ + Vear (1) + vH(T>>¢§P(H + / S(r, o el )R0 (r)dr' = eI (6)

where the QP energies, ¢¥”, describe the energy to add or remove a particle and are used to
estimate the fundamental band gap. The self-energy, (7, 7/, w), contains the many-body exchange
and correlation effects beyond the electrostatic Hartree potential and accounts for the dynamic
many-electron processes.

One of the most successful approximations for the self-energy is the GW approximation in
which the time-domain self-energy is the product of the Green’s function the screened Coulomb
interaction, W:

Y(r,r' t) = iG(r, e, )W (r, 1’ t). (7)

The time-domain X(r, 7/, t) is related to energy-domain >(r, 7/, w) via a Fourier transform:

o

1 & .
X(r, ' t) = / S(r, 1, w)e “dw. 8)

—00

The screened Coulomb interaction describes the attenuated interaction between QPs. Another



widely used approximation is the single-shot Gy, approximation in which the non-interacting
Green’s function, Go(r,7’,t), and the first-iteration screened Coulomb interaction, Wy(r, r’,t), is
used to further simplify the calculation of X [16]. Specifically, Wy(r, 7', t) is the potential at point
r and time ¢ due to a QP introduced at time ¢ = 0 at point 7. It is composed of an instantaneous

Coulomb term and a time-dependent polarization term:
Wo(r, ', t) = uc(|r —7'|)o(t) + We(r,r',t), )

where uc(r) = r~! is the Coulomb potential. The latter term is the polarization potential due to

the density perturbation of the QP:

Welr ') = [ [ ao(lr = D07 e (e )i, (10)

where x(r, ', t) is the reducible polarization function.
In the G\yW), picture, the QP energies can be treated as perturbative corrections to the KS-DFT
eigenvalues, €5 [17]:

€9 = S 4 (QIFIZP (0 = @)+ X — uxo|olS), an

2

where 27 is the polarization self-energy, ¥ is the exchange self-energy, vx ¢ is the DFT exchange-
correlation potential, and |/} are the converged eigenstates of a KS-DFT calculation. The first
two terms come from Eq. (9) which results in the expectation value of the self-energy to be the

sum of an instantaneous and a time-dependent contribution [18]:

(W{IIZ|{®) = WIS + (5|5 |05 (12)



The instantaneous exchange self-energy can be written as

WSS = = [ [l 0huclr Do Sl earar, — a3)

where p(r,1") = —iGo(r,r’,07) = 3, fat0E5(r)E5(r") is the KS density matrix where 0~ is
a time infinitesimally earlier than 0.
Hence, the exchange self-energy is the expectation value of the Fock exchange operator. The

polarization part is given by

(W= ) = / / U ()iGo(r, 1!, OWa(r, ' 7)) (') drdr, (14)

where ¢ is a time infinitesimally later than ¢.
The GoW approximation has been shown to greatly improve the calculated band gap for many
systems [19-21]. In traditional applications of GW, the calculation of the screened Coulomb po-

tential is especially demanding, leading to O(N*) scaling [22-25].

1.3 Outline of dissertation

The main theme of this dissertation is developing large-scale electronic structure methods primarily
through using stochastic sampling to reduce the computational scaling. Each project involves
developing novel numerical techniques to advance the computational efficiency of these stochastic
quantum chemistry methods. The core idea behind these methods is the stochastic resolution of
identity, expanded upon in chapter 2.1. Applications of this technique are discussed in the context
of stochastic density functional theory (sDFT) and the stochastic GW (sGW) methods in sections
2.2 and 2.3 respectively.

The first major direction of this dissertation is to improve upon sDFT with embedding tech-

niques to expand the density using operators of varying temperatures. This expansion allows for



the use of more stochastic sampling than would be possible in traditional sDFT and is discussed
in chapter 3. The second direction is in a similar vein with the goal of shortening the Cheby-
shev expansion of the occupation operator given knowledge of the band gap. The gapped-filtering
technique greatly improves computational efficiency with a very small overhead of matrix diago-
nalization and is discussed in chapter 4.

The final project is to expand on the previously developed orthogonal projector augmented
wave method (OPAW). The PAW method offers the advantage of better computational costs com-
pared to the norm-conserving pseudopotential approach with the trade-off of complexity in im-
plementing it in theory and code. OPAW was developed to simplify PAW and was successfully
implemented with DFT. Chapter 6 details the development of OPAW in the time-dependent DFT
(TDDFT) framework. The OPAW-TDDFT method serves as a precursor to implementing PAW
into other stochastic quantum chemistry methods namely sGW and the stochastic Bethe-Salpeter

equation (sBSE).

1.4 Reprint of published articles and manuscripts

Chapter 3 is adapted with permission from: Nguyen, M., Li, W., Li, Y., Rabani, E., Baer, R. &
Neuhauser, D. Tempering stochastic density functional theory. The Journal of Chemical Physics
155 (2021). Chapter 4 is adapted with permission from: Nguyen, M. & Neuhauser, D. Gapped-
filtering for efficient Chebyshev expansion of the density projection operator. Chemical Physics
Letters 806, 140036 (2022). Chapter 6 is adapted with permission from: Nguyen, M., Duong, T. &
Neuhauser, D. Time-dependent density functional theory with the orthogonal projector augmented

wave method. The Journal of Chemical Physics 160 (2024).



2 Stochastic Electronic Structure Methods

2.1 Quantum Stochastic Techniques

The stochastic framework seeks to reduce the scaling of electronic structure methods, using statis-
tical sampling to replace the explicit calculation and use of thousands of eigenstates or more. The
stochastic resolution of the identity (sRI) is a numerical technique that serves as the foundation
for these stochastic quantum chemistry methods [26]. With the sRI, the summation over a large
number of eigenstates is replaced by an average of a much smaller number of stochastic states.

A stochastic state, x(r) = (r|x), has its value at every point, r;, as an independent random
variable, n; = x(r;). For real variables, n; is drawn from {+1} with uniform probability and
for complex variables, 7; is drawn from the complex unit circle ¢ where 6 is a random angle
from {0, 27}. The average of 7); over an infinite number of |x) samples, E[r;],, is equal 0 as for
every 7); there is an equal probability of drawing —7;. Now consider the average of the product of
ni = (x|r;) and n; = (rjlx), E[njnj]x. For r; = 5, E[nin], = 1 while for r; # 7, E[njm]x =
E[nj 1xE[njly = 0. The latter relationship is derived from the fact that »; and 7); are independent
random variables. Thus E[nj n;] = 0;;. Another way to express this idea is that the average of the
auto-correlation function of a set of stochastic states is equal to the identity operator in the position

basis:

Elninlly = E[(rilx) (x|r)]x = (rilI|r;) . (15)

From the above equation, we extract that the identity operator is

I =E[x) (xly- (16)

With this sRI, the trace of operators is then expressed with stochastic states as [27]



Tr[A] = E[(x|ADO]- (17)

These stochastic states are random linear combinations of all the occupied and unoccupied eigen-

states of the Hamiltonian:

) =Y ai i), (18)

i
where the coefficients, a; = (x|v), are random variables that have the property E[a;a;], = J;;.

In practice, a discrete grid is used so 7, is multiplied by a factor of dv—'/? for normalization
where dv is the volume element. In addition, a finite average has to be performed leading to sta-
tistical errors that are proportional to N, /2 where N, is the number of samples. For acceptable
statistical errors, values of N, in the tens or hundreds tend to be sufficient. The identity operator
can of course also be expressed with the complete set of orthonormal eigenstates of the Hamilto-
nian:

I=2 1) (il (19)

Compared to the sRI, the number of basis states can be in the thousands for large systems making

the stochastic framework more efficient.

2.2 Stochastic Density Functional Theory

Stochastic DFT (sDFT) uses these techniques to greatly improve scaling. The first step in deriving

sDFT is to express the electronic density (assuming unpolarized molecules) as a trace:

n(r) = 2Tr[pd(r — r')]. (20)
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The operator p is an occupation operator that can be expressed as the sum of projector functions of

the occupied KS states and can also be written as a low-pass energy filter:

p= Y i) (Wil = O(n— Hgs). (21)

i<Noce

Using the sRI, we rewrite the electronic density as

—2E{ IV O/l |r] — E[(r|e) {€]r)] = 2Py, @)

where |[€) = \/p|x) are the occupied stochastic states, made from projecting out the unoccupied
contributions from |x). The square root of p is used so the calculated n(r) is positive at every
grid point when the absolute value of £(r) is taken. To apply +/p, which is a function of the
Hamiltonian, a polynomial expansion is used. The chemical potential, x, is chosen so that the

density integrates to the number of electrons in the system,

N, = / n(r)dr. (23)

More details on expanding +/p and determining p are discussed in chapter 3.

Because in practice a finite number of samples is used, the density has an associated statistical
error which in turn produces error in quantities such as the total energy. Despite this error, it has
been shown that sDFT can still achieve sublinear scaling [28, 29]. Part of this success is in a ’self-
averaging” phenomena where fewer stochastic samples are required as the system grows in size
[28]. There has been previous work to reduce the error such as embedding the sDFT calculation
with smaller deterministic KS-DFT calculations [30, 31]. The work outlined in chapter 3 follows

in the same theme of seeking to reduce the statistical error using embedding techniques.
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2.3 Stochastic GW Approximation

These stochastic techniques have also been used to develop post-DFT methods, specifically the
GW method. In sGW, the sRI is used multiple times to efficiently calculate G, and W}. To derive

sGW, first consider the KS Green’s function which can expressed as
iGo(r, 1 t) = (r| e Kt [(T — p)O(t) + po(—)] |r') 24)
where 6 is the Heaviside step function. Inserting the sRI into the above expression gives

iGo(r,7',t) = B/ (r| e ! [(I = p)0(t) + pO(—1)] x) (x|r")
X, (25)

= E[Gu(r, )¢(r)]

X

where (,(r,t < 0) = (rle=xstj|\) and C,(r,t > 0) = — (rle=Hxst(] — p)|x) are projected
occupied and unoccupied stochastic states propagated backward and forward in time respectively.

With this stochastic representation for Gz, the exchange self-energy in Eq. (13) is

(5|2 |5 = —E[ [ 6o 0] | 26)

X

where the auxiliary potential is

) = [ uellr = ) @

The polarization self-energy from Eq. (10) can be rewritten as

(5|5 55 — E{ Gt 28)

X

where the response potential u(r, t) is due to the perturbation of the pseudo charge density ¢ (') (/)

12



attime t = O:

u(r,t) = / W (r, ', ¢ (YRS (i 29)

To calculate the action of Wp(r, 7/, ) on {(r')1X5(r"), time-dependent Hartree (TDH) propagation
is used. TDH can only provide description for the retarded u"(r,r’,¢) rather than the full time-
ordered u(r,r’,t). An explanation of how to convert from u"(r,7’,t) to u(r,r’,t) will be given
after some derivation for the former.

In the traditional TDH formulation, the entire occupied space is used, but with stochastic tech-
niques, this can be avoided with stochastic TDH (sTDH). For each | ), a set of ~ 5—30 completely
random orbitals, {£(r)}, are generated and filtered |p) = p |£) to perform sTDH. A set of perturbed
states are made from |p):

TEp(r), (30)

where

A(r) = / uo(r — )¢ SKS ()i, 31)

and )\ is a small factor, typically 107*E, !. These perturbed stochastic states, when averaged, are
equivalent to perturbing all the occupied states simultaneously. The perturbed ()\) and unpertubed

(A = 0) states are then propagated in time under the STDH equations [32]:
—i—pMr,t) = | Hyxs + Va[n?(r, O)](r) = Van M, t = 0)](r) | @ (r, 1), (32)

where Vi [n(r)|(r) = [uc(|r—r'|)n(r')dr’ and n*(r,t) = 2E[|¢*(r, t)|*]¢. From these propagated

orbitals, the retarded response function is calculated:

Vi [n (r, )](r) = Via[n*=0(r, £)] ()
. :

u"(r,t) = (33)
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The full response is obtained through a Fourier transform of u"(r, ) to w space, then calculating

u(r,w), w>0
u(r,w) = . (34)

u"(r,w)*, w<0

An inverse Fourier transform is then performed on u(r,w) to obtain u(r, t).
With all these ingredients, sSGW has been shown to efficiently calculate quasiparticle energies,
reproducing the results of traditional GW while achieving linear and even sub-linear scaling, being

applied to study systems with more than 10,000 electrons [32, 33].
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3 Tempering Stochastic DFT

Kohn-Sham density functional theory (KS-DFT) is widely used for calculating the properties of
molecular and extended systems [34]. In particular, the method is useful for determining the
structure based on the estimates it provides for the forces on the corresponding nuclei [35-37].
However, applying KS-DFT for systems with hundreds or thousands of atoms is challenging due
to the high scaling of computational costs with a system’s size (potentially quadratic but eventually
cubic for large systems). Lower scaling implementations of the theory have been developed for
systems that have a density matrix that is fairly sparse so that only a linear-scaling near-diagonal
portion of the matrix needs to be processed. Because of the restriction to near-localized density
matrices, the use of such methods is often limited to low-dimensional structures [38, 39] or systems
with strictly localized electrons [40, 41].

In previous work, we introduced stochastic density functional theory (sDFT) [28] which avoids
the costly diagonalization step in KS-DFT without the need to make a locality assumption; instead,
the density matrix is approximated statistically. Specifically, the density matrix in sDFT is viewed
as a correlation function of stochastic functions, each of which is, in essence, a random combi-
nation of the occupied states. While the method scales linearly, the tradeoff is the introduction
of statistical uncertainties in the density and other observables. The statistical errors can be re-
duced by using an embedded-fragmented (ef-sDFT) technique [42—44] which is based on dividing
the system into fixed-size fragments and expressing the total electron density, n (7), as the sum
of fragment densities plus a correction term which is evaluated stochastically. This technique re-
duces the statistical fluctuations in the estimates of the atomic forces and the energies [42, 43],
and the magnitude of this reduction is controlled by varying the size of the fragments and the
number of stochastic realizations. An additional approach for mitigating the statistical errors is the
energy-window sDFT (ew-sDFT) scheme [29] and its combination with the embedded-fragmented

technique [42, 45].
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Here we propose a tempering method, referred to as t-sDFT, as a complementary technique
for reducing the statistical noise. In t-sDFT, the density for the desired temperature is calculated
using a higher-temperature reference density with smaller correction(s). This idea has been imple-
mented before within the energy renormalization group in the context of telescopically expanding
the Hamiltonian matrix in a series [46]. In Sec. 3.1, we describe the t-sDFT method and in Sec.

3.2 we benchmark and analyze its efficacy using large hydrogenated silicon clusters.

3.1 Methodology
3.1.1 Stochastic Density Functional Theory

Our starting point is the following expression for the electron density, n (r) (assuming a spin-

unpolarized system) [28]:

n(r)=2xTr [\@m (r| \/g} , (35)

where 7 is a point on a 3D grid that spans the space containing the electron density of the system

and has a volume element dV'. The operator
ps = Jou (1) (36)

is a low band-pass Fermi-Dirac (FD) filter. Our main interest in this work is zero-temperature DFT;
however, to efficiently represent the density matrix, a smooth step function must be used, and the
simplest is a Fermi-Dirac distribution, fz, (¢) = (1 + eﬁ(s’“))_l, which blocks high energies
(e > p + (). Here, the chemical potential, 1, must be adjusted such that the integrated density

equals the number of electrons, V.,

/ n(r)dvV =Y n(r)dvV =N, (37)
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while 3 is the inverse temperature (note that the filter, pg, depends on the chemical potential but
to avoid a plethora of indices we do not explicitly note this dependence below). In the low-
temperature limit (Beg,, > 1, where €4, is the fundamental KS gap), n () indeed converges
to the ground state KS-density. Further, as our goal here is not finite-temperature DFT, we use the
usual zero-temperature DFT exchange-correlation functionals.

In Eq. (36), the Kohn-Sham Hamiltonian is:
h =1t +d[n](r) (38)

where # is the kinetic energy operator and 0[n](r) is the density-dependent KS potential that is
composed of electron-nuclei, Hartree, and exchange-correlation components. Egs. (35)-(38) must
be solved simultaneously to yield the self-consistent electron density.

In sDFT, we introduce a stochastic resolution of the identity [26] which transforms the trace in

Eq. (35) to an expectation value [28]

wer=2{[(e )

where |y) is a stochastic orbital taking the randomly signed values (r |y ) = £(dV)~'/2,

To apply the filter, \/pg, we use a Chebyshev expansion of length K [47]

K

Vos ) = e (B.1) |¢H)Y, (40)

k=0

where ‘C ®)) = Ty (hs) |x) are defined by the Chebyshev polynomial recursion relations: |§ O =

1X), |[¢) = |x) and |[¢*+D) = 2h, |¢k))—|¢*=D). Here, hy = (ﬁ - 5‘) /Ae is anormalized KS
Hamiltonian where & and A« are chosen such that the spectrum of h, lies within the interval [—1, 1],
Tk (z) is the k’th Chebyshev polynomial, and ¢ (3, 1) are the Chebyshev expansion coefficients of

the filter \/ f5 (¢)[47]. The expansion length K terminates the series when |cy~ x| is smaller than
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Figure 1: The desired low-temperature filter, f3, (), the high-temperature filter fz , (¢), and the
correction for 3 = 63".

a predetermined cutoff value.
In practice, the expected value appearing in Eq. (39) is evaluated approximately by taking a

finite sample of /N stochastic orbitals:

2

(41)

0 235 (e VA

Furthermore, to ensure N, = > n (r) dV, we tune the chemical potential 1 to satisfy the relation:

K

Ne =2 b (B, 1) My, (42)

k=0

where

) 43)

1 &
MkZﬁZ<Xi

are the stochastic estimates of the Chebyshev moments [48] and by, (3, ;1) are the Chebyshev expan-

sion coefficients of the function fz,, () as opposed to ¢, (/3, ;) which are the expansion coefficients
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Table 1: The Chebyshev expansion lengths, K and K", and the number of stochastic orbitals, N2
and N, used in our simulations. We also show the required numerical work, W, defined as the
number of Hamiltonian operations. Note that for each system we increase the number of high-
temperature orbitals (NY) with temperature (i.e., with increasing 3//3") such that the total work
Wt is independent of 3/3.

Correction filter Warm filter
System Band gap (eV) B (eV™') K N& WA=KNA” K" N¥ Wv =KvYNY Wt
SizsHjzg 34 1.83 2000 6 12,000 K xpv/B 24xp/p" 48,000 60, 000
Sig;Hy6 2.5 2.94 3200 6 19, 200 K xpv/p 24 xB/p" 76,800 96, 000
Sizs3H g6 1.6 4.60 5000 6 30,000 K xpv/p 24 xp/p"Y 120, 000 150, 000

of \/ fsu(e).

As a result of using stochastic orbitals, the SDFT density and associated observables have two
additional types of errors. One is the usual stochastic fluctuations that scale as O(N, %), but in
addition, there is a systematic deviation which scales as O(N; ') that appears due to the nonlinear
SCF procedure (the filtering operator applied on each orbital depends on the density, which itself
depends on the set of filtered orbitals).

Increasing the number of sampling orbitals, Ny, will decrease both types of errors, at the cost
of additional work.

To measure the computational cost of a sSDFT or t-sDFT calculation, we use a numerical “work”
quantity, W, which is the total number of Hamiltonian operations performed per SCF cycle (i.e.,

action by the Hamiltonian on a function), which for sDFT is approximately
W ~ K Nq.

In practice, the work needs to be multiplied by a factor of about 1.7 due to the need to determine

based on Eq. (42), but since this factor is common to all our methods here we do not include it.
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3.1.2 Tempering Stochastic Density Functional Theory

We now describe the tempering method, designed to reduce the statistical errors in SDFT without
increasing the overall computational effort. Consider, the decomposition of the desired filter, pgs

(see Eq. (36)), into a higher temperature filter, pg. (8" < (), with the correction term:

Ap = s — paw. (44)

which is shown in Fig. (1) for a typical case of 3/ = 6. Note that (a) all values of Ap are much
smaller than unity and (b) the high-temperature filter, pgw, is smoother than the low-temperature
one, so its Chebyshev expansion is shorter (the Chebyshev expansion length of ps is proportional
to 3 [28]).

The electron density in Eq. (39) can therefore be written as n (1) = ngw (1) + An (r), where
the two terms are evaluated separately using two distinct independent sets of stochastic orbitals:

Xy, 1 =1,..., N for the warmer density,

w

2 © ~ w\ 2
e (1) = 55 2 [(r [V | ) (45)
and x2,i =1,..., N2 for the correction term,

s =g (VA - e o)) e
S =1

As demonstrated in Fig. 1, the correction density, An (), is much smaller than the warm
density, ngw (1), which is similar in overall magnitude to the total density. This gives the key for the
efficiency of the tempering approach as compared to the original sDFT calculation. Specifically,
compared to an sDFT calculation with polynomial expansion length K and /N, stochastic orbitals

and aiming for the same overall work as in sDFT, we get that:
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Figure 2: The energy per electron (in eV) as a function of 3/3% for three cluster sizes, based on
Nina = 10 independent runs. Also included is the deterministic value in each system (horizontal
line). The numerical work W, i.e., the number of Hamiltonian operations, is independent of 3/3%
(see Table 1 for details). The leftmost point in each graph, /8" = 1, corresponds to sDFT (no
tempering). Since the number of orbitals used is very small (N, = 30 for sDFT), these sDFT
results show marked systematic deviation (i.e., deviation of the average energy from the determin-
istic value) and fluctuation errors. Both types of statistical errors decrease markedly in t-sDFT,
especially when /3% ~ 7 — 10, due to the much larger number of stochastic orbitals used in the
main (warm) density part.
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* The computational work required to calculate the warm density is W* ~ KYN. Since
the Chebyshev expansion lengths are proportional to 3, the warmer temperature density
ngw (1) requires a much shorter Chebyshev expansion length than the original sDFT density
(KvY = %JK ), so many more stochastic orbitals can be used to evaluate it for the same

overall computational cost (i.e., N SA > N).

e The computational work for correction term, An(r), is W2 ~ KN?2 as both terms in

the RHS of Eq. (46) use the same set of

7

(.A’(k)> = Ti(hs) [x?) (the two terms differ
in their expansion coefficients). Since the numerical magnitude of the correction term is
much smaller than that of the overall density, its standard deviation is correspondingly much
smaller. Therefore the numerical effort (i.e., the number of samples required for a given
accuracy), which is proportional to the squared standard deviation, is much smaller for the
correction term, so it is sufficient to use fewer stochastic orbitals (V. SA < Ny) to achieve a

similar statistical error.

Here, K'* and K are respectively the Chebyshev expansion lengths for the warm reference density
and the correction term, with % = %M < 1 (note that since the correction term involves the orig-
inal low-temperature density, the number of Chebyshev terms it requires, K, is the same as in the
original sDFT). Overall, the partitioning of the filter into a larger component at a higher tempera-
ture with a shorter Chebyshev expansion, and a smaller correction term, offers an additional knob
to control the statistical error by using N > N, without increasing the overall computational
effort.

The use of tempering modifies how the chemical potential is calculated. Instead of fulfilling the
single-sum sDFT constraint on the residues (Eq. (42)), the chemical potential is adjusted to satisfy

the following relation which consists of two summation terms that each has its own Chebyshev
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expansion:

Kw
Ne=2) bi(B" p) My
k=0

K

+23 bk (B, 1) — bi (B, )] My (47)

k=0

The corresponding Chebyshev moments, defined in analogy to Eq. (43), are:

N’LU
w 1 - w | ~w,(k
My, :WZ<X1' G ()>,
=1

s

S (48)

A A

My = NA Z<X1
5 =1

A (k
Y.

In practice, finding the chemical potential in both sDFT and t-sDFT involves a straightforward
single-variable search. In t-sDFT, the chemical potential (Eq. (47)) is not strictly guaranteed to be
monotonic with the number of electrons, since it is a summation of two terms, one of which is not
necessarily positive; but in practice, we find that it is always monotonic so the determination of p

from the residues is instantaneous.

3.2 Results

We studied three hydrogen-terminated silicon nanocrystals of different sizes, SissHsg, Sig;H76, and
Sizs3H 9. Note that such nanocrystals are a convenient test ground for stochastic methods since
they have small band gaps which decrease with increasing system size. As such they place a more
stringent test on the method than clusters of molecules with large gaps. Metals, in contrast, require
much smaller temperatures and are therefore not ideal for stochastic applications.

An LDA functional [49] was applied with norm-conserving pseudopotentials [50] using the

Kleinman-Bylander form [51], and we used the Martyna-Tuckerman reciprocal-space method for
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treating long-range interactions [52]. The grid spacing was 0.55a¢, and the energy cutoff was
15 Hartree for all systems. To gather sufficient statistics, Nj,q = 10 independent runs with differ-
ent stochastic numbers were used for each of the calculations below.

For each system, we performed calculations for several /3" ratios. As these systems are
semiconductors, we are simply interested in the limit where the Fermi-Dirac distribution is effec-
tively a step function. We, therefore, replace the Fermi-Dirac distribution by the complementary
error function, f3 ,(h) = %erfc(ﬁ(iz — 1)), which looks similar to the Fermi-Dirac distribution but
does not require a very small /3 to be effectively a step function.

The numerical parameters for the runs are summarized in Table 1. There are several points to
note.

First, since the three systems have with increasing size a progressively smaller band gap, F,
the larger systems require larger values of 5 and correspondingly larger Chebyshev expansion
lengths, K. Furthermore, we use (for all systems) Ny = 30 orbitals for the sDFT calculations.
Finally, note that the warm temperature calculations which require most of the numerical work
have an expansion length K and a corresponding number of stochastic orbitals N chosen so
that the total work W is the same for each value of 3/3" (this includes sDFT at 5/5Y = 1).
This allows us to compare the efficacy of tempering in terms of the reduction of fluctuations as a

function of 3/5".

3.2.1 Prelude: Stochastic vs. Systematic Deviation

The results shown below exhibit two kinds of deviations, which are briefly reviewed; for a fuller
discussion see Ref. [44]. The first deviation the usual stochastic Monte-Carlo fluctuation which

scales with the number of samples as N, 1/2

. The other kind is a systematic deviation. Such
deviation scales as N, ! and appears whenever the results of the Monte-Carlo sampling are used
in an iterative self-consistent process (see, e.g., [53]). Here, since the density is prepared from a

finite number of stochastic orbitals and the filtered stochastic orbitals depend on the density, the
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Figure 3: Analogous to Fig. 2 but shows 0 F'the error in the averaged force relative to the deter-
ministic value, normalized over all silicon atoms and over the N;,q = 10 runs, and the associated
standard deviation o (Egs. (49,50)). In sDFT § F is significantly larger than o, indicating some
amount of systematic deviation. In t-sDFT, around /3% ~ 7 — 10, both the stochastic and espe-
cially the systematic errors decrease, i.e., o decreases and 0 F' ~ 0.
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self-consistent SCF procedure has a systematic deviation.

The practical effect of the systematic deviation is simple to state: when doing calculations with
a finite Vg, and repeating these calculations many times, the averaged result would differ from
the true Ny — oo result. As we show below, in most of our calculations, tempering reduces and
practically eliminates this systematic deviation, avoiding the need to use jackknife or bootstrap

methods [54].

3.2.2 Energies

Fig. 2 shows, for the three different systems, the averaged total energies per particle based on the
Ninq = 10 runs and the associated error bars for different 5 values. For simplicity, the results
are depicted as a function of /4". In addition, we include the deterministic DFT values for
comparison. Interestingly (see also the SI), for a fixed /V,, the systematic deviation decreases by a
factor of 2 when the system size increases by a factor of 10, while the stochastic error decreases
by a larger factor with system size, scaling as V. 2 due to self-averaging.

Consider first the starting point for each figure, 5/ = 1, which is simply sDFT (i.e., with
no correction terms). Since we only use N, = 30 stochastic orbitals, a very small number, the
sDFT calculations show a significant systematic deviation, i.e., the averaged energy-per-particle is
several standard deviations away from the deterministic value.

Turning to t-sDFT (i.e., 8 < ), we see that both the systematic deviation and the stochastic
error decrease as /3" increases. As evident from Fig. 2 (and verified by a second-order polyno-
mial fit of the error in the energy as a function of 3/5" in the SI) once 5/5* ~ 7 — 12 there is
essentially no systematic deviation while the stochastic fluctuations decrease by a factor of around
4-5.

The reduction in the statistical error and systematic deviation as 3/3% increases relative to
sDFT (8/" = 1) for a fixed W' results from the fact that we can use a much larger number of

stochastic orbitals for the warmer temperature density, the significant contribution to the density,
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compared to the sDFT density. Despite the need to use a longer Chebyshev expansion, we can use
fewer stochastic orbitals for the correction term since its contribution to the density is smaller.
Finally note in Fig. 2, with increasing system size, the optimal 3/3" values (i.e., that results
in the smallest small statistical fluctuations in the energy per electron) shift to larger ratios. This
is partially a result of quantum confinement, so that with increasing size the KS gap decreases
and therefore (3 increases, and partially due to the modified density of state structure for the larger
clusters which causes the optimal 5% to increase with system size. Therefore, the smallest system

the optimal ratio is about /3" ~ 3 — 4, and for the larger clusters minimum error is obtained for

B/BY ~ T —12.

3.2.3 Forces and Density

We next show how t-sDFT reduces the errors in the atomic forces compared to sDFT (we only
analyze the forces on the silicon atoms for comparison). Fig. 3 is similar to the energy plot
in Fig. 2, but here we plot the normalized deviation of the averaged stochastic forces from the
deterministic forces, 0 F":
(OF) = o i ' — PP (49)
- Nsim ’
where a bar indicates averaging over the N;,q = 10 runs and “d” stands for deterministic; ¢ is an

index over the silicon atoms. The error bars in Figure 3, o, indicate the standard deviation of the

normalized averaged force of the silicon atoms, i.e.,

Nina Ns;i

1 L
o= > N |FY - F')
F (Nina — 1) Nina Ng; — 4 | I 0)
7j=1 =1

where F*J is the force over atom i in the j’th independent run.

Note that the magnitude of the errors in the forces is large, but this could be reduced by increas-
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Figure 4: The normalized integral of the standard deviation of the density per electron, together
with a parabolic fit. For the smaller system, the density deviation decreases between 3/ = 2—4,
and for the two larger systems the stochastic errors decrease around a larger range /5% = 2 — 10,

by up to 30%-40%.
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ing the number of independent runs or stochastic orbitals. However, since the purpose of the study
is to uncover the behavior with respect to 5%, we use a small number of stochastic orbitals to re-
duce the computational effort and thus, apply the approach for many values of 5/ and different
system sizes. Further, note that since the stochastic errors are generally not systematic, especially
once tempering is used, these forces can be used for Langevin molecular dynamics if we increase
the number of sampling orbitals by about an order of magnitude. We have indeed applied sDFT
(with an order of magnitude more orbitals than in this study) in a Langevin molecular dynamics
study and have shown that that the Langevin dissipation matrix is then easily modified to include
the effect of the fluctuations in the sDFT force, and the correct pair distribution is then obtained
[55, 56].

As previously discussed, the sDFT forces are similar in the three systems, since the local en-
vironment is similar and therefore the errors are primarily a function of the number of stochastic
orbitals, N,. The reduction in the errors in the forces is appreciable but less significant than for the
energy. Using again a 2nd order fit (see the SI), we get that the reduction in error in the forces is
about 30% for the smallest system and goes up to 50% for the largest cluster.

To compare the deviation in the density using t-sDFT to sDFT, we use the integral of
the standard deviation of the averaged density per electron, defined as a[n] = (Nja —
D)7Y2N1S" o (n(r))dV, where o(n(r)) is the standard deviation in the density at grid point 7.
Fig. 4 shows that tempering again reduces the stochastic error for 3/5" values around 7-10. The
reduction in the deviation of the density is similar in magnitude to that of the total atomic forces,
up to 30%-40%, and is much less dramatic than the error reduction in the total energies.

Finally, note that Fig. 4 shows that when the value of /5" is very large, the density fluc-
tuations start rising with the /3" ratio; for large ratios, the warm density deviates significantly
from the low-temperature density, so the difference between the two densities is significant which

causes large statistical fluctuations.
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3.3 Conclusions

We presented here a tempering method for stochastic density functional theory that reduces the
statistical error in the total energy. Our scheme (t-sDFT) relies on decomposing the density into
a large high-temperature term with a correction density. The new method expands the density in
terms of the inverse temperature, /3, to take advantage of the fact that with lower (3 (i.e., a higher
effective temperature) fewer Chebyshev polynomials are needed, thus enabling the use of more
stochastic orbitals without increasing the computational cost.

A natural extension of this work is the implementation of multiple-3 tempering with more than
two values of 3, as done earlier for deterministic renormalization-group studies; the formalism is
presented in Appendix A. In this work we have not implemented embedded fragments, an approach
that independently reduces the standard deviation in the energy and forces. In future work, the two
methods will be combined to hopefully further reduce the stochastic error. Further work will also
explore how to optimize the choice of 5 values and the number of stochastic orbitals used to reduce
the stochastic deviations.

Our method reduces the standard deviation in the total energy by a factor of around 4-5, which
corresponds to reducing the total number of required stochastic orbitals by more than an order of
magnitude. This is only for the total energies, while the error in the forces and density is reduced
by a smaller amount only 30%-50% and 30%-40% respectively. Interestingly, this is the opposite
behavior relative to energy-window sDFT where the error in the forces is improved significantly
but not the error in the total energies. Another interesting aspect is that SDFT almost eliminates
systematic deviation.

The main conclusion of our work is that for the same overall cost, tempering improves the
accuracy by 1.4-4 depending on the quantity studied while also shrinking the systematic deviation
so that the results are closer to the deterministic value even for a small number of samples. Equiv-

alently, for the same stochastic deviation, tempering reduces the overall effort by a factor ranging

30



from ~2 to ~ 20, depending on the desired quantity.
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Appendix A: Multiple S

The general expansion of the filter ps for L temperatures, ordered so 3 = 31 > (2 > ... > [, is

L—1
Ps =P — > A, (51)
/=1
where
Ape = Pppyr — Ppy- (52)

This expansion leads to an expression for the density similar to Eqs. 45-46. The case we studied

in this chapter is simply L = 2, with 5, = 3 and (3, = S".
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4 Gapped Filtering Stochastic GW

A fundamental ingredient in many electronic structure and dynamics methodologies is the polyno-
mial expansion of the density matrix operator. Such methods include deterministic approaches to
DFT that avoid the direct diagonalization of the Hamiltonian matrix, [57, 58] or allow for fast di-
agonalization of the Kohn-Sham Hamiltonian [59] when the Hamiltonian is a sparse matrix. These
polynomial expansions are also the primary ingredient in stochastic quantum chemistry meth-
ods, [48] including stochastic DFT [60-62] and beyond-DFT approaches. The latter include the
linear-scaling stochastic-GW method (sGW) [32] which calculates the quasiparticle (QP) energy as
a perturbative correction to the DFT eigenvalue [33, 63—65], as well as, e.g., stochastic-MP2 [66]
stochastic Bethe Salpeter Equation [6] and stochastic Time-Dependent DFT (TDDFT) [67].

In the usual Chebyshev approach [68—70] the coefficients in the polynomial expansion of the
density matrix p are obtained analytically by requiring that the scalar function ©(y — E') converges
uniformly as a function of £ [69, 70]. In practice, to converge the expansion one usually replaces
the sharp Heaviside function with a smoothed one. However, for most systems the gap is small
relative to the full energy range of the Hamiltonian operator, so even a smoothed Heaviside function
would require typically thousands of terms for convergence.

Here we suggest an alternative to the usual determination of the Chebyshev coefficients. For
any desired number of coefficients, we only require that the Chebyshev expansion be correct for
energies outside the gap. The logic is that it is immaterial what the values of the polynomial
expansion are inside the gap since there are no eigenstates there. Within the gap the filter could
have any form, including Gibbs oscillations, but they would be irrelevant to the final density matrix.

In Section II we develop the idea in detail and give a simple prescription, which we label
gapped-filtering, for obtaining the Chebyshev coefficients. Numerically, gapped-filtering carries
negligible overhead. One just specifies the desired length of the Chebyshev expansion, labeled

N, and then just inverts a single matrix of rank Ny, + 1.
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In Section III we numerically study gapped-filtering and show that the method converges
rapidly with N, which is the only parameter in the approach. The method is more efficient
than traditional smoothed filters, where one needs to converge with both a smoothness parameter
and Ngp,. When high accuracy is required, gapped filtering is 2-3 times faster than the traditional
approaches.

Section IV presents an application of the method to stochastic-GW, verifying this significant

reduction in a large scale calculation. Conclusions are discussed in Section V.

4.1 Methodology
4.1.1 Gapped-filtering

Ignoring spin, the density matrix, i.e., the projection operator to the occupied manifold, is formally:

NOCC

p=Y_16:) (6l (53)
i=1

where {¢;} are the eigenvectors of the 1-body Hamiltonian operator H and N, is the number of
occupied states. We only consider here systems with a gap where the physical temperature is tiny
compared to the gap, i.e., a zero-temperature description.

Even if all eigenstates and eigenvalues are known, the memory required to store the eigenstates
could be enormous for giant systems with tens of thousands of electrons. In those cases, it is better
to use a polynomial expansion. Thus, the density matrix is equivalent to a Heaviside function of

energy centered within the band gap,
p=0O(u—H), 54)

where 4 is the chemical potential. To converge the expansion, a smoothed complementary-error
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function is typically used:

O(u— H)~ 65 = \/%erfc (,B (M—ﬁ)), (55)

where [3 is an inverse-temperature-like parameter that determines the sharpness of the function [57—
59].

Note that the square root stems from the fact that in most cases, especially for stochastic quan-
tum chemistry applications, the results of applying the filter are then squared to give the density
or Green’s function. Throughout this chapter, the analytical filters always refer to this square-root
erfc form (abbreviated as sqrt-erfc). Further, we verified that gapped-filtering does analogously
well when compared with an erfc filter without a square-root.

To apply the filter, the Chebyshev polynomial expansion is traditionally used:

Nenb

O(u— H) =Y a,T,(H), (56)
n=0

where the expansion coefficients, a,,, depend on p and 3 and 7;, which is the n’th order Chebyshev
polynomial of the first kind. The argument of the Chebyshev function is a scaled Hamiltonian,

H = H Xf;vg, [69, 71] where the H,,, and AH parameters are the center and half-width of the

spectrum of H, so that the eigenvalues of H are between -1 and 1. The length of the expansion,
N, 1s approximately proportional to SA H, times a factor which depends on the relative position
of p relative to the spectrum bottom, H,,, — AH. (Qualitatively that factor accounts for the
“stretching” of the angle § = arccos(x) near the band bottom, where x — —1 and dx/df becomes
large. For a fuller discussion see [72].)

Usually the coefficients are determined by requiring that the expansion in Eq. (56) is valid uni-

formly over all ' between the minimum and maximum eigenvalues of H. Due to the orthogonality
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of the Chebyshev polynomials, the coefficients are then simply:

2— 5710 ! ~
n = —— / O — x)T,(v)w(z)de, (57)

1

where w(x) = (1 — 2?)~/2 is the Chebyshev weighting function and we introduced the scaled
chemical potential, ji = (pt — Hayg)/AH.

Here we exploit a simple realization: because there are no states within the bandgap, the be-
havior of the expansion within the gap does not impact the density matrix. What is important is
that the expansion is 1 for the occupied states and O for the unoccupied states, regardless of its
values within the bandgap. As we show below, the increased flexibility, as the expansion is free to
vary within the band gap, suffices to reduce the number of polynomials for a given desired level of
numerical accuracy.

Our derivation starts by defining a modified weighting function that vanishes within the scaled

band gap:
w*(z) = w(z)(O(zy — ) + O(z — 1)), (58)

where the scaled energies are

Ty = (SH — Havg)/AH+5
T = (5L — Havg)/AH—(S

where ¢y and ¢, are the HOMO and LUMO energies, while ¢ is a small padding factor, which
we usually take to be about 1% of the scaled band gap. This padding ensures that the weight-
ing function does not go to 1/0 at exactly the HOMO/LUMO energies, thereby allowing for any
uncertainties in the values of the HOMO/LUMO energies.

Since the weighting function is zero within the gap, we call the resulting method gapped-
filtering, and the associated Chebyshev expansion gapped-filter. As the Chebyshev polynomials

are not orthogonal under this weighting function, the coefficients need to be rederived. This is
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done by minimizing the norm squared of the difference between the Heaviside function and the

Chebyshev expansion, weighted now by w*(z):

1 Nenp 2
J = / O(x — xg) — Z a, T, (z)| w*(z)dx. (59)
-1 n=0
Minimizing J with respect to a; gives:
oJ
o = D Mija; — b =0, (60)
‘ k
i.e.,a = M~1'b, where
TH
b; =/ w*(z)T;(x)dx,
-1
and
1
M;; = / w*(z)T;(z)Tj(x)d. (61)
—1

The matrix elements are easily calculated. Defining = = cos 6, we get:
Mij = E](_17$H> +Ej($L71)7 (62)

where

Oy
_ / cos(if) cos(j0)d6
0. ’ (©3)

— %/@ ’ (cos((i — 7)0) + cos((i + 7)0))do

= Gi;(0y) — Gi;(0)
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Figure 5: Gapped-filtering vs. various sqrt-erfc filters, using a Chebyshev expansion with
Ne, = 450 polynomials, as a function of the scaled energy, + = (£ — H,y,)/AH. Naphtha-
lene parameters are used (AH = 13.5 Hartree, €4,, = 0.123 Hartree). The highlighted grey area
denotes the gap region where the expansion need not be optimized. Note that (3 is always reported
in inverse Hartree, so, for example, for 5 = 30 Hartree ™! the product of 3 with the gap is quite

small, f(e;, —ey) = 3.7.
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where cos ¢, =y, and

(

0 i=j=0

Gij(0) = § 10 + L sin(2i6) i=j#0- (64)

sin(i=)0) __ sin((i4)0) ;-
2 T ey L7

Similarly,

7r T — Oy 1=0
b; = / cos(16)df = : (65)
on —Lsin(ify) i >0
where cos(0y) = zy.
Additional considerations

We now discuss several issues associated with the method.

HOMO/LUMO determination: Our method requires knowledge of the HOMO/LUMO en-
ergies associated with the one-body Hamiltonian H. In situations where these are not accu-
rately given, it will often be worthwhile to do a single longer Chebyshev propagation to deter-
mine accurately, by filtering, the location of the HOMO and LUMO. For example, in stochastic
GW the gapped filter will be applied thousands of times, so the initial overhead for finding the
HOMO/LUMO energies by a narrow Chebyshev filter will be often small compared to the savings
incurred by the subsequent use of gapped filtering in sSGW.

The same considerations would also be true in DFT applications that rely on Chebyshev fil-
tering, as long as the overall number of vectors on which one needs to apply Chebysheyv filtering
is much larger than 1, so that in each SCF step the extra overhead in a single long Chebyshev to
determine the HOMO and LUMO would be negligible compared to the overall cost needed to filter
all the required states.

HOMO/LUMO accuracy: Note that formally the HOMO and LUMO energies that are used
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Figure 6: Analogous to Fig. 1 but now the analytical coefficients are damped using the commonly
used Jackson kernel coefficients to avoid a sharp cut at N.,;,. While the Gibbs oscillations are
damped the step function is even further widened, i.e., gets further from the analytical step function
demonstrating that just damping the analytical coefficients is not sufficient.
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need to be lower and upper bounds to the true HOMO and LUMO, but since the method is con-
tinuous even a small (circa 5% or less) deviation in the wrong direction (e.g., an applied HOMO
energy which is higher than the true HOMO by about 2-3% of the gap, and analogously for the
LUMO) still gives excellent results, as we verified.

Correlation function: Also note that when one is just looking for a correlation function,
involving a matrix element of the density of state (rather than the full filtered function, Eq.
(55)), then the total number of residues is halved by using simple trigonometric identities, e.g.,
2(Co|T2n|Co) = (CalCn) — (ColCo) where [C,) = T, o) (see Eq. (3.10) in [73]). This reduction by
a half is valid for both the regular Chebyshev approaches and for gapped filtering, so it does not
change the relative performance of the approaches.

Filter design: To conclude this section, note that the problem we specifically try to solve, an
optimum Chebysheyv filter where we do not care what happens inside the gap, could be viewed as

a specific sub-problem of digital filter design [74, 75].

4.2 Gapped-filtering convergence study

We now turn to a numerical study of the new method. We use the band gap and energy width
from an LDA calculation of Naphthalene. The calculations are detailed in the next section, but
the relevant part here is that the gap is €50, = €1, — ey = 0.123 Hartree, the spectrum width
is 13.5 Hartree, and the scaled HOMO/LUMO energies are (¢ — Hayy)/AH = —0.9156 and
(1 — Hayvg)/AH = —0.9065 i.e., a scaled gap of (¢, — ey)/AH = 0.0091.

In Fig. 5 we show, for an expansion length of N, = 450, the improved performance of
gapped filter over the traditional approaches. We specifically plot as a function of the scaled energy
(x = (E — Hayg)/AH), the numerical representation of O(y — E) (i.e., the RHS of Eq. (56)) at
several [ values. As expected, convergence is faster for a lower 3, but if /3 is too low then the

analytic sqrt-erfc function deviates too much from the desired step function.
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Figure 7: Analogous to Fig. 5, but showing, away from the gap, the differences between the
Chebyshev expansions and an exact step function.

As a side note, a common approach [76] to avoid Gibbs oscillations is to multiply the Cheby-
shev coefficients by a filter, ¢,, — ¢,c,, where g, falls smoothly to almost O at n = N. This is
shown in Fig. 6 (constructed for N, = 450, like Fig. 5), using the popular Jackson filter [76].
But while the smoothing of the analytic coefficients does remove the Gibbs oscillations, this comes
however at the expense of making the filter wider, so it is even further from the true step function
filter.

The difference in Fig. 5 at N, = 450 between the numerical representations and the desired
step function is detailed in Fig. 7. Interestingly, at this Ny, the gapped filter is also smooth
inside the gap (gray region in Fig. 5) even though the gapped-filtering method does not try to
explicitly optimize the behaviour of the filter there. (Note: for very high N, which are irrelevant,
Nep, > 1300, gapped-filtering does show Gibbs oscillations inside the gap.)

In Fig. 8 we show, again at N, = 450, the expansion coefficients, a,, as a function of n.
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The magnitude of the gapped-filtering coefficients decreases at a much faster rate than that of the
traditional coefficients. The faster drop-off leads to a smoother expansion and therefore to less
oscillations.

We now turn to an analysis of the performance of the gapped-filtering approach as a function
of the number of Chebyshev polynomials. Fig. 9 shows, as a function of N, the maximum (over
all energies outside the gap) of the absolute difference between Eq. (56) and Eq. (54) at several
[ values. The relative advantage of gapped filtering is more pronounced when higher accuracy
is sought, i.e., at larger Ng,,. Thus small /3 values (in our case 3 = 30 or 40 Hartree ') require
a small number of Chebyshev polynomials for convergence, that rivals the number in gapped-
filtering. However, for such small 3 values the analytical sqrt-error function deviates significantly
from the desired step function, so that the error would be high at any value of Ny;,. In contrast, a
more accurate representation of the step function with small error requires a much larger number of
polynomials for sqrt-erfc filters (see here the graphs for 5 = 50, 66, 100 Hartree ~!) than in gapped
filtering.

A technical point is that for very large N1, some of eigenvalues of M will be close to zero;
this would lead to round-off errors in the matrix inversion, which in our case would deteriorate
the accuracy of the gapped filter when the maximum error is on the order of 107, i.e., beyond
Neny > 10AH /eg40p = 1100. We avoid such errors using, for such large N1, quadruple precision
in calculating the coefficients (i.e., for yielding M and b, and then for inverting M ~'b using a
quadruple precision algorithm [77, 78]). Because the dimensions of M;; are (Nepp+1) X (New, +1)
and N, is typically on the order of 100 — 2000, this inversion has negligible cost. (To clarify, the
coefficients are then well-behaved and are used in the usual double-precision Chebyshev algorithm,
i.e., quadruple precision is only used to determine the a,, coefficients.)

An advantage of gapped-filtering is that it avoids the use of an artificial temperature parameter,
(. We only need to worry about a single convergence parameter, NV, unlike the usual procedure

of converging with respect to two parameters, 5 and Nyp,.
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4.3 Application: stochastic-GW
4.3.1 Filtering in stochastic-GW

The polynomial expansion of the Chebyshev operator is crucial for our stochastic quantum chem-
istry approaches. Here we overview the relevant parts for one such method, stochastic-GW. Only
the parts of the method where filtering is relevant are discussed, see Refs. [32, 33] for further
details. The stochastic-GW method, in its simplest version, calculates the HOMO (or LUMO)
quasiparticle energy in the diagonal approximation £qp, i.e., based on the HOMO/LUMO DFT
eigenvector whose associated eigenvalue is modified.

Stochastic-GW has two filtering stages. First, one does a stochastic realization of GG. For each
such realization, one takes an initially random white noise orbital |(y) , i.e., (o(r) o< %1 in a grid
representation (or an analogous expression in a basis-set description). Then, the white noise orbital
is filtered with the Heaviside operator o= O(pn — H ) to generate a function |¢) which contains

only occupied states (with random coefficients):

((r) = (r|©1¢o) - (66)

We interchangeably label such a function as a stochastic occupied orbital, or more simply a filtered
orbital.

Each such filtered ¢ function is then propagated in time under H; the correlation function of
the result with ¢, equals the negative-time Green’s function, {((r,t)(o(r")} = Go(r,7’, —t). The
positive-time Green’s function is obtained analogously. The curly brackets indicate a statistical
average over the stochastic orbitals. Typically we use N = 200 to 2000 different random white
noise (o(r) functions. Fewer samples are needed for larger systems due to self-averaging.

Then, for each such stochastic realization of G (i.e., for each (j), one calculates the action of

the time-dependent effective interaction W(t) on a vector related to (y. This is done by choosing,
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Figure 8: The absolute value of the expansion coefficients for N, = 450 for the gapped and
traditional (sqrt-erfc) filters.

for each (p, several (IN,,,) white noise vectors, labeled ng¢(r), ¢ = 1,..., Nomp,. These vectors are
also filtered, |7,) = ©|noe). This set of filtered orbitals are then excited and propagated in time,
under a time-dependent Hartree Hamiltonian H (). The crucial part of the evolution Hamiltonian,
which also gives the action of W(t), comes from the Hartree potential due to the time-dependent

density
Norb

2
N > e o), (67)
or /=1

n(r,t) ~

where 7,(r,t = 0) is obtained by slightly “’kicking” the filtered orbital 7,(r) (for further details
see Refs. [66, 67]). Note that we consider closed shell systems so the factor of 2 due to spin was
restored here.

The sGW formalism is efficient since very few orbitals (typically N, = 10, and less for
larger systems) are needed to describe the response of molecules and solid-state systems within

the short few-fs time for which W(t) is needed. Still, a total of NNy, =~ 2000 — 40, 000 filtering
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Figure 9: The maximum, taken over all energies outside the band gap, of the absolute value of the
difference between the step function ©(x— F) and its Chebyshev expansion (the RHS of Eq. (56)).
The figure is plotted as a function of the number of Chebyshev terms, N.,,. Note that smoother
low-/3 filters converge initially faster but then their error reaches quickly a high plateau.

projections is required, therefore motivating the use of the proposed gapped-filtering approach.

4.3.2 Gapped-filtering for stochastic-GW

We now demonstrate gapped-filtering in an sGW study of naphthalene. All calculations use N; =
1000 stochastic samplings of (G, which gives the quasi-particle energy to within a statistical error
of +0.06 eV.

The DFT Hamiltonian H uses the LDA exchange-correlation functional with Troullier-Martins
norm-conserving pseudo-potentials [79]. The grid employed has 48 x 44 x 24 points with a grid
spacing of 0.5 Bohr. As mentioned, the DFT bandgap for naphthalene is then €,,, = 3.34 €V, i.e.,
0.123 Hartree, while the spectrum half-width AH is 13.5 Hartree, i.e., 110 times higher than the

band gap.
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Figure 10: The stochastic-GW quasiparticle energy of naphthalene, eqp, as a function of the num-
ber of Chebyshev polynomials, N, using gapped-filtering and sqrt-erfc filters with 5 = 66 and
£ = 100. Gapped-filtering converges to the asymptotic QP energy at much lower Ny, than the
traditional sqrt-erfc filters.
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Fig. 10 shows the resulting HOMO QP energies for gapped-filtering and for the traditional
filtering method from Eq. (56) at § = 66 and = 100. The statistical errors barely change with
Nehp, s0 we do not show them in the figure.

The figure shows that gapped-filtering requires very few Chebyshev terms. Thus, to have a

systematic error of 0.015 eV or better, N, = 450 is sufficient for gapped-filtering.

4.4 Conclusions

In conclusion, our work has shown that, for gapped systems, a step-function filter in energy is best
done by optimizing the Chebyshev coefficients to fit the gapped spectrum only, rather than using a
smooth filter and unnecessarily fitting the irrelevant gapped region.

The final algorithm is very easy to adopt for practical systems. Given the HOMO/LUMO
energies and the spectrum overall min/max energies, one should specify an acceptable tolerance of
the deviation from the step function, and then do a similar calculation the red line in Fig. 9 to extract
the corresponding number of N, terms. With our parameters we find an acceptable tolerance at
about N, ~ 4AH/(e;, — €p), but this factor could be somewhat different depending on the
application and the location of the gap relative to the spectrum minima. Our results would have
immediate implication on cases such as sGW, where traditional Chebysheyv filtering is expensive

and the simpler alternative, explicit projection by p = >

< Noce On)(dn| (see Ref. [33]), requires
for large systems huge memory for storing all the occupied eigenstates.
Finally, our work indicates that when there is at least partial knowledge of the system spectrum,

a polynomial expansion could be made more efficient than an expansion which is designed to be

uniformly convergent as a function of energy.
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S Orthogonal Projector Augmented Wave Method

5.1 Projector Augmented Wave

This section serves as an introduction to the projector augmented wave (PAW) method before
orthogonal PAW (OPAW) is explained in the next section. Solving the all-electron problem, in
which one considers every electron in the system, leads to two general types of wavefunctions:
core and valence. Both states have very sharp oscillatory behavior near the nuclei due to the
steepness of the Coulomb potential near those nuclei. The valence states, being higher in energy
than the core states, are smoother and more spatially spread out. When using a plane-wave (PW)
basis set, an all-electron calculation will require a large basis size corresponding to a very fine
grid and a high kinetic energy cutoff to accurately describe the core and valence states near the
nuclei. One method to circumvent this difficulty is the norm-conserving pseudopotential (NCPP)
approach in which the more chemically inert core states are replaced with an effective potential
that results in smoother pseudowavefunctions near the nuclei while reproducing correct scattering
behavior after a radial cutoff. The KS equations would then only be solved for the valence states,
greatly reducing the computational cost. Two important aspects when evaluating a pseudopotential
are softness and transferability. Softer pseudopotentials require fewer PWs than harder ones and a
more transferable pseudopotential would be able to produce reliable results for different types of
systems.

A trade-off of NCPP is that large basis sets are required for first-row and transition metals
as the 2p and 3d orbitals are localized in space. An alternative approach is the use of ultrasoft
pseudopotentials (USPP) in which norm-conservation is dropped to allow for more parametrization
and thus allowing for softer pseudopotentials [80]. Another is the augmented plane waves (APW)
method where atom-centered boundary augmentation spheres are drawn. Within each sphere, the
wavefunctions are expanded in terms of atom-like partial waves and envelope functions are used

in the bonding regions outside the sphere [81]. Blochl proposed the PAW method in 1994 where
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he combined ideas present in the USPP and APW methods.
The central concept of PAW is to define a linear map between the smooth pseudowavefunctions,

|4,), and the highly oscillatory all-electron wavefunctions, [1,,):

Wn) =T |¥n) - (68)

The transformation should only be applied to regions near the atomic nuclei as the regions away

from the nuclei are already sufficiently smooth, therefore,
T=1+> T, (69)

where a indexes over all atoms in the system, and the atom-centered operator T is only applied
within an augmentation sphere. Skipping much derivation which can be found in Refs. [82, 83],

~

T can be expressed as

7@ =3 (|6 — 161 ) (] (70)

7

where |¢\”) and |$\")) are the all-electron and pseudo atom-like partial waves, and |p\”)) are fixed
projector functions defined within an atom’s augmentation sphere. The mapping between the all-

electron and pseudowavefunctions is thus
) = 16) + D (167) = 18) ) (p{11Pn) )

This transformation leads to the pseudowavefunctions satisfying a generalized eigenvalue problem

H, = 6,50, (72)
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where

N

N

=TT =1+ 1) sif (0} (73)
ij,a
is an overlap operator with sl(;l) = <¢£a)‘¢§a)> — (éga)|g5§a)>, H =T'HT, and (;|S|1);) = 6;;. The

PAW Hamiltonian has the form
. \Y% a a a
H=——+Vkgs(r)+ E \pg )> ng) (p§ )| (74)

where the local Vi 5(r) effective potential is composed of terms similar to those in NCPP, namely,

(a)

an external, Hartree, and exchange-correlation potential. The non-local D;;” terms and effective

potentials depend on the on-site PAW density matrices ,05;1) = > (pg»a)|zzn> (@n\p§“)> and the
smoothed PAW density 72(r) = 3 f, |1, (r)|%. Full expressions for these terms can be found in
Refs. [82, 84].

A major benefit of PAW is that lower kinetic energy cutoffs can be used than those with NCPP.
In addition, the all-electron wavefunction is accessible for calculations that require core-related
properties such as calculating NMR shifts [85]. Despite these advantages, the pseudowavefunc-
tions are not orthogonal nor norm-conserving, the latter leading to the use of a compensation
charge to make up for the difference in charge between the all-electron wavefunctions and pseudo

wavefunctions. These factors greatly complicate the implementation of PAW as expectation values

such as the total energy have to be expanded in multiple terms [82].

5.2 Orthogonal Projector Augmented Wave

Many stochastic electronic methods including sDFT and sGW were developed in the NCPP frame-
work where the wavefunctions are orthogonal. To facilitate the task of combing PAW with these

stochastic methods, orthogonal PAW (OPAW) was developed [88]. Given the generalized eigen-
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problem in Eq. (72), an orthogonal transformation is be obtained:

bl = S, (75)

resulting in

H'Yp = enthy, (76)

where H' = S~/2[S~1/2, The task now is to develop a method that efficiently applies S™ where
n is a real number.

One common assumption in PAW calculations is that the augmentation spheres do not overlap
each other [86]. With this assumption, the projector functions can be independently transformed.

The first step is to orthonormalize the projectors in Eq. (73). A projector overlap matrix, L( 9 =

(pia) |p§a)) is built and then diagonalized: L(®) = U@\ @1 The eigenvector matrix U@

unitary, i.e., U®U®T = . The projectors are then rotated,

(77)

a ]- a a
67 = == U3 ")
VA

so that they are orthogonal (§Z.(a) |€ ](a)) = 0;;. With this transformation, the PAW overlap operator

becomes
§=1+3 16" 0 (6], (78)
kl,a
where 0@ = VAX@OU@g@U@iy/\@,  The matrix O@ is also diagonalized, O =
Q(a)q(a)Q(a)T, so that
§= 1 I 6, B

where () = > lea) \f(a)>-

The final step is to apply the procedure of Ono and Hirose to connect wavefunctions on differ-
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ently spaced grids [87]. Typically, the projector functions are defined on a fine radial grid centered
around their associated atom and interpolated onto a fine 3D cubic grid A/. A rougher 3d cubic
grid with fewer points than the fine grid is also constructed around each atom, A”. The goal of
the Ono-Hirose method is to efficiently calculate the overlap of an atom’s projector functions with
the pseudowavefunctions within the augmentation sphere, and this should formally be done on the
fine grid. Since the pseudowavefunctions are represented on a rougher grid, an interpolation of the
pseudowavefunctions from the rough grid to fine grid is needed in principal to calculate the overlap

with the fine grid projectors:

re) =Y B(ryr)(r), (80)

reA”
where B(ry, ) is a linear projection matrix.
The key to the Ono-Hirose method is that the overlap of the atomic projectors and pseudowave-

funtions,

ZPZ (rp)e(ry)duy, 81)

Ty cAf
can be written in terms of an overlap on the rough grid avoiding the need to interpolate the rough-

grid wavefunctions to the fine-grid:

PPNy =Y B (r)(r)dv, (82)

reAr

where dvy and dv are the fine and rough grid volume elements. The rough grid projectors are

defined as
dv
- Z () B(ry, 7). (83)

T cAf
Ono and Hirose used cubic fitting for the smoothing matrix, B(r, r); however, a spline fit would
make the matrix separable and easier to work with [88].

With these ingredients, the fine-grid ]Ci(a)> projectors in Eq. (79) are processed to be rough-grid
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projectors. This processing makes these projectors no longer orthogonal on the rough grid so the

orthogonalization procedure on the projectors is repeated again eventually leading to
S=1+3" ") o (. (84)
i,a
where |n§a)> is orthogonal on the rough grid. With this representation, powers of S becomes
§t =1+ 3y (1+ o) = 1) (), (85)
i,a

The above is derived from the identity

A

(I+(a—1)P)" =1+ (a™ —1)P, (86)

where a and m are real numbers and P is a projection operator.

The resulting OPAW pseudowavefunctions are not only orthogonal, but also norm-conserving
as the transformation between the all-electron wavefunctions and the OPAW pseudowavefunctions
is unitary:

W) = U i) =TS 2 |y)). (87)
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6 Time-dependent density functional theory with the orthogo-
nal projector augmented wave method

Density functional theory (DFT) and time-dependent DFT (TDDFT) are well established ab-initio
ground and excited state electronic structure methodologies. A successful tool for these methods is
plane-wave basis sets where one Fourier transforms the wavefunctions between real and reciprocal
space. Software that use plane-wave basis sets include Quantum Espresso [89] and VASP [90].

Closely related methods are finite element and finite difference, which use only the real-space
grid, avoiding Fourier transforms. In the former, the basis set consists of local, piecewise poly-
nomials where convergence is controlled by the number of basis functions and their polynomial
orders [91]. For the latter, wavefunctions are represented by their values on the grid and the Lapla-
cian operator is evaluated using a finite difference formula [92].

Some advantages of real-space approaches are the production of sparse matrices which make
them very amenable to large-scale parallelization and the ability to use non-uniform and adap-
tive grids [93-96]. Successful implementations of ground state and excited state real-space code
include PARSEC [96] and Octopus [97].

Both plane-wave and real-space methodologies are well suited for sufficiently smooth wave-
functions but require a large basis set for the former and denser grid points for the latter to ac-
curately represent the highly oscillatory atomic core states. One popular method to circumvent
this issue is the use of norm-conserving pseudopotentials (NCPP) in which the effects of the inert
core states are replaced with an effective pseudopotential, leading to smooth pseudo valance wave-
functions that are easier to represent [50, 98]. There have been many applications of NCPP with
DFT and TDDFT using plane-wave and real-space frameworks [98—101]. However, the simplicity
of NCPP comes at the price of high computational costs in treating first-row elements, transition
metals, and rare earth elements [102].

The projector augmented wave (PAW) method, first proposed by Blochl, yields smoother
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pseudo wavefunctions than those of NCPP by relaxing norm conservation [82]. These smoother
wavefunctions have a lower kinetic energy cutoff and, therefore, can use larger grid spacing than
with NCPP. The key to PAW is a linear transformation that maps the smoothed pseudo wavefunc-
tions to the highly oscillatory all-electron wavefunctions. This transformation enables calculations
of wavefunction-dependent properties that would require very high kinetic cutoffs in plane-wave
NCPP [103] such as hyperfine parameters, core-level spectra, electric-field gradients, and NMR
chemical shifts [85].

A trade-off of PAW is that the linear mapping results in non-orthogonality of the pseudo wave-
functions that satisfy instead a generalized eigenvalue problem complicating its use in electronic
structure methods that rely on orthogonal wavefunctions such as stochastic DFT [60] or stochas-
tic GW [32]. We recently solved this non-orthogonality problem through the combination of two
techniques that were discovered earlier [88]. The first is the efficient application of powers of the
PAW overlap operator to generate an orthogonal Hamiltonian and wavefunctions that are norm-
preserving [88, 104]. The second is the Ono-Hirose transformation which yields accurate overlaps
of coarse-grid wavefunctions with the localized dense-grid atomic projector functions [87]. With
these two ingredients, our resulting orthogonal PAW (OPAW) method was demonstrated with the
Chebyshev-filtered subspace iteration plane-wave DFT approach, successfully reproducing PAW
band gaps from the ABINIT software [88, 105].

Many post-DFT methods, such as our stochastic GW approximation [32] and stochastic Bethe
Salpeter equation methodologies [6], are easier to implement with orthogonal time-dependent
wavefunctions. Here, we take the next step in developing OPAW, making it viable for TDDFT us-
ing real-time time-dependent propagation. Compared to linear-response methods, real-time prop-
agation can calculate electronic responses to any arbitrary external stimuli, allowing for study of
non-linear-response phenomena such as high-harmonic generation and exciton dynamics in pho-
tovoltaic devices [106, 107].

Our combined OPAW-TDDFT approach directly uses orthogonal wavefunctions and the Ono-
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Hirose method to yield an efficient real-time propagation method which, as we will show, works
well even with very large grid spacing and increased time-step. Note that other implementations
of PAW have earlier been used for time-dependent propagation [108—110].

The OPAW-TDDFT method is demonstrated here with absorption spectra calculations for var-
ious organic- and chromophore-based systems. Sections 6.1 and 6.2 reviews the OPAW theory and
discusses its implementation in TDDFT. In section 6.3, we present and analyze absorption spec-
tra calculations using OPAW-TDDEFT against those calculated with NCPP-TDDFT, and time-step

analysis follows in 6.4. Concluding remarks follow in section 6.5.

6.1 Orthogonal Projector Augmented Wave Method

In PAW, the all-electron (AE) wavefunctions, 1, are built from the pseudo (PS) wavefunctions,

U, using the linear map:
) = T 1) = 1) + 3 (167) = 7)) 1) 88)

where a indexes the atoms and ¢ stands for a combination of angular, magnetic, and principal
quantum numbers to label each partial wave channel associated with an atom. The AE (¢§“)) and
PS (qu(-a)) partial wave channels equal each other outside a spherical augmentation region around
(a)

each atom. The atomic projector functions, p,

, » are localized within the augmentation regions and

are dual to the PS partial waves there (i.e. 3, [6(”) (p\"| ~ 1).

Since the PS wavefunctions are not orthogonal, they fulfill a generalized eigenproblem,

H"Z]n = €n'§'¢~]n7 (89)

where

S=TT =1+ Ip") s (" (90)

i
iJ,a
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is an overlap matrix with s( = (¢, A\ |¢; “)> (~§a) ]¢~>§-a)>, and

- \VE&: .
H =~ +uks(r )+ [pi”) DY (). 1)
ij,a
Full details of the effective potential, vxs(r), and the non-local term coefficients (Dgl)) can be

found in Refs. [82, 84].

To make OPAW, we rotate the PS wavefunctions to yield orthogonal ones:
Y = SV, (92)

resulting in

H'Yp = entfy,, (93)

where H' = S~Y/2HS~'/2 is the OPAW Hamiltonian. To efficiently approximate S", where n
is any real number, one first assumes that the augmentation regions of different atoms do not
overlap so that the projector functions can be separately rotated around each atom [88]. With this

assumption, Sis readily transformed into
S=1+3" ") o (], (94)
i,a

(a)

where the rotated projectors, 7, ’, are orthogonal so that (772(“) ]nj(“/)) = 0404, and oga) are derived

(a)

from transformations applied to s;;". We verified earlier [88] that the projector locality assump-

tion yields accurate band gaps, and will show below how it is also sufficient for time-dependent

properties. Any power of S is then easily expressed as

—1+ZW [(1+ ol — 1] (n™)]. (95)
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The second key to the efficacy of OPAW is the use of the Ono-Hirose method [87] to efficiently
calculate the overlap of the dense-grid projector functions with the coarse-grid wavefunctions in
any application of S and S. In the method, a smoothing matrix that connects the dense-grid and
the coarse-grid is constructed using spline interpolation in the x, y, and z directions which when
applied onto the dense-grid projector functions generates coarse-grid projector functions. These
coarse-grid projector functions are then used in calculating coarse-grid overlaps. Further details

of the transformation of the projectors and the application of the Ono-Hirose method are given in

Ref. [88].

6.2 Time-Dependent Density Functional Theory with the Orthogonal Pro-

jector Augmented Wave Method

One common use of TDDFT is the calculation of absorption spectra of materials and molecules.

In the linear response regime, the dipole absorption cross section tensor, &, is formally [111]

i;(w) = @Im(/drdfmi(r, F,w)Fj), (96)

c

Where i = (x,y, z) and similarly for j. Eq. (96) is then obtained through the linear-response

dipole-dipole correlation function d;;(t) = [ drr;An;(r;,t) where

1
Anrt) = [ ar o m = 2 (1 (r0) = 07060 o)
Y
is the induced charged density and
n(r, ) =Y fal W (r, )] (98)
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are the perturbed and unperturbed densities made from the time-dependent OPAW wavefunctions,
labeled by +, and detailed later.

A component of the absorption cross section tensor is then given by a Fourier transform of the
dipole-dipole correlation function. For example, the xx component is

Toa(w) = 47T—”Im( / N dtdm(t)g(t)eiwt). (99)
0

C

The damping function £(t) is included to avoid Gibbs oscillations. We usually use £(t) =
cos?(nmt) where n = 1/(2t,,;) so the damping factor goes to 0 at the total simulation time, .
The absorption spectrum is the trace of the tensor, i.e. o(w) = 3 D im(ay,2) Oii(W)-

The time-dependent Schrodinger equation in the PAW framework has the form

iS%xi:g(r, t) = HU) (r,t), (100)

where \il;j(r, t) is a time-dependent PS wavefunction evolving under the PAW Hamiltonian. With

the transformations in Eqgs. (92) and (93), this equation in the OPAW framework becomes

O, ) = HY() 0 1). (101)

where W) (r, t) is the time-dependent orthogonalized PS wavefunction. The initial condition of the

OPAW wavefunction in Eq. (98), is
U (r t = 0) = e i) (1) (102)

where r/ = S$~1/27,6-1/2_ In practice we find that we could replace r/ by r; without any significant
change in the results.

For simplicity, we use fourth-order Runge-Kutta to approximate the time-propagation of the
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Figure 11: The top panel shows the exciton peak of the 7,,(w) tensor component for naphthalene
vs. grid spacing with various time-steps (in a.u.) using OPAW and NCPP. The bottom panel shows
the naphthalene 7., (w) calculated using OPAW for very large grid spacings (in Bohr) and a large
0.2 a.u time-step. The results match an NCPP simulation at a lower grid spacing and a smaller 0.1
a.u. time-step.
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OPAW wavefunctions in Eq. (97). Compared with other typically used approaches, e.g., the
split-operator method, the Runge-Kutta approach is simple to implement as it does not require

exponentiation of non-local terms in the Hamiltonian; for further details see Sec. 6.4.

6.3 Results

We demonstrate below OPAW-TDDFT and show that it allows the use of much larger grid spacing
than NCPP-TDDFT. For simplicity, we abbreviate the two methods as OPAW and NCPP, omitting
the TDDFT label.

For both methods, the ground state wavefunctions were calculated with the Chebyshev-filtered
subspace iteration method using plane-waves[105]. The DFT Hamiltonian used the LDA func-
tional. The simulations were non-periodic and employed the Martyna-Tuckerman approach for
the Coulombic interactions [112]. For OPAW, we employed the recommended LDA-based atomic
datasets from the ABINIT website [113], while for NCPP we used the Hamann form for the pseu-
dopotentials [102]. The simulation boxes for all calculations were chosen so that there was ap-
proximately 6 Bohr of padding from the edges of the system in the z, y, and z directions.

The time-dependent propagations for both OPAW and NCPP used the Runge-Kutta method,
with time-steps that were either 0.05, 0.1 or 0.2 a.u. Specifically, most results shown here use
the largest time-step for which the simulations are stable for the specific system and grid spacing.
Generally, OPAW enables the use of larger time-steps than what is possible with NCPP, as detailed
below.

Since for each molecule the box size is unchanged between runs, the grid spacings are generally
slightly different in the x, y, and z directions, and therefore we report the results against the grid
spacings’ geometrical averages, ds = (dx dy dz)"/* = dV/3.

We first study the convergence with grid spacing using a small molecule (naphthalene). The

simulations used a box size of 28 Bohr x 26 Bohr x 16 Bohr with ds in the range of 0.3 Bohr to
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RC-PSII Chla

Figure 12: Structures and abbreviations for all systems used in this section.
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0.8 Bohr and only the 7,,(w) element of the absorption tensor is calculated.

Fig. 11 shows the exciton peaks (i.e., first significant absorption peak) for several 7,,(w)
spectra calculated at different grid spacings and time-steps for NCPP and OPAW. Compared to
NCPP, OPAW shows excellent spectral peaks at much larger grid spacings. Specifically, note that
even at ds = (.73 Bohr, the OPAW exciton peak is still acceptable, i.e., different from the low-ds
values by only "0.05 eV. We also show in Fig. 11 that the spectra for OPAW at high grid spacings
are well converged compared to NCPP at lower ones.

Our convergence tests with naphthalene demonstrate that grid spacing of 0.6-0.7 Bohr are suffi-
cient to converge OPAW at a level that requires 0.4-0.5 Bohr for NCPP. OPAW reduces the number
of grid points in a single dimension by about 20%-40%, which when taken over all three dimen-
sions, corresponds to a total number of grid points 2-4 less than that of NCPP..

Our next step is to demonstrate the power of the OPAW on a series of five larger systems,
shown in Fig. 12. Included are Cg fullerene, Cg fullerene embedded inside a 10 para-substituted
phenyl “nanohoop” cycloparaphenylene ring (10cpp+Cg) [114], Cs49 fullerene, a Chlorophyll-a
chromophore with a methyl acetate ligand in place of the phytyl chain (Chla)[115], and a hexam-
eric reaction center of photosystem II consisting of six chromophores (RC-PSII) [115]. A total
simulation time of 2000 a.u. was used for the fullerenes and 1000 a.u. for the Chlorophyll based
systems which is sufficient to isolate specific peaks to better than 0.05 eV for the former and 0.1
eV for the latter.

As shown in Fig. 13, OPAW generates comparable spectra to that of NCPP at much larger grid
spacing for Cgy. Similarly for the larger 10cpp+Cgo and Csyg systems, OPAW also yields converged
spectra at large grid spacing, around 0.6-0.7 Bohr.

In addition, we compare in Fig. 14 the Cg, spectra to the NCPP real-space time-dependent
local-density approximation (TDLDA) calculations of Yabana and Bertsch [98]. An exponential
damping function, £(t) = exp(—nt), was used in Eq. (99) for the NCPP and OPAW runs, with

n = 0.0125 a.u., so that the energy resolution is comparable to that used in Ref. [98]. The Yabana-
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Figure 13: The top panel shows the OPAW absorption spectra of Cg, for large grid spacing with a
0.2 a.u. time-step; these spectra match the NCPP results which required smaller grid spacings and
a smaller 0.1 a.u. time-step. The middle and bottom panels show the OPAW absorption spectra for
10cpp+Cep and Csyg respectively for large grid spacings with a 0.2 a.u. time-step.
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Figure 14: The OPAW and NCPP absorption spectra of Cgo at larger energies at various grid
spacings with a 0.2 a.u. time-step for the former and 0.1 a.u. time-step for the latter along with the
TDLDA absorption spectra from Ref. [98].

Berstch TDLDA spectra were scaled so the first large peak height around ~6 eV is similar to our
NCPP and OPAW runs. The OPAW and NCPP runs are separately converged with grid spacing.
Up to about 30 eV, OPAW and NCPP match well, and both match overall the trends of the Yabana-
Bertsch data although there are significant differences at specific ranges of energies. Above 30 eV
the overall trends remain but the spectra are quantitatively different between OPAW and NCPP,
most likely due to the difference in methodology.

Compared to the previous systems, Chla and RC-PSII require slightly smaller grid spacing for
both NCPP and OPAW, but OPAW still yields converged results at much larger spacing of 0.65
Bohr compared to 0.45 Bohr with NCPP. Taken over the 3D grid this yields a factor of 3 reduction
in the total number of grid points. Although some of the peak shapes of the OPAW spectra of Chla
in Fig. 15 start to differ from lower NCPP at energies greater than 3 eV, the lower-energy peak

positions match well.
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Figure 15: The top and bottom panels show the OPAW absorption spectra of Chla and RC-PSII
respectively for large grid spacings with a 0.1 a.u. time-step
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6.4 Computation Time

We now turn to a discussion of the time requirements and computational savings in OPAW. We
verified that the time to construct the Hamiltonian and perform Runge-Kutta propagation at every
time-step is similar between OPAW and NCPP given the same time-step and grid and that both
scale linearly with number of orbitals and the number of grid points (i.e., quadratically overall
with system size). Thus, for our largest system (RC-PSII) with 676 occupied orbitals and a grid
with 987,840 points, the total wall time to perform a single OPAW-TDDFT calculation on RC-
PSII, using a 6 modern node with 676 AMD-ROME cores, was close to a wall time of 44 hours,
i.e., about 30,000 CPU core hours; the times for the smaller systems are correspondingly smaller.
When comparing OPAW and NCPP, one should note that NCPP could have used a non-Runge-
Kutta approach, i.e., a symplectic (split-operator) propagation (a symplectic representation of
OPAW is more complicated and was not pursued here). But while symplectic propagation is fast
per time-step, it necessitates a shorter time-step (for the split operator, we verified that for most
systems the time-step can be at most 0.05 a.u. with NCPP). The costs per time-step are different
in the two methods, and we find that a symplectic propagation typically requires half the cost of

Runge-Kutta, due to the balance of several terms:

* In Runge-Kutta, the cost per time-step includes four Hamiltonian operations and a single

calculation and “broadcasting” of the time-dependent potential across all cores;

* in symplectic methods, the costs include calculating the kinetic energy propagator (the most
expensive part), two local and non-local potentials, and the calculation and ‘““broadcasting”

of the time-dependent potential.

Thus, overall, the cost of NCPP with symplectic propagation with a 0.05 a.u. time-step is
comparable to that of using Runge-Kutta with a 0.1 a.u. time-step. Given that the Runge-Kutta
time-step is 0.1 or 0.2 a.u. in our calculations, the lack of symplectic propagation is not a problem

for OPAW.
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6.5 Conclusions

Our OPAW method has been implemented here in the TDDFT framework using fourth-order
Runge-Kutta for the time propagation. We demonstrated that the convergence of OPAW with
respect to the grid spacing and time-step is achieved at much larger values compared to that of
NCPP, resulting in significant computational savings.

We also showed, using a series of hydrocarbon and chromophore based systems, that OPAW
successfully produces converged spectra at large grid spacing and time-step. Future work will
focus on implementing OPAW into our other post-DFT stochastic methods that require orthogonal
time-dependent wavefunctions, namely stochastic GW [32] and Bethe-Salpeter equation [6, 116]

methods.
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