
UC Irvine
ICS Technical Reports

Title
Structure-driven algorithms for truth maintenance

Permalink
https://escholarship.org/uc/item/3sh4d6vb

Authors
Dechter, Rina
Dechter, Avi

Publication Date
1994-08-18

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3sh4d6vb
https://escholarship.org
http://www.cdlib.org/

STRUCTURE-DRIVEN ALGORITHMS
for TRUTH MAINTENANCE

Rina Dechter
Department of Information and Computer Science

University of California, Irvine

Avi Dechter
Department of Management Science

School of Business Administration and Economics
California State University, Northridge

Technical Report 94-57
August 18,1994

Notice: This Wlateri?'
may be protected
by Copyright Law
(Title 17 U.S.C^:

Abstract

Z

(o9'l
(^5

' ho,

C,, jL

This paper presents distributed algorithms for performing truth-maintenance and belief
revision tasks on single-connected structures. We show that on such models the JTMS
tasks of belief revision and consistency maintenance are linear in the size of the knowledge-
base. The ATMS task remains exponential with a reduced exponent - the branching degree
of the network. The single-connected model, while restrictive, is useful for three reasons.
First, efficient algorithms on single-connected models can be utilized in more general
structures by employing well-know clustering techniques. Second, these algorithms can
serve as approximations or as heuristics in algorithms that perform truth-maintenance on
generalproblems. Finally, the analysis provides insights for understanding the sources of
die computational difficulties associated with bothJTMS and ATMS.

Structure-Driven Algorithms for Truth Maintenance'

Rina Dechter

Information and Computer Science Department
University of California, Irvine , CA 92717

dechter@ics.uci.edu

Avi Dechter

Department of Managment Science
School of Business Administration and Economics
California State University, Northridge, CA 91330

avi@cs.ucla.edu

August 18, 1994

Abstract

This paper presents distributed algorithms for performing truth-maintenance and be
lief revision tasks on singly-connected structures. We show that on such models the
JTMS tasks of belief revision and consistency maintenance are linear in the size of the
knowledge-base. The ATMS task remains exponential with a reduced exponent - the
branching degree of the network. The singly-connected model, while restrictive, is useful
for three reasons. First, efficient algorithms on singly-connected models can be utilized
in more general structures by employing well-known clustering techniques. Second, these
algorithms can serve as approximations or asheuristics in algorithms that perform truth-
maintenance on general problems. Finally, the analysis provides insights for understanding
the sources of the computational difficulties associated with both JTMS and ATMS.

1 Introduction

Reasoning about dynamic environments is a central issue in Artificial Intelligence. When
dealing with a complex environment, only partial description of the world is known explicitly
at any given time. A complete picture of the environment can only be speculated by making
assumptions. The assumptions must be consistent with each other and with the available
information. When new facts become known, the validity of the assumptions must be re-
examined, and (ifnecessary) changes in theassumptions must be made, so that theconsistency
of our view of the world is maintained at all times. I

1 1

*This work was supported inpart by grants from the Air Force Office ofScientific Research, AFOSR 900136,
by NSF grant IRI-91573636, by grants from Toshiba of America and Xerox Palo Alto research center.

Truth-maintenance systems (TMSs) are computational schemes which are intended to
handle such situations. In its generic form, a TMS manipulates propositional symbols and
formulas (constraints) built from propositional symbols and standard Boolean connectives.
The propositional symbols represent either premises or propositions. Premises are statements
about the environment that do not require proof either because they are known to be true or
because they may be assumed to be true as long as there is no evidence to the contrary. The
truth value of propositions, on the other hand, must be derived from the premises and the
constraints.

The main functionality of a TMS is to determine whether the truth of a given proposition
follows logically from a given set of premises and from the set of constraints, and to keep this
information current.

Two primary approaches to TMS implementation have been proposed: the JTMS (Justification-
based TMS) [12, 19, 21] and the ATMS (Assumption-based TMS) [5]. Each design imple
ments the m£iin functionality in a different way. A JTMS starts with the given premise set
and attempts to identify all provable propositions, hoping that a proof will be derived for the
target proposition. An ATMS, on the other hand, maintains for each proposition a collec
tion of consistent premise subsets (called environments) any of which can be used to prove
the proposition. To prove that the target proposition follows from the given premise set,
all that is needed is to verify that this premise set contains at least one of the proposition's
environments.

A JTMS must also be able to check whether its current premise set is consistent with the
constraints, and, in case it is not, point to a part of the premise set which can be shown to be
a source of the inconsistency. This functionality of JTMS is closely related to the framework
of agent's belief revision. The basic idea in this more recent work is to enforce minimal change
in an agent's belief necessary to account for a new contradiction in his knowledge [Ij. Thus
far, research in belief revision focused on the task of finding a minimal revision or on finding
what holds under all minimal revisions. Here we focus on the identification of a minimum

number of changes to represent minimal change.
When originadly introduced, algorithms for Truth Maintenance were not accompanied by

complexity analysis, or any kind of theoretical guarantees [12,6,19]. Nevertheless, experimen
tal work with these tools, and more recent complexity analysis, have shown that both JTMS
and ATMS functionalities are very inefficient, although ATMS exhibits higher complexity
than JTMS in both time and space.

A common strategy for reducing computational complexity has been to use efficient al
gorithms [20] which are complete'only for restricted languages (e.g., unit resolution for Horn
theories), but may be incomplete in general. This paper adopts a similar approach although
it differs on the type of restriction it considers. We focus on the structure of the knowl
edge as the parameter which affects our ability to generate more effective truth-maintenance
and belief-revision algorithms. We will present algorithms that are tractable for tree-like
knowledge-bases and whose complexity for general theories can be bounded as a function of
the "distance" of the knowledge-base from a tree.

The algorithms are based on recent work on processing constraint networks, referred to

as Constraint Satisfaction Problems (CSPs), which resulted in many efficient algorithms and
tractable cases tied specifically to the structure of the problem [10, 14, 18, 11]. A constraint
network consists of a set of variables, each associated with a finite set of possible values, and a
set of constraints, specifying joint assignments to the variables "allowed" by the constraints.
A solution is an assignment of values to all the variables such that all of the constraints are
satisfied.

For the purpose of using CSP techniques, we assume that the TMS knowledge-base is
represented as a constraint network. In this network, each proposition is represented by the
assignment of a specific value to a particular variable. Such a proposition is entailed if it
is the only possible assignment of a value to that variable. To model change we introduce
the notion of assumption variables. The TMS algorithms will be allowed to manipulate
those assumptions in response to changes to the network (possibly imposed by observations
from the outside world). Since the language of constraints has the same expressive power
as prepositional logic [19], all the algorithms presented here axe applicable to prepositional
languages. The connections between truth maintenance systems and constraint satisfaction
problems was already pointed out by several authors e.g., [6] and [22] [20]. The main thrust
of these efforts has been to show search reduction techniques developed in one area may be
used to the benefit of the other. Our work here take this idea one step further.

We present the algorithms in a distributed fashion. We emphasize the distributed nature
of our algorithms for two reasons. First, in order to allow their implementation on a real
physical distributed network of processors. Second, a distributed algorithm, if self stabilized,
is guaranteed to converge to a solution from any initial configuration (for precise definition see
[24]). The algorithms we present are self-stabilized and, consequently, the updating process
of such knowledge, in response to a local change, is already coded.

Following preliminaries in section 2 whereby the tasks of TMSs is defined within the
constraint network model, we present (section 3) a distributed algorithm for computing and
maintaining the entailment status of each proposition. In section 4 we present a distributed
belief revision algorithm for restoring consistency to an inconsistent network in a way that
minimize the number of assumption changes. We demonstrate the applicability of this algo
rithm for diagnosis (section 5). Weshow that, JTMS's tasks of entailment and beliefrevision
are linear time on tree-like knowledge-bases. Finally, in section 6 we address the ATMS la
beling task of compiling and maintaining all the labels. We show that, although in this case
the algorithm is not tractable, not even for trees, its complexity is exponentially bounded by
the branching degree of the tree. Therefore, chain-like networks can be processed relatively
efficiently for this task as well.

2 Definitions and preliminaries

In this section we define the notions of constraint networks and relations, relate them to
propositional theories, and define in their context the TMS tasks discussed in the introduction.

Definition 1 (relations, networks, schemes) Given a set of variables X = {Xi,...,X„},
associated, respectively, with domains of discrete values Di,...,Dn, a relation (or, alterna-

lively, a constraintj p = p{Xi,X^) is any subset

p C Dy X D2 X ... X Dn.

The projection of p onto a subset of variables Q, denoted nQ(/9) or pq, is the set of all
tuples defined on the variables in Q that can be extended into tuples in p. A constraint
network R over X is a set py,..., pt of such relations. Each relation pi is defined on a subset
of variables Sy C X. The set of subsets S = {5i,..,5t} is called the scheme of R. The
network R represents a unique relation rel{R) defined over X, which stands for all consistent
assignments (or all solutions), namely,

rel{R) = {i = {xy,...,Xn)\ V5i 6 ^ Pi}.

A partial assignment T = t is a value assignment to a subset of variables T C X. A value x
in the domain of X is said to be consistent if it is part of at least one solution of R. A tuple
t is consistent if it participate in at least one solution.

The scheme of a constraint network can be associated with a constraint graph where each
subset in the scheme is represented by a node in the graph and two nodes are connected if
the corresponding relations have at least one common variable. The arcs are labeled by the
common variables. A networks whose constraint graph is a tree is said to be acyclic and its
corresponding constraint graph is called a join tree. When all the constraints involve exactly
two variables, the network is called binary. In such a case, another graphical representation
of the network, called the primal constraint graph is useful. In this graph each variable is
represented by a node and two nodes are connected by an arc if the variables they represent
are joined by a constraint.

Any propositional theory can be viewed as a special kind of constraint network, where the
domain of each variable is {0,1} (corresponding to {false, true}) and where each clause (a
disjunction of propositional symbols or their negations) specifies a constraint (in other words,
a relation) on its propositional symbols. The set of all models of the theory corresponds
exactly to the set of all solutions of its corresponding constraint network.

A proposition X = i is entailed by the network if x is the only consistent value of X,
namely if it participates in all solutions. Similarly, a tuple t is entailed if it participate in all
solutions. We distingTiish a subset of variables A C X called assumption variables.

Example 1 Consider the theory $ = {->AV -i5, -iB V-"C, C VDj. This theory can be viewed
as a constraint network over the variables {A, B,C, D}, where the corresponding relations
are the truth tables of each clause, that is, p{AB) = {00,01,10}, p{BC) = {00,01,10}, and
p{CD) = {01,10,11}. The scheme of the theory $ is {AB,BC,CD}. The set of all solutions
to this network (and hence the set of models 0/ $j is

p{ABCD) = {0001,0010,0011,0101,1001,1010,1011}.

It is evident that none of the propositions or their negations is entailed. Theory $ is
acyclic as demonstrated by its constraint graph:

BC

/\

- B / \ C

/ \
AB CD

We next define formally the TMS tasks that we consider in this paper:

Definition 2 (TMS functionalities defined for constraint networks) Given a network
of constraints R, over aset of variables X= with asubset A, AC Xof assumption
variables, and a set ofconstraints pi, over X we define:

• JTMS main functionality:, Given an instantiation of a subset of the assumption
variables, determine for each X = x if it is entailed.

• JTMS belief revision: Given a set ofassumptions for which the network is inconsis
tent, determine a minimal-size set of assumption change that restore consistency.

• ATMS main functionality: For each value x of each variable X, determine the set
of all consistent minimal (in the sense of set inclusion) instantiations of assumption
variables that entail X = x.

The algorithms we discuss in this paper assume, initially, that the theories are acyclic.
These algorithms are extensible to arbitrary theories via aprocedure known as tree-clustering
[11], which compiles any theory into atree of relations. Consequently, given ageneral theory,
the algorithms presented in the sequel work in two steps: Ajoin-tree is computed by tree-
clustering, and then a specialized tree-algorithm for the particular TMS function is applied.
The complexity of tree-clustering is bounded exponentially by the size of the maximal arity
of the generated relations, and hence our algorithms are efficient for theories that can be
compiled into tree networks oflow-arity relations only. Examples ofsuch theories are discussed
in section 5.

3 Identifying all entailed propositions

A proposition of the type X = a: is entailed in a network ofconstraint R if the network has
at least one solution and ifx is the only value of X in all solutions. The approach we propose
for identifying all entailed propositions involves computing for each value in the domain of
each variable the number ofsolutions it participates in. We will refer to this number as the
numerical-support (n-support in short) of the value. Once this information is available for
every value of a variable, entailment is easy to determine locally: a proposition X = x is
entailed ifx has a positive n-support while all other values of X have zero n-supports.

The notion of numerical support may be extended to encompass not just the instantiation
of asingle variable but that of atuple of variables. This is captured in the following definition.

Figure 1: A fragment of a tree network

Definition 3 Given a network ofconstraints over variables Xi,Xn, with constraints Ci,...Cr,
the n-support of a value x of X, denoted sx{x), is the number of solutions in which X is
assigned the value x. The n-support of a tuple Ci = Ci, denoted 5Ci(c,), is the number of
solutions in which Ci = Cj. Let R be a join tree, and let {U,V) be an arc in the tree (see
Figure I). The subtree rooted at U which does not contain V, is denoted T^, and s^{u) is
the number of solutions ofTy which are consistent with U = u.

In the following we present a distributed algorithm that compiles all n-supports for an
acyclic network. The algorithm is a distributed adaptation of a known tree algorithm that
computes the number of solutions [10]. Following [10], it is easy to show that:

Theorem 1 Let T be a join-tree, and let U be one of its relations, the overall n-support for
U = u can be expressed as a function of the n-supports of its neighbors, namely:

su{u)= n Y, s^{q) (1)
(<9i£/)€T9:9l/nQ=UD-ng

Equation (1) lends itself to a distributed propagation scheme. If constraint U gets from
each neighboring node, Q, the n-support vector, Sg, it can calculate its own support vector
using equation (1), and, at the same time, it can generate an appropriate message for each of
its own neighbors. The message which U sends to Q, (i.e., the support vector reflecting

support propagation({7)
Input: A join-tree T, having variables X = {ATi,X„}. A relation U ET, the
n-support vector for all neighbors, Q of 17.

Output: The support vector scr(u), and for each neighbor Q, the vector Sy(u).

1. Compute n-siipports for each tuple:

= n 12
(U,Q)iT q.luno =uunQ

2. Update single-value n-supports: For every X in the constraint U,

sxix)= ^ Su{u)
;ux=^

3. Compute n-supp6rts messages for each neighbor Q:

Su(") = n 2
(C,C/)6T,C?S<3 c;'!cni/=ucni/

Figure 2: Algorithm support-propagation

the subtree T^,) can be computed by:

= II
{C,U}eT,C^Q c-,ccnu=^cnu

(2)

The message generated by a leaf-constraint is a vector consisting of I's representing the
tuples allowed by that constraint. The computation consists of nodes sending to their neigh
bors the partial n-support vectors whenever they are readily computed. When all nodes have
received all the n-supports, the overall n-supports for each tuple in their constraint can be
computed using (1).

Having the n-supports for each tuple in each relation, the single-valued n-supports can
be derived by picking a relation in the tree containing the variable in question, and then
summing the corresponding n-supports of all tuples in the relation that has that value. The
algorithm for node, U, is summarized in Figure 2.

If the algorithm is executed in a real distributed environment, its convergence is guaranteed
after at most n-d messages when d is the the maximal distance between two leaf nodes. Under
some synchronization the number of messages can be reduced to 2n. It can, similarly be shown
that the cost of updating the n-supports following a single change in one relation wiU cause
at most 2n messages until convergence. The following theorem focus only on the sequential
complexity of the algorithm.

Theorem 2 The sequential complexity of algorithm support-propagation is 0{n • r • logr),
where r is the maximal number of tuples of any relation in the join-tree.

Proof: The summation operation between any two relations U and Q can be accomplished
in 0[t •logr) steps as follows. Relation Q is projected on the variables in the intersection of
Q and U. Each projected tuple is associates with a new ra-support computed by summing
the corresponding n-supports in the message that Q sends to U. This operation takes 0{r)
steps. Then, the projected relation can be sorted in 0(r • logr) steps and each tuple can be
retrieved in logr steps by relation U •.

In conclusion, once all Ji-supports are computed, each tuple of each relation "knows" if it is
entailed, consistent, or inconsistent in constant time, while for each singleton this information
can be obtained in 0{r) steps.

If one is interested in entailment only, flat support-vectors, consisting of zeros and ones,
can be propagated in exactly the same manner, except that the summation operation in (1)
should be replaced by the logic operator OR, and the multiplication can be replaced by AND.
This results in a distributed arc-consistency algorithm that minimizes the number of message
passing along the links.

Computing n-supports is not easier than determining entailment directly (namely, by
calculating all the solutions of the network). In fact, it is generally very complex, as it is
^R-complete [23]. However, for acyclic networks the complexity of computing n-supports is
the same as that of computing one solution. We choose to compute ra-supports since this can
be accomplished at no additional cost on trees, while it is more informative and might prove
useful in applications.

4 Belief revision

When, as a result of a new input, the network enters a contradictory state, (i.e., no solution
exists) it often means that the new input is inconsistent with the current set of assumptions,
and that some of these assumptions must be modified in order to restore consistency.

It is widely agreed that the subset of assumptions that are modified should be minimal,
namely, it must not contain any proper subset of assumptions whose simultaneous modifica
tion is sufficient for that purpose. A sufficient (but not necessary) condition for this set to be
minimal is for it to be as small as possible. In this section we show how to find a minimum
cardinality set of assumptions that need to change in order to restore consistency.

Assume that a constraint which detects an inconsistency (i.e., all its n-supports are zero)
sends this information to the entire tree, creating in the process a directed tree rooted at
itself. Given this rooted join-tree, belief revision proceeds as follows.

With each tuple v of each relation V in the join-tree T, we associate a weight w{v),
denoting the minimum number of assumption values that must be changed in the subtree
rooted at V in order to make v consistent relative to this subtree. For each tuple g of a
relation Q we denote by S{q), the number of its assumptions that differ from the current
assumptions. We denote by child{V) the set of child relation of V in the join-tree.

The weights obey the following recursion(see Figure 3):

w(v) - ^(v)-|- min w(q), (3)

V

mm min(ii;i, W3)

Figure 3: Weight calculation for relation V

The computation of the weights is performed distributedly from the leaves of the directed
tree to the root. A node waits to get the weights of all its child nodes, computes its own •
weights according to (3), and makes them available to its parent. During this bottom-up-
propagation a pointer is kept from each tuple of V to the tuples in each of its child-nodes
where a minimum is achieved. When the root receives sdl the weights, it computes its own
weights and selects one of its minimizing tuples. It then initiates (with this tuple) a top-down
propagation down the tree, following the pointers marked in the bottom-up-propagation. At
termination this process marks the assumption variables that need to be changed and the
appropriate changes required. The algorithms is summarized in Figure 4.

Theorem 3 Given a join-tree T whose relation size is at most r, algorithm belief-revision
can find one minimal revision in 0{n • r •logr). The set of all minimal cardinality revisions
can be generated in 0{l n-r •logr), where I is the size of the output.

proof: The minimization operation between any two relations of size r can be accom
plished in 0{r •logr) steps as follows. A child node C, with its weighted relation, projects
its relation on the intersection of its own variables and that of its parent relation P. The
weight associated with each projected tuple is the minimum weight among the weights of all
the corresponding tuples in C. This operation can be accomplished in linear time 0{r). Then
the projected relation can be sorted in 0{r • logr) steps and can be retrieved in logr steps
by the parent node P for the summation operation. If all the minimum cardinality revisions
are needed they can all be retrieved in output linear time by following the pointers in the
top-down step of the algorithm. •

Once belief revision had been terminated, all assumptions can be changed accordingly,
and the system can get into a new stable state using support propagation. There is no need,
however, to activate the whole network for belief revision, because the n-support information

Belief-revision (y)
Input: A rooted join-tree T, having variables X = and relations
Vi,, ,Vm- A set of assumption variables AC X and its current assignment A = a.
Output: The weights of each tuple and an indication to changes in assumption
assignment.

1. For each tuple u,- G Vi compute 6{vi).

2. (Bottom up) compute weights of V (given the weights for it child nodes)

w{v) = 5(v)+ V min w{q),

3. (Top down) Given a tuple t selected by parent, Change assumption value
accordingly, select that tuple of each child relation pointed to by t.

Figure 4: Algorithm belief revision

clearly points to those subtrees where no assumption change is necessary. We will illustrate
the belief revision algorithms in the next section using a circuit diagnosis example.

5 A Circuit Diagnosis Example

An electronic circuit can be modeled in terms of a constraint network by associating a variable
with each input, output, intermediate value, and device. Devices are modeled as bi-valued
assumption variables, having the value "0" if functioning correctly (default) and the value "1"
otherwise. There is a constraint associated with each device, relating the device variable with
its immediate inputs and outputs. Given input data, the possible values of any intermediate
variable or output variable is its "expected value", namely, the value that would have resulted
if all devices worked correctly, or some "unexpected value" denoted by "e". A variable may
have more then one expected value. Fot the purpose of this example we assume that the set
of expected values for each variable were determined by some pre-processing and all the other
values are marked collectively by the symbol "e".

Consider the circuit of Figure 5 (also discussed in [7,4,16]), consisting of three multipliers,
Mi,M2,Mz, and two adders, Ai and A^- The values of the five input variables, A,B,C,D,
and E, and of the two output variables, F and G, are given. The numbers in the brackets
are the expected values of the three intermediate points X, Y, and Z, and of the outputs.
The relation defining the constraint associated with the multiplier Mi is given in Figure 6 as
an example, as well as the initial weights associated with the tuples of these leaf constraints
(6 = w for leaf nodes). The weight of the first tuple is "0" since the assumption variable. Mi
is assigned the currently assumed value, "0", while in the second tuple the assumed value is
changed to "1". Given the inputs and outputs of the circuit, the objective is to identify a
minimal set of devices which, if presumed to be malfunctioning, could be consistent with the
observed behavior (i.e., G = 12 and F = 10).

10

A=3

B=2 —

C=2 —

D=3 —

E=3

Ml

M2

M3

A1

tY[6]

A2

Z[6]

Figure 5: A circuit example

F=10

G=12

Ml A C X

0 2 3 6 w = 0

1 2 3 c w = 1

Figure 6: A multiplier constraint

11

(i = 6) = 0
w{x = e) = 1

w{y = 6) = 0
w{y = e) = 1

w{y ='6) = 0
^{y = e) = 1

M2BD\

MiCE

'w{z = 6) = 0
w{z = e) = 1

Figure 8: Weight calculation for the circuit example

The join-tree of the constraint network modeling this circuit is given in Figure 7. This
network is acyclic, as is evident by the fact that a join-tree can be obtained by eliminating the
redundant arc (marked by a dashed line) between constraint {M2,B,D,Y) and (A2, Z, Y, G).
For more details see [11].

Initially, when no observation of output data is available, the network propagates its n-
supports assuming all device variables have their default assumption-value "0". In this case
only one solution exists and therefore the supports for all consistent values are "1". The
diagnosis process is initiated when the value "10" is observed for variable F which is different
from the expected value of 12. The value "10" is fixed as the only consistent value of F.
At this point, the constraint (X, Ai,F,Yy, which is the only one to contain F has aU its
n-supports equal "0" and it induces direction on the join-tree, resulting in the directed tree
(rooted at itself) of Figure 7, and belief revision is initiated.

Each tuple wiU be associated with the minimum number of assumption changes in the
subtree underneath it. Instead ofindicating the weights associatedwith each tuple weindicate
the weight projected on the variables on the arcs ofthe tree. In Figure 8 the weights associated
with the arcs of the three leaf constraints (i.e., the multipliers constraints), projected on
their outgoing arcs is illustrated. These are derived from the weights associated with their

^Forsimplicity we will refere here to a constraint by the subset of variables on which it is defined

12

M. z G Y Weights Fauity Devices

0 6 12 6 u; = 0 none

0 e 12 e u; = 1 Ms

1 6 12 e u> = 1 A2
1 e 12 e w = 2 Ms & A2

Figure 9: The weights of constraint {Y,G,A2, Z)

Ai F X Y Weights Faulty Devices

1. 0 10 6 e 2 (M3 V A2)& M2
2. 0 10 4 6 1 Ml

3. 0 10 e e 3 Ml & M2&{Ms V A2)
4. 1 10 6 6 1 Ai
5. 1 10 6 e 3 Ai &M2&{Ms VA2)
6. 1 10 e e 4 Ai&M2&Mi&(M3V A2)

Figure 10; The weights of constraint {Ai,F,X,Y) (the root)

incoming constraints (see the weights in Figure 6). For instance, the weights associated with
X is w{X = 6) = 0 since "6" is the expected value of X when Mi works correctly (which is
the default assumption), and w{X = e) = 1 since, any other value can be expected only if the
multiplier is faulty. Next, the weights propagate to constraint (Y,G, A2, Z). This constraint
is the only parent node of (Z, M3, G,f) and its weights are given in Figure 9 (note, that G's
observed value is 12).

The corresponding projected Y's weights are indicated on the outgoing arc of constraint
(y, G, A2, Z) in Figure8. Finally, the weights associated with the root constraint (Ai, X, Y, F)
are computed by summing the minimum weights associated with each of its child node. The
tuples associated with the root constraint and their weights are presented in Figure 10.

We see that the minimum weight is associated with tuple (2), indicating M\ as faulty
or tuple (4), indicating A\ as faulty. Therefore, either Ai or Mi are faulty. (The weights
can also be used as a guide for additional measurement that should delineate between the
different diagnoses.)

This example illustrates the efficiency of the belief revision process when the special struc
ture of the problem is exploited. By contrast, handling this problem using ATMS [5] may
exhibit exponential behavior. A similar algorithm exploiting the framework of probabilistic
networks is given [15].

13

6 ATMS Labeling

In this section we focus on the primary ATMS functionality, namely, finding one or aU min
imal instantiations of assumption variables in a given network of constraints that entail the
proposition X = x . This task is often called label determination in the ATMS terminology.
We call each tuple representing such an instantiation a. support tuple or t-support. The main
result of this section is a lower bound on the complexity of finding one t-support for X = x
which is exponential in the branching degree of the tree. We also introduce an algorithm for
performing this task which attains this complexity, thereby proving that the bound is tight.
When computing all t-supports, the complexity increases by a linear factor of the output. If
only a subset of the variables are regarded as assumption variables, the complexity is stiU
exponential in the degree of the tree unless the assumption variables are distributed in a
way that reduces the effective degree of the tree. It should be noted that the ATMS task
is equivalent to what is often referred to as abduction, and, therefore, the results we present
extend to the abduction task as well.

To simplify the exposition we will describe an algorithm for computing minimal t-supports
for trees of binary constraints. In this case, the primal constraint graph, where nodes represent
variables and arcs indicate the existence of constraints between pairs of variables, is more
convenient. The extension of this algorithm to general join-trees is straightforward since a
join-tree can be viewed as a regular binary tree where each relation is a compound variable
and its tuples are its values. We assume, without loss of generality, that all the variables are
assumption variables.

Definition 4 Given a network of constraints R over a set of variables X, a partial instan
tiation T = t , T C X, is a support tuple (t-support) for X, = x,- iff for every solution s of
R,

ST =t SXi = Xi. (4)

T = t is a minimal t-support of Xi is there is no subtuple of t satisfying (4). The set of all
minimal t-supports for x,- relative to a network R is denoted mstii{x) or mst{Xx) when the
network's identity is clear.

Example 2 Consider the following propositional theory

<p={{T^ Z), {R Y), (L ^ X)((X Vr) ^ Z)} (5)

The theory can be modeled as binary tree network with four bi-valued variables T, Z, R, L and
the compound variable XY having the domain {00,01,10,11} The explicit constraints are
given by their truth tables. The constraint graph and the explicit constraints are depicted in
Figure 11.

We will illustrate the main idea of the algorithm through an example. Suppose that we
want to compute all minimal t-supports for Z = 1 in cp. The algorithm begins by generating
a directed tree rooted at Z. Then, for each variable and each of its values, it computes all

14

T z

1 1

0 1

0 0

L-

L XY

1 10

1 11

0 10

0 11

0 00

0 01

R-» Y

R XY

1 01

1 11

0 01

0 11

0 00

0 10

XjV^Z
XY z

01 1

10 1

11 1

00 1

0 00

Figure 11: An example of a binary tree network

its minimal support tuples restricted to the child nodes of the relation, called minimal child
support. For instance, the set of minimal child supports for XY = 11 is (L = 1,E = 1),
while for XY = 01 the set is empty since no tuple over the child variables R and L entails
XY = 01. The set of aUminimal child supports for A = x, in a given directed tree, is denoted
by mcs{x).

Given a minimal child support, /, new supports can be generated by replacing a value
in / by one of its own minimal child supports. For instance, since {XY = 11) is a minimal
support tuple for Z = 1 and since XY = 11 is minimally supported by (L = 1,11 = 1), this
past set is a new support for Z — This property seems to suggest that the set of support
tuples can be generated recursively by a bottom up process from leaves to root.

There are, however, two problems. First, the minimality property is not maintained by
this process. The set {L = 1,R = 1), which has been generated by the substitution process,
is not a minimal support for Z = 1 since either L = 1 or Ji = 1 independently support Z = 1.
The second, and the more significant problem is that not all support tuples are generated.
Consider again the tree in Figure 11a restricted to variables {Z,XY,L). Each of the values
{XY = 10) and {XY = 11) is a minimal support to Z = 1. However, since each one of these
values is not individually supported byX = l(i/=lis consistent with both of them), L = I
will not be generated by the substitution process (although it is a minimal support for Z = 1)
because it can substitute neither XY = 01 nor XY =11.

The algorithm we present next is base ori the idea discussed above: compute the minimal
t-supports locally and generate the rest by a recursive substitution process. To overcome

15

the problems mentioned, the algorithm computes local t-supports to a subsets of values in a
variable's domain, rather than to singletons. As was shown in the example, several values
of a variable can play identical role in a support tuple (e.g., XY = 10 and XY = 11 both
supporting Z = 1) and, therefore, if a disjunction of such values has a minimal support, it can
replace any of the elements of this disjunction in that label. For instance, since L = I supports
the disjunction XY = 10 or XY = 11 it can replace either one of them is a t-support. Next,
we formalize these notions.

Definition 5 Let V and C be two variables in a network, and let Rev denote the constraint
of allowed pairs between them. Mq (c) denotes the set of values in the domain of V that are
consistent with c £ C (Figure 12a). Namely,

M^ic) = {vey\{c,v)eRcv} . (6)

Definition 6 Given a variable V with its child nodes C\,...,Ci (Figure 12b) and a subset of
consistent values of V, denoted Ay, a child support for Ay is an instantiation tuple (Ci =
ci,...,Ct = ct) over a subset of its child variables, that entails Ay. Namely, a child support
tuple, {Ci = ci,...,Ct = Ct), satisfies:

n M^^{cj)CAy. (7)
Cj^Cj

A child-support tuple is minimal if no subset of it satisfies condition (7).

Example 3 It can be verified that (see 11), Z = 1 has four minimal child supports given
by:

mcszi{l}) = {(T = 1),{XY = 01), (Xy = 10)(Xy = 11)},

while mcsxy({01,10,11}) = {{L = l),(iZ = 1)}, and it does not contain the support
{L = 1,12 = 1) since it is not minimal.

Given a minimal chUd support, I = (Ci = ci, ...,Ct = Ct) of Ay, we denote by l\{Cr = Cr')
the tuple resulting from exchanging Cr by c,/ in /. If /|(Cr = c,/) is also a minimal t-support
for Ay we say that and c,/ play identical role with respect to I and Ay and that they are
exchangeable.

Definition 7 Given a subset Ay ofV, a tuple I G mcs{Ay), and a variable-value pair C = c
in I we define the set o/label-dependent values of C, denoted by FAy,i(C), (or Fi{C) for
short) which are exchangeable in label I:

Fav,i(C) = {c e C| l\iC = c)e mcs(Av)} (8)

A minimal child support for Ay is also a minimal support since we assumed that all
variables are assumption variables, and it can recursively generate additional minimal support
tuples. Let I G mcs{Ay) such that

I = (Ci —Ci,..., Cr —Cr, Ct —Ct)

16

(a) (b)

Figure 12: Computing the minimal child support

and denote by Tn3t{Av) all the minimal support tuples for Ay restricted to its rooted tree.
The set of minimal supports generated via I = (Ci, in that subtree satisfies:

Tnsti{Av) = mst{Fi{Ci)) x,xmst(F/(Cr)) x x Tnst{Fi{Ct)) (9)

and

m3t{Av) = ^lemcs{Av)^M^v) (10)

Combining (9) and (10) yields a recursive equation for calculating the minimal support
tuples of a subset Ay restricted to the subtree rooted at V:

mst{Ay) = X{Ci ei}m3t{Fi{Ci)) (11)

The algorithm for generating all minimal support tuples is summarized in figure 13. The
first phase is a top down process generating aU the minimal child-supports of all the relevant
label-dependent subsets. The process continues top down where the label-dependent subsets of
a variable are computed only after their parents had already computed all their minimal child
supports (or mcs's for short). The second phase is bottom up process that starts at the leaves
and continues level by level until it reaches the queried relation. Each relation computes, in
its turn, for each of its label-dependent subsets, aU its minimal t-supports restricted to their
tree. This is accomplished by substituting a value c of C in a label I that supports Ay by
one of the (already computed) minimal support sets of the subset Fi{C).

The algorithm assumes that the n-supports are explicitly maintained and thus no incon
sistent values participate in a support nor in a label-dependent subsets.

The computation of the label dependent subsets can be accomplished by scanning the
set mcs(Av) of a given set Ay and determining, for each child node the subset of its values
satisfies condition (8). Computing the minimal-child-supports for Ay can be implemented
by a standard search algorithm that checks condition (7) for all instantiations of one child
variable first, then goes to two variables, using values not selected previously, and continues

17

label-generation {V)
Input: A tree T rooted at V. V has a set of child variables Ci, The set of
label dependent subsets of V, L{V).
Output: The set of all minimal support sets to each A € L{V).

1. top down: for each Ay G L{V) compute the set of child support tuples
mcs{Av) using equation (7).

2. for each / G Tncs(Av) and for each c,- G / do

3. compute F\{Ci) and add it to i(C,)

4. bottom up:, (once mst{Fi(Ci)) are available) for each Ay G L{V) compute
mst{Ay) = U,em«(y4v) XCigl mst(F/(C,))

Figure 13: Algorithm minimal supports

to larger supports. The supports generated that way are minimal. The supports of leaf values
are the empty tuples.

Theorem 4 ; Algorithm label-generation generates all and onlyminimalsupports, (for proof
see appendix).

The time complexity of the algorithm can be computed along its various steps. The
computation of the minimal-child-supports and the label-dependent subsets is performed
locally, between every node and its children. Given a parent node having d child variables and
t label-dependent-subsets (already computed with respect to its parent), where k < t <2'',
we can test condition (7) on subsets of child variables, in increasing order of their size. Since,
in the worst-case, all subsets of | variables may need to be tested, and since for every such
set all combinations of values may be involved, we get:

T{label —generation) = f̂ •̂fcs =0(2'v/fc)^. (12)
This performance can be attained in the worst-case even when the size of the resulting

mcs set is very small. Notice that the tree structure does not prevent exponential computation
for finding even one mcs.

Once all mcs's for a variable are generated, all label-dependent-subsets of each child
variable wiU be generated and this may take O(t^) steps.

Once the minimal child supports for all variables are available the time required for gen
erating all minimal support tuples is linear in the output (this is the bottom up process).
The total time complexity of the algorithm is dominated, therefore, by the calculation of the
minimal child supports. Consequently,

Theorem 5 The worst-case time complexity of algorithm has a lower bound Q,{exp{d) -1- n,),
and an upper bound 0{exp{d) -|- n,), where is the number of minimal support tuples in
the output. •

18

The results in this section are restricted for binary tree-networks. A simple way for
extending them to an arbitrary join-tree is to view each relation in the tree as a meta variable
when the constraints between relations say that two partial tuples are consistent if they
coincide on shared variables. Once we compute for each tuple in the root relation aU its
minimal supports, the minimal supports of individual values can be generated by manipulating
only the tuples of that relations which is at most exponential in the size of that relation.
Consequently we can conclude that;

Corollary 6 Finding all minimal support tuples of a partial tuple t appearing in a root rela
tion of a join-tree can be accomplished in 0{t'̂ -h n,) when t bounds the number of tuples in
each relation, d is the branching degree in the tree and n, is the size of the output. •

Corollary 7 On chain-like join-trees one minimal t-support can be determined in 0{exp{t))
when t is the maximum number of tuples in a relation.

7 Conclusions and related work

In this paper we present algorithms for performing various truth-maintenance tasks within the
framework of Constraint networks. The common feature making these algorithms attractive
is that their complexity is linked to the structure of the network, making their performance
more predictable. Our results also provide some theoretical explanations for the behavior of
truth-maintenance algorithms reported in the literature.

The ideal structure for aU three algorithms is an acyclic network. In that case, the two
JTMS algorithms (entailment and belief revision) are time and space linear. On the other
hand. The ATMS algorithm (finding all minimal support sets for each proposition) is time
and space exponential, although the exponent is reduced from n - the number of variables,
to d - the branching degree of the constraint graph.

These results support the common perception that the ATMS task is less tractable and,
therefore, more challenging than the JTMS task. It appears that in practice users should
be advised to implement the JTMS strategy whenever possible and to use ATMS only when
there are specific reasons that clearly outweigh the computational advantage of JTMS.

When the constraint network is not acytlic, the method of tree-clustering [11] should be
used as a pre-processing step. This method uses aggregation of constraints into equivalent
constraints involving larger clusters of variables in such a way that the resulting network
is acyclic. The clustering scheme is exponential in the size of the largest cluster, making
the complexity of this step also dependent on the structure of the network, namely, less
computation is needed when the structure of the network is closer to that of a tree.

Becauseof the need for re-structuring the network, it is clear that the algorithms proposed
in this paper are best-suited for situations where the structure of the knowledge-base is either
fixed or involving only minor topological changes over time. Examples of such cases are
physical or biological systems such as electronic circuits and model-based medical diagnosis
systems.

19

Preliminajy versions of some of the contents of this paper appeared in [9] and in [8]. More
recently, the mer-its of the belief revision algorithms were tested experimentally on various
circuit diagnosis examples. The algorithm's performance was shown to be superior relative
to Model-based Diagnosis (MBD) algorithms [13].

Another recent paper [2] discusses the task of finding all minimal sets of changes needed
to restore consistency (as opposed to the task of all sets of minimum cardinality, discussed in
the current paper). It is shown that while a propagation scheme is available in this case as
well, it has greater complexity.

Various algorithms for truth maintenance exploiting the structure of the knowledge-base
are presented in recent papers by [3, 17].

References

[1] C.R. Alchourron, P. Gardenfors, and D. Makinson. On the logic of theory change: partial meet
contraction and revision functions. Journal of Symbolic logic, 50:510-530, 1985.

[2] R. Ben-Eliyahu and R. Dechter. On computing minimal models. In Proceedings of AAAI-93,
pages 2-8, Washington, B.C., 1993.

[3] A Darwiche. Conditional independence in atmss: Independence-based algorithms for computing
labels and diagnosis. In Rockwell, Technical Report, 1994.

[4] R. Davis. Diagnostic reasoning based on structure and behavior. Artificial Intelligence, 24, 1984.

[5] J. de Kleer. An assumption-based TMS. Artificial Intelligence, 28(2):127-162, 1986.

[6] J. de Kleer. A comparison of ATMS and CSP techniques. In Proceedings of IJCAI-89, pages
290-296, Detroit, Michigan, 1989.

[7] J. de Kleer and B. Williams. Reasoning about multiple faults. In Proceedings of AAAI-86, pages
132-139, Philadelphia, Pensilvania, 1986.

[8] R Dechter. A distributed algorithm for atms. In Bar-Ilan Symposium on Foundation of Artificial
Intelligence (BISFAI-89), 1989.

[9] R. Dechter and A. Dechter. Belief maintenance in dynamic constraint networks. In Proceedings
of the seventh national Conference of Artificial Intelligence (AAAI-88), pages 37-42, St. Paul,
MN.

[10] R. Dechter and J. Pearl. Network-based heuristics for constreiint satisfaction problems. Artificial
Intelligence, 34:1-38, 1987.

[11] R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial Intelligence, pages
353-366,1989.

[12] J. Doyle. A truth maintenance system. Artificial Intelligence, 12:231-272, 19f9.

[13] Y. El fattah and R. Dechter. Diagnosis for near tree structures. In UCI technical report, 1994,
1994.

[14] E. C. Freuder. A sufficient condition for backtrack-free search. Journal of the ACM, 29(l):24-32,
1982.

20

[15] H. Geffner and J. Pearl. An improved constraint propagation algorithm for diagnosis. In Pro
ceedings of IJCAI-87, pages 1105-1111, Milan, Italy, 1987.

[16] M. R. Genesereth. The use of design descriptions in automated diagnosis. Artificial Intelligence,
24:411-436, 1984.

[17] J. Kohlas. Symbolic evidence, arguments and valuation networks. In Uncertainty in Artificial
Intelligence (UAI-93), Washington D.C, 1993.

[18] A. K. Mackworth and E. G. Freuder. The complexity of some polynomial network consistency
algorithms for constraint satisfaction problems. Artificial Intelligence, 25(1), 1985.

[19] D. A. McAllester. An outlook on truth-maintenance. Technical Report AI Memo 551, MIT,
Boston, Massachusetts, 1980.

[20] D. A. McAllester. Truth maintenance. In Proceedings of AAAI-90, pages 1109-1116, 1990.

[21] D. Mcdermott. A genersd framework for reason maintenance. Artificial Intelligence, 50(3):289-
329, 1991.

[22] G. Provan. Complexity analysis of multiple-context TMSs in scene representation. In Proceedings
of AAAI-87, pages 173-177, Seattle, Washington, 1987.

[23] L. G. Valiant. The complexity of enumeration and reliability problems. Siam Jouranl of Comyu-
<a/ion, 8(3):105-117, 1987.

[24] R. Dechter Z. Collin and S. Katz. On the feasibility of distributed constraint satisfaction. In
Proceedings of the twelfth International Conference of Artificial Intelligence (IJCAI-91), pages
318-324, Sidney, Australia, 1991.

Acknowledgement
We would like to thank Yousri El fattah for commenting on a recent version of this

manuscript, and Dan Frost for helping with the figures.

8 Appendix

Theorem 8 ; Algorithm label generation generates all and only minimal support sets. •.

Proof: It is clear that the algorithm generates only t-supports. We wiU therefore focus
on showing that any generated set is minimal and that any minimal t-support is generated
by the algorithm. The proof is by induction on the distance of the variables in the support
set from the queried variable.

Let Z = z he the queried variable and let s = (Xi = = Xt) be a generated
t-support. We will show that s is a minimal t-support. Let h be the the furthest distance
from Z of variables in s. For h = 1 it is known that only minimal t-supports are generated,
i.e., the minimal child-supports. Assuming that the generated t-supports having variables
with distance h - 1 or less are all minimal, we will show that s, having longest distance /i, is
also a minimal t-support. Let s^ = = ij, ...,Xj^ = Xj) be a subtuple of the t-support
s having distance h such that all the participating variables have a common parent, P. Let
Dx eA-P —̂ P- Since s was generated by the algorithm, s^ must be a minimal

21

support label of a label-dependent subset of P. Therefore Ap must be a subset of a label
dependent subset of P and therefore each value of Ap caji replace in s, resulting in a
t-support with lower distance. By performing this "reverse substitution" to all the variables
in s having distance h we get a t-support whose utmost distance from Z is h —I and which
must have been generated by the algorithm. By the induction hypothesis this support is
minimal and since each sp is a minimal child-support of the corresponding label-dependent
subset, (otherwise it would not be appbed) the (nonreversed) substitution must result in a
minimal t-support having distance h or less.

We will now show that if s is a minimal t-support for Z = z it must be generated by
the algorithm. Let {s^'} be all the subsets of s having distance h from Z indexed by their
parents, P,-. Let the corresponding ranges that each set of children determines on their parent
be defined by: fl = Ap,. We claim that for every parent, Pj, each value

in Ap,. can replace the subset s^' in s to yield a minimal t-support ofdepth not greater than
/i - 1, which we call Sh-i- Since, otherwise, if for some Pi and for some value in Ap;, the
resulting Sh-i is not a minimal t-support for Z = z, it can ea.sily be shown that from the
definition of a support set, s could not be a minimal support set either, thus resulting in a
contradiction. It follows that any possible Sh-i, generated by exchanging a value from Ap-
with S^' in 3, is a minimal support set. Since s^-i has distance /i —1 at the most, the
induction hypothesis implies that it is generated by the algorithm. Also, since by definition
Ap- is a label dependent subset of P,-, and since it is supported minimally by the label sp,.,
the algorithm will produce s in his substitution bottom up process. •.

22

