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ABS TRACT 

We have developed a new approach to the theory of linear 

dichroism in partially ordered systems. The description of 

the partially ordered ensemble uses a density of states 

function, D(O,q,A), which gives the probability that the 

direction of polarization for incident polarized light has 

spherical angles 0 and in an axis system fixed with respect 

to the molecule; A 	1 ,L ... 	 ) is a set of parameters 

that describes the partial ordering. We derive new formulas 

for linear dichroism using the density of states function 

and then apply these formulas to the analysis of linear 

dichroism in reaction centers and whole cells of photosynthetic 

bacteria. One advantage of our approach is that the order 

parameter, L, provides a more complete description of the distribution 

functiczi than the traditional order parameters used by other 

authors. Knowledge of 1 gives a good physical description 

- of the partial ordering and allows one to calculate accurate 

limits for the range of possible orientations of the transition 

moments. 
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INTRODUCTION 

Linear dichroism refers to a dependence of the absorption 

of polarized light on the direction of polarization. This 

dependence arises because the molecular, absorbance due to a  

transition moment p depends on the angle between p and the 	
I 

I 

	

	
polarized field E. An analysis of linear dichroism data can, 

therefore, enable one to extract structural information on 

the orientation of the transition moment. For single crystals 

or perfectly ordered systems the theory is straightforward (1,2), 

but for partially ordered systems the theory is complex (2). We 

develop here a new approach to the theory of linear dichroism 

in partially ordered systems. 

Most previous theories of linear dichroism in partially 

ordered systems have introduced an orientational distribution 

function P(O',4',i') which gives the probability that a 

molecule-fixed axis system has Euler angles 0' , q' , and p' 

with respect to the laboratory axis system (2) (see Fig. 1 ). 

After orientation averaging with the unknown function P(e',',i4') 

[or an expansion of Nel. ,4',iJ')(3,'4), see Discussion] the 

linear dichroism formulas can be written in terms of order 

parameters which are integrals over some functions multiplied 

by P(0',',iJ.i'). An example is the order parameter S defined 

when both the molecular reference frame and laboratory 

reference frame are axially symmetric; i.e. when P(0' ,4' ,') 

depends only on 0' . It is defined as 
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3<cos 2 0 1 > - 1 	 (1) 

where <cos 2 O'> isan ensemble average of cos 2 O' or 

¶12 	2 
<cos 2  0' > 	J 	cos e'P(e' )sin0'd6' 	 (2) 

0 	 - 

Because the linear dichroism formulas depend only on order 

parameters like S, it is not possible to fully determine 

p(ot 4? ,) from a linear dichroism measurement; it is possible 

to obtain only the order parameters. If one can construct 

from a model for the system, however, it 

is possible to extract structural information in light of the 

specific model. This has been a major stumbling block for 

existing linear dichroism theories - no general method for 

constructing P(0' ,' ,ip') from a model has been described. 

Our approach to linear dichroism will overcome this 

obstacle by using new techniques for describing partially 

ordered systems (5,6) which we have already applied to simu-

lation of EPR spectra (7). These techniques involve a general 

method for calculating a density of states function D(0,,L) 

which gives the probability that the polarized field has 

spherical angles 0 and 	in an axis system fixed with respect 

to the transition moment -i (see Fig. 2). 	Here t is a set of,  

parameters l'2'3 .. . L) that describes the partial 

ordering. Note that D(O,4,L) is a distribution function 

in a molecular axis system while P(0',q' ,p') is a distribution 
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function in the laboratory axis system. That is, we will be 

orientation averaging in a molecular axis system instead of 

a laboratory axis system. As will be shown later, this 

approach leads to simplification of the formulas in many 

instances. 

The density of states function, D(O,,i) is calculated 

in the following manner: 1) From amodel for the system, one 

determines a set of rotations which will rotate an axis 

system originally coincident with the laboratory axis system 

into an axis system which is a member of the ensemble of 

axis systems fixed with respect to the transition moment. 

2) The rotations are assigned weighting functions giving the 

probability distribution in each rotation; e.g. a Gaussian 

weighted rotation about some axis will have the weighting 

function exp(- 2 /L 2 ), where A is the width of the Gaussian 

distribution. 3) Finally, D(e,4,A) is obtained as an integral 

over the weighting function (see Appendix A and references 

5 and 6 for more details). In effect, we have replaced 

order parameters that are integrals over P(Ot,t,iJ ' T) with 

the parameters AVA 2 	
We believe that our parameters 

give a better physical description of the system. 

The function D(e,,t) can be used to interpret many 

types of experiments on a system, and the results often 

allow one to specify ti to within a small range (5-7). If all 

components of A can be measured, a linear dichroism experiment 

will yield the orientation of the transition moment in a 

molecular axis system. Unfortunately, A can rarely be 

- 
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specified with certainty; our analysis then allows one to 

use the uncertainty in t to place accurate limits on the 

orientation of the transition moment. 

The next section describes our approach to the theory 

of linear dichroism based on the density of states formalism. 

The ne approach is then applied to reaction centers and 

whole cells of photosynthetic bacteria. In the discussion, 

we compare our approach to others in the literature (1-4,8-13). 

We find that our approach is equivalent to others that use 

but it has three distinct advantages. 

Y±r, in comparison to parameters like S, the set of 

parameters L 1 ,A 2 	are more intuitively descriptive 

of the system, and they give a more complete definition of the 

distribution function. Second, it is straightforward to 

construct D(e,q,L) from complex physical models and to 

ii 	et linear dichroism in light of these models. 

Third, by orientation averaging in a molecular axis system 

our approach is often much more efficient. For example, 

when neither the laboratory reference frame nor the molecular 

rfierice frame is axially symmetric, P(OT 	depends 

on all three angles, because it takes three Euler angles to specify 

- 	the orientation of one axis system with respect to another. 

In contrast, D(O,q,) specifies the spherical angles of the 

applied field, which is a vectorial quantity. Because it 

takes only two angles to specify the orientation of a vector, 

D(O,,A) never requires more than two angles. We can, 

therefore, analyze complex models with fewer angular variables. 
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THEORY 

The dichroic ratio R of an absorption band is defined as the 

ratio of integrated absorption bands measured with light polarized 

parallel, E11  , and perpendicular, E1 , to a given direction; i.e. 

	

R = A11  IA1 	 (3) 	 - I 

where A11  and A1  are the integrated absorbances. 1'lost reported 

forms of linear dichroism can be related to R,as discussed in 

Appendix B. One notable exception is for experiments that directly 

measure A,, - A1  (14-16) and normalize by dividing by Ar  which 

th absbrbance of the corresponding randomly oriented sample. 

We call this form the dichroic polarization, defined as 

L 	A 

A11 - A1  

	

r 
	 (L) 

When the laboratory reference frame is axially symmetric, L can 

bc 	 to R, but in the general nonaxially symmetric case 

L cannot be related to R. Therefore, we also derive formulas 

for L. 

Before continuing, let us formally define the two coordinate 

sy:tc:: which we have already mentioned. The first coordinate 

system is the laboratory axis system (XYZ), and it is fixed 

in the laboratory reference frame. In the laboratory axis 	 - 

system and E are constant vectors. The second coordinate 

system is the molecular axis system (xyz), and it is fixed 

with respect to the transition moment whose linear dichroism 

:4 
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is being measured; that is, a unit vector 1^1  in the direction 

of the transition moment p is a constant vector 

= 
	 (5) 

in the molecular axis system. In general, the set of molecular 

axis systems defines a partially ordered ensemble. We have 

previously discussed a method for direct determination of the 

density of states functions D 11 (O,q,) and D1 (O ; ,L) (5,6). These 

functions give the probability that E 0  and a have spherical 
angles 0 and 4 in the molecular axis system; i.e. the proba-

bility that 

F!(sin0 cos,sin0sinc,cos0) 	 6) 

Using the density of states formalism, we can now develop a 

new approach to the theory of linear dichroism. 

We begin by calculating A 1  . The absorbance of a transition 

moment p interacting with a polarized field E is proportional to 

(p.E) 2  or equivalently to cos 2 , where a is the angle between 

p and E. For a partially ordered ensemble interacting with 

the absorbance is 

27r 	
A 	 2 	 ii 	2ir 

A1  = K f dO I dq(p•E) D 11  (0,4,L\)If dO I d4D (O,,Li) 	(7) 
0 	0 	

II 	 - 	0 	0 	 - 

where Ii and E are defined by Eq. (5) and Eq. (6), and K is an 

experimental constant which contains such parameters as 

extinction coefficient, concentration, and path length. 
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[Note that in Eq. (7) and throughout this paper we use 

unnormalized density of states functions; the denominator 

furnishes the required normalization]. Experimentally, the 

partial ordering is induced by exerting some type of force on 

the system, such as an alignment field or a mechanical stretch. 

Because the sign of the direction of these forces is arbitrary, 

the density of states has the following symmetry properties 

(1) D11  (0,4,t) = D1  (O,q+ir,) 
	

(8) 

and 

D11  (o,q,E) = D11  (it-0,,) 	 (9a) 
(2) 

D 1  (0,4,) = D11  (0,rr-0,) 	 (9b) 

That is D 11 (e,q,t) is periodic with period it and is symmetric 

about 72. Using only these symmetry properties, Eq. (7) 

reduces to 

All  = K'{p 2 [T11  (L)-F 11  (t)]+p 2 F11  (L)+p 2 [l-T11  (a)]) 	(10) 

where K' is a new 	 constant, 

it12 	in/2 
T 11 (A) 	/ dOsin 2 O / d4D (O,,)/N () 	 (11)

11  - 	0 	0 	 - 

'rn/2 
F11  (L) = I dOsin 2 O / d4sin 2 4D11  (Q,t4,E,)IN 11  (Lx) 	(12) 

- 	 U 	
- 	

II 	 - 	II 	- 

and 

it/2 	in/2 
N11  (L) 	/ dO / dOD11  (O,,A) 	 (13) 

- 	0 	0 	 - 
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In a random sample, A 	Ar ,  D11 (O,4,Li) 	= 	sin8, 	T11  (A) 	= 2/3, 

and F11  (A) 2/3. 	Using these facts, we find that K' 

and Eq. (10) for the ordered sample becomes 

A11 = 	3A{ii[T11  (A)-F11  (A)]+ii 2 F11  (A)+p 2 [1-T11  (A)]} (ill) 

An analogous expression holds for A1 , where we define 

T1 (A), F1 (A), 	and N1 (A) using D1 (O4,A). 	The dichroic ratio 

is thus given by 

R - 
	- ii 2 [T11 (A)-F11 (A)]+p 2 F11 (A)+p 2  LL-T11 (A)] 

(15) - A1 	i 2 tT (A)-F (A)]+p 2 F (A)+p 2  11-T (s)] x L - 	I - 	yl -. 	z 	I 

and the dichroic polarization is given by 

L = 	= 3{p 2 {T11  (A)-T1  (A)+F1  (A)-F11  (A)]+p 2 [F11  (A)-F1  (A)] 

+p 2 [T1  (A)-T11  ()]} 
	

(16) 

Equations (15) and (16) -take simpler forms when the density 
of states depends 

	

only on 0 and A, 	which happens whenever the molecular 

reference frame is axially symmetric. Equations (11) and (12) 

become 

	

7iI2 	2 	 71/2 

To (A) 	f sin 0D11  (e,A)dO/ I
' 
 (O,A)dO 	 (17) 

- 	0 	 - 	0 	- 

and 

1 
F11  (A) 	- Tfl  (A) 	 (18) 
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The dichroic ratio reduces to 

T1  (t) + ii 2 [2-3T11  (h)] 
R 

	

	 - 	 (19) 
T1 (A) + ji[2-3T1 (L)J 

If the laboratory reference frame is also axially symmetric 

and E0  is along the symmetry axis, 

Ar 	(A + 2A1 ) 	 (20) 

When Eq. (20) holds, we can relate T 1 (L) to T1 (A); that 

relation is 

T1 (L) 	1 - T 1 () 	 (21) 

Furthermore 

3(A11 -A1 ) 
L 	A11+2A1 	

(22) 

L in this form is related to R,as shown in Appendix B. If 

fil is not along a laboratory symmetry axis, Eq. (20) is no 

longer valid, but we can still write 

L = 	{[T1  (A)-T11  (A)](3p2 -l)} 	 (23) 

We choose the z axis to be the axis of symmetry in the 

molecular axis system. The angle between the z axis 

and the transition moment p is (see Fig. 2) 

cos -1p z 	
(24) 

From Eq. (19) 
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C 	cos[ 
	 (25) 

+ RT1  (Li)-T11  () 

We now consider some special cases of Eq. (19). One type of 
perfect 
ordering is 	where all molecular z axes line up with ,the 
laboratory Z axis. If linear dichroism 
is measured with 	EH =  (0,0,1) and E1  = (1,0,0),we have

Tr  D11 (e) = 5(e), ])i(0) = 	- 0), T11 (Li) 	0, and T1 (L) 	lwhere 
6 is a Dirac delta funcion. 
Substitution into Eq. (19) gives the result first derived 

by Fraser (8) 

R = 2cot 2 C 
	

(26) 

The opposite extreme is a 	
2 random sample, where D11  (0) = D1  (0) = sinO and T 1 	T1 	= 

The dichroic ratio is R 	1; i.e. there is no linear dichrojsm. 

In the general partially ordered case, a calculation of T11  () 

. and T1  (Li) is sufficient to interpret the linear dichroism. 

In the next section, we will apply these formulas to 

some examples. Most reports of dichroic ratios are ratios 

of the peak absorbances and not integrated absorbances. As 

long as the parallel and perpendicular lineshapes do not 

differ too much, the ratio of peak absorbances is a close 

approximation to the "true" dichroic ratio. We will therefore 

ignore this difficulty. Another difficulty arises from baird 

overlap of several transitions. When band overlap occurs, it 

is difficult to measure the dichroic ratio by measuring peak 

absorbances. We will attempt to analyze only pure transitions 

and hence avoid this problem. 
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RESULTS 

The plan of attack for analyzing linear dichroism is the 

same for all systems. First, from a characterization of the 

absorption spectrum, one decides which bands are pure enough 

for an analysis. Second, from a consideration of the synmetry 

properties of the system, one calculates the parallel and 

perpendicular density of states, D 11  (e,q,) andD1  

Last, the formulas in the last section are used to extract all 

of the possible structural information. We begin by 

analyzing the linear dichroism for a common experimental 

situation. 

A. Gaussian Uniaxial Model 

A common situation when the molecular reference frame 

is axially symmetric is that the symmetry axis tends to align 

along the direction of an applied force (e.g. magnetic field 

direction or stretch direction). If we take the applied 

force to be along the laboratory Z axis, then deviations from 

perfect order are manifested bya non-zero angle , between the 

symmetry axis and the laboratory Z axis, A partially 

ordered 	 ensemble will be described by 

a probability distribution in ; in the Gaussian Uniaxial 

Model, we take the distribution to be a Gaussian of width 

14G  =w() = exp(- 2 /L) 	 (27) 
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This situation is illustrated in Fig. 3a; each symmetry axis that 

points along the cone of half angle a about the laboratory Z axis 

will have the same probability of occurrence. 

We seek a set of n rotations R 
1 1 	2 2 (a ), R (a ), ... R (a ) and a 

n n 

weighting function w(a1,a2, ... a 
n 
 ) that will generate 

the ensemble in the Gaussian Uniaxial Model. That is, a weighting 	- 

function which des,cribes the probability that the molecular axis 

system for a member of the ensemble is related to the laboratory 

axis system by n rotations of a1,a2 ... an respectively. The 

in the Gaussian Uniaxial Model can be generated by the 

foHong three rotation scheme: a free rotation of a about the 

laboratory Z axis (by free rotation, we mean the weighting function 

does not depend on a); a Gaussian weighted rotation of 	about the 

laboratory Y axis; a free rotation of y about the laboratory Z axis. 

The weighting function for these three rotations is given by Eq. 

(27). Pq discussed in references (5) and (6) (see Appendix A), 

the density of states is easy to calculate given WG, 	and E1  

Typically, E 11 is along the laboratory Z axis and E 1  is along the 

laboratory X axis (or any axis in the XY plane), which means 

D1  (O,A.) and Dl(O,tG)  are [in the notation of reference (6) - 

see Appendix A] 

D11 °'G 
	DO[O,wG] 
	

(28) 	 - 

and 

Dl ( O , LG ) 	D[O,wG] 	 (29) 

DIJ ( e , LG ),  Dj ( O , LG ),  TII(G) and Tl(G)  for several values of 

are plotted in Fig. 4. 
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In Fig. 5, we plot the dichroic ratio, R, as calculated 

from Eq. (19), versus the angle between the symmetry axis of 

the particle and the transition moment. Note that perfect 

ordering, IG 	0.0, corresponds to R = 2cot2 c, as shown in 

the Theory section. For perfect ordering, R can assume any 
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positive number; but as A increases, R becomes bounded on 

both sides. This fact can be useful in determining an upper 

limit for A in many instances. In Fig. 6, we plot c versus 

for various values of R. If R < 1, c ranges from the 

perfect order value derived from Eq. (26) to 900  and, if 

R > 1, c ranges from the perfect order value to 0 0 . Fig. 6 

allows one again to infer limits on A G 
 given a measurement 

of R, because c cannot fall outside the range 0 0  to 90 0 . 

B. Rhodopseudomonas sphaeroides in Stretched Films 

Two recent papers by Rafferty and Clayton (17,18) describe the 

linear dichroism spectra of reaction centers of Rps. sphaeroides 

in both stretched and unstretched films. The reaction center 

particles contain i  bacteriochiorophyll a (BChl a) molecules 

and 2 bacteriopheophytin a (BPh a) molecules which all contri-

bute to a complicated absorption spectrum (19). We choose to 

study the 860 nm transition because it is believed to be a pure 

transition of P860, which is a BChla dimer that functions 

as the primary electron donor in Rps. sphaeroides (20). 

We assume, as did Rafferty and Clayton (17,18) , that the 

reaction center partic1es possess an axis of symmetry which 

tends to align with the stretch direction. As a first 

approximation, this assumption is isomorphic to the Gaussian 

Uniaxial Model; we take the width of the Gaussian distribution 
of particle orientations within 

their stretched film to be 
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At 860 nm, Rafferty and Clayton (17,18) measure 

R = 2.28 which means c < 43 0 . Furthermore, A ( 1.0 

radian (see LG 	1.0 curve in Fig. 5). We can narrow 

the limits on A further by considering the value of R 

at a different wavelength. At 597 nm, they measure 

R = 0. 148; if we assume this to be a pure transition, we 

have a new limit: A S < 0.75 radians. In reality, the 

597 nmtransition is not a pure transition, but this 

means that the 597 nm linear dichroism must contain at least 
one component whose R value 
is not greater than 	 0.148. Therefore, the 

limit of 0.75 radians on A is an upper limit because it is based 

on the conservative assumption that the 597 nm transition is a 

pure transition. Rafferty and Clayton (17,18) did 

experiments on films that were stretched to different ex-

tents. At 860 nm in one such film, they determined R to 

be as high as 2.50. An R of 2.50 means that E must be 

less than 42 0 . Returning to the film where R = 2.28, we 

find that imposing the restriction of c < 142 0  requires 

that A must be greater than 0.30 radians. The final 

most conservative limits on A are 

0.30 radians < A S < 0.75 radians 	 (30) 

-- 	I 

From Eq. (25), the limits of c are 

29 0  < c < 142 0 	 (31) 
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Perhaps the Gaussian Uniaxial Model is an oversimplification, 

because it neglects the anisotropy of the unstretched film; i.e., 

it neglects the possibility that the particle symmetry axes lie 

in the plane of the unstretched film. We will therefore consider 

a more sophisticated model. Instead of giving equal weights to 

all symmetry axes that lie on the circle in Fig. 3a,we can use the 

model illustrated in Fig. 3b where all symmetry axes that lie on 

an ellipse have equal weights. Upon stretching, it is more likely 

that the tilt of the particle symmetry axis away from the labora-

tory Z axis is in the plane of the film than out of the plane of 

the film. Therefore, the ratio of the ellipse axes Ae = b/a is 

less than 1. We call this model the Elliptical Gaussian Uniaxial 

Model; it can be generated by the same rotations as the Gaussian 

Uniaxial Model but the product of the weighting functions is now 

WEG 	w(,y) 	exp(-X2/L) 	
(32) 

where 

-1 	c 2 	2 1/2 
x 	tan [tan( 	+ sin y) 	] 	 (33) 

e 

Despite the loss of axial symmetry in the laboratory reference 

frame, D11  (OAte) and D1 (OLAe) are still axially symmetric. 

T11 	and Ti(LAe) for e = 1.0 (Gaussian Uniaxial Model) 

and A e = 0.2 are plotted in Fig. Lc. We can pick a trial value 

for A e and analyze the linear dichroism data just as we did with 

the Gaussian Uniaxial Model. We find that the limits on c in 

equation (31) are independent of 
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Rafferty and Clayton (17,18) calculated c to be L0.8° 

by assuming that an extrapolated value of R = 2.68 at 860 nm 

corresponds to perfect order. This value falls within our 

limits but, if the extrapolation is invalid, the range of 

c in equation (31) provides amore realistic interpretation 

of their data. The question can be resolved by using - 

D11 (O,Ls) and D1 (O,L) to analyze other types of experiments 

and thereby pin down L. 

C. Rhodopseudomonas sphaeroides in Unstretched Films 

Rafferty and Clayton (17,18) also did some linear 

dichroism experiments on unstretched film containing 

reaction center particles of Rps. sphaerodes. We use a 
model similar to Rafferty and Clayton's (17,18) which assumes 

that the reaction center particle symmetry axis lies 

close to the plane of the film. However, the film is not 

perfectly ordered; some of the symmetry axes are not in 

the plane of the film but are tilted out of the film by an 

angle . The partial ordering is thus described by a 

probability distribution in 	for which we use a Gaussian 

w() =exp(_2/L) 
	

(37) 

where A 	 is the width of the Gaussian distribution.
us  

The Gaussian Uniaxial Nodel is not appropriate here. 

But, using the coordinate system shown in Fig. 3b, this 

ensemble can be generated with the following three rotation 

scheme: a free rotation of a about the laboratory Z axis; 

- 	-I 
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a Gaussian weighted rotation of 0 about the laboratory 

Y axis; a free rotation of y about the laboratory X axis. 

The product of the weighting functions for these rotations 

is given by Eq. (37). 

To observe linear dichroism in unstretched films, the 

experiment must be done with a light propagation direction 

that is not normal to the plane of the film. Fig. 7. 

shows the geometry employed by Rafferty and Clayton (17,18), 

Within the boundaries of the film E 11 	(0,0,1) and E1  

(sini,cosi 3 O) where ip 	37.3 1 . In the notation of 

reference 6, 

and 

D (O , 1 	,U5) 	DZY [ 3,90 0,wJus  

 

Di(O,Lius) T11  (tus),  and T1 ( Lus )  for several 

values of A 	are plotted in Fig. 8. us 
From the range of c given in Eq. (32), we can determine 

a range for A; that is, a linear dichroism analysis will 

tell us how well the reaction center particles orient in 

unstretched films. Rafferty and Clayton (17,18) measured 

a dichroic ratio of R = 1.14 at 860 nm. From Eq. (19), we 

find that the width of the Gaussian distribution in 	is 

restricted to the range 

0. 145 radian < A 	 ' 0.90 radian 	 (140)us 
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In the next two sections, we consider some additional 

systems where 	experiments have been done that 

determine A to within a small range. 

D.Rhodopseudomonas viridis and Rhodopseudomonas palustris 

ina Magnetic Field: The Density of States 

Both Rps.. viridis cells and Rps. palustris cells are 

cylindrical in shape (21), and they can be aligned in a 

magnetic field such that the long axis of the cylinder 

is perpendicular to the alignment field (22). Inside the 

cells are cylindrical membrane shells (21) containing 

bound chromophores. We choose the molecular axis system 

to have its z axis along the membrane normal. We choose a 

model which assumes 	 that the chromophores are 

bound in a fixed relation to and distributed around the 

membrane norma], an assumption which is consistent with experi-
ments. In this model, the molecular reference frame is 
axially symmetric. Furthermore, the angle c will be the 

angle between the membrane normal and the transition 

moment. 

In this system, we cannot use the Gaussian Uniaxial 

Model as an approximation. The reason is that the z axis 

of the molecular axis system does not align preferentially 

along the magnetic field. It is the whole cells that are 

oriented by the magnetic field; the ensemble of :1ecular 

axis systems distributed throughout the membrane; is 

oriented as a consequence. As a model, we assume that 

I 
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the long axis of the cylinder representing the cell is 

perpendicular to the alignment field and that deviations 

from perfect order are due to deviations of the membranes 

• 	 from perfect cylinders. The angle between the actual 

membrane normal and the hypothetical perfect cylinder 

normal is assumed to have a Gaussian distribution with 

width t. 	 RV for Rps. viridis and A for Rps. 

palustris.) Calculation of D11 (O,)  and D1(e,) 
 is 

complicated by the morphology; briefly, using the coordinate 

system shown in Fig. 9 we found that a four rotation 

scheme ZXYZ (angles a,,y, and x)  with weighting function 

exp(- 2 /L) will generate this ensemble (see 

reference 5 or 7 for details). The first two rotations 

locate the molecular axis system with respect to the 

cylindrical membranes, and the last two rotations locate 

the cylinder with respect to the laboratory axis system. 

Note that the last two free rotations require that the cyl-

inder is perpendicular to the alignment field. The 

density of states for E 11  along the alignment field and 

perpendicular to the alignment field are 

zxYz 
D11 ( O , Lc ) 	D39o[O,Wc] 	 S 	 ( 141) 

and 

D1 ( O , Lc ) 	D[O,wc] 	 ('t2) 

T11 (Lc)  and T1(tc)  are plotted in Fig. 10. 
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In reference 7, we used D11 	and Dj(O,Lic)  to 

simulate the EPR spectra of the triplet state of the primary 

electron donors in both Rps. viridis and Rps. palustris. 

We were able to calculate the orientation of the principal 

magnetic axes with respect to the merribrarie normal. As a 

byproduct of our calculation, we found that 

are restricted to small regions: 

0.3 radian Z  A RV 
Z 0.5 radian 	 (43) 

and 

0.4 radian < A P < 0.6 radian 	 (L) 

We can now make use of this information for 	linear 

dichroism calculations on the same systems. 

Rhodopseudomonas viridis Linear Dichroism 

The long wavelength absorption maximum in whole 

cc1 of Rps. viridis is due to antenna BChl b molecules 

Because these molecules do iiot all have the same orientation 

with respect to the membrane normal, the long wavelength 

absorption does not correspond to a single molecular species 

with a unique orientation. This problem can be circumvented 

by treating absorption changes induced by unpolarized 

light and measuring EA11  and LA1  with light polarized 

parallel and perpendicular to the alignment field respec-

tively. For light induced absorption changes, there is a 

pure transition at 970 nm 	 due to the oxidation of 

the reaction center BCh1 b dimer P970, 
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which functions as 	the primary electron donor in Rps. 

viridis (2L). Lastly, we note that the same formulas that 

apply to R and L in the Theory section also apply to LR and 

AL defined using IA arid LA1 . 

Paillotin et al. (13) have measured the absorptioi - - 	change linear 
dichroism of magnetically aligned whole cells of Rps. 

viridis and found AL = -0.42 at 970 nm. From Eq. (23) and 
the limits 
of A RV  in Eq. (42), LL cannot be less than -0.33, which 

results in a discrepancy with experiment. There are two 

Dossible explanations: 1) The EPR experiments of Frank et al. 

.7) where A RV  was determined were done under experimental 

conditions different from those of the linear dichroism 

experiments which may affect 	2) Perhaps the cell 

morphology is not adequately defined by our model. 

The large negative value for AL indicates that c is 

pibab1y close to 90 0 . The ideal experiment to do next 

is magnetophotoselection (75) on P970; this experiment 

combined with the results in reference 7 would yield an 

independent value of c. 

Rhodopseudomonas palustris Linear Dichroism 

The only linear dichroism measurements reported 

for Rps. palustris have been in direct absorption (26,27). 

Although there are no isolated transitions due to a single 

molecular species with a fixed orientation with respect to 

the membrane normal, we will analyze the three absorption 
rds at 

590 nm, 800 nm, and 870 nm and interpret the results as an 
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average orientation of the transition moments contributing to 

those peaks. 

At 590 nm, 800 nm, and 870 nm, Breton measured dichroic 

ratios in magnetically aligned Rps. palustris of 0.59, 0.81 and 

0.80 respectively (26). From T 1 (L) and T1 (1) in Fig. 10, 

Eq. (19) and the range for A P , we find the following limits on 

the average angles 

0 < <c590> < 20 
	

(45) 

72 0  < <c800> < 81 

and 

710 < <c 870 > < 78 0 	 (47) 

In the next section, we use these ranges to investigatethe 

orientation of Rps. palustris in a flow method. 

E. 	Rhodopseudomonas palustris in a Flow System. 

?lorita and Miyazaki (27) have measured the linear dichroism 

of Rps. palustris oriented by a velocity gradient created in a 

flow system. In a flow system,.rod like particles such as Rps. 

palustris tend to orient such that the long axis of the rod is 

along a line of constant velocity of the flowing solvent (28). 

Because the flow system of Morita and Miyazaki (27) has a square 

cross section perpendicular to the flow direction, any tilt of 

the long axis away from the flow direction will move the long 

axis out of a line of constant velocity. We can therefore quali-

tatively analyze this flow system as a set of cells that tend to 

orient with the long axis of the cell collinear with the flow 

direction (see Fig. 11). We have not attempted a detailed 
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analysis of flow orientation; instead we introduce a Gaussian 

distribution for the angle between the long axis of the cell 

and the flow direction X  with width t. 

= (x) = exp( - x2 /4) 	 (48) 

To generate the flow system ensemble, we begin with the same 

first two rotations that were used with magnetic field alignment. 

The reason is that these rotations orient the molecular axis 

system with respect to the hypothetical perfect cylinders which 

means they are properties of the cell and not of the alignment 

method. Note that with the models we are using, A is unaffected 

by the alignment method. Three more rotations are necessary to 

orient the cylinder with respect to the laboratory axis system. 
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The three rotations are: 	 a free rotation 

of y about the laboratory Y axis; a 

rotation of x about the laboratory X axis weighted by the 
Gaussian function in Eqn. (48); and a free 
rotation of about the laboratory Y axis. This rotation 

scheme contains five rotations (ZXYXY) which makes the 

density of states very difficult to evaluate. We note, 

however that the fifth rotation is superfluous for the 

parallel density of states because it is a rotation about 

EU (see Fig. 11). Thus 

D11 0'p'tF 	D[O,wF] 

where 

wr(LIp,Ar) = exp(- 2 /L)exp(-x2 /L) 

Because the laboratory reference frame is axially symmetric 

and E is along the laboratory symmetry axis, we can11 

calculate T1 (t) from T11 (i) by use of equation (21). In 

this way we avoid the necessity of having to calculate 

Morita and Miyazaki (27) ireasur'cl 

dichroic ratios of 0.54, 1.27 and 1.2C 	L 590 rim, 800 nm, 



24 

and 870 nm respectivelyin flow oriented Rps. palustri6. 
We first set Ap to its lower 
limit of 0.4 radians; this limit corresponds to the urn- 

iting values in Eqs. (45) - (47) of <c 590 > = 200, <00> 

= 72 0 , and <6870> = 71 0 . Working backwards with equation 

(19), we find that A= 0.95 radians is consistent with 

these angles. This calculation reveals two important facts. 

First, because A P = 0.4 is a lower limit, A = 0.95 

radians is an upper limit. Second, the fact that one 

value reproduces all three angles indicates that the 

models are self consistent. Analagously, from the 

= 0.6 radianv limit, we find a lower limit on AF  of 

0.90 radians. In summary, the width of the Gaussian 

distribution in X,  which is a measure of the extent of 

orientation by flow method, is between 0.90 and 0.95 

radians. 

DISCUSSION 

We have used the density of states formalism to develop 

a new approach to the theory of linear dichroism. Although 

equivalent to theories that introduce the orientational 

distribution function p(0T,4t,pT),  our approach has several 

distinct advantages. Those advantages will be outlined in 

this section. 
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In our approach, we begin by calculating a density 

of states function that depends on A and then derive 

linear dichroism formulas that also depend on A. Previous 

authors have ignored the problem of calculating a distri-

bution function and have instead introduced parameters - 

like S into the linear dichroism formulas (1,2,13). 

Although the linear dichroism formulas in both cases 

are mathematically equivalent, knowledge of L determines 

the distribution function D(6,4,) while knowledge of 

S yields no such information. To see why this is the case, 

we will consider an experimental system where both the 

laboratory reference frame and the molecular reference 

frame are axially symmetric. 

In this example, a mathematically elegant approach 

to the introduction of order parameters like S is to 

expand P(O',',') in a,series of Wigner rotation matrix 

	

elements (3). Because of the axial symmetry 	the expan- 

sion reduces to an expansion in Legendre polynomials (3,4). 

P(6 1 = P(O') = E 	<P(cosO')>P(cosO') 	(52) 
£ 

where P , (cosO') and <PL(cosO')> are the £th Legendre 

polynomial and its ensembleaVerage, respectively. 

71 

P(cosO') 	= f P(cosO')P(O')sinO' dO' 	(53) 
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Following McBrierty, 

A() = A rt<P2 (cosO')>P2 (cosO') 3cos2p-l)+13 	(514) 

where 	is the angle between the polarized field and 

the symmetry axis of the laboratory. Because P 2 () 	- 

(3x2 -l)12, the parameter S is equal to <P 2 (cosO')>. 

Eq. (514) gives a mathematical interpretation of the S 

parameter; it is the coefficient of P 2 (cosO') when P(O') 

is expanded in a series of Legendre polynomials. If the 

expansion is slowly convergent, S will reveal almost 

nothing about P(e'). In contrast, the density of states 

approach represents D(O,L) with the few parameters infl. 

As shown in our examples, t can often be narrowed to a 

small range which thereby determines the distribution 

function to a small range. Stated another way, because 

D(O,i) = sinO'P(O') for our axially symmetric example, 

knowledge of L determines allof the moments of the expansion 

in Eq. (52) by 

11 

<PL(cosO)> = I P(cosO')D(O',L) dO' 	 (55) 

The density of states formalism provides an explicit 

formalism for direct determination of D(O,,A) from an 

arbitrary model. Previous attempts by Fraser (8-11) and 

Beer (12) 	 to interpret linear dichroism 

have relied on simple models. One such model considers a 
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sample to have a fraction f of the molecules perfectly 

ordered and the remaining fraction 1-f randomly ordered. 

The dichroic ratio is then given by 

R 	2fcos 2 c + (213)(1-f) 	 (56) 
fsin 2 c + (213)(1-f) 

Because this model is probably not realistic, f is a 

relatively meaningless parameter. In contrast, our 

parameter derived from more realistic models reveals more 

details about the system. Also, it is straightforward 

to extend our techniques to include more complicated 

models. For example, instead of using Gaussian weighting 

functions, a rotation could be weighted by a potential 

energy function 

w() 	exp[-E(,)/kt] 
	

(57) 

where E(,L) is energy as a function of , k is Boltzmann's 

constant, and T is temperature. In principle, several 

experiments on a system could be used to develop a detailed 

explanation of the partial ordering. 

Finally, the fact that we average orientations in the 

molecular axis system instead of the laboratory axis system 

leads to simplification of the formulas in many instances. 

When both the laboratory reference frame and the molecular 

reference frame are axially symmetric, P(O') depends only 

on 0' and D(0,A) depends only on 0. But, when axial 
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symmetry in the laboratory reference frame is lost, 

P(6 1 ,4) depends on two angles, 0' and 4', which are the 

spherical angles of the molecular reference frame symmetry 

axis in the laboratory axis system. In contrast, D(O,L) 

still depends only on 0 because it is a distribution function 

in the axially symmetric molecular reference frame. We 

can, therefore, consider complex models with nonaxially 

symmetric laboratory reference frames while still in the 

realm of axial symmetry. An example is the Elliptical 

Gaussian Uniaxial Model for which there is no symmetry axis 

in the laboratory reference frame; we were still able to 

use an axially symmetric analysis. When all axial symmetry 

is lost, P(0',',') depends on all threeangles; but 

never depends on more than two angles, because 

it takes only two angles to specify the orientation of the 

polarized field in the molecular axis system. In conclusion, 

by working in an axis systein fixed with respect to the 

transition moment, we gain computational efficiency. 



29 

APPENDIX A 

In reference 6, we give some simple formulas and 

techniques for calculating density of states functions. 

• 	 A brief summary of that approach is given here. The 

notation for a density of states is 	 - 

D 	[e,4),wJ 	 (A-i) 

where RS is the rotation scheme (i.e., the number and 

order of rotations required to generate the ensemble of 

molecular axis systems), v is the type of field vector 

[v 	1 for E 	(cosi,sini 3 O), v=2 for E = (cosi 3 O,sini'), 

and v3 for E = (O,cost,sin)], jJ is the angle in the 

type of field vector indicated by v, e and 	are the 

spherical angles of the field vector in the molecular 

axis system, and w is the weighting function. Note that 

D , [O,4,w] is a function of the weighting function w; 

that is, DRS 	is a functional. We denote this fact 

with square brackets. 

When one is faced with a density of states calculation, 

the procedure is as follows: (1) determine RS, the number 

and order of rotations required to generate the ensemble, 

(2) determine W(cy.. .), the product of the weighting 

functions, and (3) determine v and 	for the field vector. 

The formulas for rotation schemes with 3 or 4 rotations 

are given in reference (6). 
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APPENDIX B 

Linear dichroism is reported in a variety of forms. 

Here, we will relate several of those forms to R = A 11 /A1  

or L = (A11 -A1 )/A which we have used in this paper. 

After separate measurements of A11  and A1  , the 

following four definitions of linear dichroism are sometimes 

found 

A -A 
LD 	I - R-1 

1 	A11 +A1  - 	 (B-i) 

A 
LD = 	-A I - R-i 

2 	P1+2A1 - 	 (B-2) 

A -A 
LD 	 I 	- 2(R-1) 

3 	(A11+A1) - R+l 	
(B-3) 

LD = 
	1-A1 	

3(R-1) 
(p.f2A) 	R+2 	

(B-n) 

The dichroic ratio R is related to these four forms by 

1+LD1 
R = 1LD 	 -  

l+2LD2  

R = 1-LD2  

2+LD3 

R = 2-LD 3   

3+2LD4 

R - 3-LD4   

Alternatively, A11 -A1  can be measured by lock-in techniques 

(14-16) and normalized by dividing by A 
r 	unpol 

or A 	, which is 
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the absorbance of the oriented sample using unpolarized 

light. We have already discussed normalization of A ll  -A1  by A, 

which gives L. Aunpol  can be written in terms of A11  and A1 . 

Following Zbindin, (2) 

A 	A11  cos 2 x + A1 sin 2 X 

where A  is absorbance due to a field E whose polariza-

tion makes an angle X  with E 0 . Integrating over X,  we 

find 

A unpol 	+ A1 ) 

There fore 

Aunpoi 	A1 +A1) 
	LD 	 (B-li) 

and we can relate this form to R by Eq. (B-7). 
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FIGURE CAPTIONS 

Relation between the laboratc 

(Labeled X,Y, and Z) and the 

(labeled x,y, and z). 0' is 

Euler angles (0',', and ') 

axis system to the molecular 

ry axis system 

molecular axis system, 

one of the three 

that relate the laboratory 

axis system. 

-; 	 I 

Arrangement of p  and E in the molecular axis 

system. 0 and 4 are the spherical angles of E. 

a) 	Schematic representation of the Gaussian Uniaxial 

Nodel. 	is the half angle of the cone centered on 

the laboratory Z axis. 

b) 	Schematic representation of the Elliptical 

Gaussian Uniaxial Model. x is the angle between the 

laboratory Z axis and the line in the YZ plane that 

points to the ellipse: a and b are the major and 

minor axes of the ellipse. 

	

. 	a) 	D11  (6,LG) for the Gaussian Uniaxial Model for 

several values of A in radians. 

Dj(O,LG) for the Gaussian Uniaxial Model for 

several values of t in radians. 
G 

T11 	and T1 	for the Gaussian Uniaxial 

Model 	e 	
1.0) and for the Elliptical Gaussian 

Uniaxial Model with Ae 	0.2. 
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5. 	Dichroic ratio R versus angle c between the transition 

moment ji and the syrmnetry axis of the molecular 

reference frame. The plots are for the Gaussian 

Uniaxial Model with several values of LGin  radians. 

	

6. 	Angle c between the transition moment p and the 

symmetry axis of the molecular reference frame 
versus tG  in radians. 
The plots are for the Gaussian Uniaxial Model with 

several values of the dichroic ratio R. 

	

7. 	Propagation 	of E1  through unstretched films as 

in the experimental set up of Rafferty and Clayton (17 5 18). 

	

8. 	a) 	D11  (O,&) for unstretched films for several valuesus  

of 	 in radians.us  
Dl(O,AUS) for unstretched films for several 

values of A 	 in radians.us  

TI(Us) and  Tj(Us)  for unstretched films. 

	

9. 	Definition of the angles and axis systems for Rps. 

viridis and Rps. palustris in a magnetic field. The 
alignment field 

is along the Z axis of the laboratory axis 

system (XYZ). E is parallel to HA, 	and EL is
11 

perpendicular to HA. is the angle between the 

normal to the membrane fi (fi is also the z axis of the 

molecular axis system) and the hypothetical normal to 

a perfect cylinder N. 
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T11 () and Ti(Ec)  for Rps. viridis and Rps. paiustris 

in a magnetic field. 

Definition of the angles and axis systems for flow 

oriented Rps. palustris. The flow direction is along 

the Y axis of the laboratory axis system (XYZ). E is 

parallel to the flow direction and & is perpendicular 

to the flow direction. 	is the angle between the 

membrahe normal fl (fi is also the z axis of the molecular 

axis system) and the hypothetical normal to a perfect 

cylinder N. x is the angle between the flow direction 

and the long axis of the cylinder L. 
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