Lawrence Berkeley National Laboratory

Recent Work

Title

MEASUREMENT OF THE CIRCULAR POLARIZATION CORRELATION IN PHOTONS FROM AN ATOMIC CASCADE

Permalink

https://escholarship.org/uc/item/3sg8x2z9

Author

Clauser, John F.

Publication Date

1975-12-01

MEASUREMENT OF THE CIRCULAR POLARIZATION CORRELATION IN PHOTONS FROM AN ATOMIC CASCADE

John F. Clauser

December 1975

Prepared for the U. S. Energy Research and Development Administration under Contract W-7405-ENG-48

For Reference

Not to be taken from this room

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

Measurement of the Circular Polarization Correlation in Photons from an Atomic Cascade*

John F. Clauser[†]

Materials and Molecular Research Division
Lawrence Berkeley Laboratory
and
Department of Physics
University of California
Berkeley, California 94720

December 1975

ABSTRACT

The results of an experiment are reported which measured the circular polarization correlation of photons emitted in the $8^1P_1 \rightarrow 7^3S_1 \rightarrow 6^3P_0$ cascade of atomic mercury. The results appear to be in general agreement with the predictions of quantum theory. They are compared with the predictions by several inequalities derived for various alternatives to quantum theory.

Polarization correlations (PC's) have been important to the study of the foundations of quantum mechanics ever since the introduction by Bohm⁽¹⁾ of a <u>Gedankenexperiment</u> to illustrate the EPR paradox. Relevant experimental evidence, albeit scant, was first discussed by Bohm and Aharonov, ⁽²⁾ in an effort to refute an hypothesis originally considered by Furry. ⁽³⁾ More recently, the discussion of Bell's theorem ⁽⁴⁾ has brought PC measurements into even stronger focus. None the less, the only PC measurements heretofore performed have used linear polarizations; circular PC measurements have been largely ignored. In this Paper we report measurements of both linear and circular PC's, and compare these with the predictions made by various alternatives to the usual quantum theory.

The measurements were made on photon pairs generated in the ${}^{1}P_{1}$ \rightarrow ${}^{7}S_{1}$ \rightarrow ${}^{6}P_{0}$ cascade of 202 Hg. The wavelengths of these transitions were λ_{1} = 5676Å and λ_{2} = 4046Å; the excitation was by electron impact. The excited atoms were viewed by two symmetrically placed optical systems each containing a rotatable linear polarizer, a wavelength filter, and a single photon detector (see Fig. 1). In a previous publication ${}^{(5)}$ a more complete description of the apparatus was given, along with the comparison of the linear polarization results with a generalization of Bell's inequality. ${}^{(6)}$ For the circular polarization runs, the basic apparatus was modified by installation of quarter-wave plates ahead of the linear polarizers. The rate of coincidence counts R (ϕ_{1},ϕ_{2}) for two single photon detections was measured as a function of the angles ϕ_{1} and ϕ_{2} between the orientations of the inserted linear polarizers and the elec-

tron-beam axis. It was compared with the coincidence rate R_0 measured with both polarizers removed but with the quarter-wave plates still in place. If we denote by ξ_1 and ξ_2 the retardations of the quarter-wave plates, then the quantum-mechanical prediction for the ratio of these rates is given by

$$R(\phi_{1},\phi_{2})/R_{0} = R (\phi_{1} - \phi_{2})/R_{0} = \frac{1}{4} (\epsilon_{M}^{1} + \epsilon_{m}^{1}) (\epsilon_{M}^{2} + \epsilon_{m}^{1}) + \frac{1}{4} (\epsilon_{M}^{1} - \epsilon_{m}^{1})$$

$$\times (\epsilon_{M}^{2} - \epsilon_{m}^{2}) F_{2} \cos (\xi_{1} - \xi_{2}) \cos 2 (\phi_{1} - \phi_{2}). \tag{1}$$

Here ε_{M}^{i} (ε_{m}^{i}) is the transmission of the ith polarizer for light linearly polarized parallel (perpendicular) to the polarizer axis, and F_{2} = 0.874 is a function of the detector solid-angles and the abundances of residual 199 Hg and 201 Hg in the source lamp, discussed previously.

The quarter-wave plates consisted of bars of compressed commercial grade quartz. The compression directions of both of these were perpendicular to the electron beam and optic axis. In an attempt to maintain constant stress, the compression was applied by hydraulic slave cylinders. The master cylinders were then loaded by weights until 1/4-wave retardation was obtained at the wavelength of the associated wavelength filter. However, considerable improvement in the stability, uniformity, and accuracy of these is undoubtedly possible; a drift \pm 8.5° was typical for each plate over the necessarily long periods between calibrations. RESULTS AS A FUNCTION OF ϕ_1 - ϕ_2

Equation (1) implies that for $\xi_1 = \xi_2 = 90^{\circ}$ the predictions for arbitrary orientations of the linear polarizers are identical to those for the linear PC measurements described earlier, in which the quarter-

wave plates were absent, i.e. $\xi_1 = \xi_2 = 0$. Data were taken at various relative angles $\phi = \phi_1 - \phi_2$ between the inserted polarizers, averaged over rotations of the pair. The results, shown in Fig. 2, were integrated over a running time of more than 90 hrs. Unfortunately, the marginal quarter-wave plate stability prevents highly accurate comparisons with the quantum-mechanical prediction. If one assumes the worse case systematic retardation error to have prevailed for the experiment, i.e. $\xi_1 - \xi_2 \approx 19^\circ$, one calculates from Eq. (1) the prediction plotted as the solid line on Fig. 2. Here we have used the measured average polarizer efficiencies for these runs $(\varepsilon_{\rm M,m}^1 \approx 0.975, 0.011)$ and $(\varepsilon_{\rm m,m}^2 \approx 0.972, 0.0084)$. The approriate generalization of Bell's inequality can be written (ε_1^6)

$$\delta = |R(22.5^\circ)/R_0 - R(67.5^\circ)/R_0| - 1/4 \le 0. \tag{2}$$
 For comparison with the present data we have $\delta_{\rm expt.} = -0.015 \pm 0.025$, and $\delta_{\rm QM} = 0.002$. The retardation errors were evidently sufficiently large for this system that the quantum-mechanical predictions differ little from the generalized Bell inequality prediction. No actual violation of this inequality can be sought here. None the less, the predictions by Eq. 1 for this case appear at least to be approximately verified. FURRY'S HYPOTHESIS AND STATE VECTORS OF THE SECOND KIND

The quantum-mechanical predictions for the system are difficult to understand because they require a nonlocal interference between the separated photons. A natural alternative is to suggest that the interference terms weaken and eventually vanish as the systems become remote from each other. Such an hypothesis was first considered by Furry, (3) and it has been reconsidered frequently since then. Bohm and Aharonov (2) exploited the results of Wu and Shaknov, and subsequently

Clauser⁽⁷⁾ exploited the results of Kocher and Commins to refute this hypothesis. For the above system, Clauser⁽⁷⁾ showed that the following inequality is valid if Furry's hypothesis holds:

$$\frac{R(0^{\circ})}{R(90^{\circ})} \ge \frac{(\varepsilon_{M}^{1} + \varepsilon_{m}^{1}) (\varepsilon_{M}^{2} + \varepsilon_{m}^{2}) - \frac{1}{2} (\varepsilon_{M}^{1} - \varepsilon_{m}^{1}) (\varepsilon_{M}^{2} - \varepsilon_{m}^{2})}{(\varepsilon_{M}^{1} + \varepsilon_{m}^{1}) (\varepsilon_{M}^{2} + \varepsilon_{m}^{2}) + \frac{1}{2} (\varepsilon_{M}^{1} - \varepsilon_{m}^{1}) (\varepsilon_{M}^{2} - \varepsilon_{m}^{2})} = r_{F}.$$
(3)

On the other hand, Eq. (1) predicts

$$\frac{R(0^{\circ})}{R(90^{\circ})} = \frac{(\varepsilon_{M}^{1} + \varepsilon_{m}^{1}) (\varepsilon_{M}^{2} + \varepsilon_{m}^{2}) - (\varepsilon_{M}^{1} - \varepsilon_{m}^{1}) (\varepsilon_{M}^{2} - \varepsilon_{m}^{2}) F_{2} \cos(\xi_{1} - \xi_{2})}{(\varepsilon_{M}^{1} + \varepsilon_{m}^{1}) (\varepsilon_{M}^{2} + \varepsilon_{m}^{2}) + (\varepsilon_{M}^{1} - \varepsilon_{m}^{1}) (\varepsilon_{M}^{2} - \varepsilon_{m}^{2}) F_{2} \cos(\xi_{1} - \xi_{2})} = r_{QM}.$$
(4)

For $\xi_1 \approx \xi_2$, Eq. (4) is incompatible with (3). Moreover, this is true whether or not we have $\xi_1 = \xi_2 = 0$ or $\xi_1 = \xi_2 = 90^\circ$.

The values of the linear polarization correlation presented earlier $^{(5)}$ can be used to evaluate $R(0^{\circ})/R(90^{\circ})$ for the $\xi_{1,2}^{=0}$ case, and the values from Fig.2 can be used for the $\xi_{1,2}^{=0}$ case. Such a comparison is made in Table 1. As usual, all data are averaged over common rotations of the polarizer pair. In both cases, the hypothesis is clearly refuted.

Under another guise, Furry's hypothesis was recently reconsidered by Jauch and Selleri. (8) They defined "state vectors of the second type" to be those requiring such nonlocal quantum-mechanical interference. They hypothesized that systems described by such state vectors do not exist. To test this, Garrucio and Selleri (9) recently proposed another inequality. If one expands the operators appearing in their expression as a sum of projection operators, it can be written as

[R(45°, - 45°) + R (-45°, 45°) - R(45°, 45°) - R(-45°, - 45°)
+R (RHC, LHC) + R (LHC, RHC) - R(RHC, RHC) - R(LHC, LHC)
+R (0°, 90°) + R(90°, 0°) - R(0°, 0°) - R(90°, 90°)]
$$/R_0 \equiv \Delta$$
 (5)

RHC and LHC refer to circular polarizations measured with the quarter-wave plates installed (ξ_1 = ξ_2 = 90°). Their inequality then may be written

$$\Delta_{\mathbf{F}} \leq 1 \tag{6}$$

if Furry's hypothesis holds, whereas the usual quantum-mechanical prediction requires $\Delta_{QM} \approx 3$. Data⁽¹⁰⁾ at these orientations are presented in Table 2. Inequality(6) makes predictions clearly at variance with these data.

CONCLUSION

The circular polarization correlation of the ${}^{8}^{1}P_{1} \rightarrow {}^{7}^{3}S_{1} \rightarrow {}^{6}^{3}P_{0}$ cascade was found to be in reasonable agreement with theory, when one considers the quality of the retardation plates employed. However, it was of insufficient magnitude to violate (2). None the less, the measurement is interesting since it further constrains possible counterexamples to Bell's theorem of the type discussed by Clauser and Horne. (4) Moreover, data from the linear and/or circular correlations can easily rule out the various predictions by Furry's hypothesis. In a sense, this latter conclusion is not surprising since Clauser and Horne (4) showed that (2) follows from a generalization of Furry's hypothesis to include arbitrary (not necessarily quantum-mechanical) mixtures. Inequality (2) has been violated by at least two different experiments. (5,6)

REFERENCES AND FOOTNOTES

- * Work supported by the Energy Research and Development Administration.
- [†]Present Address: M Division, Lawrence Livermore Laboratory, Livermore, California 94550
- 1. D. Bohm, Quantum Theory (Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1951), p. 614.
- 2. D. Bohm and Y. Aharonov, Phys. Rev. <u>108</u>, 1070 (1957).
- 3. W. H. Furry, Phys. Rev. 49, 393 and 476 (1936).
- 4. J. S. Bell, Physics (N.Y.) 1, 195 (1965), see also J. F. Clauser and
 M. A. Horne, Phys. Rev. D 10, 526 (1974) and references therein.
- 5. J. F. Clauser, (to be published).
- J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. <u>23</u>, 880 (1969); S. J. Freedman and J. F. Clauser, Phys. Rev. Lett. <u>28</u>, 938 (1972).
- 7. J. F. Clauser, Phys. Rev. A <u>6</u>, 49 (1972).
- 8. J. M. Jauch in <u>Foundations of Quantum Mechanics</u>, <u>Proceedings of the International School of Physics' Enrico Fermi, Course XLIX</u> edited by B. d'Espagnat (Academic, N.Y. 1971), p. 20; F. Selleri <u>ibid</u> p. 398.
- 9. A. Garuccio and F. Selleri, preprint.
- 10. Negative entries in this table are due to the large background of accidental coincidences.

Table 1. Values for Inequality (3)

ξ ₁ ,ξ ₂	R(0°)/R ₀	R(90°)/R ₀	$\mathbf{r}_{\mathbf{F}}$	\mathbf{r}_{QM}	rexpt.
0°	0.010±0.015	0.468±0.020	>0.351	0.082	0.021±0.033
≈ 90°	0.070±0.022	0.404±0.034	<u>≥</u> 0.347	0.011	0.017±0.057

Table 2. Values for Garuccio - Selleri Inequality

	Orien	tation		Integration Time
olarization	$^\phi 1$	$^{\phi}2$	$R(\phi_1,\phi_2)/R_0$	(sec)
	0°	0°	0.011±0.043	10000
	90°	90°	0.085±0.048	9600
	90°,	0°	0.454±0.075	9600
linear $\xi_1 = \xi_2 = 0$	0°	90°	0.399±0.066	9600
1 2	45°	45°	-0.005±0.041	9600
	-45°	-45°	-0.022±0.045	9800
	45°	-45° ·	0.532±0.79	9400
. (-45°	45°	0.409±0.072	9800
.:	R	R	0.460±0.100	10000
ircular =90° ±8.5°	L	L	0.347±0.072	10400
$=90^{\circ} \pm 8.5^{\circ}$	L	R	0.035±0.049	10200
	R	L	0.070±0.061	9800

FIGURE CAPTIONS

- Fig. 1. Diagram of the Apparatus. Upper drawing depicts collimating optics, wavelength filters, quarter-wave plates, and source lamp containing electron gun and ²⁰²Hg vapor. Lower drawing shows rotatable polarizer assemblies and photomultipliers. Polarizers are removed from optical path by folding them about hinge points.
- Fig. 2. Coincidence rate, as function of relative polarizer orientation angle $\phi=\phi_1-\phi_2$, normalized to coincidence rate with polarizers removed.

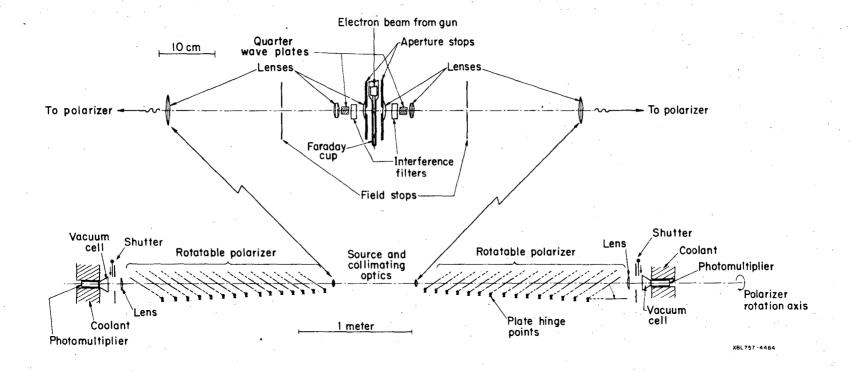


Fig. 1

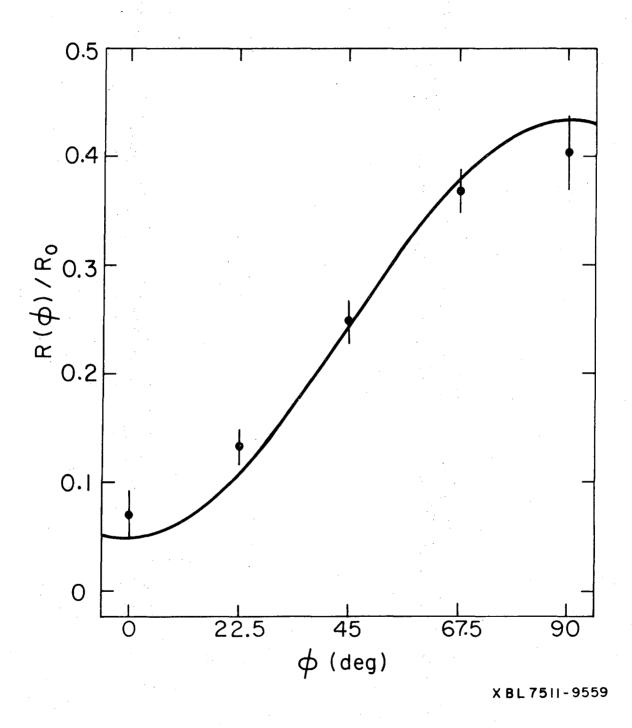


Fig. 2

-LEGAL NOTICE-

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

TECHNICAL INFORMATION DIVISION LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720