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ABSTRACT OF THE DISSERTATION

Neural Network Based Analysis of Resting-State Functional Magnetic Resonance Imaging
Data

by

Lebo Wang

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, September 2020

Dr. Xiaoping P. Hu, Chairperson

Functional magnetic resonance imaging (fMRI) measures brain activity through

the blood-oxygen-level-dependent (BOLD) signal, which has been widely used to study the

human brain in neuroimaging studies. Resting-state fMRI has been acquired to study func-

tional connectivity between brain regions without any specific tasks being involved during

the scan. Raw fMRI data, a time series data with three-dimensional images in stereotaxic

space, provide rich information related to neural activities. Based on recurrent neural net-

works (RNNs), the temporal dynamics behind the brain network has been characterized.

To address the functional connectivity between spatially distant regions within/across func-

tional networks relying on regions-of-interest (ROIs) based fMRI data, we propose two deep

learning architectures for fMRI analysis. First, Convolutional RNN (ConvRNN) has been

introduced with convolutions for spatial feature extraction on ROI-based fMRI data. Local

interactions among ROIs from the same functional network have been extracted, and tem-

poral features have been processed by the RNN-based architecture. Better classification

performance has been achieved over previous studies. The in-place visualization based on

vi



ConvRNN reveals the informative regions related to individual identification, leading to the

same conclusions from previous studies. Second, we introduce a connectivity-based graph

convolution network (cGCN) architecture for fMRI analysis. fMRI data are represented as

the k -nearest neighbors graph based on the group functional connectivity, and spatial fea-

tures are extracted from connectomic neighborhoods through Graph Convolution Networks.

We have demonstrated our cGCN architecture on two scenarios with improved classification

accuracy. cGCN on the graph-represented data can be extended to fMRI data in other data

representations, which provides a promising deep learning architecture for fMRI analysis.
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Chapter 1

Introduction

Functional MRI (fMRI) has been playing an important role in the neuroimaging

study. It measures brain activity by detecting changes associated with the blood-oxygen-

level-dependent (BOLD) signal. Resting-state fMRI (rs-fMRI) has been widely used to

investigate the intrinsic functional architecture of the brain in the absence of explicit tasks.

The temporal correlation of low frequency fluctuations within different brain regions has

manifested the functional connectivity of the brain [15]. It has provided insight into the

functional architecture of the human brain and variability in behavior [48]. Researchers have

been developing analytical approaches with tremendous efforts for fMRI analysis, which

has facilitated our understanding of brain activity [57, 77, 102, 166]. It is also promising in

clinical applications to provide diagnostic and prognostic information based on fMRI scans

for neurologic and psychiatric diseases [98].

Deep learning has achieved astonishing success in the past decade in general data

analysis. It has emerged as the leading machine learning tool with top performance in
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almost every field. Deep learning architecture can solve complex problems based on raw

data with automatic feature extraction. And the end-to-end learning paradigm is deployed

by blurring the boundaries of complex processing pipelines to avoid feature engineering. To

benefit from powerful deep learning techniques, neuroimaging researchers across the world

have been entering the field and applying deep learning methodologies to a wide variety of

neuroimaging studies [57, 106].

The work in this thesis is directed at classification tasks with neural network mod-

els on rs-fMRI data. Rather than reapplying existing deep learning architectures to fMRI

data, we propose applying new neural network based architectures to study spatiotemporal

features behind fMRI data. We have achieved not only improved accuracy on neuroimag-

ing classification tasks, but also interpretable visualization on large-scale fMRI datasets.

Therefore, these deep learning architectures can provide us powerful models to study the

human brain with fMRI data from a new perspective.

The rest of this introductory chapter is organized as follows. The background

and motivation of this work is presented in Section 1.1. We summarize contributions of the

thesis in Section 1.2. Some research questions are proposed in Section 1.3. The organization

of the rest of this thesis is given in Section 1.4.

1.1 Background and Motivation

Many analytical approaches have been proposed for fMRI analysis. The initial

assumption is that the brain is stationary during the whole scan and each time acquisition

can be considered as an independent sample. Traditional approaches have been introduced
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to analyze fMRI data, including correlation-based methods [139, 159] and graph-based

methods [85, 99, 166]. Matrix factorization algorithms have also been adopted to decompose

the complex brain signals into orthogonal and independent components such as principal

component analysis (PCA) [5] and spatial independent component analysis (ICA) [12, 110,

157]. Even though static descriptions of functional connectivity (FC) have provided valuable

information related to human brains, dynamic FC investigations explore temporal changes

in neural activity underlying critical aspects of cognition and behavior [77]. Dynamic FC

patterns have been evaluated based on new approaches such as sliding-window analysis

[141], time-frequency analysis [20] and temporal ICA [151]. The spatiotemporal dynamic

pattern of brain activity behind fMRI data has been utilized to understand the spontaneous

BOLD fluctuations [107, 156].

Meanwhile, machine learning methods have been successfully applied for neu-

roimaging tasks. Decision trees have been applied to decode brain states with interpretable

results [137]. Support vector machines have been applied for the estimation of informative

spatial pattern [35], activation map extraction [97], and disease classification [86, 121]. The

spatiotemporal patterns and transition characteristics of fMRI data have been modeled by

the Gaussian hidden Markov model across human brains [25]. In recent years, deep learning

has become more popular in fMRI analysis. Along with its applications to different fMRI

tasks, it is also promising in obtaining satisfactory interpretations of fMRI data to realize

computer-aided diagnosis and accurate treatment [148].

Several data representations have also been adopted for fMRI data. Raw fMRI

data are originally in the volumetric representation. But when focusing on cortical surface
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and subcortical regions, fMRI data are given in the surface representation. To further reduce

the number of brain regions for analysis, regions of interest (ROIs) based analysis is often

performed. By selecting hundreds of ROIs and ignoring structured grids in the original data

representation, ROI-based analysis can provide substantial insight into the brain networks

with efficient computation compared with the whole-brain analysis [129]. For example, FC

analysis successfully measures the pairwise correlation between brain regions and reflect the

functional connectivity in the FC matrix. Therefore, nontraditional data representations

should account for brain networks beyond structured image grids.

This work aims to develop neural network based architectures for fMRI analysis.

Learning from traditional analytical methods and data representations, we propose to ex-

tract spatiotemporal features by reflecting the functional connectivity behind fMRI data

with the help of neural network models. For classification tasks, we obtain not only im-

proved performance, but also reasonable interpretation to gain deeper understanding from

fMRI data. We believe that our neural network models can provide large-scale analysis on

fMRI data, leading to accurate diagnosis and data-driven interpretation.

1.2 Contributions of This Thesis

We introduce deep learning techniques for large-scale fMRI analysis. Two neu-

ral network models have been proposed to extract spatiotemporal features from fMRI data

based on the Recurrent Neural Network (RNN) architecture and convolutional layers. These

are the convolutional RNN (ConvRNN) and the connectivity-based graph convolution net-

work (cGCN). Superior performance has been achieved on classification tasks over previous
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studies, along with interpretable visualization on classification tasks. Due to the satisfac-

tory compatibility and scalability, it is promising to deploy our neural network models with

different data representations for fMRI analysis.

We introduce ConvRNN for ROI-based fMRI data. Rather than deriving spa-

tial features with fully-connected layers, convolutional layers are adopted to extract spatial

features related to the functional connectivity between connectomic brain regions. Shared

convolutional kernels achieve great generalization by largely reducing the number of model

parameters to avoid overfitting. Sufficient performance improvement by ConvRNN demon-

strates that convolutions are effective for spatial feature extraction. Also, the visualization

based on convolutional models provides an in-place interpretation of informative brain re-

gions regarding classification tasks.

In addition, the graph-represented fMRI data have been proposed to reflect the

functional networks of the human brain, which defines the convolutional neighborhood with

top functional neighborhood for the spatial feature extraction. Our cGCN builds graphs

with BOLD signals and shared graph topology based on the group FC matrix. The k -

nearest neighbors (k -NN) graph is applied to reduce the total number of edges in the graph

with feasible scalability. Spatial Graph Convolutional Networks (GCNs) are applied to

extend traditional Convolutional Neural Networks (CNNs) on graph-represented fMRI data.

Compared with traditional graph-theory based analyses and machine learning approaches

based on feature engineering, our cGCN architecture effectively combines GCNs with graph-

represented fMRI data, leading to a promising deep learning architecture for large-scale

fMRI analysis.
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1.3 Research Questions

Focusing on ROI-based fMRI data, we have introduced two neural network models

for classification tasks. Inspired by previous studies, this thesis is guided by the following

research questions:

Research Question 1: Which type of neural network based architectures is ap-

plicable on fMRI time series?

Deep learning architectures for MRI analysis are reviewed in Section 2.2. We use

BOLD signals in time series rather than connectivity matrices as input data. Considering

temporal features behind fMRI time series, the RNN-based architecture is adopted for the

spatiotemporal feature extraction, including spatial features from fMRI frames and temporal

features between frames. Both ConvRNN (described in Chapter 3) and cGCN (described

in Chapter 4) are RNN-based architectures.

Research Question 2: Can we apply convolutions on fMRI data to extract spatial

features that reflect brain networks?

Our previous studies adopted fully-connected layers on ROI-based fMRI data to

extract spatial features [24]. To address the functional configuration behind the brain

networks and the local interaction between brain regions, we propose to adopt convolutions

for the spatial feature extraction. Both ConvRNN in Chapter 3 and cGCN in Chapter 4

are built with convolutional layers, which also aligns with recent deep learning architectures

based on CNNs. Thus, deep learning techniques (such as Batch normalization [79]) and

advanced visualization techniques [181] can be easily applied for fMRI analysis.
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Research Question 3: How can fMRI data be represented to reflect brain net-

works for deep learning models?

With fMRI data in different representations, we have reviewed several deep learn-

ing architectures in Section 2.2. For ConvRNN in Chapter 3, ROI-based fMRI data are

time series data with each frame in a 1D array. The order of 1D arrays is defined by the

functional atlas, which reflects the functional configuration of the human brain network.

Considering the implicit graph behind brain networks, we adopt the graph representation

in Chapter 4. Our graph-represented fMRI data highlights top connectomic neighborhood

between brain regions, which is applied for the spatial feature extraction reflecting func-

tional networks. The compatibility and scalability of the graph-represented fMRI data are

of great importance for large-scale fMRI analysis with deep learning architectures.

1.4 Thesis Organization

The rest of this thesis is organized as follows.

In chapter 2, we mainly review deep learning learning techniques for medical imag-

ing applications, focusing on neuroimaging studies with brain MRI data. First, some pop-

ular large-scale MRI datasets are introduced with their features and differences. Then, we

mainly discuss deep learning applications on MRI data. According to MRI data represen-

tations, deep learning architectures with volumetric representation, surface representation

and other non-Euclidean representations have been discussed with some representative ex-

amples. Differences in data representations and deep learning architectures reflects the

progress in studying functional brain networks. Deep learning techniques could not only
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improve MRI applications, but also provide a comprehensive understanding of MRI data

from a new angle.

In chapter 3, ConvRNN architecture is introduced for individual identification us-

ing rs-fMRI data. Rather than deploying fully-connected layers for spatial features, our

ConvRNN deploys convolutional layers to extract spatial features between ROIs from the

same functional network. Compared with previous traditional RNN models and other tradi-

tional analytical approaches, our ConvRNN architecture could achieve better identification

performance. We applied in-place visualization to determine informative regions related to

the individual identification task, including default mode network and frontoparietal net-

work. The success of ConvRNN architecture for individual identification indicates that the

RNN-based convolutional architecture is promising to analyze fMRI data.

In chapter 4, we introduce a cGCN architecture for fMRI analysis. fMRI data

are represented in graphs based on functional connectivity, and spatial features could be

extracted from connectomic neighborhoods rather than from Euclidean ones. We have

tested our cGCN architecture on two classification tasks with resting-state fMRI data. The

improved classification accuracy demonstrates that deep learning architecture based on

graph-represented fMRI data is effective in capturing functional connectivity features. Our

results indicate that cGCN is effective and promising in fMRI analysis. ConvRNN stored

ROI data in 1D array with pre-defined order from the functional atlas, while cGCN treated

ROI data in graphs. Thus, connectomic information could be better represented in graphs

and extracted by cGCN model.
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In chapter 5, we summarize the similarities and differences between ConvRNN and

cGCN architectures in fMRI analysis. Both of our neural network models take ROI-based

fMRI data as inputs and adopt convolutions for spatial feature extraction, but ROI data

are presented in different data representations. The contribution and limitations of our

proposed architectures are discussed for future work.
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Chapter 2

Deep Learning for Magnetic

Resonance Imaging

Deep learning has achieved great success in the area of computer vision. Due to the

similarity between images and MRI data, the ultimate goals with MRI images highly coin-

cide with many image processing tasks, such as image classification, semantic segmentation

and image reconstruction. Promising results have been demonstrated with deep learning

techniques on medical images [57, 106]. Considering various types of MRI data for diverse

applications, we will focus on the introduction of popular large-scale MRI datasets and deep

learning architectures for brain MRI analysis.

The rest of this chapter is organized as follows. Some popular large-scale MRI

datasets are briefly introduced in Section 2.1. MRI applications with deep learning tech-

niques are shown in Section 2.2. In terms of data representations, we present deep learning

applications on volume data in Section 2.2.1, surface data in Section 2.2.2 and other repre-
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sentations in Section 2.2.3. Deep learning architectures on fMRI timeseries are separately

discussed in Section 2.2.4.

2.1 Large-scale MRI Datasets

MRI techniques have been introduced and developed in the past 50 years. Despite

the popularity of MRI techniques, it is still relatively costly to carry out MRI experiments,

particularly with high-quality large-scale MRI datasets, as a lot of collaborative effort is

always required from data acquisition to data preprocessing. Therefore, it is quite valuable

to have some public datasets available for easy access, and analytical approaches can be

rapidly prototyped and easily developed with a fair comparison. The following describes

some popular MRI datasets for neuroimaging studies.

The Human Connectome Project (HCP) is one of the most popular MRI datasets

[162]. There are over 1100 healthy young adults (22 to 35 years old). Each subject has

structural data, rs-fMRI and task fMRI scans, which provide valuable resources to study

human brains. There are two attractive assets for our study within the HCP dataset. First,

the homogeneity of the whole dataset could reduce experimental challenges to design new

models. Second, each rs-fMRI scan is relatively long (1200 frames in 15 minutes), which is

helpful in studying the temporal dynamics behind fMRI sequence.

Autism Brain Imaging Data Exchange (ABIDE) is a large-scale consortium of

MRI data, consisting of Autism spectrum disorders (ASD) patients and normal controls.

There are more than 2000 subjects involved from multiple imaging sites (17 imaging sites in

ABIDE I [38] and 18 sites in ABIDE II [37]. With different protocols, the huge heterogeneity
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across imaging sites exists in many aspects, including imaging parameters, the length of

fMRI scans and psychiatric variables. It is anticipated that analytical approaches can be

developed with superior performance across imaging sites to achieve a better understanding

of ASD on this heterogeneous dataset.

In addition, UK Biobank is a collection of brain MRI data from over 40000 subjects

[111]. Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) was

launched with MRI data to investigate mild cognitive impairment (MCI) and Alzheimer’s

disease (AD). The Center for Biomedical Research Excellence (COBRE) provides a MRI

dataset with 147 subjects to study schizophrenia [19, 108]. Recently, Facebook and NYU

Langone Health released a large MRI database for MR reconstruction (the current dataset

only consists of knee scans) [180]. OpenNEURO (https://openneuro.org/) is a free and open

platform for sharing neuroimaging data. With the increasing availability of large-scale MRI

datasets, deep learning based approaches are increasingly applied and rapidly developing

for MRI analysis.

2.2 Deep Learning on MRI Data

There have been numerous types of deep learning applications with MRI data.

Classification and prediction tasks have been realized, such as disease classification [69, 74,

92], individual identification [24, 167] and age prediction [76]. Segmentation tasks have been

carried out, such as lesion segmentation [10, 81], volumetric brain segmentation [22] and sub-

cortical structure segmentation [39]. The preprocessing pipeline of MRI data has also been

improved with deep learning techniques in terms of speed, accuracy and reliability. [131]
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performed skull stripping and brain extraction with improved speed and reliability. [176]

developed robust motion-related regressors to reduce motion-related artifacts. [3] proposed

a promising registration strategy based on T1-fMRI translation with synthesized fMRI vol-

umes. [26] applied an unsupervised learning approach to realize cortical parcellation and

functional area alignment. [54] demonstrated that cortical parcellation based on spectral

embeddings could gain drastic speed improvement over conventional methods. Graph con-

volutional adversarial networks were also applied to predict missing diffusion MRI data in

longitudinal studies [73]. Furthermore, improved image reconstruction and faster MR imag-

ing techniques have been developed through deep learning architectures [134, 150, 174]. We

will introduce different deep learning architectures according to the data representation of

MRI data.

2.2.1 Deep Learning on Volumetric Representation

When considering volumetric MRI data as 3D grid images, it is straightforward

to apply 3D CNN architectures on MRI volumes. [39] applied a 3D CNN model to realize

subcortical segmentation without traditional registration/normalization steps, as shown in

Figure 2.1, and the enhanced speed compared to atlas-based methods and robustness on

heterogeneous datasets has been demonstrated. [92] adopted 3D CNNs to classify AD from

3D structural MRI data. With a 3D fMRI sequence, [101, 123] adopted 3D CNN architec-

tures to realize disease classification with different preprocessing strategies on the temporal

axis of fMRI data. [184] used 3D CNN on whole-brain fMRI data for automatic functional

brain networks reconstruction. [88, 185] applied 3D CNN to extract connectome-based fea-
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Figure 2.1: The 3D CNN architecture on volumetric MRI data for brain structure seg-
mentation, reprinted from [39]. Nine 3D convolutional layers were used to extract spatial
features.

tures for ASD classification, with different mapping strategies between the functional brain

networks and fMRI voxels.

It is obvious that traditional spatial feature (e.g., edges, corners and texture) can

be extracted on volumetric MRI data through 3D CNN models. But for the structural

and functional networks behind MRI data, original volumetric representations of MRI data

should be thoughtfully processed. Moreover, the training and inference of 3D CNN models

are computationally intensive. It could become more intractable to unveil the temporal

dynamics behind 4D MRI data.

2.2.2 Geometric Deep Learning on Surface Representations

In contrast to the volumetric representation of brain MRI data, the brain func-

tionality in cortical surfaces and subcortical regions can be represented in cortical surface

geometry with great advantages over volumetric representations [161, 163]. The surface-

based representation has the topology of a 2D sheet with a highly folded geometry to reflect

the geometric structure of the cerebral cortex [34]. Considering the characterizations of
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Figure 2.2: Architecture of geometric convolutional neural network (gCNN) on cortical
thickness information for sex classification, reprinted from [146]. The cortical thickness
maps in surface-based representation are transformed into spherical space. Specific data
sampling and reshaping methods are defined for convolutions on a mesh surface to achieve
spatial features with position invariance.

surface-based MRI data, geometric deep learning has been widely applied. A geometric

CNN on the projected spherical surface, as shown in Figure 2.2, was proposed for sex

classification using the cortical thickness information [146]. Similarly, Spherical CNN was

employed to parcellate cortical surfaces on spherical surface meshes [183].

Rather than transforming surface points into volumetric representation, surface-

based MRI data are represented in cortical surface geometry. By projecting surface data

onto a spherical surface, geometric deep learning has proposed modified operations (e.g.,

convolution, pooling) on non-Euclidean manifolds of the brain surface. In fact, geometric

deep learning models spatial features of the geodesic shape with the non-Euclidean represen-

tations of MRI data. Improved performance with efficient computation has been achieved

over traditional deep learning architectures on volumetric representations.
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2.2.3 Deep Learning on Other Representations

With the exception of the volumetric representation and surface representations,

original MRI data have been processed into various representations to study the brain net-

work, such as connectivity matrices and individual components by ICA. These data repre-

sentations commonly ignore original image grids but highlight the connectomic information.

Previous studies have adopted graph theory to study the topological property behind these

data representations. For example, the structural and functional connectivity matrices are

equivalent to the adjacency matrix. Graph related metrics have been utilized to understand

brain mechanism, such as network efficiency, modularity, hierarchy [166] and small-world

network [169]. Despite the great success of graph-based metrics, it is of great necessity to

build deep learning architectures without feature engineering. The features that are auto-

matically generated from MRI data might facilitate MRI applications and enable a novel

understanding of MRI data. Next, deep learning architectures for MRI data based on other

representations will be reviewed.

Deep Learning on Connectivity Matrices

Connectivity matrices are widely applied to represent structural and functional

connectivity, where pairwise connectivity is evaluated between two brain regions. To study

the brain connectome, deep learning models have been applied to extract spatial patterns

from the connectivity matrix. [116] applied the autoencoder model with fully-connected

layers to extract features from structural connectome data to predict treatment outcomes

in epilepsy. Similar autoencoder architectures were also applied to functional connectome
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Figure 2.3: The BrainNetCNN architecture on structural brain connectivity networks for
neurodevelopmental outcome prediction, reprinted from [83]. Rather than considering the
adjacency matrix as an image, specific convolutional operations on the structural brain
network have been proposed to consider spatial locality between elements from the adjacency
matrix, including edge-to-edge (E2E), edge-to-node (E2N) and node-to-graph (N2G) layers.

data to classify ASD patients [28, 62, 69]. Considering the grid structure of the structural

connectivity matrix, the BrainNetCNN architecture was proposed with special convolutional

layers to leverage the topological locality of the connectivity matrix. As shown in Figure 2.3,

BrainNetCNN can be seen as a modified CNN model in the structural connectivity matrix,

which achieved satisfactory performance in predicting neural development for infant brains

[83].

Traditional analytical approaches derive topological characterizations to reveal

the brain connectome based on connectivity matrices. With deep learning models, spatial

features based on connectivity matrices can be further generated beyond original image

grids. However, there are some problems behind these deep learning methods. First, the

theoretical explanation of the spatial features that are extracted by CNN models on the

connectivity matrix (not raw MRI data) has not been well established. Second, the FC

matrix is regarded as a temporal summary of fMRI sequence over a period of time, which

makes it difficult to determine the temporal feature behind fMRI time sequence with the

collapsed temporal axis.
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Figure 2.4: Graph Convolutional Network on the population graph for the disease clas-
sification task, reprinted from [122]. In the population graph, nodes are subjects with
image-based feature vectors, and edges reflect the similarity between subjects evaluated by
phenotypic information. The semi-supervised node-level classification on the population
graph is deployed to classify patients from normal controls.

Deep Learning on Graph-Represented Data

Considering the complex interaction between brain regions, brain networks among

distant brain regions should be presented in other data representations. Especially for

ROI-based and ICA-based MRI data, the graph-based representation can be one of many

promising choices. Meanwhile, traditional deep learning techniques have been successfully

extended to graphs in recent years. Novel deep learning pipelines should be proposed for

MRI analysis, including data representations and deep learning architectures.

Due to the implicit graph behind the brain connectome, MRI data have been

constructed into various types of graphs. [122] proposed to achieve disease prediction on a

population graph, as shown in Figure 2.4. In the population graph, nodes represent different

subjects with image-related features, and weighted edges quantify the similarity between

subjects according to phenotypic information. Semi-supervised learning was employed to

achieve node-level classification for psychiatric disorders (ASD and AD). [6] improved the

18



construction of the population graph and deployed graph convolutional neural networks to

achieve better classification performance. [96] constructed two types of graphs: a structural

graph based on anatomical data and a functional graph from the FC matrix (in Figure 2.5),

both of which achieved significant performance improvement. [178] also took functional

connectome data over short time-intervals as graphs and generated low-dimensional graph

embeddings to identify brain functional states. As shown in Figure 2.6, time-variant nodes

from independent components by ICA and binary edges derived from the Ledoit Wolf co-

variance with threshold values are built into undirected graphs [7]. The node embeddings

were generated by temporal convolutions on each node sequence. GCN and pooling oper-

ations were applied on nodes to extract graph-level features for classification. [80] defined

graph topology based on anatomical data with time-variant node values from rs-fMRI data,

in which weighted edges were quantified by the topological distance. For the cortical par-

cellation task with surface data, spectral embeddings based on GCNs have been extracted

to achieve significant improvement in accuracy and in speed over Euclidean approaches and

geometric deep learning approaches [54].

For GCNs applied to graph-represented data, two categories of GCNs have been

proposed: spectral GCNs and spatial GCNs. For spectral GCNs, graphs are decomposed

into spectral bases associated with graph-level information according to the graph spectral

theory [17]. Because of its solid theoretical interpretation, spectral GCNs have been widely

applied for neuroimaging studies [6, 7, 55, 73, 96, 122]. In contrast, spatial GCNs imitate

the Euclidean convolution on grid data to aggregate spatial patterns centering on each node

and its connected neighbors. With shared convolutional parameters, node-centered convo-

19



Figure 2.5: Overview of the pipeline of the graph-represented fMRI data for disease classifi-
cation, reprinted from [96]. (a) The graph representation of fMRI data. The graph topology
can be derived from the anatomical information or from the mean functional connectivity
matrix within a population. Node vectors are generated from the functional connectivity
matrix. (b) Metric learning with the Siamese Graph Convolutional Networks architecture
is applied to the graph-represented data.
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Figure 2.6: Pipeline of the spatiotemporal graph representation of fMRI data for sex predic-
tion, reprinted from [7]. The graph is constructed with time-variant connectome sequence
from independent component analysis as node values. Edges are derived from the covari-
ance matrix and binarized with different threshold values. Node embeddings are generated
by temporal convolutions of each time series. The graph-level features are extracted by
Graph Convolutional Networks. The final prediction is given based on the global averaging
pooling or the hierarchical pooling on graph-level features.

lutions are carried out across locations and graphs. For example, a spatio-temporal graph

convolutional network has been trained to model spatial features and temporal dynamics of

FC based on sub-sequences of fMRI data, as shown in Figure 2.7. Due to its computational

efficiency and improved generalization, spatial GCNs have gained increasing attention in

the community [171, 182].

From the volumetric representation to the surface representation, the cortical dis-

tance following the surface reflects the anatomical property of the brain instead of physical

distance in 3D Euclidean space. With the graph-represented MRI data, the distance be-

tween any two regions can be evaluated by any reasonable distance metrics (e.g., structural

and functional connectivity). Different from geometric deep learning with modified Eu-

clidean operations, GCNs have been proposed with non-Euclidean convolutions on graphs.
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Figure 2.7: Overview of the spatio-temporal graph convolutional network for fMRI data,
reprinted from [49]. Time-variant BOLD signals are taken as node values from ROI-based
fMRI data. For each node, edges are obtained with top two connectomic neighbors in
accordance to the functional organization of the brain. Also, another edge connects a
ROI to the same ROI in the next frame of fMRI data. The graph is constructed for a
sub-sequence of fMRI data, including both spatial and temporal information in one spatio-
temporal graph.

Therefore, it is promising to apply deep learning architectures with non-Euclidean opera-

tions on MRI data with graph representations.

2.2.4 Deep Learning on Time Series

fMRI timeseries are put in chronological sequence such that the fluctuation of

dynamic brain signals reflects the neural activity. It is interesting to study the temporal

changes behind fMRI data. RNN-based deep learning architectures have been widely ap-

plied to model the temporal dynamics of brain signals. [61] successfully used RNNs to model

the dynamics of brain activity with superior performance over traditional models. [43] char-

acterized the pathophysiology of ASD with RNN. By incorporating phenotypic information,

the subsequent study improved classification performance with a similar RNN architecture

[41]. Our first work applied RNN to extract spatiotemporal features from an individual

identification task [24], as shown in Figure 2.8. The performance was further improved by
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Figure 2.8: The RNN architecture on ROI-based fMRI time series for individual identifica-
tion, reprinted from [24]. Spatial features are processed by the fully-connected structure of
the Gated recurrent units (GRUs) layer. Temporal information between frames is leveraged
based on spatial features.

using convolutional RNN architecture [167]. These studies adopted ROI-based fMRI data

as inputs with reduced spatial complexity. Similarly, fMRI data can also be preprocessed by

temporal ICA to reflect brain networks as independent components. [173] adopted RNN-

based architecture on fMRI independent components to discriminate schizophrenia from

normal controls. As shown in Figure 2.9, convolutional kernels in different scales were ap-

plied to extract spatial features, which were followed by RNN layers to extract temporal

features.

The success of RNN-based architectures indicates that RNN layers effectively

model the temporal dynamics behind fMRI time series. The joint training of CNN layers

and RNN layers is promising to realize better performance with spatiotemporal features.

Therefore, it is worthy to explore deep learning architectures with convolutions for spatial
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Figure 2.9: The RNN architecture on fMRI independent components to discriminate
schizophrenia, reprinted from [173]. Convolutional kernels in different scales are adopted
to extract spatial features between brain networks in the form of independent components,
which are followed by RNN layers to extract temporal features.

features and to examine RNN layers for temporal dynamics when extracting spatiotemporal

features from fMRI time series.
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Chapter 3

Application of Convolutional

Recurrent Neural Network for

Individual Recognition Based on

Resting State fMRI Data

3.1 Introduction

Mainstream fMRI studies have been focusing on deriving population consensuses

using group analysis. A group analysis in neuroimaging, albeit important, commonly ne-

glects individual-to-individual variations. The importance of individual variability in neu-

robiological research has drawn increasing attention [113]. Using task-fMRI, significant

individual differences in brain activation were identified, reflecting alterations in cognitive
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function and behavior [9]. Individual variability in FC has been successfully used to iden-

tify subjects from a large group. More specifically, static connectivity patterns throughout

the brain were shown to be subject specific and distinctive across scan sessions and condi-

tions, providing powerful features for individual identification [47]. Therefore, exploring the

individual uniqueness of the brain connectivity points to a new avenue to study the brain.

Although the static FC achieved decent accuracy, it required a sufficiently long

data set (600 frames, 7.2 min) and considered only the spatial pattern through the temporal

correlation without taking temporal features into full account. The performance degraded

with short clips of fMRI data, probably due to temporal variability (or dynamics) in the

resting-state fMRI data, which leads to high variability in the FC derived from a short

window. On the other hand, the dynamic information of resting state activity, if taken

into account, could provide additional features for individual identification, improving the

accuracy with the short time series.

With the increasing availability of large fMRI datasets (introduced in Section

2.1), deep learning architectures have been discussed with different data representations in

Section 2.2. There are several limitations to model fMRI data on the perspective of image

grids: 1) it is computationally intensive to deal with voxel-wise fMRI data via CNN models;

2) brain activity mostly occurs in cortical and subcortical structures, making convolutions on

white matter unnecessary; 3) the fMRI time course from a single voxel is usually very noisy;

and 4) spatial features may be confined to a small neighborhood in the Euclidean space,

especially in shallow CNN models. Therefore, it is of great necessity to build deep learning

models that are more appropriate for the organization of the brain and can efficiently extract
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connectomic features beyond a single voxel and its Euclidean neighborhood. By choosing

a bunch of brain regions and ignoring fMRI image grids, ROI-based analysis is efficient to

unveil brain networks based on functional atlases. ROI-based fMRI data can be represented

in 2D arrays, including the temporal dimension and the spatial dimension (the order of ROIs

defined by the functional atlas). Some functional atlases (e.g. Power’s atlas [132]) divide

ROIs into communities of tightly interconnected brain regions, which helps to understand

the modularity of the human brain network [14]. Though our initial study employs the

traditional RNN model to extract spatiotemporal features [24], the functional configuration

of ROIs is not explicitly addressed by fully-connected layers. Therefore, we propose to

adopt the convolutional operation on the spatial dimension of 2D arrays to extract local

features between adjacent and connectomic (according to the functional atlas) ROIs.

In the application of time sequence modeling, RNN-based architectures have shown

outstanding promise in a broad range of applications, including video classification, machine

translation, and biomedical image segmentation [23, 50, 147, 164]. Specifically, we have

discussed RNN-based architectures to study the dynamics of brain activity on fMRI time

series in Section 2.2.4. Moreover, a convolution-based RNN was introduced to make full use

of features in both spatial and temporal domains, consistently outperforming fully connected

RNNs [149]. Therefore, combining the local features between adjacent and connectomic

ROIs by the convolutional structure and sequence modeling capability of RNN may lead to

a better approach to extract spatiotemporal features for individual identification on rs-fMRI

data.
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In the meantime, it is also valuable to visualize the underlying features in the

trained convolutional models. Although deep learning is becoming a panacea in almost every

domain, it has been criticized due to its poor interpretability as being a black-box. While

many attempts have been made to provide an interpretation and an intuitive understanding

of trained networks, our understanding of how these networks work and what is important

behind their performance have not kept up with the pace of the development of neural

networks. While dedicated deep learning models have achieved amazing performance by

end-to-end learning through huge volumes of data, better comprehension of the success

of these models can uncover fundamental principles of deep neural networks and reveal

important features within the data.

In this chapter, we adopted convolutional RNN or ConvRNN for individual identi-

fication using rs-fMRI data. The convolutional recurrent model was able to achieve individ-

ual identification with shared convolutional weights capturing local coactivation features.

In-place visualization of the informative area by ConvRNN also opened up a new avenue

for understanding fMRI data based on individual differences.

3.2 Materials and Methods

3.2.1 Dataset and Preprocessing

The resting-state fMRI data for 100 subjects from the Human Connectome Project

(54 females, age: 22–36, and TR = 0.72 s) was used in this work. Each subject had four

resting-state fMRI sessions, 1200 volumes for each session, leading to 4800 volumes per

subject in total [162]. The fMRI data was preprocessed by the HCP minimal preprocessing
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pipeline [52] and denoised by ICA-FIX [142], for the removal of spatial artifact/distortion

and motion-related fluctuations. Surface-based registration was performed with the MSM-

ALL template [138]. To decrease the computation complexity, 236 ROIs over the cerebral

cortex, as shown in Figure 3.1 based on meta-analysis [132], were used for subsequent

analysis. BOLD signals within each ROI (10 mm diameter sphere) were averaged spatially.

We ordered our ROIs-based data in a 1D array and preserved the order of ROIs according

to the Power Atlas, where ROIs having similar functional connectivities are close to each

other. They were also demeaned and scaled to unit variance over the temporal axis. For

each fMRI session, fMRI data with 1200 volumes was divided into twelve 100-frame clips as

inputs of ConvRNN. Data from Day 1 was used as the training dataset. The two sessions

from Day 2 were used as validation and testing datasets, respectively. The best model

was decided based on the validation dataset and the final performance was assessed on the

testing dataset.

3.2.2 Convolutional Recurrent Neural Network

The architecture of the ConvRNN is given in Figure 3.2, along with its unrolling

version. In contrast to conventional RNN, convolution was applied in both the input-to-

state and state-tostate transitions, in place of the Hadamard product. There were two

stacked convolutional layers, with the first convolutional layer containing 8 filters and the

second convolutional layer having 16 filters. The kernel size of all convolutional filters was 2.

Padding was used in all convolutional layers such that the outputs from each layer had the

same spatial dimension as the original input, which is very important for the subsequent
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Figure 3.1: The spatial distribution of 236 ROIs over the cerebral cortex. Voxels within the
10 mm diameter sphere were averaged to get the value for each ROI.

visualization of the in-place features. Batch normalization layers were used before the

non-linear activation layers of Rectified linear unit (ReLU) to reshape the distribution of

convolutional layer outputs in order for better convergence and easy training [79]. The

final Softmax layer with 100-category outputs was used for classification based on averaged

outputs from all hidden states. No temporal or spatial pooling layer was employed to keep

the spatial and temporal resolutions of the original fMRI data. All kernel weights were

initialized by the Xavier uniform initializer [53], and recurrent weights were initialized as

random orthogonal matrices [144].
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Figure 3.2: The architecture of our convolutional recurrent neural network and its unrolling
version over time. All red arrows represent the convolutional operations between each
input-to-state and state-to-state transitions. Batch normalization and ReLU as the non-
linear activation are utilized after each convolutional layer. Final classification is based on
all hidden states on average. The dimension of the data flow through the diagram is also
labeled.
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3.2.3 Training of The Neural Network

Our implementation of ConvRNN was carried out in Keras [30] with the Tensorflow

backend [1]. Considering the limited number of frames for each subject, we chose 100

frames of fMRI data as inputs during training and validation, which is the tradeoff between

the number of fMRI clips and the number of frames for each clip. Shuffled minibatches

of training data as inputs were fed into the ConvRNN with the batch size of 128. Adam

optimizer [89] was applied for training with the initial learning rate set to 0.001, and reduced

if the validation accuracy stopped increasing. Dropout layer with 50% was utilized before

the final classification to avoid overfitting only during the training [152]. After each training

epoch, the model was evaluated on the validation dataset and saved only if better validation

accuracy was achieved. Finally, the performance of the best model was measured on the

testing dataset, which was never involved during training or validation.

It is well known that RNN is difficult to train properly, even though it is a powerful

model for time series modeling. The main reasons are vanishing and exploding gradient

issues of Backpropagation Through Time (BPTT) on the unrolling version of RNN [13].

Therefore, advanced architectures with gating mechanism to overcome the vanishing and

exploding gradient problem, such as the Long short-term memory (LSTM) [70] and the

Gated recurrent unit (GRU) [27], have gained a lot of popularity in practice to model

long-term dependencies. In this work, LSTM with convolutional structure was applied. For

training techniques, we used L2 regularization for recurrent weights, along with the gradient

clipping strategy as a simple and computationally efficient method, effectively addressing

the issue of exploding gradients (Pascanu et al., 2013). In the present work, the clipping
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norm of the gradient was set to 1. Different L2 values (0.1, 0.01, 0.001, and 0.0001) on

recurrent kernel weights were tested to achieve the best validation accuracy.

3.2.4 Visualization of the Individual Identification

Our ConvRNN first performed feature extraction through two convolutional re-

current layers and then fed the features into the Softmax layer for the 100-category classi-

fication. Original data was projected to a high-dimensional feature space, which was easily

separated by the classification layer. In the feature space, fMRI data from the same sub-

ject are expected to be close to each other and cluster tightly. In consideration of the

single classification layer, the identification accuracy of our ConvRNN relies heavily on the

performance of feature extraction by convolutional recurrent layers. In order to ascertain

and visualize the performance of convolutional recurrent layers in low dimensional space,

t-Distributed Stochastic Neighbor Embedding (t-SNE) [160] was applied to map datapoints

in high-dimensional feature space onto a two-dimensional representation.

To visualize and understand informative areas related to individual identification,

intermediate outputs from convolutional layers were examined. Output patterns were ob-

tained from convolutional layers after non-linear activation and mapped onto the cortical

surface (20 mm radius sphere). As all regions are considered equal in our convolutional

model during the training, but they are of different importance to the final classification.

We also used the occlusion method to visualize informative areas [181]. More specifically, in

order to ascertain the contribution of ROIs with regard to individual identification, input

of each ROI was zeroed out, and the subsequent performance decrease with the same model

configuration was considered as the contribution of this ROI to the final classification.
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Architecture
Number of parameters

(feature extraction)
Test accuracy

RNN [24] 405K (380K) 94.43%

RNN w/o temporal pooling 405K (380K) 95.33%

ConvRNN 382K (3.8K) 98.50%

Table 3.1: The accuracy of different models on the testing dataset and their number of
model parameters.

3.3 Results

We carried out the supervised classification task to identify each subject from a

group of 100 subjects. First, the identification accuracy of different models was assessed

on the testing dataset with 100 frames of fMRI data as inputs. As seen in Table 3.1,

our ConvRNN model was able to achieve 98.50% accuracy on the testing dataset, where

the best performance was obtained with the L2 value of 0.001 during training. The test

accuracy for the traditional RNN with average temporal pooling was 94.43% [24]. In order to

exclude the influence of temporal averaging, we trained another RNN without the temporal

averaging and achieved an identification accuracy of 95.33%. Furthermore, we evaluated

the performance of these models using different window sizes on the testing dataset. With

the pre-trained models, we adopted different number of frames (from 1200 frames to single

frame) as inputs from the testing dataset and evaluated the identification performance.

Testing results with different number of frames are plotted in Figure 3.3. As shown in

the figure, ConvRNN outperformed conventional RNN (no temporal averaging) in all cases

except with 1200 frames or with less than 10 frames. In contrast, FC could achieve over
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Figure 3.3: The relationship between identification accuracy and the window size. We
evaluated pre-trained models on testing dataset. Our ConvRNN outperformed RNN except
with 1200 frames or with less than 10 frames.

90% accuracy with 600 frames of fMRI data. But the individual identification accuracy

drops to 70% on average when only a short period of fMRI data (100 frames) is used [47].

To visualize convolutional outputs on low-dimensional space, we applied t-SNE

on intermediate outputs of our ConvRNN before the classification layer. There were 16

convolutional filters in the second convolutional recurrent layer of our ConvRNN. With

proper padding, the output of the layer was made to have the same spatial dimension as

the input. The feature space with 3776 dimensions was then mapped to a 2D space in Figure
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Figure 3.4: t-Distributed Stochastic Neighbor Embedding (t-SNE) visualization of 2nd con-
volutional recurrent layer outputs based on 100-subject testing dataset. Twelve hundred
100-frame testing data from 100 subjects were fed into ConvRNN with outputs being ob-
tained before the classification layers and projected to 2D space by t-SNE. Projections for
different subjects are in different colors.

3.4. It is clear that 100 subjects (12 clips with 100 frames for each subject) in the testing

dataset appear as non-overlapping cliques in different colors with each clique representing

one subject. This figure clearly indicates that spatiotemporal features, capable of individual

identification, were successfully obtained by convolutional recurrent layers.

To visualize intermediate outputs of ConvRNN, average patterns from first and

second convolutional layers of ConvRNN are shown in Figures 3.5 and Figure 3.6, respec-

tively. Most patterns from the first convolutional layer were quite similar (except Filter 6)

with large distinctive areas, which could be considered as the ubiquitous low-level features
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from fMRI data. While highlevel patterns from the second convolutional layer had diverse

informative regions, which were sparse and localized inside the area of those low-level fea-

tures generated by the first convolutional layer. Meanwhile, when ROIs were individually

occluded, performance degradation was observed when some ROIs were occluded, while the

occlusion of some ROIs led to negligible degradation of the performance. In Figure 3.7,

the absolute value of the performance degradation, normalized to reflect the contribution

of each ROI is shown. It is evident that the informative area generated by alternative

occlusion was similar as the patterns from first convolutional layer of ConvRNN.

3.4 Discussion

While most resting-state fMRI studies have relied on group averages, this study

employed individual differences for individual identification. Unlike the first study of indi-

vidual identification employing static FC [47], we incorporated both temporal and spatial

features from the fMRI data. As an improvement of our previous work employing the re-

current architecture [24], we applied a convolutional recurrent neural network which led to

a significant improvement in performance and a straightforward means to visualize in-place

features. Figure 3.3 shows that ConvRNN is better than conventional RNN for the majority

of the time windows. The performance of ConvRNN was slightly worse than conventional

RNN with 1200 frames, probably due to the small number of testing data when the per-

formance was evaluated on fMRI clips with 1200 frames. On the other hand, since our

ConvRNN was trained with the fixed number of frames (i.e., 100), it is not be optimized
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Figure 3.7: The performance degradation with occlusion. Each ROI was zeroed out sepa-
rately and evaluated with the pre-trained model of ConvRNN. The performance degradation
reflects the contribution of each ROI. Red region reflects large performance degradation if
corresponding ROIs were occluded.

for short clips of data with less than 10 frames, and its performance with frames less than

10 is therefore worse than that of conventional RNN.

Our ConvRNN has the same number of parameters compared with the conven-

tional RNN, indicating that both models have comparable model complexity. Apart from

the different types of recurrent unit, our earlier work [24] employed a temporal pooling

layer to reduce the temporal resolution. For a fair comparison with this work, another

conventional RNN was applied without the temporal averaging layer. The accuracy of

the conventional RNN without the temporal averaging layer was 95.33%, which was 0.9%

higher than that with the temporal averaging. This improvement due to increased tem-

poral resolution is significantly smaller than the improvement achieved with the adoption

of the convolutional structure, indicating that the latter is the main contributor to the

performance enhancement. Both the spatial and temporal features were fully utilized by

convolutional kernels in the ConvRNN with unprecedented identification accuracy. Also,

feature extraction layers of ConvRNN showed strong discriminating power for 100 subjects,
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where pre-trained layers could be applied for transfer learning on new subjects or semi-

supervised learning on partially labeled data. On the other hand, only one hundredths of

the parameters in ConvRNN were from the convolutional recurrent layers. Convolution

with shared weights in spatial and temporal spans makes it more robust against overfit-

ting during training. Given the reduced number of trainable weights, increasing the depth

and width of the model is possible without significantly increasing the model complexity,

possibly capturing more sophisticated features in both spatial and temporal domains.

Furthermore, convolutional kernels with shared weights sweep across ROIs and

frames. Different from the indecomposable matrix multiplication in conventional RNN,

ConvRNN generates in-place features with exactly spatial correspondence as the original

data. Furthermore, ConvRNN accumulates temporal information related to evolving fea-

tures in the hidden state. Therefore, it is possible to examine the hidden states to have

an in-place visualization and understanding of hidden features from ConvRNN. It is also

clear that informative regions from two convolutional layers are totally different, in agree-

ment with the conclusion drawn from convolutional neural networks for image classification

[177]. Beside the direct visualization of the hidden state, the occlusion of ROIs served as

an indirect method for visualizing significant regions under resting state for identification.

Two visualization approaches came to the same conclusion of informative ROIs in term of

individual identification using the resting-state fMRI data. In terms of resting state net-

works (RSNs) in the literature [71, 99], the informative area identified by our ConvRNN

mainly contained frontoparietal network (FPN), default mode network (DMN), as well as

visual network (VN). Our result is consistent with a previous study, which concluded that
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the most distinguishing network was FPN, with significant improvement achieved through

the combination of multiple RSNs (Finn et al., 2015). In contrast, occlusion of language

network (LN) and somatosensory motor network (SMN) did not cause much reduction in

performance. One possible explanation is that there was little explicit or individual specific

language or motor activity during the acquisition of the resting-state fMRI datasets used

here.

Although DMN and FPN stood out as the most important networks for individual

identification, other networks also contributed to individual identification [46]. It is likely

that contributions from most networks may be needed with more subjects to be identified. In

addition, a hierarchical approach, incorporating all networks, might be the most appropriate

and robust approach. Furthermore, a recent study demonstrated that task induced changes

in FC provided better prediction of individuals, whereas resting state fMRI data failed

to capture the full range of individual differences [56]. Such changes in FC could also be

incorporated into our model to further improve the identification accuracy.

Several limitations should be noted for further work. First, the present study

adopted only 236 ROIs within 10 mm diameter spheres on average, which was enough for

an accurate identification for a group of 100 subjects. Inadequate power of identification

could be present on new subjects beyond existing subjects. Possible reasons are the limited

feature extraction of our model and the high variability of the fMRI data. It is likely

that smaller and more ROIs are needed for the identification of more subjects. But more

advanced models with superior performance on fMRI data should be explored. Second,

current visualization of individual identification depicted in Figure 3.7 was based on group
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average of ROIs’ performance. While this highlights areas that are most important for

individual identification, it does not explicitly depict individual features. Such features will

be the focus of our future studies. Third, visualization of the spatial pattern is easy to

understand, but the remarkable performance achieved by RNN suggests that a substantial

amount of information is coming from temporal features. Visualizing and understanding

temporal features are still necessary to gain a deeper insight into the brain dynamics.

Furthermore, other popular architectures (e.g., Siamese network) and pre-trained models

should be applied and compared with our approach in terms of classification performance

and training efficiency in future work.

3.5 Conclusion

In this chapter, we described the application of the convolutional recurrent neu-

ral network for individual identification based on resting-state fMRI data. To explore the

dynamics in the resting state fMRI data, the convolutional architecture with recurrent

structure was implemented to extract and incorporate features in both spatial and tempo-

ral domains. Compared to conventional RNN model, our ConvRNN model exhibited better

identification performance, with local features between neighboring ROIs being modeled by

convolutional kernels. Moreover, visualization based on the ConvRNN model provides a di-

rect understanding of the success of identification; this could lead to a promising alternative

for analyzing fMRI data.
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Chapter 4

Graph Convolution Network for

fMRI Analysis Based on

Connectivity Neighborhood

4.1 Introduction

In chapter 3, the ConvRNN architecture has been introduced on ROI data in 2D

arrays. Considering the complex brain networks, the implicit graph behind ROI data can be

reflected in the graph representation. Motivated by breakthroughs of deep learning on grid

data, efforts have been made to extend CNNs to graphs. We have reviewed deep learning

applications on graph-represented fMRI data in Section 2.2.3.

In this chapter, we present a connectivity-based Graph Convolutional Network, a

spatial GCN architecture, for fMRI analysis. The graph representation was defined with
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the k -nearest neighbor graph based on FC matrix. Convolutions were performed on graphs

rather than image/ROI grid, which allows us to efficiently extract connectomic features of

the underlying brain activity. The present model (https://github.com/Lebo-Wang/cGCN_

fMRI) has been applied in two scenarios, and the results indicate that cGCN is effective for

fMRI analysis compared with traditional deep learning architectures.

4.2 Material and Methods

4.2.1 cGCN Overview

The overview of our cGCN architecture is shown in Figure 4.1. ROIs were consid-

ered as graph nodes with the blood-oxygen-level-dependent (BOLD) signals of each frame

as their attributes. Convolutions were performed within neighbors defined by the k -NN

graph based on the groupwise FC matrix. Specifically, we first obtained the individual

FC matrices on all data and averaged them for the group FC matrix. Based on that, a

k -NN graph was generated by retaining only the top-k edges in terms of their connectivity

strength (i.e., average correlation coefficient) for each node. The FC-based k -NN graph was

used to guide the convolutional operations with functionally connectivity-based neighbor-

hoods. For simplicity, the same graph was shared by all subjects and at all time frames.

Although each node had a few neighbors, the convolution field of each layer was extended

by stacking multiple convolutional layers in the architecture. Between convolutional layers,

skip connections were added from the prior convolutional layers to the last one, providing

multi-level feature fusion for classification and accelerating the model training by alleviating

the vanishing gradient problem. Outputs from the convolutional layers were followed by an
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RNN (or a temporal average pooling) layer to generate temporal evolutions by combining

spatial representations from all frames. A Softmax layer was used at the end for the final

classification.

4.2.2 Graph Construction

We represented each frame of fMRI data with a graph. A shared graph structure

that reflects the intrinsic functional was derived from the group FC matrix based on all

data [127]. The ROIs were considered as nodes of the graph, and the FC connections were

considered as edges of the graph. To reduce the total number of edges in the graph, a k -NN

graph was obtained by only keeping the top-k connectivity neighbors for each node in terms

of the connectivity strength. k is the hyperparameter related to the topological structure

of graphs, which controls the sparsity of the graph. To evaluate the effect of k, different

values of k (3, 5, 10 and 20) were assessed in our experiments.

4.2.3 The Edge Function of cGCN

The k -NN graph G = (V, E) comprises nodes V = {1, . . . , N} and edges E ⊆ V×V.

Edge (i, j) represents the directed edge from ROIi to ROIj . To explicitly model the co-

activation pattern between graph nodes, we chose the following edge function [168], as the

convolutional operation for our cGCN convolutional layers:

x
′
i = max

j:(j,i)∈E
hΘ(xi‖xj − xi) (4.1)
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where xi was the BOLD signal of the central node i and xj was that of a connected

neighbor node j. In addition to original features from the central node, the node value

difference xj−xi was also appended as the complementary feature. hΘ represents trainable

weights Θ with a non-linear activation function h, which was implemented by the multi-layer

perceptron (MLP) with the rectified linear unit (ReLU). The final convolutional output, x′i,

was the maximal activation from its k neighborhoods. In this way, spatial features between

connectivity-based neighbors, including the node activity and co-activation pattern, were

modeled.

4.2.4 Experiments and Settings

Two supervised classification experiments were carried out to evaluate the perfor-

mance of our proposed architecture. In the first experiment, we used the “100 unrelated

subjects” dataset (54 females, age: 22-36) released by the HCP and aimed to identify them

based on their rs-fMRI data. Each subject had four rs-fMRI sessions (each with 1200 vol-

umes) scanned on two days [162]. The fMRI data were preprocessed by the HCP minimal

preprocessing pipeline [52] and denoised by ICA-FIX [142] to remove spatial artifacts and

motion-related fluctuations. Surface-based registration was performed with the MSM-ALL

method [138]. We utilized 236 ROIs based on the Power’s atlas [132]. The two sessions

from Day 1 were employed as the training dataset, and the two sessions from Day 2 were

used as the validation dataset and test dataset, respectively. The best model was chosen

according to the best validation accuracy and final identification accuracy was assessed on

the test dataset. For the training and validation datasets, fMRI time courses were cut into

100-frame clips. The final identification performance was measured with different numbers
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of frames (from 1200 frames to single frame) on the test dataset. To evaluate the con-

tribution of the connectivity-based neighborhood for convolutions, we also ascertained the

performance of the same cGCN architecture with random graphs (random GCNs).

In the second experiment, we used cGCN to classify ASD patients from healthy

controls on the ABIDE I [38] and ABIDE II [37] datasets. There are 1057 subjects (525

ASD subjects and 532 neurotypical controls) from 17 imaging sites in ABIDE I and 1053

subjects (470 ASD subjects and 583 neurotypical controls) from 17 imaging sites in ABIDE

II. All fMRI data were preprocessed by the Connectome Computation System pipeline

[186], including bandpass filtering (0.01–0.1 Hz) and without global signal regression. The

Craddock 200 atlas [32] was utilized to extract ROI signals. We adopted both leave-one-site-

out and 10-fold cross-validations. For the leave-one-site-out cross-validation, data from each

site were independently tested with the model trained on data from other sites. The leave-

one-site-out cross-validation evaluated the model on heterogeneous datasets considering the

site-specific variation. The stratified 10-fold cross-validation mixed all data together and

split them into different folds while keeping the proportions of sites and diagnostic groups

across folds. The site-specific heterogeneity was overlooked by the random partition of

subsamples.

We carried out the two experiments in Keras [30] using Tensorflow as the backend

[1]. Adam optimizer was applied to update model weights with adaptive learning rates [89].

Stepwise learning rate decay was also used if the validation accuracy stopped increasing,

with the smallest learning rate of 1e-6. The model was evaluated on the validation dataset

after each training epoch and the model parameters were saved only if better validation
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accuracy was achieved. During training, the L2 regularization was used to avoid overfitting.

The final performance was reported with the highest accuracy among different L2 values

(0.1, 0.01, 0.001, and 0.0001).

4.2.5 Visualization

The occlusion method [181] was utilized to visualize the important ROIs for clas-

sification in both experiments. With trained model parameters, each ROI of input data

was zeroed out one at a time, and the performance degradation under the same model

configuration was considered as the contribution of the ROI to the classification task. The

occlusion pattern was mapped onto the cortical surface for visualization. We projected ROI

data to the cortical surface (each represented as a 20-mm-radius sphere) and obtained the

surface renditions. For the individual identification task, the occlusion pattern was gener-

ated and averaged on the test dataset. For ASD classification, we utilized the pre-trained

models from the leave-one-site-out cross-validation of ABIDE I and averaged the pattern of

performance degradation on each leave-out dataset to get the visualization pattern.

4.3 Results

4.3.1 Graph Property

We compared the graph property of the k -NN graph and the FC with threshold.

The k values for the k -NN graphs were set to 3, 5, 10 and 20. For a fair comparison with

similar number of edges in total, the threshold values were chosen as 0.235, 0.196, 0.145

and 0.095, respectively. Intuitively, k -NN graphs have relatively sparse distribution of edges
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within the same functional community, while FCs with threshold tend to have dense blobs

locally as shown in Figure 4.2. We use the modularity (Q) to measure the modular quality

of a graph that is divided into communities. For k -NN graphs, increasing the k value

from 3 to 20 will decrease the modularity from 0.84 to 0.59. For FCs with threshold, the

modularity reduces from 0.67 to 0.58 when the threshold value changes from 0.235 to 0.095.

On both type of graphs, increasing the number of edges will decrease the modularity of the

graph. In terms of the degree distribution for the FC with threshold, most of nodes have

the degree of lower than 20 when the threshold value is over 0.196. When the threshold

value decreases to 0.095, the degree distribution becomes flatten and some nodes have the

degree of up to 60. Decreasing the threshold value (from 0.235 to 0.095), the number of

isolated nodes reduces from 116 to 13. And the number of subgraphs drops from 122 to 14.

It also means that some nodes always have relatively low FC values with other nodes. In

general, the average degree of nodes will increase when the threshold value decreases, which

leads to a huge diversity of the degree for each node and isolated subgraphs.

4.3.2 Performance Related to the Number of Neighbors

The hyperparameter k determines the number of edges in graphs. The classifica-

tion performance was evaluated for a range of k values (3, 5, 10, and 20). In Figure 4.3, we

show the performance of individual identification. cGCN with k of 5 achieved the highest

identification accuracy on average. Increasing the k value beyond 5 (k=10 or 20) led to

diminished performance. The performance of random GCNs was significantly lower than

cGCN models, especially for small k values (k=3 or 5).
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For ASD classification, classification results on ABIDE I and ABIDE II with leave-

one-site-out and 10-fold cross validations are shown in Figure 4.4 and Figure 4.5. With

leave-one-site-out cross validation, the highest mean accuracy was 71.6% (k=5) on ABIDE

I and 72.1% (k=3) on ABIDE II, and the lowest mean accuracy was 70.1% (k=20) on

ABIDE I and 69.6% (k=20) on ABIDE II. For the 10-fold cross-validation, the highest

mean accuracy was 70.7% (k=3) on ABIDE I and 70.2% (k=5) on ABIDE II, and the

lowest mean accuracy was 68.0% (k=20) on ABIDE I and 67.5% (k=20) on ABIDE II.

On both cross-validations, increasing the k value for the cGCN decreased the classification

accuracy.

4.3.3 Performance Related to the Number of Input Frames

For the individual identification application, we evaluated cGCNs and random

GCNs with different number of frames as inputs. With cGCN models, the improved perfor-

mance of individual identification was shown with increasing number of fMRI frames. As

shown in Figure 4.3, cGCN achieved better performance with larger number of input frames

and the performance gradually saturated at approximate 100 frames. Random GCNs ex-

hibited a similar pattern for large k values (k=10 or 20), but with accuracy much lower

than that of cGCNs. However, the performance of ConvRNN dropped dramatically with

reducing frames, close to the random guess (1%) with less than 5 frames. In contrast, cGCN

still obtained an identifying accuracy of >49% with 5 frames when k=5.

Similarly, for the ASD classification tasks on ABIDE I and ABIDE II shown in

Figure 4.6 and Figure 4.7, better classification accuracy can be achieved with larger number
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Figure 4.6: The relationship between the classification accuracy and the number of frames
as inputs with the leave-one-site-out cross-validation on ABIDE I dataset. The average
classification accuracy was proportional to the number of frames as inputs. While the
number of frames will not affect the classification accuracy for the Deep Neural Network
model [69] with FC matrices as inputs.

of input frames for different imaging sites in the leave-one-site-out cross-validation. As

a comparison, the number of input frames did not significantly affect the classification

accuracy of the DNN model, in which FC matrices were used as inputs without considering

the temporal dimension [69].

4.3.4 Comparison

For the individual identification task, cGCN achieved an accuracy of 98.8% with

k=10 when the number of input frames were fixed to 100. It outperformed several prior

architectures, including the RNN model of 94.4% [23], the ConvRNN model of 98.5% [167],
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Figure 4.7: The relationship between the classification accuracy and the number of frames
as inputs with the leave-one-site-out cross-validation on ABIDE II dataset. The average
classification accuracy was proportional to the number of frames as inputs.

58



and the traditional correlation method of around 70% [47]. In particular, cGCNs showed

overwhelming superiority over the traditional CNN model with fewer than 20 frames. As

shown in Figure 4.3, the previous ConvRNN model with only 5 frames of input data led to

an accuracy close to the random guess (1%).

For the ASD classification task with the leave-one-site-out cross-validation, the

best classification accuracy was 71.6% (min: 57.1%, max: 81.5%) when k=5 as shown in

Figure 4.4. Except for some imaging sites (CALTECH, MAX MUN, OHSU and TRINITY),

our cGCNs obtained significant performance improvement compared to the DNN model,

whose accuracy was 65.4% on average [69]. With the 10-fold cross-validation, our best

average performance was 70.7% (min: 66.7%, max: 79.0%) when k=3, which is better than

the DNN model of 70% (min: 66%, max: 71%) [69] and the RNN model of 68.5% [43]. We

summarized the classification performance on ABIDE dataset in Table 4.1.

4.3.5 Visualization

We applied the occlusion method to identify informative regions for two classi-

fication tasks. For the individual identification task in Figure 4.8, the smallest accuracy

degradation was 0.6% when k=20 and the largest accuracy drop was 2.9% when k=3. Sig-

nificant performance degradation was observed when some ROIs were individually occluded,

while some regions did not suffer from any performance degradation. The salient regions for

cGCN models with different k values were similar. The significant resting state networks

were DMN, FPN, as well as VN.
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Model Number of

subjects

Input data

Accuracy

Leave-one

-site-out

k-fold

(Chance accuracy)

RF [69] 1035 200 ROIs - 63%

SVM [69] 1035 200 ROIs - 65%

CNN [185] 200 whole-brain - 70.5%

CNN [88]

774

(ABIDE I)
whole-brain

-
Best: 71.7%

Ensemble: 73.3%

393

(ABIDE II)
-

Best: 72.8%

Ensemble: 71.7%

FCN [62] 110 116 ROIs - 86.36%

FCN [69] 1035 200 ROIs 65.4% 70%

RNN [43] 1100 200 ROIs - 68.5% (51.9%)

RNN [41] 1100
200 ROIs &

Phenotypic data
- 70.1% (51.9%)

GCN [96] 871 110 ROIs - ∼67%

GCN [122] 871
110 ROIs &

Phenotypic data
- 69.5%

GCN [6] 872
110 ROIs &

Phenotypic data
- 70.86%

Our cGCN

1057

(ABIDE I)
200 ROIs

71.6% 70.7% (50.5%)

1053

(ABIDE II)
72.1% 70.2% (53.9%)

Table 4.1: Performance for the classification of Autism spectrum disorders with differ-
ent deep learning models based on the Autism Brain Imaging Data Exchange (ABIDE)
datasets. Some traditional machine learning methods including Random Forests (RF) and
Support Vector Machine (SVM), and deep learning models including Convolutional Neural
Networks (CNN), Fully-Connected Networks (FCN), Recurrent Neural Networks (RNN),
Graph Convolutional Networks (GCN) are compared with our connectivity-based Graph
Convolutional Network (cGCN).
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Figure 4.8: Visualization of the performance degradation through the single-ROI occlu-
sion for the individual identification. Red region reflected large performance degradation if
corresponding ROIs were occluded. The performance degradation reflects the relative con-
tribution of each ROI. When k=20, the smallest performance drop was only 0.6%. While
the largest performance drop of 2.9% was obtained with k=3. Default mode network, fron-
toparietal network and visual network contributed more to the individual identification.
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Figure 4.9: Visualization of the performance degradation through the single-ROI occlusion
for the ASD classification. We averaged performance drop on all models used in the leave-
one-site-out cross-validation. The maximum performance drop was 7.5% when k=3, and
the smallest performance drop was 6.0% when k=20. The color of the region reflected the
performance degradation if corresponding ROI was occluded. The salient regions related to
the ASD classification included frontoparietal network, default mode network and ventral
attention network.

For the ASD classification task in Figure 4.9, the largest performance drop was

7.5% when k=3, and the smallest performance drop was 6.0% when k=20. The salient

regions for cGCN models with different k values were similar. The salient networks identified

by cGCN included FPN, DMN and ventral attention network.
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4.4 Discussion

We presented cGCN architecture for fMRI analysis and applied cGCN on two

classification tasks with rs-fMRI data, i.e., the individual identification and classification of

ASD, respectively. The superior performance compared to prior studies demonstrated that

cGCN can effectively capture spatial features of fMRI data within connectomic neighbors.

A major contribution of the present work is that rather than performing convo-

lution on structured image grids, ROI-based fMRI data are considered as graphs based on

FC and cGCN is carried out between connectomic neighbors on the graph. Previous stud-

ies utilized fully-connected layers for the spatial feature extraction and ignored the brain’s

functional organization. In addition, it is difficult to train fully-connected models with sat-

isfactory performance due to overfitting. Our prior paper demonstrated that it was feasible

to capture spatial patterns on a small batch of ROIs from the same FC network by convolu-

tions [167], although ROIs were artificially arranged in a pre-defined order according to the

atlas. In the present work, the convolutional neighborhood was defined by the group-level

FC matrix. Each ROI was involved in the convolution with its top connectivity-based neigh-

bors, and high-level features were extracted by stacking convolutional layers hierarchically.

The superior performance of cGCN over random GCN and previously used methods demon-

strated that connectivity-based neighborhood for convolutions was a significant advantage

for the cGCN architecture.

We adopted the k -NN graph rather than hard thresholding FC to reduce the size

of the neighborhood and effects of noise in connectivity [104, 117]. The advantages of k -NN

graphs lie in the following aspects. First, k -NN graphs naturally have local homogeneity
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with the same number of edges originating from each node, appropriate for convolutions.

Second, hierarchical feature extraction can be easily achieved with stacking layers under

the guidance of the k -NN graph.

Like the convolutional kernel size in the traditional CNN models, k explicitly

determines the convolutional region on graphs, as well as the computational complexity for

the cGCN model. We tested the performance of our cGCN architecture with different k

values. The best performance of the individual identification was achieved when k=5 while

the highest classification accuracy on ASD with two types of cross-validations was achieved

when k=3 or 5. For both tasks, increasing k did not improve the classification accuracy

significantly. One possible reason is that convolution on too many neighbors might fail

to generate local features with good generalization. The same situation also happened in

the modeling of 3D objects [168]. Therefore, we suggest a k value of 5 or less for good

performance, although the exact optimal value may be application dependent.

Unlike k, increasing the number of input frames improved the performance sig-

nificantly for both tasks. This effect was especially obvious with a few input frames in

the beginning and gradually leveled off with over 100 frames for individual identification.

This result indicates that cGCN can efficiently extract spatial patterns between function-

ally ‘adjacent’ nodes from each frame of fMRI data in spite of substantial inter-subject and

inter-session variability that arise due to hardware variations, and physiological variations

[109]. Thus, it is beneficial to keep the temporal axis of the fMRI data and apply frame-wise

feature extraction based on fMRI time course rather than the FC matrix.
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There are some appealing properties by using the asymmetric edge function for

convolutions according to [168]. First, the spatial feature of both global information xi

and local interactions xj − xi is captured by the asymmetric edge function. Second, the

long-distance characterization of spatial features between multi-hop neighborhood can be

captured by the stacked convolutional structures, based on the topological structure of the

graph.

Furthermore, the single-ROI occlusion experiments revealed the salient regions

related to individual identification and classification of ASD tasks, which are in agreement

with those seen in previous studies [47, 69, 119, 167]. For the individual identification task,

the performance drop was much smaller than that of ConvRNN model [167], suggesting

that the graph-based representation of fMRI data builds robust relationship between ROIs,

and missing values of any ROI might be compensated by its functional neighbors based on

the topological structure of graphs.

Some limitations should be noted for future work. First, the graph topology is

invariant from layer to layer, frame to frame and subject to subject. Considering the

significant variability in FC, future work shall adopt dynamic update across convolutional

layers, time frames and subjects. Second, the graph in the present work only reflects the

brain’s organization from the functional perspective. Other image modalities, e.g., diffusion

MRI, could be utilized to build graphs that reflect the brain’s structural connectivity. Third,

intuitive visualization of temporal features captured by cGCN is difficult. This warrants

further investigation in future studies.
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4.5 Conclusion

In this chapter, we describe a connectome defined neighborhood for graph convolu-

tion to extract connectomic features from rs-fMRI data for classification. Our model allows

for spatial feature extraction within connectomic neighborhood rather than Euclidian ones.

Significant improvement on individual identification and ASD classification tasks suggests

that the cGCN model is effective in capturing connectomic features from fMRI data and is

promising for fMRI analysis.
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Chapter 5

Conclusion and Future Work

We have introduced two neural network architectures for fMRI analysis. Our

models are RNN-based architectures to extract spatiotemporal features from fMRI sequence.

Taking ROI data as inputs, we aim to extract spatial features related to functional networks

based on BOLD signals from each frame of fMRI data. Our experiments demonstrated that

significant performance improvement has been achieved for classification tasks. Meanwhile,

interpretable visualization based on two models have provided an insightful understanding

of fMRI data from a new perspective.

5.1 Similarities Between ConvRNN and cGCN

Relying on ROI-based fMRI data, it is efficient for both ConvRNN and cGCN

to deploy large-scale analyses with hundreds of brain regions. Rather than performing

feature extraction on the derived FC matrix, our neural network models take BOLD signals

directly as inputs, and the time dimension has been explicitly kept to account for temporal
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dynamics. Applying the RNN-based architecture leads to the spatial feature extraction

from each frame of fMRI data and the temporal characterization from fMRI time course.

For the spatial feature extraction on fMRI data related to the functional connec-

tivity, we assume that local interaction among connectomic brain regions reflects functional

brain networks. Specifically, ConvRNN is built based on Power’s atlas by putting con-

nectomic brain regions together, in which a canonical division of ROIs into communities is

adopted [14]. cGCN defines graph-represented fMRI data based on the group FC matrix, in

which edges interconnect top connectomic brain regions by means of the k -NN graph. Both

ConvRNN and cGCN define functionally connectomic neighborhood and acquire spatial

features with the underlying configuration of brain networks.

Another similarity between ConvRNN and cGCN is that convolutions are used for

the spatial feature extraction. Even though the current understanding of CNNs has been es-

tablished based on the Euclidean data with structured grids (such as images and text data),

the feasibility of convolutions on ROI-based fMRI data has not been fully demonstrated.

Learning from the pairwise Pearson correlation and the FC matrix, both ConvRNN and

cGCN have been built based on the assumption that local interactions within a small group

of ROIs should exist, and can be determined by the convolutional operation. Although

fully-connected layers can be applied without any assumption, the overfitting problem can-

not be fully solved due to the inefficient computation. As a result, improved performance

has been demonstrated with both ConvRNN and cGCN. The efficient computation of con-

volutional models guarantees that it is scalable to apply convolutions for large-scale fMRI

analysis. Also, in-place visualization techniques based on convolutions also enable us to in-
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terpret fMRI data along with classification tasks. The compatibility between convolutions

and fMRI data can bring convenience when applying deep learning techniques for fMRI

analysis.

5.2 Differences Between ConvRNN and cGCN

With the same fMRI time series as input data, the biggest difference between

ConvRNN and cGCN is the internal data representation for each fMRI frame. ConvRNN

has simply taken each frame of ROI data as a 1D array with the pre-defined order from

the functional atlas. Even though the Power atlas manually groups connectomic ROIs into

communities, the spatial pattern and the subsequent feature extraction are sensitive to

the order of ROIs. The interpretability of extracted features is directly determined by the

order of ROIs. As a comparison, cGCN considers each frame of ROI data as a graph by

finding the top-connectivity neighborhood based on the group FC, which explicitly manifests

interactions between two brain regions beyond the Euclidean distance. Therefore, the graph

representation of fMRI data combines time-variant BOLD signals with the top-connectivity

neighborhood based on the group FC matrix, which provides a powerful data representation

beyond the Euclidean distance without any pre-defined order of brain regions.

In addition, ConvRNN applies traditional convolutions on ROI-based fMRI data

in 1D arrays. Though high-level features are generated by stacking convolutional layers

hierarchically, the modeling capacity of ConvRNN is largely confined due to the spatial

configuration of 1D arrays. In contrast, the graph-represented fMRI data in cGCN de-

fines convolutional neighbors for each ROI based on the functional connectivity, which is
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equivalent to grid data with the closest neighbors taken from the structured grids. To be

insensitive to the order of functional neighbors, spatial GCN has been applied with the

asymmetric edge function, where both global information of ROIs and local interaction

between connectomic neighbors have been taken into consideration. High-level features be-

tween multi-hop functional neighborhood based on the group FC matrix can be captured

by cGCN.

5.3 Summary of Research Contributions

Our thesis introduces neural network models to perform classification tasks based

on rs-fMRI data. Taking the functional configuration of the brain network into consider-

ation, our models have achieved better performance by extracting spatiotemporal features

regarding to the functional connectivity behind fMRI data. Both of our deep learning archi-

tectures employ the RNN-based architecture to generate spatiotemporal features for fMRI

analysis, which is consistent with our previous study [24]. Instead of applying deep learning

models with the FC matrix, we believe that spatial features should be separately extracted

from each frame of fMRI data, and the dynamic features should be explored from fMRI

time frames. With each time step being recurrently processed, temporal information across

fMRI frames is processed by the model. Though the FC matrix depicts the spatial pattern

behind the functional structure of the brain, it fails to keep the rich spatiotemporal features

due to the collapsed temporal axis. The improved performance of ConvRNN and cGCN

over traditional methods with FC matrices as inputs has been demonstrated.

70



For ConvRNN, ROI data have been arranged in 1D arrays with those ROIs from

the same functional network grouped together. Spatial features related to the functional

connectivity are obtained among connectomic regions. Considering the non-Euclidean prop-

erty of the brain network without any pre-defined order of brain regions, the graph repre-

sentation is applied for fMRI data in cGCN architecture. Specifically speaking, each frame

of ROI data is considered as a graph, in which edges reflect the connectomic information

between regions based on the group FC matrix. Considering the intractable complexity of

the FC matrix with too many FC pairs, we assume that distinct FC-related features are de-

rived between top connectomic regions in terms of the connectivity strength. So we further

simplify the graph into a k -NN graph by keeping top FC pairs for each region and ignoring

most of weak FC pairs in the original FC matrix. The linear computational complexity

based on the k -NN graph can makes it scalable for large-scale analysis. Therefore, we

present the graph representation for fMRI data that reflects the configuration of functional

connectivity.

We also prove that convolutions are effective for the spatial feature extraction

from ROI-based fMRI data, which is in accordance with main-stream deep learning tech-

niques. For ROI data, fully-connected models have been widely applied for spatial feature

extraction, considering the non-Euclidean property of the functional network. However, it

is difficult to train fully-connected models properly to avoid overfitting. Our ConvRNN

demonstrates that convolutions are feasible to acquire local features from ROI data with

traditional data representation. The advantage of ConvRNN over fully-connected models

has demonstrated convolutions are effective on ROI data. For cGCN architecture, graph
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convolutions are employed on the graph-representation fMRI data, which is in line with our

understanding of functional connectivity. And the improved performance has been realized

with the cGCN architecture.

Along with the convolutional operation, the interpretable visualization has pro-

vided a new understanding of fMRI data along with classification tasks. Due to the in-place

operation, intermediate outputs from convolutional layers of ConvRNN have been shown.

Moreover, the occlusion method has been utilized on classification tasks with both Con-

vRNN and cGCN. The performance degradation with the occlusion is considered as an

indirect measurement of the contribution of ROIs for classification tasks, which has ob-

tained similar conclusions with previous studies. We believe visualization based on both

ConvRNN and cGCN can help us to interpret fMRI data based on large-scale data-driven

approaches.

5.4 Limitations and Future Work

Several limitations should be noted here for future work. First, the discriminating

power and generalization of our neural network models on new data are still far from

satisfactory results, although we have applied new deep learning architectures on individual

identification and classification of ASD. One possible reason is that our models are not

deep enough with limited modeling abilities to deal with the high variability behind fMRI

data. It is probable that the model performance can be further improved by building more

complex models to extract sophisticated features from fMRI data. Second, the current graph

representation is proposed for each fMRI frame statically without explicitly incorporating
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Figure 5.1: The heterogeneous graph representation for MRI classification tasks. The pop-
ulation graph includes nodes for different subjects and weighted edges for the similarity
between two subjects based on non-image information. Each subject is also represented in
a graph based on structural and functional data. Thus, the node-level classification task
will be defined with the multi-level graph representation.

any temporal information of the brain networks in the graph representation. Inspired by

dynamic graphs in [7, 49] and the node-level classification of the population graph [122],

the graph construction for fMRI data should be revisited systematically. For example, as

shown in Figure 5.1, the classification task can be configured into a heterogeneous graph,

whose nodes are subjects represented in graphs based on structural and functional data.

Edges in the population graph can be quantified by a combination of non-image information

between subjects. Thus, a node-level classification task will be carried out on multi-level

graph representations. Third, current ConvRNN and cGCN architectures have been applied

without adequate optimization for fMRI analysis. The optimization of the architecture

and hyperparameter tuning during the model training are of great necessity to improve

classification accuracy.
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Furthermore, data visualization is effective in understanding data and in interpret-

ing neural network models intuitively. Based on deep learning models, we apply visualization

approaches to determine informative regions related to the classification task, which is in

agreement with previous studies. Even though current visualization methods are feasible

and effective to implement, we should put more effort towards developing new visualization

approaches in particular for fMRI data. Interpretable deep learning techniques are very

promising to achieve accurate healthcare.

In addition to the above limitations, my current work only relies on fMRI data in

single modality for classification tasks. The BOLD signals from fMRI data are considered

as an indirect measurement of neural activity with great variability across sessions and

subjects. The interpretation of fMRI data can not be comprehensive due to the inherent

limitations of the fMRI technique. Therefore, multi-modal studies based on structural

MRI data, fMRI data and phenotypic information should be integrated to have a better

understanding of the brain from different aspects.
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Nicola Filippini, and Clare E Mackay. ICA-based artefact removal and accelerated
fMRI acquisition for improved resting state network imaging. 95:232–247, 2014.

79
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