
UC Davis
UC Davis Previously Published Works

Title
Network motifs modulate druggability of cellular targets

Permalink
https://escholarship.org/uc/item/3sh7c73m

Journal
Scientific Reports, 6(1)

ISSN
2045-2322

Authors
Wu, Fan
Ma, Cong
Tan, Cheemeng

Publication Date
2016

DOI
10.1038/srep36626
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3sh7c73m
https://escholarship.org
http://www.cdlib.org/


1Scientific Reports | 6:36626 | DOI: 10.1038/srep36626

www.nature.com/scientificreports

Network motifs modulate 
druggability of cellular targets
Fan Wu1, Cong Ma2 & Cheemeng Tan1

Druggability refers to the capacity of a cellular target to be modulated by a small-molecule drug. To 
date, druggability is mainly studied by focusing on direct binding interactions between a drug and its 
target. However, druggability is impacted by cellular networks connected to a drug target. Here, we 
use computational approaches to reveal basic principles of network motifs that modulate druggability. 
Through quantitative analysis, we find that inhibiting self-positive feedback loop is a more robust 
and effective treatment strategy than inhibiting other regulations, and adding direct regulations 
to a drug-target generally reduces its druggability. The findings are explained through analytical 
solution of the motifs. Furthermore, we find that a consensus topology of highly druggable motifs 
consists of a negative feedback loop without any positive feedback loops, and consensus motifs with 
low druggability have multiple positive direct regulations and positive feedback loops. Based on the 
discovered principles, we predict potential genetic targets in Escherichia coli that have either high or low 
druggability based on their network context. Our work establishes the foundation toward identifying 
and predicting druggable targets based on their network topology.

Pharmaceutical industry has invested heavily in the strategy of identifying compounds with high affinity and 
specificity to single cellular targets. This one-drug-one-target strategy is thought to introduce high effectiveness 
and low side-effect of drug molecules. However, the strategy is challenged by the continuous high attrition rates 
of drug molecules in late phases of drug development1–3. Furthermore, the strategy contradicts existing under-
standing that many diseases, such as cancer, diabetes and inflammatory disorders involve multiple pathways and 
cellular networks. The complexity of cellular networks implies that the paradigm of one-drug-one-target may 
not be sufficiently predictive for effective treatment4. To this end, an alternative paradigm named network (or 
system) pharmacology has been proposed in drug development5,6. Network pharmacology investigates cellular 
targets of drugs by studying the connected networks, including genetic regulatory networks, metabolic networks, 
and protein-protein interactions. For instance, a network pharmacology approach has proposed that intrinsic 
robustness of cellular networks against external perturbations is a key factor that produces unexpected ineffi-
ciency of many potential drugs7. A general consensus from these studies suggests that modulation of multiple 
targets and understanding of disease related networks will be helpful for effective treatment and next-generation 
drug discovery.

Previous work in the field of network pharmacology can be generally classified into two areas: multi-target 
drugs (i.e. polypharmacology) and disease network motifs. Multi-target drugs are designed based on the rationale 
that complex diseases often involve abnormal functions of multiple cellular components, hence requiring com-
plex drug targeting. Along this line, computational approaches have been used to predict previously unknown 
molecular targets of commercially available drugs8,9. Multiple drug molecules have been used in combination to 
treat certain complex diseases, including dyslipidemia, asthma, and HIV10–12. Indeed, these studies have provided 
insights into side-effects of drugs, new use of existing drugs, and combinational therapy. Another area in network 
pharmacology investigates disease network motifs and their effects on drug treatment. The advancements in 
‘omics’ have enabled the reconstruction of detailed disease-related networks13,14. Various computational models 
have also been constructed to develop novel treatment strategies15–17. Multiple drug targets are identified based 
on disease-related molecular networks15. Metabolic networks of human are compared with the networks of other 
species based on structural and functional similarity. The cross-species molecular network association (CSMNA) 
is used to identify natural products from other species that may be used to treat human diseases17. These works 
have suggested potential drug targets using specific networks assembled from literature data, but they do not lead 
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to fundamental understanding of network structures that modulate inhibition of a single target by drug mole-
cules. A critical knowledge gap exists between the paradigms of one-drug-one-target and network pharmacology, 
in which it is unclear if unsatisfactory treatment outcomes are due to fundamental features of cellular networks 
that regulate the target. Can we unveil fundamental principles of cellular network structures to guide our selec-
tion of a drug target? Answers to the question will lead to general principles to predict and improve druggability 
of a cellular target.

Here, we use mathematical and computational approaches to study the characteristics of cellular network 
motifs and their effects on druggability. We augment the definition of druggability by the likelihood of cellular 
targets that are embedded in network motifs to be inhibited by drug molecules18,19. We ask two specific questions: 
Does a network motif that regulates a cellular target affect its druggability? Can we use basic features of the net-
work motifs to predict and improve its druggability? To answer the questions, we studied all possible three-node 
motifs to simulate cellular networks, using one of the nodes to simulate a drug target. We quantitatively defined 
druggability as the reduction of the target concentration after drug inhibition. Through our mathematical anal-
ysis, we revealed basic principles of network motifs that modulate druggability and potential ways to improve 
druggability by selectively perturbing network motifs. We also applied the principles to the genetic network of  
E. coli and identified potential druggable targets.

Results
Construct mathematical models to quantify druggability of network motifs.  To investigate drug-
gability, we used three-node motifs following a previous work20. Each network motif consisted of nodes A, B, 
and C, as well as nine possible regulatory links between the nodes. Specifically, we simulated node A as the drug 
target and nodes B and C as buffer nodes that regulate the target. The regulations between nodes can be positive, 
negative, or null. We setup the model based on three reasons. First, three-node motifs allow comprehensive motif 
analysis with reasonable computational power. Second, despite the complexity of natural pathways, certain bio-
logical components may function similarly and can be organized into network motifs21. Third, three-node motifs 
are the minimal networks that generate all possible fundamental motifs, including positive/negative feedback 
loops, coherent/incoherent feedforward loops, and network cascades22.

We chose Michaelis-Menten kinetics to describe each regulation because they are commonly used to simulate 
cellular reactions23. A drug was simulated by an input that inhibited node A and was changed from 0.1 (I1) to 1.0 
(I2). The concentrations of the input do not affect our conclusions, as long as they increase from a low level to a 
high level (Supplementary Table S1). For each motif, the simulation was conducted using 1000 sets of randomized 
parameters. To identify expected druggability of a network motif within the defined parameter range, we aver-
aged druggability from the randomized parameter sets. This calculation leads to conclusions that are consistent 
with our steady-state analysis, which is independent from the choice of specific parameter sets. Furthermore, we 
have performed another set of simulations using 100 randomized parameter sets for each motif, and all conclu-
sions remain unchanged (Supplementary Figures S1,S2). Therefore, our conclusions are not sensitive to the size 
of parameter set. Two states of the system (A1 and A2) that corresponded to I1 and I2 were used to evaluate the 
druggability of each network motif as = −( )D log10

A A
A

1 2

1
. This metric represents the fractional reduction of the 

target A in logarithm scale within simulation time (t =​ 10). A high value of the druggability metric indicates high 
reduction of A after the addition of a drug, which is considered as a desirable outcome in this study. We note that 
our conclusions are supported by steady-state analysis. Therefore, the choice of a terminal simulation time will 
not affect our conclusions (See Supplementary Information Text for steady-state analysis).

Reveal fundamental features of network motifs that exhibit high druggability.  To start, we 
assume a scenario where we do not know about the detailed network motifs, but have the information on reg-
ulatory links that connect to node A. This scenario is common in drug target discovery because many in vivo 
biological interactions and networks remain unknown due to cells’ inherent complexity24. We grouped motifs that 
have the same number of positive and negative links to the target node and calculated the mean of their expected 
druggability (Dmean). We separately sorted the groups that contain at least either one positive (Fig. 1a) or negative 
direct regulation (Fig. 1b) to the target. We find that Dmean drops when a self-feedback loop is added to a given 
motif (See Supplementary Information Text for steady-state analysis. Supplementary Figure S3). For example, 
starting from a single positive direct regulation (Fig. 1a, index 1), Dmean becomes more negative (less druggable) 
when a negative self-feedback loop is added to the network motifs (Fig. 1a, index 2). The addition of a positive 
self-feedback loop also reduces Dmean (Fig. 1a, index 7). Similarly, starting from a single negative direct regula-
tion (Fig. 1b, index 1), Dmean becomes more negative (less druggable) when either a negative self-feedback loop 
(Fig. 1b, index 2) or positive self-feedback loop (Fig. 1b, index 8) is added to the network motifs. Furthermore, 
adding a positive self-feedback loop decreases druggability more drastically than a negative self-feedback loop 
(e.g. Fig. 1a, index 2 and 7; Fig. 1b, index 2 and 8). Our results suggest that positive self-feedback loop is stronger 
than negative self-feedback loop in countering drug inhibition unless it is weakened due to the presence of nega-
tive direct regulations (i.e. Fig. 1b, index 6 and 7. See Supplementary Information Text for steady-state analysis).

In addition, we find that Dmean drops when direct regulations are added to a given motif. For example, starting 
from a single direct regulation (Fig. 1a, index 1; Fig. 1b, index 1), Dmean becomes more negative (less drugga-
ble) when another positive direct regulation is added to the network motifs (Fig. 1a, index 5; Fig. 1b, index 3).  
Furthermore, the motifs with two direct regulations from buffer nodes of opposite signs (positive indicates 
activation; negative indicates inhibition) and either negative or no self-feedback loops (Fig. 1a, index 3 or 4; 
Fig. 1b, index 3 or 4) have higher druggability than the motifs that contain two direct regulations of the same 
signs (Fig. 1a, index 5 or 6; Figs 1b, 5 or 8 respectively). The results are explained by steady-state analysis (See 
Supplementary Information Text, Supplementary Figure S3 and Supplementary Table S1). Essentially, due to 
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the mass conservation of the drug target, drug inhibition will lead to either stronger positive direct regulations 
or weaker negative direct regulations than without the drug. As a result, a higher number of direct regulations 
leads to weaker inhibitory effect of the drug and lower druggability of the target (See steady-state analysis and 
Supplementary Figure S3). Regulations with opposite signs compromise the tight control through counteraction 
of their impact on the drug target. We note that certain motifs seem to contradict the principles. Specifically, the 
addition of the second negative direct regulation increases Dmean when a positive self-feedback loop is present 
(Fig. 1b, index 6 and 8, or index 6 and 9). However, the results arise because the positive self-feedback loop, 
which has the strongest negative impact on druggability, is counteracted by multiple negative direct regulations 
(See Supplementary Information Text for magnitude analysis). In summary, when a target’s detailed network is 
unknown, we find that the addition of either positive or negative self-feedback loop reduces druggability. Yet, the 
addition of a positive self-feedback loop significantly reduces druggability unless it is counteracted by negative 
direct regulations. Furthermore, direct regulations with the same sign decrease druggability more than direct 
regulations with the opposite sign.

Next, we assume that the detailed network motifs are known, which emulates the scenario where sufficient 
omics data have been collected to form complete regulatory networks. We first investigated how perturbations 
of single regulation modulate druggability. To do this, we compared the druggability of motifs with and without 
a single regulation under identical background regulations (other regulations except the perturbed regulation). 
Essentially, we evaluated two motifs with the difference in only one regulatory link. We examined whether the 
removal of the regulation would improve (with positive difference in druggability in Fig. 2) or diminish (with 
negative difference in druggability in Fig. 2) druggability. We then quantified the number of motifs in each case 
(shown as histograms in Fig. 2). The mean value of the difference in druggability was calculated to evaluate the 
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Figure 1.  Effect of direct regulations on druggability. When detailed network motifs of a target are unknown, 
addition of a positive self-feedback loop to a drug target reduces druggability more than other regulations, 
unless it is counteracted by multiple negative direct regulations. Furthermore, addition of a direct regulation 
from buffer nodes with the same sign (positive indicates activation; negative indicates inhibition) as the 
pre-existing regulation reduces druggability more than the addition of a direct regulation from buffer nodes 
with the opposite sign. (a) Mean druggability (Dmean) of representative motifs (consist of at least one positive 
direct regulation from buffer nodes). The motifs are grouped based on only the direct regulations to node A. 
(b) Mean druggability (Dmean) of representative motifs (consist of at least one negative direct regulation from 
buffer nodes). The corresponding motifs are shown on the right of the bar graph. Asterisks indicate significant 
difference (N >​ 300,000, p-value <​ 0.05).
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changes in druggability due to the perturbation. That is, a positive mean value implies that the perturbation 
of a certain regulation would improve druggability, whereas a negative mean value implies the opposite. Our 
results show that the removal of a positive self-feedback loop is more effective in improving druggability than 
the removal of a negative self-feedback loop, which is consistent with our conclusions from Fig. 1. Specifically, 
the removal of a positive self-feedback loop has a mean difference of 0.3601, whereas the removal of a negative 
self-feedback loop only demonstrates a mean difference of 0.0413 (Fig. 2a). Furthermore, the perturbation of 
direct regulations from buffer nodes generally improves druggability with mean difference of 0.1973 for a positive 
direct regulation and 0.1083 for a negative direct regulation (Fig. 2b). In contrast, the perturbations of indirect 
regulations do not improve druggability (mean difference that are less than 0.03, Fig. 2c,d).

To further investigate how the perturbations of self-feedback loops and direct regulations from buffer 
nodes improve druggability, we compared the druggability of motifs with and without single regulation under 
identical background regulations by quantifying both their absolute druggability and changes in druggability 
(Supplementary Figure S4). We grouped the motifs with (grey curves in Fig. 3) or without (black curves in Fig. 3) 
a regulation and calculated their mean absolute druggability. The trends of the paired black and grey curves 
indeed reveal insights into the impact of the perturbations on druggability. For example, the perturbation of a 
positive self-feedback loop results in an increased curve (positive slope) for perturbed motifs and a decreased 
curve (negative slope) for unperturbed motifs (Fig. 3a, left panel). This trend shows that the motifs with higher 
improvement in druggability have worse druggability originally. Essentially, the perturbation inverts the drug-
gability of the motif from the lowest to the highest. In contrast, the perturbation of a negative self-feedback loop 
results in increased curves for both perturbed and unperturbed motifs (Fig. 3a, right panel), which imply that the 
motifs with improved druggability already have high druggability originally. The perturbation of positive direct 
regulations from buffer nodes leads to a flat curve for perturbed motifs and a decreased curve for unperturbed 
motifs (between −​0.4 to 0.4 in x-axis in Fig. 3b, left panel). The improvement in druggability is more significant 
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Figure 2.  Effect of perturbation of single regulation on druggability. When detailed network motifs are 
considered, the perturbation of a positive self-feedback loop improves druggability of the target more effectively 
than the perturbation of other regulations (largest difference between perturbed and unperturbed motifs). 
Furthermore, perturbations of direct regulations from buffer nodes improve druggability of the target in 
general, but the perturbations of indirect regulations do not improve druggability. (a) Two motifs with (red 
cross) and without (no red cross) perturbation of a self-feedback loop are compared under identical background 
regulations. Perturbing only one regulation generates 38 possible comparative pairs. Positive difference of the 
mean indicates improvement of druggability; negative difference of the mean indicates no improvement of 
druggability. Mean values of the histogram are calculated to evaluate the overall improvement in druggability. 
The perturbations of either the positive (left panel) or negative (right panel) self-feedback loop show 
improvement in druggability (positive mean values). Grey bars indicate cases where perturbation improves 
druggability. White bars indicate cases where perturbation does not improve druggability. (b) Two motifs with 
(red cross) and without (no red cross) perturbation of a direct regulation from buffer nodes are compared under 
identical background regulations. The perturbations of either the positive or negative direct regulation show 
improvement in druggability, which is indicated by positive mean values and larger area under grey bars than 
white bars. The improvement is less effective (less positive mean) than the improvement from the perturbation 
of the positive self-feedback loop (a). (c,d) Two motifs with (red cross) and without (no red cross) perturbation 
of an indirect regulation are compared under identical background regulations. The perturbations of indirect 
regulations generally do not improve druggability (mean values are all less than 0.03).
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if the motifs have lower druggability originally (druggability <​−​1.2 in Fig. 3b, left panel). The perturbation of 
a negative direct regulation from buffer nodes demonstrates an increased curve for perturbed motifs and a flat 
curve for unperturbed motifs (Fig. 3b, right panel). In summary, perturbations of positive self-feedback loop and 
direct regulations from buffer nodes improve druggability when the original druggability is low.

Identify consensus network motifs that exhibit either high or low druggability.  Network motifs 
are known to underlie transcription networks, cellular signaling cascades, and neuronal networks. Ubiquitous 
network motifs with specific topology can be found in diverse organisms25. Therefore, we analyzed if consensus 
motifs exist with high or low druggability, which could lead to potential ways to predict druggable targets. We 
limited our search on motifs with non-isolated node A because important drug targets are often connected to a 
network21,26. We first ranked all motifs based on their druggability and selected the top 1% of the motifs to iden-
tify consensus motifs with high druggability (histogram in Fig. 4a). We note that changing the top percentage 
between 1% and 2% does not affect our conclusions. We first applied a coarse-grained search to identify the fre-
quency of each regulation in the top population. We find that none of the motifs in the population have a positive 
self-feedback loop and only 1.14% of motifs contain a negative self-feedback loop. Furthermore, all motifs (100%) 

Figure 3.  Improvement in druggability is dependent on the original values of druggability. (a) The 
perturbation of a positive self-feedback loop (left panel) improves the druggability from the lowest values to the 
highest values. In contrast, the perturbation of a negative self-feedback loop only improves druggability of the 
motifs with high original druggability. (b) Perturbations of direct regulations from buffer nodes show a wide 
range of variations. In general, the motifs with low druggability are improved by the perturbations. Two motifs 
with (red cross) and without (no red cross) perturbation of single regulation are compared under identical 
background regulations. For each comparison, the means of druggability for both motifs are calculated based on 
results from 1000 parameter sets. Both the means of druggability (y-axis) and difference in druggability (x-axis) 
are recorded. To better visualize the trends of the curves, results are grouped by 0.05 intervals in the x-axis on 
both sides of origin. Mean and standard derivation are calculated using data within each intervals. Black curves 
represent motifs with perturbation. Grey curves represent motifs without perturbation.
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in the selected population contain one positive direct regulation (i.e. either from B to A or C to A) (Fig. 4b). 
Given this information, we next analyzed a subset of motifs that contains a positive direct regulation without a 
self-feedback loop. Specifically, we examined the frequency of all possible minimal combinations of regulations 
with the motifs. We find that 80% of the motifs contain a negative feedback loop without any self-feedback loop 
(Fig. 4c). Thus, the motif without positive self-feedback loop and with a negative feedback loop, which consists 
of one positive regulation from B to A and one negative regulation from A to B, is the consensus, high drugga-
ble motif (Fig. 5a). We note that all symmetrical motifs are considered in the analysis (e.g. negative feedback 
loops formed between either A and B, or A and C are considered identical). We also selected the bottom 1% 
of the population (Fig. 4a) to identify consensus motifs with low druggability. We conducted the same coarse 
and fine-grained analysis (Supplementary Figure S5). The motif with the least druggability consists of a positive 
self-feedback loop, multiple positive direct regulations from buffer nodes, and a positive feedback loop (Fig. 5a). 
Our results suggest that consensus motifs indeed exist with high or low druggability.

The druggable, consensus motif consists of a negative feedback loop, which is known to stabilize basal signal 
state and limit maximum output27. Therefore, we hypothesized that a negative feedback loop can increase stability 
in the concentration of a drug target to variation of circuit parameters, giving rise to less variation of druggabil-
ity among the same network motifs with different kinetic parameters. Along this line, we analyzed the means 
and standard derivations (SDs) of the druggability of the most druggable motifs. We compared the differences 
in either the mean or standard derivation of each motif with and without a negative feedback loop (Fig. 5b). 
Consistent with our expectation, we find that the druggable, consensus motifs exhibit high druggability and low 
variation of druggability (Fig. 5b). In contrast, the least druggable, consensus motifs exhibit low druggability 
and high variation of druggability (Supplementary Figure S6a). To further characterize the consensus motifs, 
we investigate the inhibition rate of each consensus motif. We defined a new metric (t1/2) to quantify the time 
when the concentration of the drug target is reduced to half of its maximum change after addition of the drug 
(Supplementary Figure S6b). Our results do not show any correlation between druggability and inhibition rates 
of the consensus motifs (Supplementary Figure S6c).

Determine natural drug targets embedded within highly druggable network motifs.  Next, we 
applied the principles to predict potential druggable targets in Escherichia coli. We note that our results apply to 
both enzymatic reactions and genetic regulatory networks (see Supplementary Information Text for model con-
struction). We first screened the gene network of E. coli and discovered four genes that are regulated by the highly 
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Figure 4.  Consensus motifs that exhibit either high or low druggability. (a) Druggability of all possible 
motifs. Consensus motifs are determined by selecting the top or bottom 1% of the motifs (blue shaded 
regions). (b) Identify consensus motifs with high druggability. The selected top population is screened for 
consensus motifs through a two-step process. In step one, motifs are grouped by the presence of each of the 
nine regulations. Symmetric configurations of motifs are considered as identical and included in the same 
group. Only the regulations that appear more than 90% in the search are selected and used for the next step. 
The consensus motifs with high druggability contain at least one positive regulation from B (or C) to A (100%) 
and no self-feedback loops (0% for positive self-feedback loop and 1% for negative self-feedback loop). (c) In 
step two, we analyze all motifs that contain a positive regulation from B (or C) to A without self-feedback loops. 
The motifs that appear more than 85% are selected as consensus, druggable motifs. Thus, the consensus motif 
with high druggability does not have positive self-feedback loop, but contains a negative feedback loop, which 
consists of one positive regulation from B to A and one negative regulation from A to B. See Supplementary 
Figure S5 for the screening of consensus motifs with low druggability.
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druggable, consensus motifs (Fig. 5c, panel I). We also found two genes (e.g. rhaR and rhaS) that are regulated by 
the least druggable, consensus motifs (Fig. 5c, panel II).

Our results reveal fundamental principles that could be used to analyze druggability of genes in natural net-
works. Therefore, we analyzed the gene networks of E. coli to reveal targets with high druggability, as well as their 
biological functions. To start, we ranked the druggability of all E. coli genes based on five criteria (See Methods 
for details). The five criteria are prioritized as follows: 1. The presence of the most druggable, consensus motifs 
(no positive self-feedback loop; more negative feedback loops, higher ranking); 2. The presence of the least drug-
gable, consensus motifs (presence of positive self-feedback loop; more positive feedback loops, lower ranking); 
3. Presence of a positive self-feedback loop with at least two more positive regulations than negative regulations 
(more positive over negative direct regulations from other transcription factors, lower ranking); 4. The number of 
direct regulations from other transcription factors (more direct regulations, lower ranking); 5. The signs of direct 
regulations from other transcription factors (opposite sign results in higher ranking than the same sign). Based 
on current knowledge of transcriptional regulatory network in E. coli., we summarized the scores and ranking 
in Supplementary Information Datasets. To simplify our search, we selected 53 biological gene ontology (GO) 
terms that appeared in top ranking and 67 terms in bottom ranking. Both top and bottom GO terms contain 
transcription associated functions because the genes are involved in gene regulatory networks. In addition, we 
find GO terms related to metabolism, biosynthesis, transport, and response to stress in both top and bottom 
ranking. Among the top-ranked GO terms, we find unique biological functions that correspond to DNA main-
tenance and repair (Fig. 6 and Supplementary Information Datasets), including genes ada, argR, lexA and pepA. 
The bottom-ranked GO terms also include unique functions, such as mobility, biofilm formation and respiration, 
including genes fumB, csgD, csgE, csgF, csgG, flhC, flhD, acnA, cyoA, cyoB, cyoC, cyoD, ndh, nirB, and nirD (Fig. 6 
& Supplementary Information Datasets). The results suggest a potential method to predict druggability of cellular 
targets based on network motifs. It can be applied to other organisms if their regulatory networks are known.

Discussion
This work suggests that the network motif of a cellular target affects its druggability. We augment the definition 
of druggability as overall reduction of the drug-target upon drug addition. Our results support the literature data 
that binding affinity alone may not be sufficient to achieve effective treatment. The conclusions from this study can 
be used to identify potential cellular targets and then develop drug molecules that would have high specificity to 
the target. This work helps to close the gap between one-drug-one-target and network pharmacology paradigms  
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Figure 5.  Consensus motifs that exhibit either high or low druggability exist in E. coli transcription 
networks. (a) The consensus motif with the highest druggability contains a negative feedback loop, which is 
formed by a positive regulation from node B (or C) to node A and a negative regulation from node A back to 
node B (or C). The most druggable, consensus motif cannot contain any positive self-feedback loop. In contrast, 
the consensus motif with the lowest druggability contains multiple positive direct regulations and one positive 
feedback loop. (b) The most druggable, consensus motif has a higher Dmean and lower standard derivation (SD) 
of Dmean when compared to the motifs without the negative feedback loop. A positive difference in either Mean 
or SD indicates that the motif with negative feedback loop has higher Dmean or SD than the one without negative 
feedback loop. A negative difference of Mean or SD indicates the opposite. (c) The transcription network of  
E. coli is screened for the presence of the consensus motifs. Four genes (panel I) have the same topology as the 
network motif with high druggability (a, left), and two genes (panel II) have the same topology as the network 
motif with low druggability (a, right).
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by revealing fundamental topological features of a drug target that affect its druggability. We note that our find-
ings are consistent with previous literature. For example, our conclusion with respect to direct regulations are 
consistent with previous findings on drug synergism. Through a computational simulation, combinatorial per-
turbations of parallel regulations towards a target are shown to enhance drug inhibition28. That is, perturbation of 
multiple direct regulations would improve druggability more than perturbation of a single regulation.

To enhance tractability of our models, we made a few assumptions in the mathematical models. First, we 
assume that the target and its regulatory nodes only change between active or inactive states without degrada-
tion. Second, the action of a drug is simulated by reducing the availability of the target, not degrading it. The 
above assumptions make sense because most drug molecules bind and deactivate the target’s functions29. Third, 
the change of drug concentration is chosen to be a step function. This assumption applies in the scenario when 
the drug is taken through intravenous infusions or the dosage is high and remains at saturation level during the 
period of treatment. We note that drug input profile has been mimicked with step and pulse functions. To exam-
ine the extension of our work to pulsatile drug input, we conducted another simulation using pulsatile drug input. 
The duration and amplitude of the pulsatile function were chosen so that the area under the curve remained 
unchanged from the original simulation within total simulation time (Supplementary Figure S7). We find that, 
with pulsatile drug input, consensus motifs with high or low druggability remain the same (Supplementary 
Figure S7). However, more thorough examination of pulsatile drug input is required in future work due to 
plausible emergent dynamics of such systems30,31. Fourth, we assume that the parameters in our model are not 
constrained and are randomly chosen from wide ranges (2 log-fold difference for catalytic rate constant, and 4 
log-fold difference for half-maximum constant). We note that some factors, such as oxidation-reduction and 
molecular crowding, may influence the assumption. For instance, binding activity of NF-kappa B depends on its 
oxidation-reduction state32. The alteration of the binding activity may constrain the half-maximum constants in 
our model to either high or low values. Molecular crowding has been shown to limit diffusion rates and enhance 
binding rates of RNA polymerase to its promoter33. The decrease in diffusion rates may constrain catalytic rate 
constants in our model. However, we note that our conclusions should remain unchanged because they are not 
sensitive to specific parameter sets. Finally, we note that our conclusions will apply to networks that operate close 
to our model assumptions, in which the concentration of each variable is conserved and the regulatory links 
between each node do not exhibit cooperativity.

Our framework could be applied to the analysis of mammalian cells after the resolution of a few common 
challenges. First, metabolic networks14,34, protein-protein interaction networks35,36, and genetic regulatory net-
works37 of mammalian cells still have considerable gaps that may affect the fidelity of our analysis38. Furthermore, 
for complex cellular networks, we may need to cluster multiple nodes into a single effective node when applying 
our approach. Detecting and clustering the effective node from a highly connected interactome map remains 
non-trivial39,40. Second, a network motif of mammalian cells may be altered by other factors, such as DNA meth-
ylation41 and histone modification42 through gene silencing, which are not considered in our work.

To move this work forward, experimental validation of the basic principles will need to be conducted by 
inhibiting the predicted druggable targets in E. coli. The validated principles could serve as an additional selection 
criteria in current drug development, which could predict druggable new targets and reduce high attrition rates 
in one-drug-one-target strategy.

Methods
Three node motifs and model equations.  Three node motifs have been used to simulate cellular net-
works20. We considered node A as the drug target that was inhibited by input I, and tracked the dynamics of node 
A (output). Node B and C served as buffer nodes that regulated node A. There were nine regulatory links. Each 

201612840
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Transcription/translation
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Response to stress

DNA maintenance/repair

Mobility/biofilm formation

Respiration

Others

Counts of GO terms

Top ranked GO terms
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Figure 6.  Biological functions of top and bottom ranked gene ontology (GO) terms. Based on the topology 
of network motifs, unique biological GO terms are predicted with high (top-ranked) or low (bottom-ranked) 
druggability. Both top- (black bars) and bottom-ranked (grey bars) GO terms include common functions, such 
as metabolic/biosynthesis, transcription/translation, transport, and response to stress associated functions. 
Unique functions, such as DNA maintenance/repair are identified in the top-ranked GO terms. Mobility/
biofilm formation and respiration related functions are unique functions found in the bottom-ranked GO 
terms.
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link represented one of the three possible regulations: negative, null, or positive. We considered all possible regu-
latory combinations with nine links (39 =​ 19683 motifs) in our study.

We used Michaelis-Menten and ordinary differential equations to describe the regulatory links following a 
previous study20. Briefly, node A, B, and C represented enzymes that have active and inactive forms. The con-
version between active and inactive forms were determined by the types of regulation. Specifically, the activa-
tion of A by B (positive regulation) was described by ⋅ ⋅ −

− +
k BBA

1 A
1 A KBA

. The reaction dynamic of this type 
depended on the concentrations of the active regulator (B), inactive substrate (1-A), and two reaction param-
eters (catalytic rate constant, kBA and half-maximum constant, KBA). Similarly, the deactivation of A by B (neg-
ative regulation) was described by − ⋅ ⋅

+
k BBA

A
A KBA

. The reaction rates depended on active substrate 
concentration (A). Furthermore, basal activation or deactivation was included in the model if a node was only 
regulated by either a negative or positive regulation respectively. The concentrations of regulatory basal 
enzymes (e.g. EA for basal activating enzyme to A, FA for basal deactivating enzyme to A) were set to be 0.1. 
When multiple regulations were acting on the same node, we assumed the effect to be additive. The ODEs of 
the model are shown in equation (1).
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where A, B and C represent normalized concentrations ranging from 0 to 1, I represents the input, X represents 
the concentration of activating enzymes (A, B, C, EA, EB, or EC), Y represents the concentration of deactivating 
enzymes (A, B, C, FA, FB, or FC). kij and Kij represent reaction parameters corresponding to regulator i to effector j.

Data generation.  To start the simulation, we set input to 0.1 and allowed the system to reach the first steady 
state (A1) with simulation time of t1=​100. The input was then increased to 1.0 to simulate drug addition and the 
second concentration of the target (A2) was recorded at simulation time of t2 =​ 10. For each possible motif, 1000 
parameter sets were randomized within the ranges of k ~ 0.1–10 with unit of one over time and K ~ 0.01–100 with 
unit of concentration. To evaluate the quantitative performance of the motif, we defined the druggability as 
= −( )D log10

A A
A

1 2

1
. Furthermore, we note that initial conditions alone are not sufficient to estimate druggability 

(i.e. sectioning along druggability in Supplementary Figure S8 does not show obvious separation of initial 
conditions).

Statistical test.  All statistical tests were performed with one-tailed unpaired two-sample t-test with 95% 
confidence intervals.

Applications of generalized principles to E. coli genetic regulatory network.  A database of 
transcriptional networks in E. coli was obtained from Ecocyc and analyzed in Matlab. The database includes 
regulations of individual gene by its transcription factors (TF) (1 represents up-regulation, −​1 represents 
down-regulation, and 0 represents no regulation). Before analysis, genes without any regulations (isolated targets) 
were eliminated from the database. The consensus motifs with high or low druggability were defined in Matlab 
and searched for their presence in the E. coli genetic regulatory network.

To rank druggability of E. coli genes based on previously described criteria, we first determined several fea-
tures of the network around each gene. Specifically, we recorded the number of most druggable, consensus neg-
ative feedback loops (score 1 in Supplementary Information Datasets), the number of least druggable, consensus 
positive feedback loops (score 2), the presence of a positive self-feedback loop (score 3) and a summation of direct 
regulations by other TFs of positive two or more (i.e. one positive and one negative direct regulations would have 
a summation of zero) (score 4), the number of direct regulations by other TFs (score 5), and the summation of 
direct regulations by other TFs (score 6). The scores were sorted with priorities from 1 to 6 with either descending 
(score 1) or ascending order (score 2–6). The biological gene ontology (GO) terms were downloaded from Gene 
Ontology Consortium. The biological GO terms were matched to specific genes from the TF database by their 
index. Top 53 and bottom 67 ranked GO terms were selected to include the same number of genes (39 genes). GO 
terms were then classified into functional groups, including metabolic/biosynthesis, transcription/translation, 
transport, response to stress, DNA maintenance/repair, mobility/biofilm formation, respiration, and others (see 
Supplementary Information Datasets).

References
1.	 Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3, 711–715, doi: 10.1038/nrd1470 

(2004).
2.	 Sams-Dodd, F. Target-based drug discovery: is something wrong? Drug Discov Today 10, 139–147, doi: 10.1016/S1359-

6446(04)03316-1 (2005).
3.	 Frantz, S. Drug discovery: playing dirty. Nature 437, 942–943, doi: 10.1038/437942a (2005).
4.	 Zimmermann, G. R., Lehar, J. & Keith, C. T. Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug 

Discov Today 12, 34–42, doi: 10.1016/j.drudis.2006.11.008 (2007).
5.	 Hopkins, A. L. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 4, 682–690, doi: 10.1038/nchembio.118 

(2008).



www.nature.com/scientificreports/

1 0Scientific Reports | 6:36626 | DOI: 10.1038/srep36626

6.	 Berger, S. I. & Iyengar, R. Network analyses in systems pharmacology. Bioinformatics 25, 2466–2472, doi: 10.1093/bioinformatics/
btp465 (2009).

7.	 Kitano, H. A robustness-based approach to systems-oriented drug design. Nat Rev Drug Discov. 6, 202–210, doi: 10.1038/nrd2195 
(2007).

8.	 Lounkine, E. et al. Large-scale prediction and testing of drug activity on side-effect targets. Nature 486, 361–367, doi: 10.1038/
nature11159 (2012).

9.	 Keiser, M. J. et al. Predicting new molecular targets for known drugs. Nature 462, 175–181, doi: 10.1038/nature08506 (2009).
10.	 Bays, H. E. et al. Comparison of once-daily, niacin extended-release/lovastatin with standard doses of atorvastatin and simvastatin 

(the ADvicor Versus Other Cholesterol-Modulating Agents Trial Evaluation [ADVOCATE]). Am J Cardiol. 91, 667–672 (2003).
11.	 Nelson, H. S. Advair: combination treatment with fluticasone propionate/salmeterol in the treatment of asthma. J Allergy Clin 

Immunol. 107, 398–416, doi: 10.1067/mai.2001.112939 (2001).
12.	 Larder, B. A., Kemp, S. D. & Harrigan, P. R. Potential mechanism for sustained antiretroviral efficacy of AZT-3TC combination 

therapy. Science 269, 696–699 (1995).
13.	 Bouwmeester, T. et al. A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell 

Biol. 6, 97–105, doi: 10.1038/ncb1086 (2004).
14.	 Duarte, N. C. et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci 

USA 104, 1777–1782, doi: 10.1073/pnas.0610772104 (2007).
15.	 Yang, K., Bai, H., Ouyang, Q., Lai, L. & Tang, C. Finding multiple target optimal intervention in disease-related molecular network. 

Mol Syst Biol. 4, 228, doi: 10.1038/msb.2008.60 (2008).
16.	 Rajasethupathy, P., Vayttaden, S. J. & Bhalla, U. S. Systems modeling: a pathway to drug discovery. Curr Opin Chem Biol. 9, 400–406, 

doi: 10.1016/j.cbpa.2005.06.008 (2005).
17.	 Zhang, B. et al. New strategy for drug discovery by large-scale association analysis of molecular networks of different species.  

Sci Rep. 6, 21872, doi: 10.1038/srep21872 (2016).
18.	 Hopkins, A. L. & Groom, C. R. The druggable genome. Nat Rev Drug Discov. 1, 727–730, doi: 10.1038/nrd892 (2002).
19.	 Cheng, A. C. et al. Structure-based maximal affinity model predicts small-molecule druggability. Nat Biotechnol. 25, 71–75,  

doi: 10.1038/nbt1273 (2007).
20.	 Ma, W., Trusina, A., El-Samad, H., Lim, W. A. & Tang, C. Defining network topologies that can achieve biochemical adaptation. Cell 

138, 760–773, doi: 10.1016/j.cell.2009.06.013 (2009).
21.	 Barabasi, A. L. & Oltvai, Z. N. Network biology: understanding the cell’s functional organization. Nat Rev Genet 5, 101–113,  

doi: 10.1038/nrg1272 (2004).
22.	 Milo, R. et al. Network motifs: simple building blocks of complex networks. Science 298, 824–827, doi: 10.1126/science.298.5594.824 

(2002).
23.	 Chen, W. W., Niepel, M. & Sorger, P. K. Classic and contemporary approaches to modeling biochemical reactions. Genes Dev. 24, 

1861–1875, doi: 10.1101/gad.1945410 (2010).
24.	 Lindsay, M. A. Target discovery. Nat Rev Drug Discov. 2, 831–838, doi: 10.1038/nrd1202 (2003).
25.	 Alon, U. Network motifs: theory and experimental approaches. Nat Rev Genet 8, 450–461, doi: 10.1038/nrg2102 (2007).
26.	 Jeong, H., Mason, S. P., Barabasi, A. L. & Oltvai, Z. N. Lethality and centrality in protein networks. Nature 411, 41–42,  

doi: 10.1038/35075138 (2001).
27.	 Brandman, O. & Meyer, T. Feedback loops shape cellular signals in space and time. Science 322, 390–395, doi: 10.1126/

science.1160617 (2008).
28.	 Yin, N. et al. Synergistic and antagonistic drug combinations depend on network topology. PLoS One 9, e93960, doi: 10.1371/

journal.pone.0093960 (2014).
29.	 Silverman, R. B. & Holladay, M. W. The Organic Chemistry of Drug Design and Drug Action. (Elsevier Science, 2014).
30.	 Srimani, J. K. et al. Linear population allocation by bistable switches in response to transient stimulation. PLoS One 9, e105408,  

doi: 10.1371/journal.pone.0105408 (2014).
31.	 Tan, C. et al. The inoculum effect and band-pass bacterial response to periodic antibiotic treatment. Mol Syst Biol. 8, 617,  

doi: 10.1038/msb.2012.49 (2012).
32.	 Toledano, M. B. & Leonard, W. J. Modulation of transcription factor NF-kappa B binding activity by oxidation-reduction in vitro. 

Proc Natl Acad Sci USA 88, 4328–4332 (1991).
33.	 Tan, C., Saurabh, S., Bruchez, M. P., Schwartz, R. & Leduc, P. Molecular crowding shapes gene expression in synthetic cellular 

nanosystems. Nat Nanotechnol. 8, 602–608, doi: 10.1038/nnano.2013.132 (2013).
34.	 Kanehisa, M. et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res 36, D480–D484, doi: 10.1093/nar/

gkm882 (2008).
35.	 Stelzl, U. et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell 122, 957–968,  

doi: 10.1016/j.cell.2005.08.029 (2005).
36.	 Venkatesan, K. et al. An empirical framework for binary interactome mapping. Nat Methods 6, 83–90, doi: 10.1038/nmeth.1280 

(2009).
37.	 Cawley, S. et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread 

regulation of noncoding RNAs. Cell 116, 499–509 (2004).
38.	 Vidal, M., Cusick, M. E. & Barabasi, A. L. Interactome networks and human disease. Cell 144, 986–998, doi: 10.1016/j.

cell.2011.02.016 (2011).
39.	 Gaiteri, C., Ding, Y., French, B., Tseng, G. C. & Sibille, E. Beyond modules and hubs: the potential of gene coexpression networks for 

investigating molecular mechanisms of complex brain disorders. Genes Brain Behav. 13, 13–24, doi: 10.1111/gbb.12106 (2014).
40.	 Vega-Pons, S. & Ruiz-Shulcloper, J. A survey of clustering ensemble algorithms. International Journal of Pattern Recognition and 

Artificial Intelligence 25, 337–372 (2011).
41.	 Newell-Price, J., Clark, A. J. & King, P. DNA methylation and silencing of gene expression. Trends in Endocrinology & Metabolism 

11, 142–148 (2000).
42.	 Ebert, A., Lein, S., Schotta, G. & Reuter, G. Histone modification and the control of heterochromatic gene silencing in Drosophila. 

Chromosome Res. 14, 377–392, doi: 10.1007/s10577-006-1066-1 (2006).

Acknowledgements
We thank members of the You lab for discussions and comments. This work was partially supported by Society in 
Science - Branco Weiss Fellowship (C.T.).

Author Contributions
F.W., C.M., and C.T. designed the study. F.W. and C.M. wrote Matlab codes and performed computer simulation. 
F.W. performed the analysis. C.T. gave technical and conceptual advice. F.W. and C.T. wrote the paper.



www.nature.com/scientificreports/

1 1Scientific Reports | 6:36626 | DOI: 10.1038/srep36626

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Wu, F. et al. Network motifs modulate druggability of cellular targets. Sci. Rep. 6, 36626; 
doi: 10.1038/srep36626 (2016).
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2016

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Network motifs modulate druggability of cellular targets

	Results

	Construct mathematical models to quantify druggability of network motifs. 
	Reveal fundamental features of network motifs that exhibit high druggability. 
	Identify consensus network motifs that exhibit either high or low druggability. 
	Determine natural drug targets embedded within highly druggable network motifs. 

	Discussion

	Methods

	Three node motifs and model equations. 
	Data generation. 
	Statistical test. 
	Applications of generalized principles to E. coli genetic regulatory network. 

	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ Effect of direct regulations on druggability.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ Effect of perturbation of single regulation on druggability.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ Improvement in druggability is dependent on the original values of druggability.
	﻿Figure 4﻿﻿.﻿﻿ ﻿ Consensus motifs that exhibit either high or low druggability.
	﻿Figure 5﻿﻿.﻿﻿ ﻿ Consensus motifs that exhibit either high or low druggability exist in E.
	﻿Figure 6﻿﻿.﻿﻿ ﻿ Biological functions of top and bottom ranked gene ontology (GO) terms.



 
    
       
          application/pdf
          
             
                Network motifs modulate druggability of cellular targets
            
         
          
             
                srep ,  (2016). doi:10.1038/srep36626
            
         
          
             
                Fan Wu
                Cong Ma
                Cheemeng Tan
            
         
          doi:10.1038/srep36626
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 The Author(s)
          10.1038/srep36626
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep36626
            
         
      
       
          
          
          
             
                doi:10.1038/srep36626
            
         
          
             
                srep ,  (2016). doi:10.1038/srep36626
            
         
          
          
      
       
       
          True
      
   




