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Abstract

Computational Studies of the Influence of
Neurodegenerative Damage on Grid Cell Firing

Patterns and Navigation

This dissertation consists of two parts: Neurodegenerative damage reduces

firing coherence in a continuous attractor model of grid cells, and damage impact on

the gird-cell population codes for animal’s locations.

The work in Part I is motivated by the discovery of grid cells and their specific

grid-like firing pattern: Grid cells, firstly found in the dorsolateral band of the medial

entorhinal cortex(dMEC) in 2005, display strikingly regular periodic firing patterns

on a lattice of positions in 2-D space. This helps animals to encode relative spatial

location without reference to external cues. The dMEC is damaged in the early stages

of Alzheimer’s Disease, which a↵ects navigation ability of a disease victim, reducing

the synaptic density of neurons in the network. Within an established 2-dimensional

continuous attractor neural network model of grid cell activity, we introduce neural

sheet damage parameterized by radius and by the strength of the synaptic output

for neurons in the damaged region. The mean proportionality of the grid field flow

rate in the dMEC to the velocity of the model animal is maintained, but there is a

broadened distribution of flow rates in the damaged case. This flow rate-to-velocity

proportionality is essential to establish coherent grid firing fields for individual grid

cells for a roaming animal. When we examine the coherence of the grid cell firing

field by studying Bragg Peaks of the Fourier transformed lattice firing field intensity
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in both damaged and undamaged regions, we find that for a wide range of damage

radius and reduced synaptic strength that for undamaged model grid cells there is

an incoherent firing field structure with only a single central peak. In the radius-

damage plane this is adjacent to narrow bands of striped lattices (two additional

Bragg peaks), which about an orthorhombic pattern (four additional Bragg peaks),

that abut the undamaged hexagonal region (six additional Bragg peaks). Within the

damaged region, grid cells show no Bragg peaks outside the central one which shows

reduced intensity with increasing damage, and outside the damaged region the central

Bragg peak strength is largely una↵ected. There is a re-entrant region of normal grid

firing fields for very large damage area. We anticipate that the modified grid cell

behavior can be observed in non-invasive fMRI imaging of the dMEC.

The work in Part II is motivated by a broad goal to explain navigation sys-

tem: The brain is a remarkable information engine and it’s e�ciency may come from

a hierarchy organization of neurons. At the same time, A unique topographical rep-

resentation of space is found in the concerted activity of grid cells in the medial

entorhinal cortex. Many in this region exhibit a hexagonal firing pattern with grid

spacing. And grid spacing has been found to increase along the dorsoventral axis of

dMEC but in discrete steps. Such a modular structure provides a new place-coding

theory that explains why grid cells has hierarchy organization identified by di↵erent

spacing. Compared with classical population code (CPC) theory, the hierarchy in

grid population code (GPC) improves the coding e�ciency and the noise robustness.

We developed Sammeet Sreenivasan and Ila Fiete’s network model (readout-grid cell

network) to construct the GPC process from input signal, through grid cells modules,
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to the place cells sensory. The largely stable consistency between input location and

inferred location by place cells proves the practicality of readout-grid cell network.

Within the completed multiple-layers neural network model of grid coding, we intro-

duce grid layers damage parameterized by radius and by the strength of the synaptic

output for neurons in the damaged region. The self-consistence between location sig-

nal and inferred location is distributed within reduced coding range. For M layers

of the N grid cells, damage within a single layer doesn’t destroy the accurate place

coding considering the maximum possible coding range (R ⇠ NM) overloads the re-

duced coding range (Rl < 500cm). We construct the landscape of heat-map showing

influence of damage in all situations, and noticed that the layers with bigger spacing

(top layers) show more severe disruption given the same condition. This proves the

hierarchy theory of GPC that the top panels dominate place coding and fluctuations

on big-spacing modules bring more errors.
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Illustrations

Figures

1.1 Brain model of dMEC and the discovery of grid cells. (a)
A simplified model of human brain with green region indicating
the medial entorhinal cortex (dMEC). (b) Spatial firing map of
grid cells. In the experiment, a rat moves in a square enclosure
with side length equal to 2m. Right, blue region is where in space
the grid cells fire in rat’s brain. Left, rat’s trajectory in a square
with blue parts representing the location where a rat’s grid cells
are active. The rat moves for about 15 minutes. A hexagonal
lattice firing field is shown in black in the path-integration map.(c)
Each panel on the right is the grid firing pattern over the mouse
trajectory of one grid cell in dMEC. The locations of emitted
spikes are illustrated with red dots, and the paths of the rat as
grey lines. The grid scale increases with distance from the border
of the dMEC with the postrhinal cortex (POR). . . . . . . . . . . . . 3

1.2 The entorhinal cortex grid map is discretized. (a) Sample
grids at successive dorsoventral positions in a representative ‘tan-
gential’ animal (rat). Dorsoventral location from brain surface
is indicated. Top, neuronal spikes (extracellular action poten-
tials) overlaid on trajectory of rat (grey). Bottom, correspond-
ing colour-coded autocorrelograms with colour scale (-1,1; blue is
correlation of -1, red is correlation of 1). Grid spacing was de-
termined from the innermost polygon (black axes). The spatial
autocorrelogram reveals repeating activity patterns in the spatial
rate map and is generated by correlating the rate map with itself
at all spatial o↵sets. (b) Ratios between successive module means
for grid spacing. Individual module pairs in grey, means indicated
by red crosses (values in orange). A rough estimation of average
wavelength spacing between layers is close to 1.42(

p
2). . . . . . . . 4
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1.3 Coding of position by grid cells. (a) shows the 1D analog of
the blue cell fires when the rat is at location x0 or any location
k · � + x0, separated by an integer number k of lattice periods
�. The phase of the blue cells di↵ers from those of the red and
green cells. Thus, each grid population represents rat position
as the modulo remainder following integer division by the grid
period. (b)Left, the position x in decimal, Right, the module
system (numbers in grey are the grid periods for each module).
The periods can be of similar sizes (for example here) while in
face there is ratio between successive modules. All layers are im-
portant for representing numbers at all scales: the number 45
and the number 800,000 involve all the layers. When the number
800,000 is incremented by one, all the registers increment; in fact,
the module representation is maximally distinct for similar loca-
tions, providing a highly decorrelated representation of position
at nearby locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 2D neuron sheet and damage model. (a) Blue spheres are
neurons in the grid cell model, and red arrows indicate synaptic
connections among neurons, with a weight Wij coupling neuron
i and neuron j. The yellow arrows below are the velocity signal
from other cells. The instantaneous velocity input is uniform for
the grid cell sheet, but each cell has a di↵erent preferred direc-
tion. (b) The “Mexican Hat” weight matrix Wij is the di↵erence
between two Gaussians. It is negative everywhere expect at the
center (zero). (c) Central damage model. The heat-map indicates
the 40⇥ 40 grid cell layer firing peaks, with the orange circle in-
dicating the damaged region (radius R = 7 neurons in this case).
All neurons are numbered from 1 to 1600, and the neuron at the
damage center is #820. . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Temporal emergence of firing patterns for undamaged
grid cell layer.
(a) Initial state of neuron sheet includes a random noise signal
ranging from -0.1 to 0.1. (b) The aperiodic boundary condition
shapes the neuronal signal pattern to generate grids in the first
250ms, beginning with an intense central peak with weaker sur-
rounding peaks. (c) Change of the boundary condition from ape-
riodic to periodic expands the grids evenly. (d) Non-zero velocity
inputs (0.8m/s in three directions) heal the defects of previous
grids and generate a hexagonal lattice of grid firing peaks. Fig-
ures (a)-(d) are heat-maps with the same colorbar. . . . . . . . . . . 17
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2.3 Neuron sheet firing pattern with model damage. (a) Dead
neurons (↵=0) in the red damaged regions, with successive dam-
age region radii of 2,4,6,8 neurons. Yellow arrows indicate the
flow direction in the opposite direction of the animal velocity,
with grid cell firing peaks bypassing the central damage even as
it grows. (b) Weakened neuronal firing in the central damage re-
gion (red), with R = 4 neurons and ↵ = 0.6,The whole grid-like
firing pattern is moving along the yellow direction, and neurons
fire (more weakly) in the damaged region. . . . . . . . . . . . . . . . 20

2.4 Single path integration map and average path integration
maps of healthy/damaged neuron sheets. (a)⇠(e), Single
path integration map of healthy neuron sheets for five di↵erent
trajectories. (f) Average path integration map of the above five
shows a clear triangular grid pattern. Inset: grid-like firing pat-
tern in neuron space, 40⇥ 40 healthy neuron sheets. (g) The fir-
ing of a dead neuron (neuron #820) is muted in path integration
map. Inset: grid-like firing pattern in neuron space, 40⇥40 dam-
aged neuron sheets (orange damage region R = 7 neurons,↵=0),
red arrow points to the tracking neuron’s location (within the
damaged region). (h) Firing of a healthy neuron (neuron #800)
doesn’t generate a grid -like average path integration map with
damage. Inset: same as (g), but the tracking neuron is outside
the damaged region. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
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2.5 Relationship of firing peak flow speed and velocity input.
(a) Linear relationship of average flow speed and magnitude of ve-
locity input for undamaged cells. Top is in the healthy neuron
sheets and bottom is in the damaged neuron sheets (R = 7,↵ =
0), the scaling ratios K are given in the figure, and the error bars
are the standard deviation of flow speed data, the dashed lines
are fitted line with zero intercept. (b) Stability of linear rela-
tionship under di↵erent velocity inputs directions. The velocity
magnitude is 0.7m/s, and directions are changed from 0� to 90�.
The blue curve is the average flow speed direction in the healthy
neuron sheets and the orange one is in the damaged neuron sheets
(R = 7,↵ = 0). The direction of average flow speed remains con-
sistent with the direction of velocity input direction.(c) Stability
of linear relationship under di↵erent damage sizes. The velocity
input is 1m/s in three directions (45�, 90�, 135�), and the central
damage size increases from R = 1 to R = 8 neurons, with the
central neurons dead (↵ = 0). The overlapping of horizontal lines
indicates the average flow speeds are the same if the velocity in-
put magnitudes are the same, regardless of the change of damage
size or velocity direction. (d) Angular di↵erence of flow direction
and velocity input direction in both healthy and damaged neuron
sheets. Top, healthy neuron sheet, and bottom is in the damaged
ones. We recorded the flow direction of 100 firing peaks in both
healthy and damaged neuron sheets (R = 7,↵ = 0), and sub-
tract them by velocity input direction 60�. The vertical axis is
histogram frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Average path integration map with model damage and
discrete Fourier transform (DFT). (a) For neuron #800,
damage coe�cient ↵ = 1, which is a healthy neuron sheets, the
associated average path integration map shows clear triangular
grids. DFT diagram has a hexagonal structures of 6 peaks around
the center. (b) Neuron #800, damage coe�cient ↵ = 0.5, damage
radius R = 4 neurons. DFT diagram has 4 peaks around the cen-
ter. (c) Neuron #820, damage coe�cient ↵ = 0.3, damage radius
R= 2 neurons. DFT diagram has 2 peaks around the center. (d)
Neuron #800, damage coe�cient ↵ = 0.4, damage radius R= 4
neurons. DFT diagram has 0 peaks around the center. Average
path integration maps in (b),(c),(d) are regraded as none-grids
path integration map. . . . . . . . . . . . . . . . . . . . . . . . . . . 29
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tensity. (a) For neuron #800 phase diagrams of grid cell order in
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Firing phase diagrams for neuron #820 in the 1/R- ↵ plane. The
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central peak intensity of a neuron (#820) in the damaged region
as a function of 1/R and ↵ for the phase with no coherent grid
structure (charcoal area in (a),(b)). . . . . . . . . . . . . . . . . . . 32

3.1 Neuron model of binary grid coding scheme. (Left) The
simplified model contains three one-dimensional modules of grid
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3.2 Neuron model of readout-grid cell GPC network. CA1 of
the hippocampus receives direction convergent input from many
dorsoventral levels of the entorhinal cortex where the grid cells
vary in spatial period. Top box is the readout cells stage in the
CA1 and the bottom box is grid cells modules in the entorhi-
nal cortex. Entorhinal-CA1 synapses are indicated using black
arrows. The spacing of grid cells periodic firing pattern are de-
creasing from top module to bottom ones, and the summed input
into CA1 are plotted in a red bell-shaped line, showing the right
readout cell is activated. . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 General algorithm of EGPC network. (top) Input location,
(middle) GPC box, including grid cell layers and readout stage,
(bottom) Output location/ inferred location decoded by the brain. . 43

xi



3.4 1D continuous attractor model of grid cells. (a)1D list of
spheres represent the arrangement of grid cells, with the orange
arrows indicating their preferred directions lê✓, and there are only
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Chapter 1

Introduction

1.1 Motivation and Background

An accurate representation of animal’s position in space is thought to be a

fundamental requirement for the brain’s navigation system. In 2005, the discovery

of grid cells, in the medial entorhinal cortex (dMEC) (Fig. 1.1a), appeared to reveal

a much more geometrical, rigid implementation of the cognitive map concept [1, 2].

In small flat environments, these grid cells fire at multiple locations with a regular

hexagonal structure (Fig. 1.1b)1, and, unlike place cells, they fire in all environments

regardless of external cues [3]. At the same time, grid spacing increases gradually

from the dorsal to the ventral end of entorhinal cortex (Fig. 1.1c)2, suggesting that

the same representation is replicated at multiple scales[5–7]. In the experiment[6], the

ratio between successive module spacing averages fluctuated around a constant value

of 1.42, indicating that grid scale follows a geometric progression rule (Fig. 1.2b) 3.

It has been proposed that the ratio between adjacent grid scales is
p
e for idealized

neurons and robustly lies in the range 1.4-1.7 for realistic neurons, so that the grid

system can minimize the number of neurons required to encode location with a given

resolution [8].

1. Figure resource from “On the Grid” by Alexis Wnuk.

2. Figure resource: [4]

3. Figure resource: [6]
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Figure 1.1. Brain model of dMEC and the discovery of grid cells. (a) A simplified
model of human brain with green region indicating the medial entorhinal cortex (dMEC).
(b) Spatial firing map of grid cells. In the experiment, a rat moves in a square enclosure
with side length equal to 2m. Right, blue region is where in space the grid cells fire in rat’s
brain. Left, rat’s trajectory in a square with blue parts representing the location where a
rat’s grid cells are active. The rat moves for about 15 minutes. A hexagonal lattice firing
field is shown in black in the path-integration map.(c) Each panel on the right is the grid
firing pattern over the mouse trajectory of one grid cell in dMEC. The locations of emitted
spikes are illustrated with red dots, and the paths of the rat as grey lines. The grid scale
increases with distance from the border of the dMEC with the postrhinal cortex (POR).
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At a given scale, the grid like periodic firing patterns are mainly explained by

two competing classes of models: network models based on attractor dynamics [9–11]

and oscillatory interference models [12–15]. In this work I will focus on the attractor

models only. Yoram Burak and Ila Fiete[10] developed a continuous attractor model

that can generate regular triangular grid responses of grid cells, based on inputs that

encode only the rat’s velocity and direction of movement, and the model successfully

achieves an accurate path integration map. Sammeet Sreenivasan and Ila Fiete[16]

developed the idea of modular structure of grid cells[7] and constructed a simple neural

network that can e↵ectively code accurate locations in 1D space for su�ciently small

physical range.

Figure 1.2. The entorhinal cortex grid map is discretized. (a) Sample grids at suc-
cessive dorsoventral positions in a representative ‘tangential’ animal (rat). Dorsoventral lo-
cation from brain surface is indicated. Top, neuronal spikes (extracellular action potentials)
overlaid on trajectory of rat (grey). Bottom, corresponding colour-coded autocorrelograms
with colour scale (-1,1; blue is correlation of -1, red is correlation of 1). Grid spacing was
determined from the innermost polygon (black axes). The spatial autocorrelogram reveals
repeating activity patterns in the spatial rate map and is generated by correlating the rate
map with itself at all spatial o↵sets. (b) Ratios between successive module means for grid
spacing. Individual module pairs in grey, means indicated by red crosses (values in orange).
A rough estimation of average wavelength spacing between layers is close to 1.42(

p
2).
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The surprising geometric behavior of grid cells firing to rat locations has

sparked numerous intriguing questions for both experiments and theory: What do

grid cells encode? What makes the grid cell code useful for animal’s navigation be-

havior? What kind of neural system can accurately code locations using grid code?

To answer above question, we need to consider carefully what are the benefits of

using the grid cell code rather than some other coding strategy, and then focus on

mechanism: how must the network be wired to generate grid cell responses.

A possible answer is addressed by Fiete[17]: In a 1-d analogue, the population

represents the rat position x as a phase within a unit cell of the grid response or

modulo remainder of x with respect to the grid period (Fig. 1.3). Because the dMEC

contains neural populations with di↵erent periods, it is possible to use the phases from

di↵erent grids to uniquely specify di↵erent locations over a much larger range than

any of the individual grid periods. The advantage is that grid cell coding capacity

grows exponentially with the number of di↵erent periods. A highly uncorrelated

representation of position at nearby locations can be achieved by grid cell module

system.

After the discovery of grid cells, multiple scientists contributed to explain

periodic firing pattern generating principle and construct accurate grid coding theory.

Building on their work, we turned to think about what is the impact for navigation

system when damage happens on grid cells. Considering grid cells in the dMEC

display strikingly regular periodic firing patterns on a lattice of positions in 2-D space,

and this helps animals to encode relative spatial location without reference to external

cues using a completed grid coding scheme. However, the dMEC is damaged in the
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Figure 1.3. Coding of position by grid cells. (a) shows the 1D analog of the blue
cell fires when the rat is at location x0 or any location k · � + x0, separated by an integer
number k of lattice periods �. The phase of the blue cells di↵ers from those of the red and
green cells. Thus, each grid population represents rat position as the modulo remainder
following integer division by the grid period. (b)Left, the position x in decimal, Right, the
module system (numbers in grey are the grid periods for each module). The periods can be
of similar sizes (for example here) while in face there is ratio between successive modules.
All layers are important for representing numbers at all scales: the number 45 and the
number 800,000 involve all the layers. When the number 800,000 is incremented by one, all
the registers increment; in fact, the module representation is maximally distinct for similar
locations, providing a highly decorrelated representation of position at nearby locations.
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early stages of Alzheimer’s Disease (AD), which a↵ects navigation ability of a disease

victim, reducing the synaptic density of neurons in the network. We want to know

how the possible damage from AD a↵ects the grid cells and grid coding, describing

observable phenomena that those patients su↵er the loss of direction/position sense.

In chapter 2, within an established 2-dimensional continuous attractor neural

network model of grid cell activity, we introduce neural sheet damage parameterized

by radius and by the strength of the synaptic output for neurons in the damaged

region. And in chapter 3 we apply the continuous attractor model in the 1D case to

reconstruct the grid coding neural network for self-consistent accurate place coding

scheme. We firstly rebuild the grid coding neuron networks to verify its e�ciency

for accurate place coding, and then simulate the central damage model to study

its impact. The layers with bigger periodic spacing dominate the place coding and

thus they show bigger interference when damage happens compared with smaller

spacing modules. We put some prediction and future work in chapter 4, including

the astonishing discovery of 3D grid cells for animals that explores a three-dimensional

environment like bats [18].

1.2 Objectives and Organization

Motivated by the considerations highlighted in the previous section, the broad

objectives of this dissertation are to develop frameworks for the following:

Part I is mainly included in Chapter 2:

(1) Construct Burak & Fiete’s attactor model of grid cells in a small 2D space,

show that the linear relationship between animal velocity and firing pattern

7



flow rate is the key to developing the grid cell triangular lattice firing

pattern on neuron sheets with that on path-integration map.

(2) Apply mean field analysis to explain triangular lattice grid firing pattern,

prove that triangular lattice is the lowest cost compared with other possible

periodic lattices.

(3) Develop methods to model the damage derived from synaptic malfunc-

tions on grid cells model, analyze the change on the velocity-flow linear

relationship.

(4) Construct Path-Integration Maps starting from grid cells healthy/damaged

model, which follow from the flow rate-to-velocity proportionality men-

tioned in point 1.

(5) Study Bragg Peaks of the Fourier transformed lattice firing field intensity

to examine the coherence of the grid cell path-integration maps in both

damaged and undamaged regions.

Part II is mainly included in Chapter 3:

(1) Begin with the simplified theoretical model of Sreenivasan and Fiete to

compare e�ciency of CPC and GPC: In the binary grid coding scheme, N

neurons can code N locations in CPC, and can code 2N locations in GPC.

(2) Improve the binary grid coding to enhanced GPC using readout-grid cell

neural network, and verify the e↵ectiveness of accurate GPC location cod-

ing.

8



(3) Construct a damage model for the readout-grid cell neural network. Ap-

ply this to model synaptic malfunctions on only grid cell layers without

influencing the link between readout cells and grid cells.

(4) Analyze the damage impact on location coding. We introduce error frac-

tions and root-mean-square variation of errors to quantify the behavior of

GPC network, and construct a completed damage heat-map diagram over

all radius and damage coe�cient, to show the board-line between normally

functional GPC and disrupted GPC.

Throughout the chapters, we verified the generation of grid-like firing pattern

of grid cells path-integration map (using a continuous attactor model) in 2D space.

From single layer grid cells to all layers with various periodic spacing, the discrete

module structures indicates there may exist an hierarchical architecture of coordi-

nates which can e↵ectively encode animal’s immediate location. We achieve an grid

code neural scheme following from Ref. [16] that provide a hierarchical organization

in the brain’s navigation system. The readout-grid network proves its e�ciency in

simulation experiments and we showed how AD inspired damage to the dMEC a↵ects

both the path-integration map and the place coding scheme.

Compared with previous work, we developed the study of damage impact on

Bruak & Fiete’s continuous attactor model of grid cells; and bind Sreenivasan-Fiete’s

readout-grid cell network with 1D continuous attractor model of grid cells to construct

an enhanced grid population coding (EGPC) scheme. The EGPC makes it possible to

consider damage’s influence on grid cells place coding and helps to show the hierarchy

in grid cell modules.
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Chapter 2

Neurodegenerative damage reduces
firing coherence in a continuous attractor

model of grid cells

2.1 Introduction

There is considerable interest in understanding how the brain encodes location

and guides animal navigation. Di↵erent neural networks within the brain with various

functions help to build animals’ navigation system. For instance, place cells in the

hippocampus are confirmed to fire strongly at special locations such as reward sites

or for the position of external landmarks [19, 20]. Head-direction cells found in many

brain areas (e.g., the dorsal presubiculum) [21] fire in 1:1 correspondence with the an-

imal’s directional heading with respect to the environment in the horizontal plane [22,

23]. The stunning discovery of grid cells in 2005 showed that these neurons in the

dorsocaudal medial entorhinal cortex (dMEC) provide an internal coordinate system

encoding absolute position for a given enclosure (longitude and latitude) largely in-

dependent of external environmental cues [2, 4]. Each grid cell in a given layer of the

dMEC shows enhanced activity (firing) on a periodic hexagonal lattice of points in

2-D space, with the spacing varying with layer depth. Additionally, there is now over

a decade of direct evidence that functional Magnetic Resonance Imaging (fMRI) can

detect the six-fold symmetry of the grid cell firing pattern noninvasively in healthy

brains[24–27]. In this chapter, we do not directly address the question of how neu-

rodegenerative damage a↵ects grid cell based navigation, but we show that the grid
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cell pattern can be modified by such damage in a detectable manner that can be

observed by non-invasive probes such as fMRI.

Grid cells represent a fascinating example of emergent pattern formation in a

nonlinear dynamical system (the coupled neurons of the dMEC). As such, they are

of intrinsic interest within the physics of dynamical systems, and amenable to study

and characterization by techniques typically reserved for solid state matter, such as

di↵raction analysis by Fourier transforms (Bragg peaks). How such patterns hold up

under perturbation is also of intrinsic interest.

In the case of the dMEC, strong perturbation arises from Alzheimer’s dis-

ease (AD), which a↵ects the hippocampus (place cells) and entorhinal cortex (grid

cells) and thus can disrupt spatial navigation. Several competing hypotheses exist to

explain the cause of the disease. The “tau hypothesis”, proposes that abnormalities

associated with tau protein aggregates initiate the disease cascade [28]. In this model,

hyperphosphorylated tau does not hold microtubules together and begins to pair with

other threads of tau to form neurofibrillary tangles inside nerve cell bodies [29]. Be-

cause the tau protein is what stabilizes the microtubule bundles in neuronal axons on

which neurotransmitters and other cargoes relevant for normal synaptic function are

transported, this may result first in malfunctions in biochemical communication at

the synapses between neurons and later in the death of the cells [30]. Furthermore,

the tau tangles that disrupt the axon and synapses may propagate within the brain

from location to location, in a manner similar to the prion protein aggregates of mad

cow disease [31–33]. In particular, the synaptic output will be degraded by axonal

microtubule disruption from tau tangles. The other leading candidates for initiation
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of Alzheimer’s disease, the “amyloid cascade” hypothesis [34], or the related “amyloid

oligomer” hypothesis [35], lead to eventual tau aggregation as well as an end stage.

There is substantial direct evidence for AD related damage to the MEC. Direct

post-mortem examination shows significant atrophy of the EC in the brains of AD

victims vs. control [36]. fMRI imaging of the MEC region for patients predisposed

to early onset AD shows a disruption in the six-fold symmetric firing pattern with

respect to the control group when performing virtual navigation tasks, despite no

apparent cognitive deficits in the AD disposed group [37]. Similar works on aging

adults suggest an impact of AD on the grid cell function and ability to navigate [38].

Amyloid beta oligomers induce tau tangles in cell culture experiments that degrade

microtubules and synaptic quality [39]. Overexpression of human tau protein with

subsequent aggregation in rats leads to degradation of synaptic plasticity in the MEC

and degrades cognitive performance [40], and induced expression of mutant human

tau in mice leads to grid cell dysfunction [41]. Finally, there is direct evidence of AD

induced synaptic degradation in the neurons projecting from the MEC to the CA1

layer of the hippocampus [42].

2.2 Methods

2.2.1 Emergent Grid-like Firing Pattern in a Continuous Attractor
Model of a Neuronal Sheet

In continuous attractor models, each neuron receives inhibitory input from a

surrounding ring of local neurons, and the entire network receives broad-field feed-

forward excitation containing velocity data from elsewhere in the brain. The model,
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upon integration in a static limit, will tend towards a stable fixed point of the cou-

pled equations, i.e., an attractor in the full phase space of the coordinates. When

the model animal is moving, given su�ciently rapid response of the neurons in the

model, the stable firing pattern can flow in response to the motion and this is the

origin of the observed grid cell pattern from this picture. We have based our work

upon the continuous attractor model of Burak and Fiete[10], which allows for modest

recurrent excitatory synapses between neurons locally surrounded by broadly recur-

rent inhibitory synapses around a given cell. The model is attractive to use for our

purposes here since: (i) it does develop a grid cell like firing pattern in the model

sheet, and (ii) with the addition of velocity sensitive response mimicking the input

from other parts of the brain (such as from head direction cells) it develops a pattern

flow that leads to accurate path integration and a real-space hexagonal firing pattern.

However, a purely inhibitory ring is su�cient to obtain grid cells and this is justified

by experimental evidence from studies on rats[43]. The mixture of excitatory and

inhibitory inputs is an attempt to capture in one model a bipartite entorhinal cortex

layer containing both excitatory pyramidal cells and inhibitory interneuron cells.

Consider a network of neurons arranged with uniform density on a cortical

sheet(Fig. 2.1a), and with a connection strength that decreases with distance. If

the connections of inhibitory cells extend over a wider range than the connections of

excitatory cells, it is possible for an emergent symmetry breaking of the firing pattern

with a population response consisting of a regular pattern of discrete regions of neural

activity to be created, arranged on the vertices of a periodic structure. As analyzed
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Figure 2.1. 2D neuron sheet and damage model. (a) Blue spheres are neurons in the
grid cell model, and red arrows indicate synaptic connections among neurons, with a weight
Wij coupling neuron i and neuron j. The yellow arrows below are the velocity signal from
other cells. The instantaneous velocity input is uniform for the grid cell sheet, but each
cell has a di↵erent preferred direction. (b) The “Mexican Hat” weight matrix Wij is the
di↵erence between two Gaussians. It is negative everywhere expect at the center (zero).
(c) Central damage model. The heat-map indicates the 40⇥ 40 grid cell layer firing peaks,
with the orange circle indicating the damaged region (radius R = 7 neurons in this case).
All neurons are numbered from 1 to 1600, and the neuron at the damage center is #820.

in the appendix A, the most stable steady state structure in undamaged conditions

has hexagonal lattice symmetry [19, 20].

The blue spheres in Fig. 2.1a represent grid cells in a 2D neuron sheet, cor-

responding to one of the grid cell layers of the dMEC. For fast simulation, we use

a 40⇥40 neuron sheet, and the coordinates on that 2D plane can be described by a

neuron position vector ~xi.

The dynamics of grid cell activity in this model are described by the coupled

di↵erential equations [10, 44]

⌧
dsi
dt

= �si + f(
X

Wij · si +Bi) . (2.1)

si is the i-th neuron’s firing rate. ⌧ is the time constant, chosen here to be 10ms,

and Bi is the feed-forward velocity input to neuron i (Fig. 2.1a,b), and it introduces
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a �(neurons) �(1/neuron2) �(1/neuron2) l(neurons) ⌧(ms) dt(ms)
1 8 3/�2 6.711⇥ � 1 10 0.5

Table 2.1. Coe�cients Table. � is the target periodic wavelength of the triangular lattice.

the directional-dependence into model, which is described in detail later. The neural

transfer function assumed here, per Burak and Fiete [10], is a simple rectification

non-linearity: f(x) = x for x > 0 and 0 otherwise. Wij is the synaptic weight from

neuron j to neuron i, which has the character that inhibition by neurons operates at

longer range than activating ones. Following Burak and Fiete [10], the weight matrix

function is written as the di↵erence of two Gaussian curves with di↵erent variances

which has a “Mexican Hat” shape in position space(Fig. 2.1b):

Wij = W0(~xi � ~xj � lê✓j) (2.2)

with

W0(x) = ae��|x|2 � e��|x|2 . (2.3)

In Eq. 2.2, the neuron separation is shifted by the term lê✓j per [10]. The neuron

preferred direction is ê✓j and we will always choose a non-zero l. This shifted location

term plays an important role in driving a statistical flow of the grid cell firing pattern,

which is explained in Appendix A in detail.

The weight matrix functionW0(x) in Eq. 2.3 is the di↵erence of two Gaussians:

1) a is chosen to be 1 to make the net response inhibitory, so the value at the center

in Fig. 2.1b is zero. A small a is enough to create grid-like firing pattern while a > 1
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would not a↵ect the result qualitatively. There is a relative excitatory response at

small separation compared to the maximum inhibition. 2) � is used to determine

the width of the inhibitory response in the surrounding neuron region, and � sets the

shorter distance for the excitatory response in the surrounding neuron region. 3) For

the smaller 40⇥40 system we take � = 6.711 ⇥ � to make the maximum inhibition

big enough to generate a grid-like firing pattern for a small dimension lattice. The

simulation parameters are listed in Table 2.1, in which we have introduced �, the

target periodic wavelength of the formed triangular lattice [10], and we use it to

choose � and �. An approximate relationship is � ⇡
p

3/�. Using � made it easier

to control the firing pattern lattice spacing and it is explained in Appendix A.

We employ 40 ⇥ 40 neuron sheets to simulate one layer of of the dMEC, but

as noted in the introduction we expect a much larger number in the layers of the

dMEC, potentially up to a million per layer[45]. The smaller neuronal lattice is

chosen purely for computational convenience, and proportional damage compared to

the corresponding damage in the full dMEC, i.e., for R = 10 so the area is about

300 in model neuronal spacing units, and this would correspond to about 18% of the

neurons in a layer being damaged.

All the simulations below are done with zero velocity input, and we start

each simulation with small random noise within the range from -0.1 to 0.1 (arbitrary

units, but referenced to the static background input of 1), (Fig. 2.2a), then apply

the aperiodic boundary condition for a 250ms stimulation process. For shorter times,

we see randomly separated firing peaks emerge on the inactivated black background

(Fig. 2.2b), and the central activity in these peaks is higher than the surroundings.
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Figure 2.2. Temporal emergence of firing patterns for undamaged grid cell layer.
(a) Initial state of neuron sheet includes a random noise signal ranging from -0.1 to 0.1.
(b) The aperiodic boundary condition shapes the neuronal signal pattern to generate grids
in the first 250ms, beginning with an intense central peak with weaker surrounding peaks.
(c) Change of the boundary condition from aperiodic to periodic expands the grids evenly.
(d) Non-zero velocity inputs (0.8m/s in three directions) heal the defects of previous grids
and generate a hexagonal lattice of grid firing peaks. Figures (a)-(d) are heat-maps with
the same colorbar.

Then as we run another 250ms simulation under periodic boundary conditions, we

develop a complete periodic lattice of firing peaks (Fig. 2.2c). The zero velocity

input explains why the firing regions are small radius “peaks” instead of the peak

clusters (Highlight parts in Fig. 2.2d). Then we let the whole neuron sheet complete

building triangular lattice using a annealing process: we apply a nonzero velocity

input (|~v| = 0.8m/s) in three directions (0, ⇡5 ,
⇡
2�

⇡
5 ), and complete a 500ms simulation

for each of directions. The annealing process removes the defects and generates a

complete triangular lattice (Fig. 2.2d)

2.2.2 Grid-like Firing Pattern Flow

The shifted location term lê✓j is associated with the neuron’s preferred direc-

tion ê✓j , and these orientation sensitive firings drive the grid pattern from stationary

to flowing. This is a way to mimic the input in the model from the head direction
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cells. In the head direction system, cells fire selectively with respect to the rat’s head

orientation as a result of neural integration of head angular velocity signals derived

from the vestibular system. In the grid cell system, each neuron receives input from

one head-direction cell tuned to its preferred direction, and the neuron’s outgoing

center-surround connectivity profile is not centered on itself, but is shifted by a few

neurons along its preferred direction, which is shown in the weight function above as

the shifted location vectors.

In our grid-like sheet, we tiled the neuron uniformly in this way: each neuron

i has a preferred direction (W,E, S,N), indicted by ê✓i , and each 2⇥2 neuron block

contains all four preferred directions. and then we can define the feed-forward input

to neuron i is:

Bi(x) = Ai(x)(1 + ⌘0 · ê✓i · ~v) (2.4)

where ~v is the velocity of the rat, in units ofm/s. ⌘0 is the coe�cient that characterizes

the e↵ects of velocity inputs to the driven pattern flow (in Table 2.1). Ai(x) is

called the envelope function which helps to modulate the strength of the input to the

neurons. We assume periodic boundary conditions for firing on the sheet, and in this

case

Ai(x) = 1 (2.5)

We have used neuron sheet of a size 40⇥40 (1600 neurons) to speed up numerical

simulations. And Ai(x) of aperiodic boundary conditions is given in Appendix A.

If we have a non-zero value for the shifted location vector and, then the feed-

forward input B will drive a flow of the formed pattern. ⌘0 determined the gain of
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the velocity response of the network, and the term ⌘0ê✓j~v ⌧ 1 stabilizes the flowing

lattice. In Appendix A we explain how the feed-forward input drives flow and S3

shows the influence of ⌘0.

2.2.3 Central Damage Model

As discussed in the introduction, Alzheimer’s disease a↵ects the hippocampus

(place cells) and the entorhinal cortex (grid cells) early and thus disrupts navigation.

It may proceed by di↵usion of “tau tangles” from cell to cell which will disrupt

synaptic function. We focus on one type of damage to the dMEC that can arise from

neurodegenerative diseases and a↵ect grid cell performance: di↵using damage that can

arise from propagation of neurofibrillary tau tangles similar to the prion diseases [46].

Based on this model, we model neuronal functional loss as a weakening of the output

synaptic strength, which would follow from tau tangle driven disruption and damage

to the axonal microtubule bundles. We do not explicitly model tau tangles in the

dissertation. As we dial the output strength to zero, we e↵ectively ’kill’ the neuron

in the model. In Fig. 2.1c, we show a central di↵usion damage on top of the grid-like

firing pattern. The 40⇥40 healthy neuron sheets has its own triangular grids of firing

pattern, and then the neurons within the orange region are set to be damaged, after

which we observe neuron signals in di↵erent locations( #820 is within the damage

region and #400, 800, 810, 1560 are healthy neurons) and with di↵erent sizes of

central damage (damage region radius R = 7 neurons in Fig. 2.1c).

As the first example (Fig. 2.3a), we kill a central neuron and allow the neuronal

damage to propagate outward to model the prion like spread alluded to in the above
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Figure 2.3. Neuron sheet firing pattern with model damage. (a) Dead neurons
(↵=0) in the red damaged regions, with successive damage region radii of 2,4,6,8 neurons.
Yellow arrows indicate the flow direction in the opposite direction of the animal velocity,
with grid cell firing peaks bypassing the central damage even as it grows. (b) Weakened
neuronal firing in the central damage region (red), with R = 4 neurons and ↵ = 0.6,The
whole grid-like firing pattern is moving along the yellow direction, and neurons fire (more
weakly) in the damaged region.

paragraph. The time step for numerical integration in our simulation is 0.5 ms

and we find that 250 ms total integration time (500 time steps) is su�cient for the

surrounding neurons to develop a stable firing pattern. These timescales are obviously

significantly accelerated from the AD scale so we can see the e↵ects in a reasonable

simulation time frame. The resulting growth speed of the damage cluster radius is 1

neuron/step. We take screenshots every 50 ms to record the damage as we change

from a circular damage region with a radius of R = 2 neurons to R = 7 neurons to

see the flow on damaged neuron sheets.

In Fig. 2.3b, we allowed for a nonzero but weakened connection between neu-

rons in the damaged region and to neurons on the periphery of the undamaged region.

A new coe�cient ↵ is applied to describe the damage: Wdamage = ↵Whealth(0  ↵ 
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1). For those neurons that lie in the circular damaged region (assume neuron i in

the damaged area D), their presynapses Wji and postsynapses Wij are not the same

anymore, and we assume postsynapses (from damaged neurons to healthy neurons)

shall be smaller than presynapses (from healthy neurons to damaged neurons).

8
>>>>>><

>>>>>>:

Wij = Wji = W0 (i, j /2 D)

Wij = ↵Wji = ↵W0 (i 2 D, j /2 D)

Wij = Wji = ↵W0 (i, j 2 D)

(2.6)

When two neurons are both healthy, their connection weight Wij and Wji

ought to be the same as given in Eq. 2.6; when one neuron is damaged, we assume it

can still accept the signal from other neurons with no reduction but that the signal

sent from it will be weaker, this is a more realistic assumption of progressive tau

tangle damage than simply killing the neuron. We achieved this by multiplying the

weights by ↵ for all neuronal outputs emerging from within the damaged region. Note

that ↵=0 corresponds to dead neurons.
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2.2.4 Path Integration

Random Walk Generation

A random walk within a circular enclosure is used to simulate the animal’s

trajectory in real experiments [2]. Here we use the random walk model of Ref. [47].

8
>>>>>><

>>>>>>:

~vi+1 = µ~vi + ~ai�t

~ri+1 = ~ri + ~vi�t

~a ⇠ N (0, �2
a)

(2.7)

For the ith step, we have velocity ~vi, position ~ri, and acceleration ~ai. The magnitude

of the acceleration is drawn from a Gaussian distribution, with average of zero and

standard deviation �2
a = 0.5. The mixing coe�cient µ (= 0.875) determines the

amount of the current velocity preserved in the next velocity step; this assures a

realistically smooth trajectory for which the additional random acceleration boost

o↵ers smaller course corrections. We use a small time step �t = 0.1s to make

sure the change of the model rat’s trajectory is smooth. The velocity is reflected

at the boundary, i.e., the component parallel to the boundary is unchanged and the

component perpendicular is reversed whenever the model animal would reach the

boundary on the next step.

In most situations, the boundary is reached in-between steps (|~ri| < |~Rboundary| <

|~ri+1|), and thus we recalculate the new position ~ri+1 to make it in the reflected di-

rection and have the length |~ri ! ~Rboundary ! ~ri+1| equal ~vi�t.
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Figure 2.4. Single path integration map and average path integration maps of
healthy/damaged neuron sheets. (a)⇠(e), Single path integration map of healthy neu-
ron sheets for five di↵erent trajectories. (f) Average path integration map of the above five
shows a clear triangular grid pattern. Inset: grid-like firing pattern in neuron space, 40⇥40
healthy neuron sheets. (g) The firing of a dead neuron (neuron #820) is muted in path
integration map. Inset: grid-like firing pattern in neuron space, 40 ⇥ 40 damaged neuron
sheets (orange damage region R = 7 neurons,↵=0), red arrow points to the tracking neu-
ron’s location (within the damaged region). (h) Firing of a healthy neuron (neuron #800)
doesn’t generate a grid -like average path integration map with damage. Inset: same as (g),
but the tracking neuron is outside the damaged region.

23



Path Integration Map

Now we generate N steps in the random walk path, and each step contains its

velocity ~vi and position ~ri. For each step, the time step �t = 0.1s means updating

the neuron sheets’ signal 200 times (0.1s/0.5ms = 200), and the whole process uses

~vi as the velocity input to initiative flow in the firing pattern. We track a single

neuron for either damaged or undamaged regions and record their firing rates as the

model animal moves to the position ~ri. The position and single tracking neuron firing

rate are plotted together showing the single path integration map (Fig. 2.4a). This

is exactly the same idea of planting electrode measuring activity of a single neuron

in a rat’s dMEC and tracking the firing signal with the rat’s trajectory.[2]

2.3 Result and Discussions

2.3.1 Linear Grid Pattern Flow Velocity Relationship in
Healthy/Damaged Models

The dynamics of the firing patterns are associated with the velocity input ~v.

This velocity changes its direction and magnitude when an animal runs [38], which

helps us get the actual path information into our future path integration calculation.

With zero velocity input, all the firing peaks will be on vertices of a stationary hexago-

nal lattice. With nonzero velocity input, the model input with direction sensitive cells

tiling the grid cell layer initiates a flow of the firing signal, in the opposite direction

to velocity input ~v. The linear relationship between the flow speed and velocity input

~v is very important to generate the later accurate path integration (Fig. 2.4a⇠e).
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Thus, we introduce the scaling ratio K to describe the relationship:

flowing speed = K · |~v| (2.8)

For damaged neuron sheets in Fig. 2.3, we observed the whole driving pattern

continues, bypassing the damage. The healthy neurons will still fire normally, while

the damaged neurons will be fully muted or weaker in excitatory response. The

firing pattern of healthy neurons is not strongly influenced by damaged ones, and

still shows partial stability with flow. We quantitatively compare the relationship

between in healthy neuron sheets and the damaged one in the following.

Fig. 2.5a shows both healthy and damaged neurons sheets retain the linear

relationship between average flow speed magnitude and velocity input ~v. Clearly, a

damaged neuron cluster with say R = 7 is pretty big in our 40 ⇥ 40 neuron sheets,

but the proportional relationship between average flow speed and physical speed ~v is

still close to that of the undamaged neuron sheet. The scaling ratio for the healthy

one is Khealthy = 26.93m�1 and for damaged one is Kdamaged = 25.146m�1.

In Fig. 2.5b, we show the average flow directions under di↵erent velocity input

directions for both healthy and damaged neuron sheets, and clearly the average flow

speed direction remains consistency with the velocity input direction. Note that the

damaged one shows a bigger variance at angle 30� ⇠ 60� than the healthy one. In

Fig. 2.5c, we increase the central damage region from R = 0 to R = 8 neurons,

and compare the flow speed under the velocity inputs of the same magnitude but

di↵erent directions (45�, 90�, 135�), The overlap of lines indicates that the change of
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Figure 2.5. Relationship of firing peak flow speed and velocity input. (a) Linear
relationship of average flow speed and magnitude of velocity input for undamaged cells. Top
is in the healthy neuron sheets and bottom is in the damaged neuron sheets (R = 7,↵ = 0),
the scaling ratios K are given in the figure, and the error bars are the standard deviation
of flow speed data, the dashed lines are fitted line with zero intercept. (b) Stability of
linear relationship under di↵erent velocity inputs directions. The velocity magnitude is
0.7m/s, and directions are changed from 0� to 90�. The blue curve is the average flow speed
direction in the healthy neuron sheets and the orange one is in the damaged neuron sheets
(R = 7,↵ = 0). The direction of average flow speed remains consistent with the direction
of velocity input direction.(c) Stability of linear relationship under di↵erent damage sizes.
The velocity input is 1m/s in three directions (45�, 90�, 135�), and the central damage size
increases from R = 1 to R = 8 neurons, with the central neurons dead (↵ = 0). The
overlapping of horizontal lines indicates the average flow speeds are the same if the velocity
input magnitudes are the same, regardless of the change of damage size or velocity direction.
(d) Angular di↵erence of flow direction and velocity input direction in both healthy and
damaged neuron sheets. Top, healthy neuron sheet, and bottom is in the damaged ones.
We recorded the flow direction of 100 firing peaks in both healthy and damaged neuron
sheets (R = 7,↵ = 0), and subtract them by velocity input direction 60�. The vertical axis
is histogram frequency.
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velocity direction doesn’t dramatically influence the firing pattern flow, with the same

velocity input magnitude (1m/s in Fig. 2.5c). And the increased damaged size along

the horizontal axis doesn’t change the average flow speed a lot.

Those averaged data show good proportionality between flow rate and veloc-

ity in both healthy and damaged neuron sheets, regardless of damage size or velocity

inputs (magnitudes and directions). However, when we looked into the detailed be-

havior, the stability and structural coherence of flow for damaged sheets are poor

compared those of healthy sheets. In Fig. 2.5a, the standard deviation (red error

bars) of flow speed magnitude in the damaged situation is much bigger than that of

healthy ones, meaning the damaged neuron sheets’ flow is unstable with fluctuation of

flow speed. Then we record the flow direction of 100 firing peaks (peaks are shown in

Fig. 2.2d), and subtract them from the velocity input direction (60�). Those 100 firing

peaks are divided into 10 groups for di↵erent velocity magnitude (0.1m/s ⇠ 1.0m/s)

in both healthy and damaged neuron sheets. The good linear proportionality shows

in Fig. 2.5b means the average angle di↵erence should be close to zero. Furthermore,

we noticed that in the healthy neuron sheets, the stability of the triangular lattice is

strong and the angle di↵erence is mostly less than 2�, while in the damaged neuron

sheets, the angle di↵erence can up to 10�.

In the damaged neuron sheets, the average flow speed remains proportional to

velocity, but there is some deviation between the velocity and flow directions, and in

the proportionality of spatial speed and flow speed in damaged neuron sheets which

leads to accumulated errors in long-time path integration. This explains why we see

the flow pass the damaged region but the path integration map for cells outside the
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damaged region cannot generate a triangular lattice (Fig. 2.4h). What is interesting

is that we found even in a healthy neuron sheet, that there are still a few firing peaks

with big angle di↵erences (Fig. 2.5d top). Those big angle changes in 7� � 9� are all

from firing peaks with very slow velocity input (0.1 m/s), and it indicates that too

small a velocity input inhibits grid stability.

2.3.2 Path Integration Map for the Healthy Neuron Model

From the single path integration simulation, we found the firing pattern shows

weak grids, more like discrete highlight dots separated in a grid pattern (Fig. 2.4a⇠e).

To achieve a more accurate and clear result, we use the average of five di↵erent path

integration, for each of them, the same tracking neuron signal starts with the same

firing pattern at the very beginning, but follows di↵erent trajectories. We add the

five sets of firing rate together to generate the path integration map. In Fig. 2.4, we

can see the average path integration map present better grids pattern compared with

single path integration map. The same idea can be applied if we apply a much longer

path, like five times longer, however, increasing the length of path will accumulate

integration error because the triangular grids still shows fluctuations. And increasing

the length costs longer time for a single simulation. The influence of increasing path

length is mentioned in Appendix A.

When we replaced the healthy neuron sheet with the damaged neuron sheet

model, even though damage does not destroy the signal’s average flow stability, it

influences the path integration in terms of degrading the triangular lattice firing

pattern in the random walk on the two dimensional area. In Fig. 2.4g,h, we found
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Figure 2.6. Average path integration map with model damage and discrete
Fourier transform (DFT). (a) For neuron #800, damage coe�cient ↵ = 1, which is
a healthy neuron sheets, the associated average path integration map shows clear trian-
gular grids. DFT diagram has a hexagonal structures of 6 peaks around the center. (b)
Neuron #800, damage coe�cient ↵ = 0.5, damage radius R = 4 neurons. DFT diagram has
4 peaks around the center. (c) Neuron #820, damage coe�cient ↵ = 0.3, damage radius R=
2 neurons. DFT diagram has 2 peaks around the center. (d) Neuron #800, damage coe�-
cient ↵ = 0.4, damage radius R= 4 neurons. DFT diagram has 0 peaks around the center.
Average path integration maps in (b),(c),(d) are regraded as none-grids path integration
map.

the damage from killing neurons brought us the worst influence: even a very small

region of dead cells can totally destroy the grid from generating. Tracking the dead

neuron in the damaged region (Fig. 2.4g) shows no firing signal all along the path, the

healthy neuron outsider the damaged region are strongly influenced by the damage

and cannot generate triangular grids like Fig. 2.4f. It seems that the bigger firing

pattern fluctuations in damaged neuron sheet accumulate errors in long path. The

stability of linear relationship is achieved from single velocity input and not too long

simulation (⇠ 500ms) while path integration with 1000 steps is about ⇠ 100s.
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2.3.3 Fourier Transform Analysis and Damage Phase Diagram

We have found that a small damage region and big damage coe�cient ↵ can

lead to stable grids, even though too big a damage region size (radius over 7 neurons)

or too small a damage coe�cient ↵ (↵ < 0.2) still prevent the grids from generating.

Fig. 2.1c is a simplified model of 2D 40 ⇥ 40 neuron sheet with central damage R

= 7 neurons, and tracking neuron #800 is outside the damage region while #820 is

within the region. To get a stable input to the Fourier analysis, we crop the center

square region of the path integration map to eliminate boundary e↵ects, and do the

discrete Fourier Transformation (DFT) on the truncated position space. For those

trajectories with clear enough hexagonal grid structure, the DFT diagrams show six

Bragg peaks around the center (Fig. 2.6a), where we use the DFT intensity threshold

of 15 to quantify the visibility of the peaks to the eye shown in Fig. 2.6 bottom row,

and those without grids show only one central peak corresponding to the average

firing (Fig. 2.6d). Between these extremes, we find regions with striped firing (2 non-

zero Bragg peaks) and orthorhombic firing (4 non zero Bragg peaks anisotropic in the

plane) (Fig. 2.6b,c). The application of Bragg peak analysis from the DFT makes it

convenient to summarize grid translational and orientational coherence. We want to

use the number of Bragg peaks to quantify di↵erent levels of grid pattern loses under

di↵erent damages.

By studying the non-zero Bragg peaks as a function of 1/R and ↵, we can

generate the phase diagram shown in Fig. 2.7a,b. The grey area is the no grids region

and the blue area is grids region. When ↵ is small, or the damage radius is big

30



(corresponding to grey area of Fig. 2.7a,b), the loss of a grid like pattern is the worst

and there is no Bragg peaks. The opposite is for bigger damage coe�cient ↵ or small

damage radius R, the grid like pattern remains. What we noticed is that there is a

borderline to demarcate the grids and no-grids regions. It means that the grid cells

show a tolerance of defects so that they can still work well with damages of certain

levels. We find with weak synaptic defects (↵ > 0.8), di↵erent sizes of damaged

region cannot stop the grid like pattern from generating. And with a poor synaptic

connection (↵ < 0.5), if the damage region is not too big (1/R > 0.5, R < 2), we can

still observe a grid pattern (Fig. 2.7a).

The phase diagrams (Fig. 2.7a,b) of both neurons are similar in detail, but

the discrete Fourier Transformation (DFT) central peak intensities varies. Fig. 2.7c

is the contour diagram of DFT central peak intensity for neuron within the damage

region. The central peak intensity measures the average firing over the space of the

2-D enclosure. The grid cells within the damaged region are not totally muted and

also can generate a grid like pattern (in Fig. 2.7b), but its intensity is usually weaker

than the grid cells outside the damaged region, and the intensity increases with the

distance between the neuron and the damage center.

The phase diagrams of Fig. 2.7 display a re-entrant feature at large damage

radius R. The reason this exists is clear from passing to the infinite radius limit. In

that case, all neurons have equivalent reduction of their output by the reduction of

↵, so it is guaranteed that the hexagonal peaks will remain until the peak strength

in Fourier space is reduced below its critical value. Hence, the critical ↵ value is

determined by the inverse of the peak value of W̃ (~q) For the values of � and � we use,
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Figure 2.7. Phase Diagrams and Fourier Transform Central Peak Intensity. (a)
For neuron #800 phase diagrams of grid cell order in the 1/R-↵ plane. In the teal region
we find hexagonal lattice grids in the average path integration map; in the charcoal region
there are no grids in the average path integration map region. The two other shaded
regions between teal and charcoal correspond to a striped a grid (2 peaks in the DFT), and
an orthorhombic grid (4 peaks in the DFT). For 1/R = 0, all neurons are damaged ↵, and
for 1/R = infinity or ↵ = 1 all neurons are healthy. (b) Firing phase diagrams for neuron
#820 in the 1/R- ↵ plane. The structure is nearly the same as the phase diagram in (a).
(c) DFT central peak intensity of a neuron (#820) in the damaged region as a function of
1/R and ↵ for the phase with no coherent grid structure (charcoal area in (a),(b)).
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the analytical estimate for this is, per the Supplemental Information, W̃max = 4.37,

which gives ↵c = 0.23 analytically. The numerical value from 2.7 is somewhat lower

(↵c = 0.14), but given that the Fourier transform estimate in the Supplemental

Information does not include the direction dependent o↵set necessary for generating

flow we are comfortable the argument captures the origins of the re-entrant phase.

As noted in the introduction, while we anticipate that damage will disrupt

the coding of position in the grid cell/place cell network, in this chapter we limit

our attention to the modification of grid cell symmetry and coherence as a means of

providing a map to early detection of neurodegenerative damage.
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Chapter 3

Damage impact on the grid-cell
population codes for animal’s locations

3.1 Introduction

The brain carries out enormously complex information processing operations

and uses diverse schemes to encode information. In the area of brain’s navigation

system, asking what kind of neural network topography can support the sense of place

is an interesting question. A hierarchical organization of grid cells may provide an

e�cient means for place coding [48]. However, in contrast to place cells [49, 50], which

encode an animal’s instantaneous place by firing only when it is within a neighborhood

of a particular location, grid cells fire when animal move on any vertex of a virtual

triangular lattice overlaid on the surface of the enclosure. Meanwhile, the entorhinal

cortex, where the grid cells are, always plays an important role in spatial memory and

navigation. All of the clues suggest that grid cells may be involved in encoding an

estimate of an animal’s location, but how to associate the spatial periodic grids-like

firing pattern of grid cell with the place coding network remains unclear. Fiete[17]

proposed modulo remainder method to convert an animal’s position x into phases on

di↵erent grid cell layers (x mod �). This links an animal’s trajectory with grid cells

firing rate mathematically. Building on the modulo remainder idea, Sreenivasan and

Fiete[16] introduced the idea of phase vector for grid population codes and constructed

a simple readout-grid cell network that can process place coding/decoding.
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In previous chapters, we discussed the grid cells’ special firing pattern that may

play an important roles in animals’ navigation system. The triangular firing pattern

of grid cells in a two dimensional neuron sheet can explain the hexagonal lattice of

active points in the path-integration map. The lattices seems to be related with

animals’ navigation system, and the longitude and latitude of the lattice (even the

two axes in a hexagonal lattice are not perpendicular with each other) are thought

to be used to code the animal’s location since it can build us the coordinates[13].

The entorhinal grid cells in mammals fire as a function of animal location, with

spatially periodic response patterns, and the entorhinal cortex contains multiple grid

layers, with di↵erent response periods [2]. We call them as ’grid cell modules’, and

experiment reveals that each module has its own firing pattern spacing and that there

are more than four grid cells modules in rat’s dMEC [2, 6, 51]. Those di↵erent grid cell

modules fire independently given external cues including animals’ current location or

moving velocity. Binding those firing rates of grid cells in di↵erent modules together

to code animal’s location requires a reasonable neural network. In this chapter, we

verify the e↵ectiveness of the Sreenivasan and Fiete readout-grid cell network model

when we replace the algebraic grid cell firing rate with real simulation firing rate from

continuous attractor Bruak & Fiete’s model, and further develop the impacts when

damages happen among grid cells.

Population coded[52, 53], obtained from many neurons collectively encoding

a given variable, are usually found in sensory, motor and some cognitive areas[22,

54, 55]. Classical population code’ (CPC) uses one or several neurons to code one

location point, thus CPC requires at least N neurons to code N locations. However,
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Figure 3.1. Neuron model of binary grid coding scheme. (Left) The simplified
model contains three one-dimensional modules of grid cells, and the periodic firing pattern
wavelength decreases from top to bottom (�1 = 8m, �2 = 4m, �3 = 2m). Bottom is
an horizontal axis indicating that the whole coding range is 8m. (Right) Define that left
neuron fires (activates) and right neuron mutes to be coding binary bit 1, and the opposite
to be binary bit 0. Three layers are matched with three modules of grid cells, and location
x = 6m can be represented by binary codes (101).
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GPC root mean squared error declines at best as 1/N or 1/N2 as a function of neuron

number N , and the weak accuracy gains with neuron number in CPC are obtained

through the ine�cient use of neural redundancy. To quantify the e�ciency of a

redundant code, we define the information rate ⇢ 2 [0, 1] as the ratio of the number

of information bits divided by the total number of conveyed bits [56]. In CPC, the

mutual information between the code and signal scales as ⇠ logN . However, the total

number of conveyed bits per time step scales as ⇠ N . Thus, the information rate ⇢

of CPC scales as ⇠ logN/N , which approaches zero for large N. The grid population

codes (GPC) is inspired by the idea that a hierarchical spatial mapping in the brain

may improve e�ciency of coding position [48], so that a possible hierarchical grid

coding scheme may largely outperform the CPC .

Consider the binary grid coding scheme in Fig. 3.1 left where neurons are

tuned to respond if the animal is in one of a periodic of array of locations. We have

the whole coding range to be 8m, and the two neurons in the largest module have

the period �1 = 8m and the tuning curve of width l1 = 4m so that their response

just indicates the left 4m range or the right 4m range. The successive modules have

periods �2 = 4m, �3 = 2m. These neuron pairs can successively localize the animal

into 1 � m bins. For example, if the animal is at the location x = 6m, the right

neuron in the largest module fires because x = 6m is within the right 4m range of

the whole, and the left neuron in the second module fires, the right neuron in the

third module fires the same way above. If we define that the left neuron firing is bit

0 and the right neuron firing is bit 1 in our binary coding scheme, then a decimal
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representing of location x = 6m are changed into binary code (1 0 1) with the largest

module at the left side (Fig. 3.1 right).

It is verified that using grid population code (GPC) to explain how the brain

e↵ectively codes location grossly outperforms the CPC in several areas: 1) The coding

range of GPC grows exponentially with neuron number N ; 2) GPC shows extraordi-

nary noise robustness over the reduced coding range; 3) GPC can greatly increase the

spatial resolution (di↵erence between the closest two locations). In Fig. 3.1, classical

population codes (CPC) need at least 8 neurons to identify all range locations with

a spatial resolution dx = 1m, while 3 neurons are su�cient to encode all locations in

GPC with binary coding. Those 3 neurons shall be lying in 3 modules with di↵erent

periodicity (wavelength).

In reality, we cannot simplify the grid cell coding to be binary, but experi-

ments[2] proved that the firing pattern of grid cells in di↵erent layers shows di↵erent

wavelengths. In Sreenivasan and Fiete’s work [16], they developed an coding scheme

using the x mod � with x to be animal’s location divided and � to be each grid cell

layer’s spacing (wavelength). In other words, assuming N grid cell layers’ with periods

�1, ...,�N , the grid population code is defined as the vector of N spatial phases:

~�(x, t) = (
x mod �0

�0
, ...,

x mod �N

�N
) (3.1)

with x, t indicates current location of animal. Their theoretical model of GPC suc-

cessfully construct the coding network. However, there is no theory to explain why

the grid cell codes use the ’phase vector’. Furthermore, this model makes it hard to
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show what will happen if the grid cells are damaged like that in Alzheimer’s disease,

considering that we cannot observe above spatial phases of grid cells through exper-

iments and how it changes under damages. What we did di↵erent here is to get the

firing rate r(x) from simulations using dynamics of grid cells attactor model. Since

the grid cell attactor model has been verified by accurate path-integration map in

chapter 2, we can get trusted result of firing rate r(x) when animal is at location x.

In chapter 2, we are able to track animal’s path integration map using con-

tinuous attractor models [10] of grid cells. The path integration map of grid cells

shows firing rates when an animal moves within the enclosure; these firing patterns

contain the real-time location information x, t. Thus here, we develop an enhanced

GPC scheme relative to Ref. [16], employing a one-dimensional model for the grid

cell firing rate from continuous attractor model simulations, which leads to emergent

periodic firing behavior rather than fixed period oscillatory signals. The enhanced

method for GPC shows the same benefits compared with CPC, and it skips the use

of the spatial phase vector. We start with an animal’s current external information

(location, moving time and velocity), and determine the grid cell firing rates in all

layers r↵,j(x, t) (↵ module index, j grid cell index in one module). We then sum all

the grid cells firing rates together into a readout stage, where model place cells are

able to infer the animal’s location. Details about the network model are given in the

methods section below.

We verified the e↵ectiveness of place coding in this newly-developed GPC

network, with a noise-free linear relationship between input location x and inferred

location x̂ (shown in Fig. 3.7) provided the geographic range is su�ciently small. We
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analysed the quality of several di↵erent of GPC networks (di↵erent coding ranges,

grid cells wavelength and numbers, etc.) using the fractional error and the root-mean-

square standard deviation of error values (with error defined as the di↵erence between

input location x and inferred location x̂), and presented their change with increasing

coding range for both healthy and damaged cases. Applying the model of damage

arising from synaptic degradation among grid cells, we also constructed a complete

landscape of GPC network quality heat-map of di↵erent levels of damage. The land-

scape diagram shows the borderline between normal and interrupted networks, and

it helps to prove that, in the hierarchical organization for grid cell layers that layers

with bigger periodic spacing dominates the place coding.

3.2 Methods

3.2.1 Structure model of EGPC coding network

We use a relatively simple neural network architecture, consisting of grid cells

and readout cells. Grid cells are arranged in several layers known as modules, with

di↵erent layers contains di↵erent wavelengths of the periodic firing pattern. The

wavelength decreases from the top layer to the one below.

The spatially patterned firing rates of all grid cells across the networks are

the inputs to the readout cells. Those grid cells project forward to a readout stage,

recurrent global inhibition in the readout stage and symmetric back projections from

the readout stage to grid cells.

The connection between grid cells and readout cells are gridcell-to-readout

weights W . It is set by Hebbian Learning on the activation of grid cells and readout
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cells as the animal runs through a space in the presence of spatially informative exter-

nal cues. In this run, we assume that grid cell activation is without path integration

errors because of the external cues. During this learning process, the readout cells

are separately driven to be sparsely active at one preferred location.

After learning, each readout cell is wired to grid cells of all layers, and the

gridcell-to-readout weight W is unchanged. When the external cues are absent, grid

cells with its activation at di↵erent animal’s position from its own path integration

drive the readout cell. The maximally driven readout cell is identified through winner-

take-all dynamics using global inhibition, and its preferred location is the decoded or

inferred location.

3.2.2 General algorithm for EGPC

Here we provide a clear description of how the EGPC algorithm works in place

coding/decoding (Fig. 3.3). An instantaneous location x is the input, and through its

time series it contains information that how fast and how long that animals moves.

Grid cells modules are sensitive to those external velocity information and generate

corresponding periodic firing patterns. All grid cell firing rate r↵j(x, t) are added

in a feed-forward fashion to activate readout cells. The summed input hi(x) in the

readout cells vary from each other and we can decode the inferred location by reading

the preferred location of the most active readout cell.
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Figure 3.2. Neuron model of readout-grid cell GPC network. CA1 of the hippocam-
pus receives direction convergent input from many dorsoventral levels of the entorhinal
cortex where the grid cells vary in spatial period. Top box is the readout cells stage in the
CA1 and the bottom box is grid cells modules in the entorhinal cortex. Entorhinal-CA1
synapses are indicated using black arrows. The spacing of grid cells periodic firing pattern
are decreasing from top module to bottom ones, and the summed input into CA1 are plotted
in a red bell-shaped line, showing the right readout cell is activated.
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Figure 3.3. General algorithm of EGPC network. (top) Input location, (middle)
GPC box, including grid cell layers and readout stage, (bottom) Output location/ inferred
location decoded by the brain.
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3.2.3 Coding range and readout stage

In this 1D GPC decoding model, the coding range is defined as R. It is proved

[16] that the length of coding range R influences the noise robustness of GPC or CPC

networks: a high-range GPC is pathologically sensitive to noise, and very small noise

in the GPC results in massive, nonlocal errors in decoded location.

If the coding range shrinks to a subrange [0, Rl], and Rl satisfy Rl ⌧ R and

Rl � �, (we use � to indicate grid cell firing rate spacing), the reduced coding range

Rl brings extraordinary noise robustness to GPC network, and it outperformed the

CPC network grossly [16]. Thus, when we set the coding range, we don’t expect the

Rl to be too big.

Given the coding range, we can now define decoding resolution dx to be the

minimum position di↵erence that can be distinguished by readout cells, and any two

positions with di↵erence less than dx cannot be determined by readout stage. Then

the minimum number of readout cells required (indicated as Nreadout) is given as:

Nreadout =
Rl

dx
(3.2)

Each readout cell helps to decode one certain position in the whole coding

range Rl, and we call the certain position as readout preferred location xi
⇤, with

index i varies from 1 to Nreadout.

44



3.2.4 Locally peaked response of the readout cells

Given Nreadout readout cells listed in a single layer as readout stage, we use

ri(x) to present the firing rate of ith readout cell when animal is at location x (unit

in cm or m).

Considering that we have required each readout cell has its own special pre-

ferred location x⇤
i , which means it activates most when animal is at the right preferred

location. We have a bell-shaped function G�(x� µ) with mean value µ and variance

�2 to present locally peaked response of the readout cells:

ri(x) = G�(|x� x⇤
i |) = exp(� |x� x⇤

i |2

2�2
) (3.3)

the mean value of Eq. 3.3 is at its preferred location x⇤
i to satisfy that readout cell

activates the most at its right location.

3.2.5 Grid cells arrangement

Grid cells are found to be arranged in several discrete layers or modules (num-

bers are indicates as N), and with descending wavelengths from the top module to

bottom ones. The experimental results indicate that there are about 5⇠6 modules

of grid cell in mammals’ dMEC. For quick simulations, we apply three modules of

grid cells and list them in descending wavelengths with a fixed decreasing ratio equal

to
p
2, and then we name the top module’s wavelength (also called as ’spacing’) as

�0,cm, and cm here means that we measure the wavelength in centimeters.
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The three modules of grid cells with their wavelengths are listed below:

top module : �0,cm

middle module : �1,cm =
�0,cmp

2
' �0,cm

1.41

bottom module : �2,cm =
�1,cmp

2
' �0,cm

1.98

(3.4)

Each module contains approximately the same amount of grid cells, indicated as M .

A network contains N modules with each module containing M neurons are expected

to decode locations accurately up to MN . This is the outstanding characteristic

of GPC decoding network compared with CPC [47]. Thus, for a narrow range of

encoding range Rl < 500cm with 500 location points, the number of M only need to

satisfy:

M > 3
p
500 ' 8 (3.5)

We choose M = 40, the same as the grid cells setting in chapter 2 (in which

there is a 40⇥40 2D grid cells sheet), and with the same periodic boundary condition

that links the head of neurons list with the tail. Following Eq. 3.5, such a 40⇥ 3 grid

cells network is able to accurately decode up to 403 ' 64000 di↵erent locations.

3.2.6 Periodic firing rate of grid cells

Di↵erent from Sreenivasan and Fiete’s method to characterize the firing rate

of grid cells using a spatially periodic Gaussian function, we apply the continuous

attractor grid cell model of Burak & Fiete, so that we can let grid cells activate

corresponding to animal’s external location, as the path integration does. The benefit
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of the new method for modeling the grid cell firing rate is stated in detail in the

discussion part of this chapter. We name the new method ”enhanced GPC” (EGPC)

compared with the original GPC.

Figure 3.4. 1D continuous attractor model of grid cells. (a)1D list of spheres represent
the arrangement of grid cells, with the orange arrows indicating their preferred directions
lê✓, and there are only two directions defined in the one dimensional case, right and left.
The grid cell layers receive velocity input B(v) containing animal’s moving information.
The red arrows are grid cell weights (w) as in Eq. 3.7 3.8. (b) the firing pattern of a
grid cell layer; top curve is the initial noise (random number within �0.1 ⇠ 0.1) at the
beginning as input, and the bottom shows that the stabilized grid cell firing rate involves
periodic pattern with a spatial spacing between two nearby peaks.

We have a list of neurons as the model for one dimensional module of grid

cells, and use si to present the grid cell firing rate with i to be the index of the list.
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We use neuron list of a size 40 to speed up numerical simulations. As in the two

dimensional situation in Chapter 2, the dynamics of grid cell activity are described

by the coupled di↵erential equations [10, 44]

⌧
dsi
dt

= �si + f(
X

wij · si +Bi) . (3.6)

wij = w0(~x
g
i � ~xg

j � lê✓j) (3.7)

w0(x) = ae��|x|2 � e��|x|2 . (3.8)

with si, Bi, f to be same definitions as in Chapter 2. To distinguish with the weight

matrix W between grid cells and readout cells, we use w to represent the recurrent

relationship within the layer of grid cells, and ~xg
i with subscript g represents the grid

cell’s coordinates on a 1D neuron list, di↵erent from the real position indication x.

The shifted location term lê✓ plays an important role in driving a statistical

flow of the grid cell firing pattern, and we apply the same amount of shift: l = 1, but

preferred direction ê✓ can only be either pointing left or right in 1D case. We define

pointing to the right being positive direction, and then Eq. 3.7 obtains a simpler form:

wij =

8
>><

>>:

w0(~x
g
i � ~xg

j � l) (ê✓j to the right)

w0(~x
g
i � ~xg

j + l) (ê✓j to the left)

(3.9)

In our 1D neuron list, the neurons with di↵erent preferred directions ê✓ are tiled

uniformly and each 2 neuron block contains all two preferred directions (see Fig. 3.4).
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Then we have the feed-forward input to neuron i in the 1D cases given by

Bi(x) =

8
>><

>>:

1 + ⌘0~v (ê✓i to the right)

1� ⌘0~v (ê✓i to the left)

(3.10)

where ~v is the velocity of the animal, in units of m/s. ⌘0 is the coe�cient that

characterizes the e↵ects of velocity inputs to the driven pattern flow.

We start each simulation with small random noise within the range from -0.1

to 0.1 (arbitrary units, but referenced to the static background input of 1), then

apply the aperiodic boundary condition for a 250ms stimulation process followed by

another 250ms simulation under periodic boundary conditions, so that we develop a

complete periodic lattice of firing peaks. After that we apply annealing process to

cure the defects, using 500ms simulation with a nonzero velocity input (0.8 m/s) in

right and then left direction.

3.2.7 Firing rate of grid cells at location x

The code/decode network takes the location x as the input, and decode the

external cues(like landmarks) as location information inside the brain. What we want

to verify here is that given an input location x, the whole GPC network can correctly

decode the output location x̂ (equal x).

Take a real location x as the input, we would like to know what is the firing

rate of each neuron in the network. For grid cells, we use r↵j(x) to represent the

firing rate of jth neuron on ↵th module when animal is at location x. The detailed

49



methods of the simulations of Burak & Fiete’s model to get r↵j(x) are included in

the Appendix B.

3.2.8 Summed inputs to the readout cells

The readout network infers instantaneous location x by finding the maximally

activated readout neuron

î = argmaxihi (3.11)

where hi(x, t) are the summed inputs to the readout cells. The operation to identify

the maximally driven readout cell is assumed to happen in CA1 through (group)

winner-take-all dynamics or other attractor dynamics which produce a narrow distri-

bution of active cells.

The preferred location of the most active cell (marked as î) is the inferred

location

x̂, t = x⇤
î

(3.12)

The summed input hi to the ith readout cell depends on the firing pattern of

the grid cells r↵j(x) and on the learned grid cell-readout weights Wij↵:

hi(x, t) =
X

j↵

Wij↵r↵j(x, t) + h0
i (x, t) (3.13)

Here we have h0
i represent any non-grid cell input to readout cell i, including in-

put originating from external sensory cues, or input based on predictions or learned

contextual priors.
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3.2.9 Grid cell-readout weights

The grid cell-readout weights Wij↵ are set once at the beginning, and we

assume they are unchanged after learning. The grid cell-readout weights won’t change

unless we study the damaged situation of GPC. The learning method is Hebbian

learning, within one simulated run over the coding range Rl with noise-free grid cell

activation due to external cues and sparse readout cell activation.

Wij↵ =
RlX

x0=0

ri(x
0)r↵j(x

0) (3.14)

where ri(x0) is from Eq. 3.3 representing the locally peaked response of ith readout cell

and r↵j(x0) is the correct activity pattern of the grid cells for the location x0. Because

the learning trajectory is only over the range Rl, readout cells are only activated and

assigned preferred locations in that range.

3.2.10 Central damage model on EGPC

As discussed in Chapter 2, we studied the central damage situation on 2D grid

cells sheets and its influence on animals’ path integration map. The disease we are

concerned with, Alzheimer’s, may proceed by the di↵usion of damage (’tau tangles’)

among grid cell modules. We consider such damage and its influence on the EGPC

decoding networks by assessing the change to the linear relationship between x and

x̂.

We consider how the synaptic strength within grid cell modules are degraded

in this model, and multiply w by a coe�cient ↵, with 0  ↵  1, for neurons that lie
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within the damage region. In Fig. 3.5, the range of the damage region in one single

layer is quantified using radius R, and we center the damage in the middle of the grid

cells list. Because the 1D grid cell list with periodic boundary conditions actually is

a ring, it doesn’t make any di↵erence if we change the center location on the ring.

For the damage coe�cient ↵ that changes the connection strength within grid

cells, we di↵erentiate the presynapses from the postsynapses in following way: for a

grid cell that lies in the damage region, its connection to the outside shall be weaker

than the input to itself, in other words, the postsynaptic coupling (from damaged

neurons to healthy neurons) is smaller than the presynaptic coupling (from healthy

to the damaged neurons). As in the Fig. 3.5, the arrows indicate the weight w, and

we define the damage region to be D. For ith neuron within the damage region, we

call it i 2 D, and jth neuron outside the damage region, j /2 D, the arrow wij from

ith to jth is narrower than wji, indicating postsynapstic couplings are weaker. Details

are given in following equation Eq. 3.15

8
>>>>>><

>>>>>>:

Wij = Wji = W0 (i, j /2 D)

Wij = ↵Wji = ↵W0 (i 2 D, j /2 D)

Wij = Wji = ↵W0 (i, j 2 D)

(3.15)

The overall grid cell model contains multiple layers, and the single layer dam-

age defined above can also be applied to multiple layers (Fig. 3.5). For multiple layers,

we applied the same damage radius and damage coe�cient ↵, and future work can be

done applying di↵erent damage parameters in di↵erent layers. Here we don’t consider
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Figure 3.5. Neural network model of damage to the EGPC network. (a) Three
layers of grid cells with central region to be damaged (in orange, length of damage region
equals 2R). Within the damaged region, weights between neurons are influenced: the
connection from jth neuron to ith neuron Wij (the narrow red arrow) is weaker than the
connection from ith neuron to jth neuron Wji (the wide red arrow). The whole grid cells
part still receive normal velocity input via B(~v). (b) Di↵erent arrangement of damage
layers. Six possible situations are given as single top layer, middle layer, bottom layer, and
top two layers, bottom two layers, and all three layers damaged.
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the grid cell connections between di↵erent layers, so that with the same velocity input

B(~v), each layer of grid cells works independently from other layers.

We assume no damage happens to the connection between grid cells and read-

out cells, and there is no change on the arrangement of readout cell layer. We summed

the firing rates from damaged grid cell modules into the readout stage, as in Eq. 3.13,

to encode the new inferred location.

3.3 Discusses and results

3.3.1 Accurate decoding performance of the EGPC

The EGPC decoding can be performed by above simple neural network, and

with input location information x put into the grid cell modules, so that the right

target place cell on the readout stage can decode the location to be x̂. The accuracy

of the coding/decoding performance can be shown by the linear relationship of x and

x̂ (Fig. 3.6a & b). The linear response of EGPC scheme weakens with increasing

coding range Rl, when Rl increases to 200cm, in which errors happens (some inferred

locations are shifted from the expected locations) (Fig.3.6c), and more error points

are introduced when Rl increased to 400cm ((Fig.3.6d)). However, the errors fraction

(number of errors divided by total number of location points) among all locations

within the range is low and the linear relationship is conspicuous in all given examples

in Fig. 3.6.

To track the change in quality of the EGPC linear relationship with di↵er-

ent coding range, we applied two characteristics: the fraction of error locations

and the root-mean-square of the error (rms), with the error defined as the abso-
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Figure 3.6. Linear relationship of input location x and inferred location x̂ in
normal EGPC. (a) Reduced coding range Rl = 40cm. (b) Reduced coding range Rl =
100cm. (c) Reduced coding range Rl = 200cm. Coding errors occur and two locations are
shifted: Nerror = 2 (x = 31cm ! x̂ = 118cm), (x = 47cm ! x̂ = 144cm). (d) Reduced
coding range Rl = 400cm. More error location points occur, Nerror = 22.
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lute di↵erence between expected location and the experimental location. Here, we

have rmsRl=200cm = 9.21cm and fractionRl=200cm = 0.01(Fig. 3.6c); rmsRl=400cm =

36.98cm and fractionRl=400cm = 0.055 (Fig. 3.6d). More figures are given in Fig. 3.7a

with the Rl increase from 5cm to 500cm. The rms and errors fractions fluctuate

near zero when Rl < 200cm, and they increase with increasing Rl above this.

Figure 3.7. Error fraction and root-mean-square errors in damaged and undam-
aged EGPC networks. (a) rms (top) and errors fractions (bottom) in undamaged
normal GPC network (500cm): three modules of grid cells and each layer contains N =
40 neurons, step between two nearby location dx = 1cm, reduced coding range Rl range
from 10cm to 500cm. (b) rms (top) and error fractions (bottom) in undamaged normal
GPC network (200cm): three modules of grid cells and each layer contains N = 40 neurons,
step between two nearby location dx = 1cm, reduced coding range Rl range from 10cm
to 200cm. Damage setting: central damage range radius r = 5 neurons, synapses weaken
coe�cient ↵ = 0.0. Damage occurs only at the top two layers of grid cell. Error bars are
calculated using multiple trials of experiments data and shown in black.

3.3.2 Damage case on grid cells modules

The Error is defined as the absolute di↵erence between correct decoded loca-

tion and the wrong one. The damaged situation (R = 5,↵ = 0.0, applied on top layers

of grid cells modules) are shown in Fig. 3.8, with the same EGPC network setting as
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that in section 3.2.3: there are three grid cell layers with wavelength �0,cm = 99cm,

�1,cm = 70.21cm, �2,cm = 49.79cm, and each layer contains N = 40 neurons for ef-

fective simulations. The readout stage contains Rl readout cells (place cells) with

decoding resolution dx = 1cm, and the reduced coding range from Rl = 10cm to

200cm. The linear relationship between x and x̂ is disrupted in the damaged case,

and as shown in Fig. 3.8a, has Nerrors = 18 location points deviated from the correct

locations, so we have the error fraction = 18
40 = 0.45, and root-mean-square of error

= 24.07021cm. Fig. 3.8 shows an increasing tendency of errors when coding range

gets bigger, and a more general analysis is shown in Fig. 3.6 b, in which the coding

range varies from 10cm to 200cm with a baseline consisting of data from undamaged

situation. Within a reduced coding range Rl < 200cm, the undamaged GPC scheme

can e↵ectively and accurately codes the animal’s location with the maximum rms of

errors 12.56cm and maximum error fraction 0.39%. In the damaged case, the average

rms of errors increases with the coding range and can be up to 72.36cm when the

coding range is bigger than 160cm, and the errors fraction is higher above the baseline

with a minimum of 25% and a maximum of 96%.

For all possible situations including single layer damage, two layers damaged

and all three layers damaged, we studied di↵erent levels of damage: from the weakest

(↵ ⇠ 1.0) to the killing neuron (↵ = 0), and the radius are changed within no damage

(R = 0) and whole layer diminished (R = 20). All results are presented in Fig. 3.9.

Root mean square (rms) of errors are plotted with variable radius R and coef-

ficient ↵ in Fig. 3.9a, and another characteristic error fraction is shown in Fig. 3.9b.

Those two heat-maps are consistent with each other, showing that the damage case
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Figure 3.8. Interrupted linear relationship of input location x and inferred lo-
cation x̂ in damaged GPC. (a) Reduced coding range Rl = 40cm. Nerror = 18. (b)
Reduced coding range Rl = 60cm. Nerror = 45. (c) Reduced coding range Rl = 100cm.
Nerror = 60. (d) Reduced coding range Rl = 200cm. More error location points occur,
Nerror = 144. (Damage: R = 5,↵ = 0.0, applied on top layers of grid cells modules).
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with bigger error fractions comes with bigger root mean square of errors at the same

time. We can observe the borderline between the blue region and the grey region

(with grey indicates interrupted case), and the borderlines are also self-consistent in

Fig. 3.9a and b, except the error fraction boundary gets fuzzy in single layer cases.

Most regions in top panels of the Fig. 3.9a and b are colored blue, showing that

the damage on one single layer out of three can still allow robust function for place

coding.

A more general behavior among all six cases is that a narrow blue region shows

up when the damage coe�cient is close to 1.0, or the radius is very small (R < 2

neurons), which agrees with expected result that small size of damage or weak damage

doesn’t influence the EGPC network severely. The increasing color shade of the grey

from top to bottom panels shows that increasing the number of damage layers brings

more severe disruption.

What’s interesting is the variety of behaviors that arise within the single layer

cases (or two layer cases). In the top panels of Fig. 3.9a, we observed that the

landscape in middle layer and top layer fluctuates much more than the bottom layer.

Root mean squares are higher than that in bottom layer case even the error fraction

plottings are similar. In the bottom panels, top two layers case is more severe than

bottom two layers. The variation within the same damage layer situations show that

the same damage leads to di↵erent e↵ects on di↵erent layers, and it turns out that

the damage on the layer with bigger grid spacing exerts more influence on the EGPC

decoding. It is consistent with the previous motivation of GPC (Fig. 3.1), where we

stressed that the grid layer with bigger spacing dominates the place coding. The
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Figure 3.9. Damage analysis over the whole variable space. (a) Root mean square
of errors (b) Error fraction in six damage cases. Damage radius (0 < R < 20 neurons)
in horizontal axis and damage coe�cient (0.0 < ↵ < 1.0) along the vertical. Top panels,
single layer damage; Bottom panels, left, bottom two layers are damaged and the top one
remain normal, middle, top two layers are damaged, right, all three layers are influenced.
The colorbar are scaled into the same levels for all six cases. grid cells wavelength are (99,
70, 50) and the reduced coding range is Rl = 40.
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top modules of grid cells determine bigger range of the locations and the following

modules help to refine the resolution. The same behavior is found when we switch

di↵erent grid cells wavelengths and coding range (see in Appendix B).

About the borderline in heat-map, we observe a narrow blue region shows at

the right side, with big size of damage (R > 19) and the coe�cient ↵ 2 (0.6, 1.0).

The radius indicates that a widespread damage in the whole layer (one layer contains

N = 40 grid cells) does not influence EGPC function if the coe�cient is above a

threshold. The thresholds are similar (close to 0.6) in all bottom panels of the Fig. 3.9

b.

61



Chapter 4

Conclusion

Part I: Neurodegenerative damage reduces firing coherence
in a continuous attractor model of grid cell

We start from Burak & Fiete’s attractor model of grid cells [10] to study their

firing pattern on much smaller periodic neuron sheets. Smaller neuron sheets can pro-

vide good statistics on the firing pattern flow and provide reasonable results for finite

and relatively short simulation times. The linearly proportional relationship between

the firing pattern flow and animal’s velocity input helps build a stable hexagonal

lattice in the path integration map.

Applying simulated damage to the model grid cells, we observe that the firing

pattern flow continues but shows bigger fluctuations (in flow speed and direction) in

a longer time range. Those fluctuations accumulate errors in path integration and we

observe the loss of coherent grid firing.

To identity the tolerance of grid cells to di↵erent levels of synaptic damages,

we study the Bragg peaks in the Fourier Transformed pattern of position space firing

fields for model grid cells, and we have shown that damage to a model grid cell layer

parameterized by reduced synaptic output strength ↵ and damage radius R leads to

a predictable sequence of reduced grid cell firing symmetry from hexagonal lattice, to

orthorhombic lattice, to stripes, and onto no coherent pattern (single central peak).

We find that the central Bragg peak in the region with no coherent grid structure

is largely unchanged for grid cells outside the damaged region, but strongly reduced
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for grid cells in the damaged region. For large area damage, there is a re-entrant

transition to the fully hexagonal grid structure. Grid cells can show a tolerance of

certain damages. With the help of borderline in phase diagram to identify grids/no-

grids region, we can control di↵erent levels of synaptic damages on grid cells and

study its influence on place coding/decoding.

The modifications of the orientation of firing patterns associated with the

less ordered structures should be visible in fMRI experiments which can pick up the

full six fold symmetric firing pattern in the dMEC for undamaged subjects. This

makes for an important tool in assessing potentially the level of synaptic damage

associated with neurodegenerative diseases such as Alzheimer’s, that may allow for

early diagnosis and the use of small molecule aggregation inhibitor treatments such

as anle138b[57, 58].

Part II: Damage impact on the grid-cell
population codes for animal’s locations

We aim to understand how to translate the grid periods into place coding

based on the inspiration from modulo remainder coding idea [17]. The most common

idea is to use the remainder of location over di↵erent grid periods for possibly e↵ective

place coding. It has the advantage of great tolerance to noise or fluctuations, and the

grid population code (GPC) can code wider range of locations with fewer neurons

compared with the classical population code (CPC). However, we want to know the

algorithm of grid coding from the view of the neuron network, in a way that is much

more realistic than the view of simplified phase vector theory. Using the readout-grid
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cell networks proposed by Sreenivasan and Fiete, [16] (which still uses the modulo

remainder method to associate location and grid cell firing rate), we employed the

Burak & Fiete continuous attactor model for 1D case to track grid cells’ firing rate

as a function of animal’s location. The firing rate with variable of location (r(x, t))

follows the same algorithm as the path-integration map in chapter 2, and it surpasses

the previous GPC using the modulo remainder phases, since r(x, t) is the immediate

firing rate when grid cells are self-developing with rat’s given destination and velocity.

The new readout-cell network that we proposed is closer to real experiments, and it

makes it possible to develop further study on impacts of damage.

Our enhanced readout-grid cell network with explicit simulation results of

place-coded firing rate proves its e↵ectiveness for accurate place coding. The stable

linear-relationship between input location x and inferred location x̂ within maximum

coding range (Rl < 500cm) shows that the readout-grid cell network bonded sim-

ulation firing rate r(x, t) works accurately. The success in achieving e↵ective place

coding using this enhanced GPC (EGPC) made it possible for us to think about the

impact of damage on grid cells in the same manner as for path integration. We have

already seen the damage influence on path-integration map from chapter 2, and here

we aimed to figure out what is the influence of damage on place coding. Using the

center damage model with weakened synapses among grid cell, we studied di↵erent

cases for various damaged layers, damaged region sizes (R) and damage coe�cient

(↵). To identify the tolerance of grid cell layers to di↵erent levels of damages, we

study the root-mean-square coding error and error points fraction. The landscape

of EGPC quality heat-map of di↵erent levels of damage shows the boundary of nor-
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mal/interrupted network, and a global decline of synapses weight doesn’t influence

the network’s e↵ectiveness when ↵ > 0.5 (the connection among grid cells reduces by

half). We found that the damage within a single layer of grid cells doesn’t destroy

accurate EGPC considering that the maximum possible coding range (R ⇠ NM)

overloads the reduced coding range (Rl < 500cm), which require fewer layers of neu-

rons. We noticed that the layers with bigger spacing (top layers in models, layers with

deeper dorsoventral location from brain surface in experiments) show more severe dis-

ruption for the same level of damage. The fact that the fluctuations on large-spacing

modules increases errors reflects the hierarchy theory of brain structures that the top

panels in GPCs dominate place coding.
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Chapter 5

Future work

In chapter 2 & 3 we study the continuous attractor models of grid cell network,

and construct a readout-grid cell neural network that can accurately operate the grid

coding of locations, and then we work on central damage model on grid cells to figure

out how the possible damage (from Alzheimer’s Disease) a↵ect the path-integration

map and the GPC coding qualities. What the experiments rely on is the simulations

based on either 2d grid cells sheets or multiple layers of 1D gird cell lists, and to reach

an e↵ective result, we control the amounts of total grid cells within 40⇥40 = 1600 for

2D case, 3⇥ 60 = 180 for GPC network. We expected a much larger number of grid

cells in the layers of the dMEC and experiments shows there are up to 4 or 5 modules

of grid cell spacing[4], potentially up to millions of neurons. Even though we applied

periodic boundary condition in all models, which can be used to represent infinite

range of grid cells theoretically, we still want to know how to manipulate all models

or methods in this dissertation using larger number of neurons. It may sacrifice

the computational convenience but can be more realistic compared with experiments

finding. We wish to see more advancement in computational ability (like clusters,

parallel running setting, etc.) or better algorithm that can help speed up simulations

in the future.

And for the same reason as above, we worked on coding range up to 200cm for

both healthy and damaged GPC networks. We expected to observe the behavior when
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the coding range gets bigger and even close to the GPC limitations (the theoretical

limitation equals NM where N is the number of grid cells in a layer and M is the

number of layers (modules). For the 40⇥ 3 grids cell modules, the maximum coding

range is 403 = 64000.) As we also mentioned in chapter 3, GPC only outperforms

the CPC within a reduced coding range(Rl < 500cm), and when the coding range

gets larger, the noise shows up and the inferred location has increased fluctuation

around the true. How to extend the GPC coding beyond its limitation and still keep

its extraordinary noise robustness is an interesting question for next stage.

As for damage model, we start from central damage model of weakening the

synapses among grid cells. The periodic boundary condition helps avoid the problem

of shifting location of the damage region center. But at the same time, we proposed

another possible model for multiple discreet small damages on grid cell layers. How

such a damage model a↵ects the grid coding and how can we control the damage to

generate a completed landscape of damage-coe�cient heat-map remain unsolved. And

for damaged GPC network, the weakening of neuron synapses happens among grid

cells in single layer independently. So possible new situations can be the readout cell

(place cell) - grid cell synapses or di↵erent layers grid cell synapses can be influenced

by the lesion. As for the connection among grid cells modules, we made assumption

that each layer works independently under a given spacing and no connection between

adjacent layers. This helps construct GPC networks but there is no evidence to prove

the irrelevance among layers of di↵erent spacing. An important question is how to

fit the continuous attactor model into multiple layers case, because most current
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research on grid cells attractor dynamics is for single grid spacing (the grid firing

pattern wavelength).

Another surprising question about grid cells is that there exists 3D grid cells in

nature. Considering we worked on 2D model of grid cells in chapter 2, and 1D model

of multiple modules of grid cells in chapter 3, it is interesting to think about how to

fit the GPC network into two dimensional plane, or what is the situations if grid cells

can be applied into three dimensional space. The answer to the first question may be

answered by adding one more axis in 2D space since we have already have an x-axis in

GPC network from chapter 3. However, some details need to be considered carefully

like how to project the 2D spacing into two axis, the 2D grids pattern has more

characteristics (including rotation, ellipticity transformation, orientation [59]) besides

the spacing wavelength. As for 3D cases, lots of findings [60–62] provide an indication

possibly valid for some animals living and moving extensively in three dimensions, like

for example dolphins, monkeys and even non-mammalian species (honeybees). Yet it

remains unclear how brain circuits encode the animal’s 3D position, but animal’s (like

bats) hippocampus represents 3D volumetric space by a uniform and nearly isotropic

rate code[63], similar to girds pattern in space. It is an interesting brand new research

field for organization of grid cells in 3D [18].
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Appendix A

Supplement to Chapter 2

1. Influence of time step dt for accelerating simulation

To improve simulation e↵ectiveness, we found the time step dt plays a big part

in simulation speed. A bigger time step dt means fewer numerical simulating cycles

within the same period of time. A small time step dt can improve the simulation

accuracy; we find that a larger time step can also generate the hexagonal grid struc-

ture. In particular, dt = 0.5, 1.0, 2.0ms can each generate a hexagonal lattice grid

for a long enough animal trajectory as shown in Fig. A.1. Accordingly, we sacrifice

some accuracy for better simulation speed by choosing a larger dt, which can still get

su�ciently accurate results for average path integration maps.

Figure A.1. Influence of time step size dt on simulations. (a) Average path integration
map of Neuron # 800, healthy grid, dt = 0.5ms. (b) Neuron # 800, healthy grid, dt = 1.0ms.
(c)di↵erent time steps dt = 0.1ms, 0.2ms, 0.5ms, 0.8ms, 1.0ms don’t a↵ect the flowing speed
when velocity inputs are the same (~v = 1m/s)
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2. Explanation of flow determined by preferred direction and shifted
location vectors

The grid cells can create a grid like firing pattern without the shifted location

vectors lê✓j , but the inclusion of lê✓j is the key to generate a steady firing pattern

flow. The addition of lê✓j breaks the symmetry of weight matrix W to make Wij 6=

Wji between two neurons. In Fig. A.2a,b, all the neurons have the same preferred

direction ê✓j to the right, and the new weight matrix Wij(xi � xj � lê✓j) is bigger in

magnitude than Wji(xj �xi� lê✓i) considering lê✓i = lê✓j . Because the weight matrix

is negative, the connection along the preferred direction has bigger inhibitory a↵ects

than the connection in the opposite direction, which drives the grid-like firing pattern

to move opposite to the preferred direction. When neuron groups with di↵erent

preferred directions ê✓j work together equally, the symmetry of the weight matrix can

be restored and that explains why there is a static firing pattern when the velocity

input is zero(Fig. A.2c). When the velocity input is nonzero, it can strongly activate

the neurons that share the same preferred direction, which drives the grid-like firing

pattern to flow in the opposite direction to the velocity.

3. Influence of velocity input coe�cient

⌘0 is the coe�cient that characterizes the e↵ects of velocity inputs to the driven

pattern flow, and in the paper we have taken it to be 0.10315. ⌘0 controls the gain

from velocity to the feed-forward input B. ⌘0 can be used to determine the driving

force to the grid cells from the rat’s velocity, and for the same velocity magnitude,

a bigger ⌘0 can make the flow faster. The results are summarized in Fig. A.3 for
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Figure A.2. 1D grid cell model with preferred direction. (a) Neurons have preferred
direction pointing to the right, breaking the symmetry of weight matrix(Wij < Wji < 0),
the inhibitory connection to left is bigger than that to the right, which drives the grid firing
pattern to move to the left. The blue arrow indicates driving flow direction, the solid blue
curve is current firing pattern and the dashed curve indicates the firing signal the next
moment. (b) Neurons with preferred direction pointing to the left drive the flow pointing
to the right. (c) neurons with di↵erent preferred directions work together evenly make the
grid-like pattern stationary, and with non-zero velocity input pointing to the left(big blue
arrow) will drive the grid to flow to the left.
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Figure A.3. Linear relationship between flow speed and velocity input coe�cient
⌘0. Top: healthy neuron sheet, with input velocity taken to be 0.4 m/s. Bottom: damaged
neuron sheet (R = 4,↵ = 0) with the same input velocity. The red error bars are the
standard deviation based upon choosing 5 trials with di↵erent random number seeds for
the input noise. The first three values of flow speed are 0 in each case, indicating that the
firing patterns are stationary below a critical value ⌘0 ⇡ 0.05.

both a healthy and damaged neuron sheet. This shows a linear relationship between

⌘0 and flow speed indistinguishable for undamaged neurons in either case. However,

the larger variance for the healthy sheet with increasing ⌘0 shows that we want to

choose (|⌘0ê✓j · ~v| ⌧ 1) to keep the formed lattice stable. If |⌘0ê✓j · ~v| is too big

(⌘0 > 0.35 when |~v| = 0.4m/s) then the grid-like firing pattern will disappear, and

when |⌘0ê✓j · ~v| is too small (⌘0  0.05 ), the grid-like firing pattern is frozen and

not flowing any more. The same linear relationship exists for damaged neuron sheets
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(Fig. A.3 bottom), with the only significant di↵erence being that a healthy neuron

outside the damaged region shows bigger variance of the flow velocities than for the

undamaged sheet.

4. Mean Field Analysis to explain triangular grid

The firing rate equations for Burak and Fiete are:

⌧
dsi
dt

= �si + f
⇣X

Wij · si +Bi

⌘
(A.1)

where:

Wij = e��|~xi� ~xj | � e��|~xi� ~xj | (A.2)

with wij < 0 uniformly and si > 0, B = 1. There is no region of si space where the

argument of the rectification in (C1) is negative hence (C1) is always in the linear

regime.

The fixed point is set by the condition

dsi
dt

= 0 (A.3)

with si =
P

Wij · si+B which can be viewed as the solution arising from minimizing

the “cost function”

C(si) =
1

2

X
si

2 �
X

B · si �
1

2
siWijsj . (A.4)
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Fourier transformation of the firing rates is given by

si =
1p
N

X
es(eq)e�i·eq·ri (A.5)

~ri is the neuron position inN⇥N sheets; ~ri+Nx̂ = ~ri+Nŷ = ~ri. eq ⇢ [qx, qy],�⇡(N�1)
N 

q↵  ⇡,↵ = x, y. where

fW (eq) = ⇡

�
e�

q2

4� � ⇡

�
e�

q2

4� (A.6)

With fW (eq) > 1, an instability at finite eq is possible. fW (0) = ⇡
� � ⇡

� , and
fW (eq) is

maximum when eq0 = 2
q

2( ��
��� ) ln(

�
� ).

We can assume di↵erent solutions of the form

si(~r) = ai[1 + bi
X

fi(eqk · ~r)] (A.7)

where |eqk| = q0, and there are constraints:

(1) 1 + bi
P

fi(eqk · ~r) � 0

(2) fi(eqk · ~r) must be periodic.

Examples are:

(1) s0(~r) = a0, uniformly.

(2) s1(~r) = a1[1 + cos(q0x)], periodical along x direction.

(3) s2(~r) = a2[1 +
1
2 cos(q0x) +

1
2 cos(q0x)], orthorhombic grid.

(4) s3(~r) = a3[1 +
2
3 cos(~q1~r) +

2
3 cos(~q2~r) +

2
3 cos(~q3~r)], triangular grid.

where ~q1 = q0(1, 0), ~q2 = q0(�1
2 ,

p
3
2 ), ~q3 = q0((�1

2 ,�
p
3
2 ).

Their Fourier Transforms are
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(1) es0(eq) = a0�eq,0

(2) es1(eq) = a1[�eq,0 +
1
2(�eq,q0x + �eq,�q0x)]

(3) es2(eq) = a2[�eq,0 +
1
4(�eq,q0x + �eq,�q0x + �eq,q0y + �eq,�q0y)]

(4) es3(eq) = a3[�eq,0 +
1
3(�~q1·~r + ��~q1·~r + �~q2·~r + ��~q2·~r + �~q3·~r + ��~q3·~r)]

Substituting these in the cost function yields the results

C[eSeq] =
1

2

X

eq

|es(eq)|2[1�fW (eq)]�
p
NBes(eq = 0) (A.8)

(1) C0 = �
p
NBa0 +

a02

2 [1�fW (0)]

(2) C1 = �
p
NBa1 +

a12

2 {[1�fW (0)] + 1
2 [1�fW (q0)]}

(3) C2 = �
p
NBa2 +

a22

2 {[1�fW (0)] + 1
4 [1�fW (q0)]}

(4) C3 = �
p
NBa3 +

a32

2 {[1�fW (0)] + 2
3 [1�fW (q0)]}

We can summarize these results as:

Ci = �
p
NBai +

ai2

2
{[1�fW (0)] + �i[1�fW (q0)]} (A.9)

Introducing

⇢i = [1�fW (0)] + �i[1�fW (q0)] (A.10)

Equation (C9) can be changed into:

Ci =
⇢i
2

 
ai �

p
NB

⇢i

!2

� NB2

2⇢i
(A.11)

Ci,min = �NB2

2⇢i
when ai =

p
NB

⇢i
(A.12)

75



For a 40 ⇥ 40 neuron sheet with a = 1, N = 1600, B = 1, � = 6.7 ⇥ �, � = 3
64 ; We

have eq0 = 0.916, and fW (0) = �57.02, fW (eq0) = 4.37.

(1) C0,min = �13.79, a0 = 0.689

(2) C1,min = �14.20, a1 = 0.71

(3) C2,min = �13.99, a2 = 0.6995

(4) C3,min = �14.34, a3 = 0.7172

Notice that the hexagonal grid shows the lowest cost, indicating it is more stable than

grid structures.

5. Aperiodic boundary conditions

the feed-forward input to neuron i is:

Bi(x) = Ai(x)(1 + ⌘0 · ê✓i · ~v) (A.13)

Ai(x) is called the envelope function which helps to modulate the strength of the

input to the neurons.

A(~x) =

8
>><

>>:

1 |~x| < R��r

exp[�a0(
|~x|�R+�r

�r )2] R��r  |~x|  R

(A.14)

R = 20 is the radius of the 40⇥ 40 network and a0 = 4. �r determines the range of

radius over which input tapering occurs, the larger �r, the more gradual the tapering.

In all aperiodic simulations, �r = R. [Burak. & Fiete.]
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Figure A.4. Longer path integration maps of healthy and damaged neuron sheets.
a, Healthy neuron sheets, 500s path integration map of neuron #800, b, Damaged neuron
sheets (↵ = 0.8, R = 7), 500s path integration map of neuron #800.

6. Influence of increasing length for path integration map

To check the what happened when we use longer paths for simulation, we ran

for 5⇥ longer trajectories (500s) and present the result in Fig. A.4. The healthy

neuron sheets can generate a grid-like pattern and the damaged one loses its grid.

Comparing with the method (in the main paper) of using the average of five inde-

pendent shorter trajectories (100s), the results of those longer runs are similar to

those of the shorter ones, so that an increasing length doesn’t destroy or enhance the

grid-like pattern in a healthy neuron sheet. We can say the path integration map is

still stable within a long time range (up to 500s), and for the same damage situation

(↵ = 0.8, R = 7), we find similar loss of grid firing as for the shorter time runs.

It is safe to conclude that the grid pattern loss is not eliminated by a longer path

integration but the defects. Meanwhile, using an average of independent trajectories

is more e↵ective because we can do parallel simulations at the same time.
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Appendix B

Supplement to Chapter 3

1. Place coded firing rate r↵j(x, t) from 1D Burak & Fiete’s model

The original Burak & Fiete’s model can accurately integrate velocity inputs

over a certain range to simulate rat’s path integration map in a circular enclosure.

What we need here in GPC network is the accurate firing rates of grid cells when

animal is at one target location. We want to explain how to bond the velocity input

with animal’s current location here.

Inherited from Chapter 2, we assume that the linear relationship between

firing rate flow speed and animal’s moving velocity always exists for healthy gird cells

network. That is:

flowing speed = K · |~v| (B.15)

The linear relationship above make sure that the firing rate change is only

the function of animal’s displacement vector, regardless of animal’s moving velocity

or the time it takes to reach the destination. Using a simple toy model in Fig. A.5:

there is a 1D list of 20 grid cells and firing rate is shown above the neurons. Suppose

at the beginning time, the firing peaks is at the first one in the neuron list, and the

wavelength of the periodicity is 10 neurons, and we can assume K = 20 neurons/m

in the model. We have initial states that neurons 1th, 11th are active (Fig. A.5a).
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Figure A.5. Linear model of rat’s displacement in real space and firing rate flow
moving. (a) Blue spheres represents 1D list of 20 gird cells with number indicating index,
the spacing between peaks is the wavelength of the firing pattern: � = 10 neurons. The
rat is moving along horizontal axis towards left with a constant velocity |~v| = 0.4 m/s.
The initial location is shown in black. (b) t = 1s, the rat moves 0.4m to new location in
blue. The firing peaks flow to the right direction and now 9th, 19th neurons are active. (c)
t = 1.25s, the rat moves 0.5m to destination in red. 1th, 11th neurons fire again as the
initial states.
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Thus, when rat starts to move at a constant velocity pointing to the left side

~v = 0.4 m/s, it indicates the firing rate flow moves to the left side with flow speed =

20⇥ 0.4 = 8 neurons/s. And it takes 1s to reach new position �x = 0.4m while the

initial peaks are shifted to the right by 8 neurons. Now the 9th, 19th neuron are active

(Fig. A.5b). To make the firing rates back to initial states (1th, 11th activates), we

need 0.25s more and the new displacement is �x = 0.5m and the firing peaks shifted

by 10 neurons, which equals the periodicity (Fig. A.5c).

This 1D model proves that the linear relationship between flow speed and

velocity input tightly bind the firing rate change with animal’s displacement vectors.

Like in above example, the firing rates peaks are shifted by 10 neurons when the rat

moves every 0.5m. Thus, we can figure out what is the place coded grid cell firing

rates r↵j(x, t) in the following way:

(1) Choose an initial state of periodic firing pattern on grid cell layers, which

can be the first states right after the annealing process (see in section 2.2.1). Name

it as initial firing rates: r↵j(x = xi, t = 0) with xi to be the initial position of the rat.

(2) Set the target location be xt, so r↵j(x = xt, t) is the firing rate of grid cells

when animal moves to location xt. Set average moving velocity of rats be |~v|, and

then:

r↵j(xt, t) = r↵j(x, t = xt/|~v|) (B.16)

We get the place coded firing rate at xt after the initial states develops for a period

time of t = xt/|~v|.
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In the above example where |~v| = 0.4 m/s, if the target location is xt = 0.4m,

the states after a period of time t = 1000ms can provide us the place coded firing

rate:

r↵j(x = 0.4m) =

8
>><

>>:

1 (j = 9, 19)

0 (otherwise)

(B.17)

with 1 indicates neuron fires, and 0 indicates neuron mutes. And the simulation time

increases with the growing coding range Rl.

2. Landscape map with di↵erent grid periods � and reduced coding
range Rl
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Figure A.6. Damage analysis over the whole variable space. Gird cells wavelength
are (90, 63, 45) and the reduced coding range is Rl = 40. (a) Root mean square
of errors (b) Error fraction in six damage cases. Damage radius (0 < R < 20 neurons)
in horizontal axis and damage coe�cient (0.0 < ↵ < 1.0) along the vertical. Top panels,
single layer damage; Bottom panels, left, bottom two layers are damaged and the top one
remain normal, middle, top two layers are damaged, right, all three layers are influenced.
The colorbar are scaled into the same levels for all six cases.
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Figure A.7. Damage analysis over the whole variable space. Gird cells wavelength
are (99, 70, 50) and the reduced coding range is Rl = 60. (a) Root mean square
of errors (b) Error fraction in six damage cases. Damage radius (0 < R < 20 neurons)
in horizontal axis and damage coe�cient (0.0 < ↵ < 1.0) along the vertical. Top panels,
single layer damage; Bottom panels, left, bottom two layers are damaged and the top one
remain normal, middle, top two layers are damaged, right, all three layers are influenced.
The colorbar are scaled into the same levels for all six cases.
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