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Abstract

Computational Studies of the Influence of
Neurodegenerative Damage on Grid Cell Firing
Patterns and Navigation

This dissertation consists of two parts: Neurodegenerative damage reduces
firing coherence in a continuous attractor model of grid cells, and damage impact on
the gird-cell population codes for animal’s locations.

The work in Part I is motivated by the discovery of grid cells and their specific
grid-like firing pattern: Grid cells, firstly found in the dorsolateral band of the medial
entorhinal cortex(dMEC) in 2005, display strikingly regular periodic firing patterns
on a lattice of positions in 2-D space. This helps animals to encode relative spatial
location without reference to external cues. The dMEC is damaged in the early stages
of Alzheimer’s Disease, which affects navigation ability of a disease victim, reducing
the synaptic density of neurons in the network. Within an established 2-dimensional
continuous attractor neural network model of grid cell activity, we introduce neural
sheet damage parameterized by radius and by the strength of the synaptic output
for neurons in the damaged region. The mean proportionality of the grid field flow
rate in the dMEC to the velocity of the model animal is maintained, but there is a
broadened distribution of flow rates in the damaged case. This flow rate-to-velocity
proportionality is essential to establish coherent grid firing fields for individual grid
cells for a roaming animal. When we examine the coherence of the grid cell firing

field by studying Bragg Peaks of the Fourier transformed lattice firing field intensity
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in both damaged and undamaged regions, we find that for a wide range of damage
radius and reduced synaptic strength that for undamaged model grid cells there is
an incoherent firing field structure with only a single central peak. In the radius-
damage plane this is adjacent to narrow bands of striped lattices (two additional
Bragg peaks), which about an orthorhombic pattern (four additional Bragg peaks),
that abut the undamaged hexagonal region (six additional Bragg peaks). Within the
damaged region, grid cells show no Bragg peaks outside the central one which shows
reduced intensity with increasing damage, and outside the damaged region the central
Bragg peak strength is largely unaffected. There is a re-entrant region of normal grid
firing fields for very large damage area. We anticipate that the modified grid cell
behavior can be observed in non-invasive fMRI imaging of the dAMEC.

The work in Part II is motivated by a broad goal to explain navigation sys-
tem: The brain is a remarkable information engine and it’s efficiency may come from
a hierarchy organization of neurons. At the same time, A unique topographical rep-
resentation of space is found in the concerted activity of grid cells in the medial
entorhinal cortex. Many in this region exhibit a hexagonal firing pattern with grid
spacing. And grid spacing has been found to increase along the dorsoventral axis of
dMEC but in discrete steps. Such a modular structure provides a new place-coding
theory that explains why grid cells has hierarchy organization identified by different
spacing. Compared with classical population code (CPC) theory, the hierarchy in
grid population code (GPC) improves the coding efficiency and the noise robustness.
We developed Sammeet Sreenivasan and Ila Fiete’s network model (readout-grid cell

network) to construct the GPC process from input signal, through grid cells modules,
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to the place cells sensory. The largely stable consistency between input location and
inferred location by place cells proves the practicality of readout-grid cell network.
Within the completed multiple-layers neural network model of grid coding, we intro-
duce grid layers damage parameterized by radius and by the strength of the synaptic
output for neurons in the damaged region. The self-consistence between location sig-
nal and inferred location is distributed within reduced coding range. For M layers
of the N grid cells, damage within a single layer doesn’t destroy the accurate place
coding considering the maximum possible coding range (R ~ N*) overloads the re-
duced coding range (R; < 500c¢m). We construct the landscape of heat-map showing
influence of damage in all situations, and noticed that the layers with bigger spacing
(top layers) show more severe disruption given the same condition. This proves the
hierarchy theory of GPC that the top panels dominate place coding and fluctuations

on big-spacing modules bring more errors.
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Illustrations

Figures

1.1 Brain model of dMEC and the discovery of grid cells. (a)
A simplified model of human brain with green region indicating
the medial entorhinal cortex (AMEC). (b) Spatial firing map of
grid cells. In the experiment, a rat moves in a square enclosure
with side length equal to 2m. Right, blue region is where in space
the grid cells fire in rat’s brain. Left, rat’s trajectory in a square
with blue parts representing the location where a rat’s grid cells
are active. The rat moves for about 15 minutes. A hexagonal
lattice firing field is shown in black in the path-integration map.(c)
Each panel on the right is the grid firing pattern over the mouse
trajectory of one grid cell in AMEC. The locations of emitted
spikes are illustrated with red dots, and the paths of the rat as
grey lines. The grid scale increases with distance from the border
of the IMEC with the postrhinal cortex (POR). . . . . . .. ... ..

1.2 The entorhinal cortex grid map is discretized. (a) Sample
grids at successive dorsoventral positions in a representative ‘tan-
gential’ animal (rat). Dorsoventral location from brain surface
is indicated. Top, neuronal spikes (extracellular action poten-
tials) overlaid on trajectory of rat (grey). Bottom, correspond-
ing colour-coded autocorrelograms with colour scale (-1,1; blue is
correlation of -1, red is correlation of 1). Grid spacing was de-
termined from the innermost polygon (black axes). The spatial
autocorrelogram reveals repeating activity patterns in the spatial
rate map and is generated by correlating the rate map with itself
at all spatial offsets. (b) Ratios between successive module means
for grid spacing. Individual module pairs in grey, means indicated
by red crosses (values in orange). A rough estimation of average
wavelength spacing between layers is close to 1.42(v/2). . . . . . ..
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1.3

2.1

2.2

Coding of position by grid cells. (a) shows the 1D analog of
the blue cell fires when the rat is at location xy or any location
k - X 4+ xo, separated by an integer number k of lattice periods
A. The phase of the blue cells differs from those of the red and
green cells. Thus, each grid population represents rat position
as the modulo remainder following integer division by the grid
period. (b)Left, the position z in decimal, Right, the module
system (numbers in grey are the grid periods for each module).
The periods can be of similar sizes (for example here) while in
face there is ratio between successive modules. All layers are im-
portant for representing numbers at all scales: the number 45
and the number 800,000 involve all the layers. When the number
800,000 is incremented by one, all the registers increment; in fact,
the module representation is maximally distinct for similar loca-
tions, providing a highly decorrelated representation of position

at nearby locations. . . . . . ... ..o

2D neuron sheet and damage model. (a) Blue spheres are
neurons in the grid cell model, and red arrows indicate synaptic
connections among neurons, with a weight W;; coupling neuron
1 and neuron j. The yellow arrows below are the velocity signal
from other cells. The instantaneous velocity input is uniform for
the grid cell sheet, but each cell has a different preferred direc-
tion. (b) The “Mexican Hat” weight matrix W;; is the difference
between two Gaussians. It is negative everywhere expect at the
center (zero). (c) Central damage model. The heat-map indicates
the 40 x 40 grid cell layer firing peaks, with the orange circle in-
dicating the damaged region (radius R = 7 neurons in this case).
All neurons are numbered from 1 to 1600, and the neuron at the

damage center is #820. . . . . . ..o

Temporal emergence of firing patterns for undamaged
grid cell layer.

(a) Initial state of neuron sheet includes a random noise signal
ranging from -0.1 to 0.1. (b) The aperiodic boundary condition
shapes the neuronal signal pattern to generate grids in the first
250ms, beginning with an intense central peak with weaker sur-
rounding peaks. (c¢) Change of the boundary condition from ape-
riodic to periodic expands the grids evenly. (d) Non-zero velocity
inputs (0.8m/s in three directions) heal the defects of previous
grids and generate a hexagonal lattice of grid firing peaks. Fig-

ures (a)-(d) are heat-maps with the same colorbar. . . . . ... ..

viil



2.3

24

Neuron sheet firing pattern with model damage. (a) Dead
neurons («=0) in the red damaged regions, with successive dam-
age region radii of 2,4,6,8 neurons. Yellow arrows indicate the
flow direction in the opposite direction of the animal velocity,
with grid cell firing peaks bypassing the central damage even as
it grows. (b) Weakened neuronal firing in the central damage re-
gion (red), with R = 4 neurons and a = 0.6,The whole grid-like
firing pattern is moving along the yellow direction, and neurons

fire (more weakly) in the damaged region. . . . . .. ... ... ..

Single path integration map and average path integration
maps of healthy/damaged neuron sheets. (a)~(e), Single
path integration map of healthy neuron sheets for five different
trajectories. (f) Average path integration map of the above five
shows a clear triangular grid pattern. Inset: grid-like firing pat-
tern in neuron space, 40 x 40 healthy neuron sheets. (g) The fir-
ing of a dead neuron (neuron #820) is muted in path integration
map. Inset: grid-like firing pattern in neuron space, 40 x 40 dam-
aged neuron sheets (orange damage region R = 7 neurons,a=0),
red arrow points to the tracking neuron’s location (within the
damaged region). (h) Firing of a healthy neuron (neuron #800)
doesn’t generate a grid -like average path integration map with
damage. Inset: same as (g), but the tracking neuron is outside

the damaged region. . . . . . . . ... Lo
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2.5

2.6

Relationship of firing peak flow speed and velocity input.
(a) Linear relationship of average flow speed and magnitude of ve-
locity input for undamaged cells. Top is in the healthy neuron
sheets and bottom is in the damaged neuron sheets (R = 7, =
0), the scaling ratios K are given in the figure, and the error bars
are the standard deviation of flow speed data, the dashed lines
are fitted line with zero intercept. (b) Stability of linear rela-
tionship under different velocity inputs directions. The velocity
magnitude is 0.7m/s, and directions are changed from 0° to 90°.
The blue curve is the average flow speed direction in the healthy
neuron sheets and the orange one is in the damaged neuron sheets
(R="7,a=0). The direction of average flow speed remains con-
sistent with the direction of velocity input direction.(c) Stability
of linear relationship under different damage sizes. The velocity
input is 1m/s in three directions (45°,90°,135°), and the central
damage size increases from R = 1 to R = 8 neurons, with the
central neurons dead (o = 0). The overlapping of horizontal lines
indicates the average flow speeds are the same if the velocity in-
put magnitudes are the same, regardless of the change of damage
size or velocity direction. (d) Angular difference of flow direction
and velocity input direction in both healthy and damaged neuron
sheets. Top, healthy neuron sheet, and bottom is in the damaged
ones. We recorded the flow direction of 100 firing peaks in both
healthy and damaged neuron sheets (R = 7,a = 0), and sub-
tract them by velocity input direction 60°. The vertical axis is

histogram frequency. . . . . . . . . .. ...

Average path integration map with model damage and
discrete Fourier transform (DFT). (a) For neuron #800,
damage coefficient o = 1, which is a healthy neuron sheets, the
associated average path integration map shows clear triangular
grids. DFT diagram has a hexagonal structures of 6 peaks around
the center. (b) Neuron #800, damage coefficient o« = 0.5, damage
radius R = 4 neurons. DFT diagram has 4 peaks around the cen-
ter. (c¢) Neuron #820, damage coefficient a = 0.3, damage radius
R= 2 neurons. DFT diagram has 2 peaks around the center. (d)
Neuron #800, damage coefficient a = 0.4, damage radius R= 4
neurons. DFT diagram has 0 peaks around the center. Average
path integration maps in (b),(c),(d) are regraded as none-grids

path integration map. . . . . . . ... ... oL
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2.7

3.1

3.2

3.3

Phase Diagrams and Fourier Transform Central Peak In-
tensity. (a) For neuron #800 phase diagrams of grid cell order in
the 1/R-a plane. In the teal region we find hexagonal lattice grids
in the average path integration map; in the charcoal region there
are no grids in the average path integration map region. The two
other shaded regions between teal and charcoal correspond to a
striped a grid (2 peaks in the DFT), and an orthorhombic grid
(4 peaks in the DFT). For 1/R = 0, all neurons are damaged
a, and for 1/R = infinity or @ = 1 all neurons are healthy. (b)
Firing phase diagrams for neuron #820 in the 1/R- « plane. The
structure is nearly the same as the phase diagram in (a). (¢) DFT
central peak intensity of a neuron (#820) in the damaged region
as a function of 1/R and « for the phase with no coherent grid

structure (charcoal area in (a),(b)). . . ... ... ... ... ...

Neuron model of binary grid coding scheme. (Left) The
simplified model contains three one-dimensional modules of grid
cells, and the periodic firing pattern wavelength decreases from
top to bottom (A; = 8m, Ay = 4m, A3 = 2m). Bottom is an hori-
zontal axis indicating that the whole coding range is 8m. (Right)
Define that left neuron fires (activates) and right neuron mutes
to be coding binary bit 1, and the opposite to be binary bit 0.
Three layers are matched with three modules of grid cells, and

location = 6m can be represented by binary codes (101). . . . . . .

Neuron model of readout-grid cell GPC network. CA1 of
the hippocampus receives direction convergent input from many
dorsoventral levels of the entorhinal cortex where the grid cells
vary in spatial period. Top box is the readout cells stage in the
CA1 and the bottom box is grid cells modules in the entorhi-
nal cortex. Entorhinal-CA1l synapses are indicated using black
arrows. The spacing of grid cells periodic firing pattern are de-
creasing from top module to bottom ones, and the summed input
into CA1 are plotted in a red bell-shaped line, showing the right

readout cell is activated. . . . . . . . . . ...

General algorithm of EGPC network. (top) Input location,
(middle) GPC box, including grid cell layers and readout stage,
(bottom) Output location/ inferred location decoded by the brain.

x1
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3.4

3.5

3.6

1D continuous attractor model of grid cells. (a)1D list of
spheres represent the arrangement of grid cells, with the orange
arrows indicating their preferred directions [éy, and there are only
two directions defined in the one dimensional case, right and left.
The grid cell layers receive velocity input B(v) containing animal’s
moving information. The red arrows are grid cell weights (w) as
in Eq. 3.7 3.8. (b) the firing pattern of a grid cell layer; top
curve is the initial noise (random number within —0.1 ~ 0.1) at
the beginning as input, and the bottom shows that the stabilized
grid cell firing rate involves periodic pattern with a spatial spacing

between two nearby peaks. . . . . .. ..o

Neural network model of damage to the EGPC network.
(a) Three layers of grid cells with central region to be damaged
(in orange, length of damage region equals 2R). Within the dam-
aged region, weights between neurons are influenced: the connec-
tion from ;" neuron to i neuron W;; (the narrow red arrow)
is weaker than the connection from i neuron to j* neuron W
(the wide red arrow). The whole grid cells part still receive nor-
mal velocity input via B(%). (b) Different arrangement of damage
layers. Six possible situations are given as single top layer, middle
layer, bottom layer, and top two layers, bottom two layers, and

all three layers damaged. . . . . . . . . .. .. ...

Linear relationship of input location = and inferred loca-
tion Z in normal EGPC. (a) Reduced coding range R, = 40cm.
(b) Reduced coding range R; = 100cm. (c) Reduced coding range
R; = 200cm. Coding errors occur and two locations are shifted:
Nepror = 2 (x = 3lem — & = 118em), (x = 47em — & = 144em).
(d) Reduced coding range R; = 400cm. More error location points

occur, Nepror =22, . . 0 0 L L L

xii



3.7

3.8

3.9

Al

Error fraction and root-mean-square errors in damaged
and undamaged EGPC networks. (a) rms (top) and errors
fractions (bottom) in undamaged normal GPC network (500cm):
three modules of grid cells and each layer contains N = 40 neurons,
step between two nearby location dx = 1e¢m, reduced coding range
R; range from 10cm to 500cm. (b) rms (top) and error fractions
(bottom) in undamaged normal GPC network (200cm): three
modules of grid cells and each layer contains N = 40 neurons, step
between two nearby location dx = 1em, reduced coding range R;
range from 10cm to 200cm. Damage setting: central damage
range radius r = 5 neurons, synapses weaken coefficient a = 0.0.
Damage occurs only at the top two layers of grid cell. Error bars
are calculated using multiple trials of experiments data and shown

in black. . . . ...

Interrupted linear relationship of input location z and
inferred location Z in damaged GPC. (a) Reduced coding
range Ry = 40cm. Nepor = 18. (b) Reduced coding range R, =
60cm. Nepror = 45. (¢) Reduced coding range R; = 100cm.
Nepror = 60. (d) Reduced coding range R; = 200cm. More error
location points occur, Neg.or = 144. (Damage: R = 5,a = 0.0,

applied on top layers of grid cells modules). . . . ... ... .. ..

Damage analysis over the whole variable space. (a) Root
mean square of errors (b) Error fraction in six damage cases.
Damage radius (0 < R < 20 neurons) in horizontal axis and
damage coefficient (0.0 < a < 1.0) along the vertical. Top pan-
els, single layer damage; Bottom panels, left, bottom two layers
are damaged and the top one remain normal, middle, top two
layers are damaged, right, all three layers are influenced. The
colorbar are scaled into the same levels for all six cases. grid cells

wavelength are (99, 70, 50) and the reduced coding range is R, = 40.

Influence of time step size dt on simulations. (a) Aver-
age path integration map of Neuron # 800, healthy grid, dt =
0.5ms. (b) Neuron # 800, healthy grid, dt = 1.0ms. (c)different
time steps dt = 0.1ms,0.2ms,0.5ms,0.8ms, 1.0ms don’t affect
the flowing speed when velocity inputs are the same (v = 1m/s)

xiil
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A2

A3

A4

A5

1D grid cell model with preferred direction. (a) Neurons
have preferred direction pointing to the right, breaking the sym-
metry of weight matrix(W;; < Wj; < 0), the inhibitory connection
to left is bigger than that to the right, which drives the grid fir-
ing pattern to move to the left. The blue arrow indicates driving
flow direction, the solid blue curve is current firing pattern and
the dashed curve indicates the firing signal the next moment. (b)
Neurons with preferred direction pointing to the left drive the
flow pointing to the right. (c) neurons with different preferred
directions work together evenly make the grid-like pattern sta-
tionary, and with non-zero velocity input pointing to the left(big

blue arrow) will drive the grid to flow to the left. . . . . . . .. ..

Linear relationship between flow speed and velocity in-
put coefficient 79. Top: healthy neuron sheet, with input
velocity taken to be 0.4 m/s. Bottom: damaged neuron sheet
(R = 4,a = 0) with the same input velocity. The red error bars
are the standard deviation based upon choosing 5 trials with dif-
ferent random number seeds for the input noise. The first three
values of flow speed are 0 in each case, indicating that the firing

patterns are stationary below a critical value ng ~ 0.05. . . . . . . .

Longer path integration maps of healthy and damaged
neuron sheets. a, Healthy neuron sheets, 500s path integration
map of neuron #800, b, Damaged neuron sheets (&« = 0.8, R = 7),

500s path integration map of neuron #800. . . . . .. ... .. ..

Linear model of rat’s displacement in real space and firing
rate flow moving. (a) Blue spheres represents 1D list of 20 gird
cells with number indicating index, the spacing between peaks is
the wavelength of the firing pattern: A = 10 neurons. The rat is
moving along horizontal axis towards left with a constant velocity
|U] = 0.4 m/s. The initial location is shown in black. (b) t = 1s,
the rat moves 0.4m to new location in blue. The firing peaks flow
to the right direction and now 9%, 19"" neurons are active. (c)
t = 1.25s, the rat moves 0.5m to destination in red. 1%, 11

neurons fire again as the initial states. . . . . . .. ... ... ...
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A.6 Damage analysis over the whole variable space. Gird cells
wavelength are (90, 63, 45) and the reduced coding range
is R; = 40. (a) Root mean square of errors (b) Error fraction
in six damage cases. Damage radius (0 < R < 20 neurons) in
horizontal axis and damage coefficient (0.0 < o < 1.0) along the
vertical. Top panels, single layer damage; Bottom panels, left,
bottom two layers are damaged and the top one remain normal,
middle, top two layers are damaged, right, all three layers are
influenced. The colorbar are scaled into the same levels for all six cases. 82

AT Damage analysis over the whole variable space. Gird cells
wavelength are (99, 70, 50) and the reduced coding range
is R; = 60. (a) Root mean square of errors (b) Error fraction
in six damage cases. Damage radius (0 < R < 20 neurons) in
horizontal axis and damage coefficient (0.0 < o < 1.0) along the
vertical. Top panels, single layer damage; Bottom panels, left,
bottom two layers are damaged and the top one remain normal,
middle, top two layers are damaged, right, all three layers are
influenced. The colorbar are scaled into the same levels for all six cases. 83
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Chapter 1
Introduction

1.1 Motivation and Background

An accurate representation of animal’s position in space is thought to be a
fundamental requirement for the brain’s navigation system. In 2005, the discovery
of grid cells, in the medial entorhinal cortex (AIMEC) (Fig. 1.1a), appeared to reveal
a much more geometrical, rigid implementation of the cognitive map concept |1, 2].
In small flat environments, these grid cells fire at multiple locations with a regular
hexagonal structure (Fig. 1.1b)!, and, unlike place cells, they fire in all environments
regardless of external cues [3]. At the same time, grid spacing increases gradually
from the dorsal to the ventral end of entorhinal cortex (Fig. 1.1c)?, suggesting that
the same representation is replicated at multiple scales[5-7]. In the experiment[6], the
ratio between successive module spacing averages fluctuated around a constant value
of 1.42, indicating that grid scale follows a geometric progression rule (Fig. 1.2b) 3.
It has been proposed that the ratio between adjacent grid scales is /e for idealized
neurons and robustly lies in the range 1.4-1.7 for realistic neurons, so that the grid
system can minimize the number of neurons required to encode location with a given

resolution [8].

1. Figure resource from “On the Grid” by Alexis Wnuk.
2. Figure resource: [4]

3. Figure resource: [6]



Grid cell

Figure 1.1. Brain model of dMEC and the discovery of grid cells. (a) A simplified
model of human brain with green region indicating the medial entorhinal cortex (AMEC).
(b) Spatial firing map of grid cells. In the experiment, a rat moves in a square enclosure
with side length equal to 2m. Right, blue region is where in space the grid cells fire in rat’s
brain. Left, rat’s trajectory in a square with blue parts representing the location where a
rat’s grid cells are active. The rat moves for about 15 minutes. A hexagonal lattice firing
field is shown in black in the path-integration map.(c) Each panel on the right is the grid
firing pattern over the mouse trajectory of one grid cell in AMEC. The locations of emitted
spikes are illustrated with red dots, and the paths of the rat as grey lines. The grid scale
increases with distance from the border of the IMEC with the postrhinal cortex (POR).



At a given scale, the grid like periodic firing patterns are mainly explained by
two competing classes of models: network models based on attractor dynamics [9-11]
and oscillatory interference models [12-15]. In this work I will focus on the attractor
models only. Yoram Burak and Ila Fiete[10] developed a continuous attractor model
that can generate regular triangular grid responses of grid cells, based on inputs that
encode only the rat’s velocity and direction of movement, and the model successfully
achieves an accurate path integration map. Sammeet Sreenivasan and Ila Fiete[16]
developed the idea of modular structure of grid cells[7] and constructed a simple neural
network that can effectively code accurate locations in 1D space for sufficiently small

physical range.

a 2,300 um
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Figure 1.2. The entorhinal cortex grid map is discretized. (a) Sample grids at suc-
cessive dorsoventral positions in a representative ‘tangential’ animal (rat). Dorsoventral lo-
cation from brain surface is indicated. Top, neuronal spikes (extracellular action potentials)
overlaid on trajectory of rat (grey). Bottom, corresponding colour-coded autocorrelograms
with colour scale (-1,1; blue is correlation of -1, red is correlation of 1). Grid spacing was
determined from the innermost polygon (black axes). The spatial autocorrelogram reveals
repeating activity patterns in the spatial rate map and is generated by correlating the rate
map with itself at all spatial offsets. (b) Ratios between successive module means for grid
spacing. Individual module pairs in grey, means indicated by red crosses (values in orange).
A rough estimation of average wavelength spacing between layers is close to 1.42(y/2).



The surprising geometric behavior of grid cells firing to rat locations has
sparked numerous intriguing questions for both experiments and theory: What do
grid cells encode? What makes the grid cell code useful for animal’s navigation be-
havior? What kind of neural system can accurately code locations using grid code?
To answer above question, we need to consider carefully what are the benefits of
using the grid cell code rather than some other coding strategy, and then focus on
mechanism: how must the network be wired to generate grid cell responses.

A possible answer is addressed by Fiete[17]: In a 1-d analogue, the population
represents the rat position x as a phase within a unit cell of the grid response or
modulo remainder of x with respect to the grid period (Fig. 1.3). Because the AIMEC
contains neural populations with different periods, it is possible to use the phases from
different grids to uniquely specify different locations over a much larger range than
any of the individual grid periods. The advantage is that grid cell coding capacity
grows exponentially with the number of different periods. A highly uncorrelated
representation of position at nearby locations can be achieved by grid cell module
system.

After the discovery of grid cells, multiple scientists contributed to explain
periodic firing pattern generating principle and construct accurate grid coding theory.
Building on their work, we turned to think about what is the impact for navigation
system when damage happens on grid cells. Considering grid cells in the dAMEC
display strikingly regular periodic firing patterns on a lattice of positions in 2-D space,
and this helps animals to encode relative spatial location without reference to external

cues using a completed grid coding scheme. However, the AMEC is damaged in the



a 1-dimensional analog

phase

grid spacing A

0 \\as- position (x)

decimal modules
(..., 102,10, 109) (18, 17, 16, 15)
45 = (9,11, 13,0)
800,000 = (8,14, 0, 5)
800,001 = (8,15,1, 6)

Figure 1.3. Coding of position by grid cells. (a) shows the 1D analog of the blue
cell fires when the rat is at location xg or any location k - A + zg, separated by an integer
number k of lattice periods A. The phase of the blue cells differs from those of the red and
green cells. Thus, each grid population represents rat position as the modulo remainder
following integer division by the grid period. (b)Left, the position z in decimal, Right, the
module system (numbers in grey are the grid periods for each module). The periods can be
of similar sizes (for example here) while in face there is ratio between successive modules.
All layers are important for representing numbers at all scales: the number 45 and the
number 800,000 involve all the layers. When the number 800,000 is incremented by one, all
the registers increment; in fact, the module representation is maximally distinct for similar
locations, providing a highly decorrelated representation of position at nearby locations.



early stages of Alzheimer’s Disease (AD), which affects navigation ability of a disease
victim, reducing the synaptic density of neurons in the network. We want to know
how the possible damage from AD affects the grid cells and grid coding, describing
observable phenomena that those patients suffer the loss of direction/position sense.

In chapter 2, within an established 2-dimensional continuous attractor neural
network model of grid cell activity, we introduce neural sheet damage parameterized
by radius and by the strength of the synaptic output for neurons in the damaged
region. And in chapter 3 we apply the continuous attractor model in the 1D case to
reconstruct the grid coding neural network for self-consistent accurate place coding
scheme. We firstly rebuild the grid coding neuron networks to verify its efficiency
for accurate place coding, and then simulate the central damage model to study
its impact. The layers with bigger periodic spacing dominate the place coding and
thus they show bigger interference when damage happens compared with smaller
spacing modules. We put some prediction and future work in chapter 4, including
the astonishing discovery of 3D grid cells for animals that explores a three-dimensional

environment like bats [18].

1.2 Objectives and Organization
Motivated by the considerations highlighted in the previous section, the broad
objectives of this dissertation are to develop frameworks for the following;:

Part T is mainly included in Chapter 2:

(1) Construct Burak & Fiete’s attactor model of grid cells in a small 2D space,

show that the linear relationship between animal velocity and firing pattern



flow rate is the key to developing the grid cell triangular lattice firing
pattern on neuron sheets with that on path-integration map.

Apply mean field analysis to explain triangular lattice grid firing pattern,
prove that triangular lattice is the lowest cost compared with other possible
periodic lattices.

Develop methods to model the damage derived from synaptic malfunc-
tions on grid cells model, analyze the change on the velocity-flow linear
relationship.

Construct Path-Integration Maps starting from grid cells healthy /damaged
model, which follow from the flow rate-to-velocity proportionality men-
tioned in point 1.

Study Bragg Peaks of the Fourier transformed lattice firing field intensity
to examine the coherence of the grid cell path-integration maps in both

damaged and undamaged regions.

Part II is mainly included in Chapter 3:

(1)

Begin with the simplified theoretical model of Sreenivasan and Fiete to
compare efficiency of CPC and GPC: In the binary grid coding scheme, N
neurons can code N locations in CPC, and can code 2V locations in GPC.
Improve the binary grid coding to enhanced GPC using readout-grid cell
neural network, and verify the effectiveness of accurate GPC location cod-

ing.



(3) Construct a damage model for the readout-grid cell neural network. Ap-
ply this to model synaptic malfunctions on only grid cell layers without
influencing the link between readout cells and grid cells.

(4) Analyze the damage impact on location coding. We introduce error frac-
tions and root-mean-square variation of errors to quantify the behavior of
GPC network, and construct a completed damage heat-map diagram over
all radius and damage coefficient, to show the board-line between normally
functional GPC and disrupted GPC.

Throughout the chapters, we verified the generation of grid-like firing pattern
of grid cells path-integration map (using a continuous attactor model) in 2D space.
From single layer grid cells to all layers with various periodic spacing, the discrete
module structures indicates there may exist an hierarchical architecture of coordi-
nates which can effectively encode animal’s immediate location. We achieve an grid
code neural scheme following from Ref. [16] that provide a hierarchical organization
in the brain’s navigation system. The readout-grid network proves its efficiency in
simulation experiments and we showed how AD inspired damage to the dMEC affects
both the path-integration map and the place coding scheme.

Compared with previous work, we developed the study of damage impact on
Bruak & Fiete’s continuous attactor model of grid cells; and bind Sreenivasan-Fiete’s
readout-grid cell network with 1D continuous attractor model of grid cells to construct
an enhanced grid population coding (EGPC) scheme. The EGPC makes it possible to
consider damage’s influence on grid cells place coding and helps to show the hierarchy

in grid cell modules.



Chapter 2

Neurodegenerative damage reduces
firing coherence in a continuous attractor
model of grid cells

2.1 Introduction

There is considerable interest in understanding how the brain encodes location
and guides animal navigation. Different neural networks within the brain with various
functions help to build animals’ navigation system. For instance, place cells in the
hippocampus are confirmed to fire strongly at special locations such as reward sites
or for the position of external landmarks [19, 20]. Head-direction cells found in many
brain areas (e.g., the dorsal presubiculum) [21] fire in 1:1 correspondence with the an-
imal’s directional heading with respect to the environment in the horizontal plane [22,
23]. The stunning discovery of grid cells in 2005 showed that these neurons in the
dorsocaudal medial entorhinal cortex (AMEC) provide an internal coordinate system
encoding absolute position for a given enclosure (longitude and latitude) largely in-
dependent of external environmental cues [2, 4]. Each grid cell in a given layer of the
dMEC shows enhanced activity (firing) on a periodic hexagonal lattice of points in
2-D space, with the spacing varying with layer depth. Additionally, there is now over
a decade of direct evidence that functional Magnetic Resonance Imaging (fMRI) can
detect the six-fold symmetry of the grid cell firing pattern noninvasively in healthy
brains|[24-27|. In this chapter, we do not directly address the question of how neu-

rodegenerative damage affects grid cell based navigation, but we show that the grid
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cell pattern can be modified by such damage in a detectable manner that can be
observed by non-invasive probes such as fMRI.

Grid cells represent a fascinating example of emergent pattern formation in a
nonlinear dynamical system (the coupled neurons of the dAMEC). As such, they are
of intrinsic interest within the physics of dynamical systems, and amenable to study
and characterization by techniques typically reserved for solid state matter, such as
diffraction analysis by Fourier transforms (Bragg peaks). How such patterns hold up
under perturbation is also of intrinsic interest.

In the case of the dMEC, strong perturbation arises from Alzheimer’s dis-
ease (AD), which affects the hippocampus (place cells) and entorhinal cortex (grid
cells) and thus can disrupt spatial navigation. Several competing hypotheses exist to
explain the cause of the disease. The “tau hypothesis”, proposes that abnormalities
associated with tau protein aggregates initiate the disease cascade [28]. In this model,
hyperphosphorylated tau does not hold microtubules together and begins to pair with
other threads of tau to form neurofibrillary tangles inside nerve cell bodies [29]. Be-
cause the tau protein is what stabilizes the microtubule bundles in neuronal axons on
which neurotransmitters and other cargoes relevant for normal synaptic function are
transported, this may result first in malfunctions in biochemical communication at
the synapses between neurons and later in the death of the cells [30]. Furthermore,
the tau tangles that disrupt the axon and synapses may propagate within the brain
from location to location, in a manner similar to the prion protein aggregates of mad
cow disease [31-33]. In particular, the synaptic output will be degraded by axonal

microtubule disruption from tau tangles. The other leading candidates for initiation
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of Alzheimer’s disease, the “amyloid cascade” hypothesis [34], or the related “amyloid
oligomer” hypothesis [35], lead to eventual tau aggregation as well as an end stage.
There is substantial direct evidence for AD related damage to the MEC. Direct
post-mortem examination shows significant atrophy of the EC in the brains of AD
victims vs. control [36]. fMRI imaging of the MEC region for patients predisposed
to early onset AD shows a disruption in the six-fold symmetric firing pattern with
respect to the control group when performing virtual navigation tasks, despite no
apparent cognitive deficits in the AD disposed group [37]. Similar works on aging
adults suggest an impact of AD on the grid cell function and ability to navigate [38].
Amyloid beta oligomers induce tau tangles in cell culture experiments that degrade
microtubules and synaptic quality [39]. Overexpression of human tau protein with
subsequent aggregation in rats leads to degradation of synaptic plasticity in the MEC
and degrades cognitive performance [40], and induced expression of mutant human
tau in mice leads to grid cell dysfunction [41]. Finally, there is direct evidence of AD
induced synaptic degradation in the neurons projecting from the MEC to the CA1

layer of the hippocampus [42].

2.2 Methods

2.2.1 Emergent Grid-like Firing Pattern in a Continuous Attractor
Model of a Neuronal Sheet

In continuous attractor models, each neuron receives inhibitory input from a
surrounding ring of local neurons, and the entire network receives broad-field feed-

forward excitation containing velocity data from elsewhere in the brain. The model,
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upon integration in a static limit, will tend towards a stable fixed point of the cou-
pled equations, i.e., an attractor in the full phase space of the coordinates. When
the model animal is moving, given sufficiently rapid response of the neurons in the
model, the stable firing pattern can flow in response to the motion and this is the
origin of the observed grid cell pattern from this picture. We have based our work
upon the continuous attractor model of Burak and Fiete[10], which allows for modest
recurrent excitatory synapses between neurons locally surrounded by broadly recur-
rent inhibitory synapses around a given cell. The model is attractive to use for our
purposes here since: (i) it does develop a grid cell like firing pattern in the model
sheet, and (ii) with the addition of velocity sensitive response mimicking the input
from other parts of the brain (such as from head direction cells) it develops a pattern
flow that leads to accurate path integration and a real-space hexagonal firing pattern.
However, a purely inhibitory ring is sufficient to obtain grid cells and this is justified
by experimental evidence from studies on rats[43]. The mixture of excitatory and
inhibitory inputs is an attempt to capture in one model a bipartite entorhinal cortex
layer containing both excitatory pyramidal cells and inhibitory interneuron cells.
Consider a network of neurons arranged with uniform density on a cortical
sheet(Fig. 2.1a), and with a connection strength that decreases with distance. If
the connections of inhibitory cells extend over a wider range than the connections of
excitatory cells, it is possible for an emergent symmetry breaking of the firing pattern
with a population response consisting of a regular pattern of discrete regions of neural

activity to be created, arranged on the vertices of a periodic structure. As analyzed
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Figure 2.1. 2D neuron sheet and damage model. (a) Blue spheres are neurons in the
grid cell model, and red arrows indicate synaptic connections among neurons, with a weight
W;; coupling neuron i and neuron j. The yellow arrows below are the velocity signal from
other cells. The instantaneous velocity input is uniform for the grid cell sheet, but each
cell has a different preferred direction. (b) The “Mexican Hat” weight matrix W;; is the
difference between two Gaussians. It is negative everywhere expect at the center (zero).
(c) Central damage model. The heat-map indicates the 40 x 40 grid cell layer firing peaks,
with the orange circle indicating the damaged region (radius R = 7 neurons in this case).
All neurons are numbered from 1 to 1600, and the neuron at the damage center is #820.
in the appendix A, the most stable steady state structure in undamaged conditions
has hexagonal lattice symmetry [19, 20].

The blue spheres in Fig. 2.1a represent grid cells in a 2D neuron sheet, cor-
responding to one of the grid cell layers of the AMEC. For fast simulation, we use
a 40x40 neuron sheet, and the coordinates on that 2D plane can be described by a
neuron position vector ;.

The dynamics of grid cell activity in this model are described by the coupled

differential equations [10, 44]

P (W s 4B 1)

s; is the i-th neuron’s firing rate. 7 is the time constant, chosen here to be 10ms,

and B; is the feed-forward velocity input to neuron ¢ (Fig. 2.1a,b), and it introduces
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a A(neurons) [(1/neuron?) ~(1/neuron?) I(neurons) 7(ms) dt(ms)

1 8 3/\? 6.711 x 8 1 10 0.5

Table 2.1. Coefficients Table. ) is the target periodic wavelength of the triangular lattice.

the directional-dependence into model, which is described in detail later. The neural
transfer function assumed here, per Burak and Fiete [10], is a simple rectification
non-linearity: f(z) = x for x > 0 and 0 otherwise. W;; is the synaptic weight from
neuron j to neuron ¢, which has the character that inhibition by neurons operates at
longer range than activating ones. Following Burak and Fiete [10], the weight matrix
function is written as the difference of two Gaussian curves with different variances

which has a “Mexican Hat” shape in position space(Fig. 2.1b):

Wij = Wo(Z; — T — lég;) (2.2)

with

Wo(z) = ae™ W — =Bl (2.3)

In Eq. 2.2, the neuron separation is shifted by the term léy, per [10]. The neuron
preferred direction is €, and we will always choose a non-zero [. This shifted location
term plays an important role in driving a statistical flow of the grid cell firing pattern,
which is explained in Appendix A in detail.

The weight matrix function Wy(x) in Eq. 2.3 is the difference of two Gaussians:
1) a is chosen to be 1 to make the net response inhibitory, so the value at the center

in Fig. 2.1b is zero. A small a is enough to create grid-like firing pattern while a > 1
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would not affect the result qualitatively. There is a relative excitatory response at
small separation compared to the maximum inhibition. 2) /5 is used to determine
the width of the inhibitory response in the surrounding neuron region, and -y sets the
shorter distance for the excitatory response in the surrounding neuron region. 3) For
the smaller 40x40 system we take v = 6.711 x [ to make the maximum inhibition
big enough to generate a grid-like firing pattern for a small dimension lattice. The
simulation parameters are listed in Table 2.1, in which we have introduced A, the
target periodic wavelength of the formed triangular lattice [10], and we use it to
choose 8 and 7. An approximate relationship is A ~ \/3/_5 Using A made it easier
to control the firing pattern lattice spacing and it is explained in Appendix A.

We employ 40 x 40 neuron sheets to simulate one layer of of the AMEC, but
as noted in the introduction we expect a much larger number in the layers of the
dMEC, potentially up to a million per layer[45]. The smaller neuronal lattice is
chosen purely for computational convenience, and proportional damage compared to
the corresponding damage in the full AMEC, i.e., for R = 10 so the area is about
300 in model neuronal spacing units, and this would correspond to about 18% of the
neurons in a layer being damaged.

All the simulations below are done with zero velocity input, and we start
each simulation with small random noise within the range from -0.1 to 0.1 (arbitrary
units, but referenced to the static background input of 1), (Fig. 2.2a), then apply
the aperiodic boundary condition for a 250ms stimulation process. For shorter times,
we see randomly separated firing peaks emerge on the inactivated black background

(Fig. 2.2b), and the central activity in these peaks is higher than the surroundings.
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Figure 2.2. Temporal emergence of firing patterns for undamaged grid cell layer.
(a) Initial state of neuron sheet includes a random noise signal ranging from -0.1 to 0.1.
(b) The aperiodic boundary condition shapes the neuronal signal pattern to generate grids
in the first 250ms, beginning with an intense central peak with weaker surrounding peaks.
(c) Change of the boundary condition from aperiodic to periodic expands the grids evenly.
(d) Non-zero velocity inputs (0.8m/s in three directions) heal the defects of previous grids
and generate a hexagonal lattice of grid firing peaks. Figures (a)-(d) are heat-maps with
the same colorbar.

Then as we run another 250ms simulation under periodic boundary conditions, we
develop a complete periodic lattice of firing peaks (Fig. 2.2c). The zero velocity
input explains why the firing regions are small radius “peaks” instead of the peak
clusters (Highlight parts in Fig. 2.2d). Then we let the whole neuron sheet complete
building triangular lattice using a annealing process: we apply a nonzero velocity
input (|v] = 0.8m/s) in three directions (0, F, 5 —%), and complete a 500ms simulation
for each of directions. The annealing process removes the defects and generates a

complete triangular lattice (Fig. 2.2d)

2.2.2 Grid-like Firing Pattern Flow
The shifted location term [éy; is associated with the neuron’s preferred direc-
tion ¢éy,, and these orientation sensitive firings drive the grid pattern from stationary

to flowing. This is a way to mimic the input in the model from the head direction
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cells. In the head direction system, cells fire selectively with respect to the rat’s head
orientation as a result of neural integration of head angular velocity signals derived
from the vestibular system. In the grid cell system, each neuron receives input from
one head-direction cell tuned to its preferred direction, and the neuron’s outgoing
center-surround connectivity profile is not centered on itself, but is shifted by a few
neurons along its preferred direction, which is shown in the weight function above as
the shifted location vectors.

In our grid-like sheet, we tiled the neuron uniformly in this way: each neuron
i has a preferred direction (W, E, S, N), indicted by éy,, and each 2x2 neuron block
contains all four preferred directions. and then we can define the feed-forward input

to neuron 7 is:

By(x) = Ai()(1 + 10 - &, - ) (2.4)

where ¢'is the velocity of the rat, in units of m/s. 1 is the coefficient that characterizes
the effects of velocity inputs to the driven pattern flow (in Table 2.1). A;(x) is
called the envelope function which helps to modulate the strength of the input to the
neurons. We assume periodic boundary conditions for firing on the sheet, and in this

case

Ai(x) =1 (2.5)

We have used neuron sheet of a size 40x40 (1600 neurons) to speed up numerical
simulations. And A;(x) of aperiodic boundary conditions is given in Appendix A.
If we have a non-zero value for the shifted location vector and, then the feed-

forward input B will drive a flow of the formed pattern. 7y, determined the gain of
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the velocity response of the network, and the term nég, v’ < 1 stabilizes the flowing
lattice. In Appendix A we explain how the feed-forward input drives flow and S3

shows the influence of 7.

2.2.3 Central Damage Model

As discussed in the introduction, Alzheimer’s disease affects the hippocampus
(place cells) and the entorhinal cortex (grid cells) early and thus disrupts navigation.
It may proceed by diffusion of “tau tangles” from cell to cell which will disrupt
synaptic function. We focus on one type of damage to the dAMEC that can arise from
neurodegenerative diseases and affect grid cell performance: diffusing damage that can
arise from propagation of neurofibrillary tau tangles similar to the prion diseases [46].
Based on this model, we model neuronal functional loss as a weakening of the output
synaptic strength, which would follow from tau tangle driven disruption and damage
to the axonal microtubule bundles. We do not explicitly model tau tangles in the
dissertation. As we dial the output strength to zero, we effectively ’kill’ the neuron
in the model. In Fig. 2.1¢, we show a central diffusion damage on top of the grid-like
firing pattern. The 40 x 40 healthy neuron sheets has its own triangular grids of firing
pattern, and then the neurons within the orange region are set to be damaged, after
which we observe neuron signals in different locations( #820 is within the damage
region and #400, 800, 810, 1560 are healthy neurons) and with different sizes of
central damage (damage region radius R = 7 neurons in Fig. 2.1c).

As the first example (Fig. 2.3a), we kill a central neuron and allow the neuronal

damage to propagate outward to model the prion like spread alluded to in the above
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Figure 2.3. Neuron sheet firing pattern with model damage. (a) Dead neurons
(a=0) in the red damaged regions, with successive damage region radii of 2,4,6,8 neurons.
Yellow arrows indicate the flow direction in the opposite direction of the animal velocity,
with grid cell firing peaks bypassing the central damage even as it grows. (b) Weakened
neuronal firing in the central damage region (red), with R = 4 neurons and a = 0.6,The
whole grid-like firing pattern is moving along the yellow direction, and neurons fire (more
weakly) in the damaged region.
paragraph. The time step for numerical integration in our simulation is 0.5 ms
and we find that 250 ms total integration time (500 time steps) is sufficient for the
surrounding neurons to develop a stable firing pattern. These timescales are obviously
significantly accelerated from the AD scale so we can see the effects in a reasonable
simulation time frame. The resulting growth speed of the damage cluster radius is 1
neuron/step. We take screenshots every 50 ms to record the damage as we change
from a circular damage region with a radius of R = 2 neurons to R = 7 neurons to
see the flow on damaged neuron sheets.

In Fig. 2.3b, we allowed for a nonzero but weakened connection between neu-

rons in the damaged region and to neurons on the periphery of the undamaged region.

A new coefficient « is applied to describe the damage: Wigmage = @Wheaun(0 < a <
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1). For those neurons that lie in the circular damaged region (assume neuron i in
the damaged area D), their presynapses W;; and postsynapses W;; are not the same
anymore, and we assume postsynapses (from damaged neurons to healthy neurons)

shall be smaller than presynapses (from healthy neurons to damaged neurons).

Wi =aW; =aW, (i€D,j¢D) (2.6)

Wi =W =aW, (i,j € D)
\

When two neurons are both healthy, their connection weight W;; and Wj
ought to be the same as given in Eq. 2.6; when one neuron is damaged, we assume it
can still accept the signal from other neurons with no reduction but that the signal
sent from it will be weaker, this is a more realistic assumption of progressive tau
tangle damage than simply killing the neuron. We achieved this by multiplying the
weights by « for all neuronal outputs emerging from within the damaged region. Note

that a=0 corresponds to dead neurons.
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2.2.4 Path Integration
Random Walk Generation
A random walk within a circular enclosure is used to simulate the animal’s

trajectory in real experiments [2]. Here we use the random walk model of Ref. [47].

Uiy1 = pU; + a; At

Fip1 = T, + U, At (2.7)

a~ N(0,02)

\

For the ith step, we have velocity v;, position 7, and acceleration @;. The magnitude
of the acceleration is drawn from a Gaussian distribution, with average of zero and
standard deviation 02 = 0.5. The mixing coefficient p (= 0.875) determines the
amount of the current velocity preserved in the next velocity step; this assures a
realistically smooth trajectory for which the additional random acceleration boost
offers smaller course corrections. We use a small time step At = 0.1s to make
sure the change of the model rat’s trajectory is smooth. The velocity is reflected
at the boundary, i.e., the component parallel to the boundary is unchanged and the
component perpendicular is reversed whenever the model animal would reach the
boundary on the next step.
In most situations, the boundary is reached in-between steps (|7;| < |ﬁb0undary| <

|7i+1]), and thus we recalculate the new position 75,1 to make it in the reflected di-

rection and have the length |7, — ﬁbomdary — Ti41| equal U;At.
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Figure 2.4. Single path integration map and average path integration maps of
healthy /damaged neuron sheets. (a)~(e), Single path integration map of healthy neu-
ron sheets for five different trajectories. (f) Average path integration map of the above five
shows a clear triangular grid pattern. Inset: grid-like firing pattern in neuron space, 40 x 40
healthy neuron sheets. (g) The firing of a dead neuron (neuron #820) is muted in path
integration map. Inset: grid-like firing pattern in neuron space, 40 x 40 damaged neuron
sheets (orange damage region R = 7 neurons,a=0), red arrow points to the tracking neu-
ron’s location (within the damaged region). (h) Firing of a healthy neuron (neuron #800)
doesn’t generate a grid -like average path integration map with damage. Inset: same as (g),
but the tracking neuron is outside the damaged region.
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Path Integration Map

Now we generate N steps in the random walk path, and each step contains its
velocity v; and position 7;. For each step, the time step At = 0.1s means updating
the neuron sheets’ signal 200 times (0.1s/0.5ms = 200), and the whole process uses
v; as the velocity input to initiative flow in the firing pattern. We track a single
neuron for either damaged or undamaged regions and record their firing rates as the
model animal moves to the position 7;. The position and single tracking neuron firing
rate are plotted together showing the single path integration map (Fig. 2.4a). This
is exactly the same idea of planting electrode measuring activity of a single neuron

in a rat’s AMEC and tracking the firing signal with the rat’s trajectory.[2]

2.3 Result and Discussions

2.3.1 Linear Grid Pattern Flow Velocity Relationship in
Healthy /Damaged Models

The dynamics of the firing patterns are associated with the velocity input o'
This velocity changes its direction and magnitude when an animal runs [38], which
helps us get the actual path information into our future path integration calculation.
With zero velocity input, all the firing peaks will be on vertices of a stationary hexago-
nal lattice. With nonzero velocity input, the model input with direction sensitive cells
tiling the grid cell layer initiates a flow of the firing signal, in the opposite direction
to velocity input ¢. The linear relationship between the flow speed and velocity input

V is very important to generate the later accurate path integration (Fig. 2.4a~e).
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Thus, we introduce the scaling ratio K to describe the relationship:

flowing speed = K - |V (2.8)

For damaged neuron sheets in Fig. 2.3, we observed the whole driving pattern
continues, bypassing the damage. The healthy neurons will still fire normally, while
the damaged neurons will be fully muted or weaker in excitatory response. The
firing pattern of healthy neurons is not strongly influenced by damaged ones, and
still shows partial stability with flow. We quantitatively compare the relationship
between in healthy neuron sheets and the damaged one in the following.

Fig. 2.5a shows both healthy and damaged neurons sheets retain the linear
relationship between average flow speed magnitude and velocity input V. Clearly, a
damaged neuron cluster with say R = 7 is pretty big in our 40 x 40 neuron sheets,
but the proportional relationship between average flow speed and physical speed V is
still close to that of the undamaged neuron sheet. The scaling ratio for the healthy
one is Kpeqitny = 26.93 m~! and for damaged one is K jamagea = 25.146 m~.

In Fig. 2.5b, we show the average flow directions under different velocity input
directions for both healthy and damaged neuron sheets, and clearly the average flow
speed direction remains consistency with the velocity input direction. Note that the
damaged one shows a bigger variance at angle 30° ~ 60° than the healthy one. In
Fig. 2.5¢, we increase the central damage region from R = 0 to R = 8 neurons,

and compare the flow speed under the velocity inputs of the same magnitude but

different directions (45°,90°,135°), The overlap of lines indicates that the change of
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Figure 2.5. Relationship of firing peak flow speed and velocity input. (a) Linear
relationship of average flow speed and magnitude of velocity input for undamaged cells. Top
is in the healthy neuron sheets and bottom is in the damaged neuron sheets (R = 7, = 0),
the scaling ratios K are given in the figure, and the error bars are the standard deviation
of flow speed data, the dashed lines are fitted line with zero intercept. (b) Stability of
linear relationship under different velocity inputs directions. The velocity magnitude is
0.7m/s, and directions are changed from 0° to 90°. The blue curve is the average flow speed
direction in the healthy neuron sheets and the orange one is in the damaged neuron sheets
(R ="7,a=0). The direction of average flow speed remains consistent with the direction
of velocity input direction.(c) Stability of linear relationship under different damage sizes.
The velocity input is 1m/s in three directions (45°,90°,135°), and the central damage size
increases from R = 1 to R = 8 neurons, with the central neurons dead (« = 0). The
overlapping of horizontal lines indicates the average flow speeds are the same if the velocity
input magnitudes are the same, regardless of the change of damage size or velocity direction.
(d) Angular difference of flow direction and velocity input direction in both healthy and
damaged neuron sheets. Top, healthy neuron sheet, and bottom is in the damaged ones.
We recorded the flow direction of 100 firing peaks in both healthy and damaged neuron
sheets (R = 7, = 0), and subtract them by velocity input direction 60°. The vertical axis
is histogram frequency.
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velocity direction doesn’t dramatically influence the firing pattern flow, with the same
velocity input magnitude (1m/s in Fig. 2.5¢). And the increased damaged size along
the horizontal axis doesn’t change the average flow speed a lot.

Those averaged data show good proportionality between flow rate and veloc-
ity in both healthy and damaged neuron sheets, regardless of damage size or velocity
inputs (magnitudes and directions). However, when we looked into the detailed be-
havior, the stability and structural coherence of flow for damaged sheets are poor
compared those of healthy sheets. In Fig. 2.5a, the standard deviation (red error
bars) of flow speed magnitude in the damaged situation is much bigger than that of
healthy ones, meaning the damaged neuron sheets’ flow is unstable with fluctuation of
flow speed. Then we record the flow direction of 100 firing peaks (peaks are shown in
Fig. 2.2d), and subtract them from the velocity input direction (60°). Those 100 firing
peaks are divided into 10 groups for different velocity magnitude (0.1m/s ~ 1.0m/s)
in both healthy and damaged neuron sheets. The good linear proportionality shows
in Fig. 2.5b means the average angle difference should be close to zero. Furthermore,
we noticed that in the healthy neuron sheets, the stability of the triangular lattice is
strong and the angle difference is mostly less than 2°, while in the damaged neuron
sheets, the angle difference can up to 10°.

In the damaged neuron sheets, the average flow speed remains proportional to
velocity, but there is some deviation between the velocity and flow directions, and in
the proportionality of spatial speed and flow speed in damaged neuron sheets which
leads to accumulated errors in long-time path integration. This explains why we see

the flow pass the damaged region but the path integration map for cells outside the
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damaged region cannot generate a triangular lattice (Fig. 2.4h). What is interesting
is that we found even in a healthy neuron sheet, that there are still a few firing peaks
with big angle differences (Fig. 2.5d top). Those big angle changes in 7° — 9° are all
from firing peaks with very slow velocity input (0.1 m/s), and it indicates that too

small a velocity input inhibits grid stability.

2.3.2 Path Integration Map for the Healthy Neuron Model

From the single path integration simulation, we found the firing pattern shows
weak grids, more like discrete highlight dots separated in a grid pattern (Fig. 2.4a~e).
To achieve a more accurate and clear result, we use the average of five different path
integration, for each of them, the same tracking neuron signal starts with the same
firing pattern at the very beginning, but follows different trajectories. We add the
five sets of firing rate together to generate the path integration map. In Fig. 2.4, we
can see the average path integration map present better grids pattern compared with
single path integration map. The same idea can be applied if we apply a much longer
path, like five times longer, however, increasing the length of path will accumulate
integration error because the triangular grids still shows fluctuations. And increasing
the length costs longer time for a single simulation. The influence of increasing path
length is mentioned in Appendix A.

When we replaced the healthy neuron sheet with the damaged neuron sheet
model, even though damage does not destroy the signal’s average flow stability, it
influences the path integration in terms of degrading the triangular lattice firing

pattern in the random walk on the two dimensional area. In Fig. 2.4g.h, we found
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Figure 2.6. Average path integration map with model damage and discrete
Fourier transform (DFT). (a) For neuron #800, damage coefficient o« = 1, which is
a healthy neuron sheets, the associated average path integration map shows clear trian-
gular grids. DFT diagram has a hexagonal structures of 6 peaks around the center. (b)
Neuron #800, damage coefficient o = 0.5, damage radius R = 4 neurons. DFT diagram has
4 peaks around the center. (c) Neuron #820, damage coefficient o = 0.3, damage radius R=
2 neurons. DFT diagram has 2 peaks around the center. (d) Neuron #800, damage coeffi-
cient @ = 0.4, damage radius R= 4 neurons. DFT diagram has 0 peaks around the center.
Average path integration maps in (b),(c),(d) are regraded as none-grids path integration
map.

the damage from killing neurons brought us the worst influence: even a very small
region of dead cells can totally destroy the grid from generating. Tracking the dead
neuron in the damaged region (Fig. 2.4g) shows no firing signal all along the path, the
healthy neuron outsider the damaged region are strongly influenced by the damage
and cannot generate triangular grids like Fig. 2.4f. It seems that the bigger firing
pattern fluctuations in damaged neuron sheet accumulate errors in long path. The

stability of linear relationship is achieved from single velocity input and not too long

simulation (~ 500ms) while path integration with 1000 steps is about ~ 100s.
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2.3.3 Fourier Transform Analysis and Damage Phase Diagram

We have found that a small damage region and big damage coefficient a can
lead to stable grids, even though too big a damage region size (radius over 7 neurons)
or too small a damage coefficient o (v < 0.2) still prevent the grids from generating.
Fig. 2.1c is a simplified model of 2D 40 x 40 neuron sheet with central damage R
= 7 neurons, and tracking neuron #800 is outside the damage region while #820 is
within the region. To get a stable input to the Fourier analysis, we crop the center
square region of the path integration map to eliminate boundary effects, and do the
discrete Fourier Transformation (DFT) on the truncated position space. For those
trajectories with clear enough hexagonal grid structure, the DFT diagrams show six
Bragg peaks around the center (Fig. 2.6a), where we use the DFT intensity threshold
of 15 to quantify the visibility of the peaks to the eye shown in Fig. 2.6 bottom row,
and those without grids show only one central peak corresponding to the average
firing (Fig. 2.6d). Between these extremes, we find regions with striped firing (2 non-
zero Bragg peaks) and orthorhombic firing (4 non zero Bragg peaks anisotropic in the
plane) (Fig. 2.6b,c). The application of Bragg peak analysis from the DFT makes it
convenient to summarize grid translational and orientational coherence. We want to
use the number of Bragg peaks to quantify different levels of grid pattern loses under
different damages.

By studying the non-zero Bragg peaks as a function of 1/R and «, we can
generate the phase diagram shown in Fig. 2.7a,b. The grey area is the no grids region

and the blue area is grids region. When « is small, or the damage radius is big
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(corresponding to grey area of Fig. 2.7a,b), the loss of a grid like pattern is the worst
and there is no Bragg peaks. The opposite is for bigger damage coefficient a or small
damage radius R, the grid like pattern remains. What we noticed is that there is a
borderline to demarcate the grids and no-grids regions. It means that the grid cells
show a tolerance of defects so that they can still work well with damages of certain
levels. We find with weak synaptic defects (o > 0.8), different sizes of damaged
region cannot stop the grid like pattern from generating. And with a poor synaptic
connection (v < 0.5), if the damage region is not too big (1/R > 0.5, R < 2), we can
still observe a grid pattern (Fig. 2.7a).

The phase diagrams (Fig. 2.7a,b) of both neurons are similar in detail, but
the discrete Fourier Transformation (DFT) central peak intensities varies. Fig. 2.7c
is the contour diagram of DFT central peak intensity for neuron within the damage
region. The central peak intensity measures the average firing over the space of the
2-D enclosure. The grid cells within the damaged region are not totally muted and
also can generate a grid like pattern (in Fig. 2.7b), but its intensity is usually weaker
than the grid cells outside the damaged region, and the intensity increases with the
distance between the neuron and the damage center.

The phase diagrams of Fig. 2.7 display a re-entrant feature at large damage
radius R. The reason this exists is clear from passing to the infinite radius limit. In
that case, all neurons have equivalent reduction of their output by the reduction of
«, so it is guaranteed that the hexagonal peaks will remain until the peak strength
in Fourier space is reduced below its critical value. Hence, the critical o value is

determined by the inverse of the peak value of W(cf) For the values of 5 and v we use,
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Figure 2.7. Phase Diagrams and Fourier Transform Central Peak Intensity. (a)
For neuron #800 phase diagrams of grid cell order in the 1/R-« plane. In the teal region
we find hexagonal lattice grids in the average path integration map; in the charcoal region
there are no grids in the average path integration map region. The two other shaded
regions between teal and charcoal correspond to a striped a grid (2 peaks in the DFT), and
an orthorhombic grid (4 peaks in the DFT). For 1/R = 0, all neurons are damaged «, and
for 1/R = infinity or @ = 1 all neurons are healthy. (b) Firing phase diagrams for neuron
#820 in the 1/R- a plane. The structure is nearly the same as the phase diagram in (a).
(c) DFT central peak intensity of a neuron (#820) in the damaged region as a function of
1/R and « for the phase with no coherent grid structure (charcoal area in (a),(b)).
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the analytical estimate for this is, per the Supplemental Information, Wiae = 4.37,
which gives a. = 0.23 analytically. The numerical value from 2.7 is somewhat lower
(e = 0.14), but given that the Fourier transform estimate in the Supplemental
Information does not include the direction dependent offset necessary for generating
flow we are comfortable the argument captures the origins of the re-entrant phase.
As noted in the introduction, while we anticipate that damage will disrupt
the coding of position in the grid cell/place cell network, in this chapter we limit
our attention to the modification of grid cell symmetry and coherence as a means of

providing a map to early detection of neurodegenerative damage.
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Chapter 3

Damage impact on the grid-cell
population codes for animal’s locations

3.1 Introduction

The brain carries out enormously complex information processing operations
and uses diverse schemes to encode information. In the area of brain’s navigation
system, asking what kind of neural network topography can support the sense of place
is an interesting question. A hierarchical organization of grid cells may provide an
efficient means for place coding [48]. However, in contrast to place cells [49, 50], which
encode an animal’s instantaneous place by firing only when it is within a neighborhood
of a particular location, grid cells fire when animal move on any vertex of a virtual
triangular lattice overlaid on the surface of the enclosure. Meanwhile, the entorhinal
cortex, where the grid cells are, always plays an important role in spatial memory and
navigation. All of the clues suggest that grid cells may be involved in encoding an
estimate of an animal’s location, but how to associate the spatial periodic grids-like
firing pattern of grid cell with the place coding network remains unclear. Fiete[17]
proposed modulo remainder method to convert an animal’s position x into phases on
different grid cell layers (z mod A). This links an animal’s trajectory with grid cells
firing rate mathematically. Building on the modulo remainder idea, Sreenivasan and
Fiete[16] introduced the idea of phase vector for grid population codes and constructed

a simple readout-grid cell network that can process place coding/decoding.
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In previous chapters, we discussed the grid cells’ special firing pattern that may
play an important roles in animals’ navigation system. The triangular firing pattern
of grid cells in a two dimensional neuron sheet can explain the hexagonal lattice of
active points in the path-integration map. The lattices seems to be related with
animals’ navigation system, and the longitude and latitude of the lattice (even the
two axes in a hexagonal lattice are not perpendicular with each other) are thought
to be used to code the animal’s location since it can build us the coordinates[13].
The entorhinal grid cells in mammals fire as a function of animal location, with
spatially periodic response patterns, and the entorhinal cortex contains multiple grid
layers, with different response periods [2]. We call them as ’grid cell modules’, and
experiment reveals that each module has its own firing pattern spacing and that there
are more than four grid cells modules in rat’s AMEC [2, 6, 51]. Those different grid cell
modules fire independently given external cues including animals’ current location or
moving velocity. Binding those firing rates of grid cells in different modules together
to code animal’s location requires a reasonable neural network. In this chapter, we
verify the effectiveness of the Sreenivasan and Fiete readout-grid cell network model
when we replace the algebraic grid cell firing rate with real simulation firing rate from
continuous attractor Bruak & Fiete’s model, and further develop the impacts when
damages happen among grid cells.

Population coded[52, 53|, obtained from many neurons collectively encoding
a given variable, are usually found in sensory, motor and some cognitive areas|22,
54, 55]. Classical population code’ (CPC) uses one or several neurons to code one

location point, thus CPC requires at least N neurons to code N locations. However,
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Figure 3.1. Neuron model of binary grid coding scheme. (Left) The simplified
model contains three one-dimensional modules of grid cells, and the periodic firing pattern
wavelength decreases from top to bottom (A; = 8m, Ag = 4m, A3 = 2m). Bottom is
an horizontal axis indicating that the whole coding range is 8m. (Right) Define that left
neuron fires (activates) and right neuron mutes to be coding binary bit 1, and the opposite
to be binary bit 0. Three layers are matched with three modules of grid cells, and location

x = 6m can be represented by binary codes (101).
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GPC root mean squared error declines at best as 1/N or 1/N? as a function of neuron
number N, and the weak accuracy gains with neuron number in CPC are obtained
through the inefficient use of neural redundancy. To quantify the efficiency of a
redundant code, we define the information rate p € [0, 1] as the ratio of the number
of information bits divided by the total number of conveyed bits [56]. In CPC, the
mutual information between the code and signal scales as ~ log N. However, the total
number of conveyed bits per time step scales as ~ N. Thus, the information rate p
of CPC scales as ~ log N/N, which approaches zero for large N. The grid population
codes (GPC) is inspired by the idea that a hierarchical spatial mapping in the brain
may improve efficiency of coding position [48], so that a possible hierarchical grid
coding scheme may largely outperform the CPC .

Consider the binary grid coding scheme in Fig. 3.1 left where neurons are
tuned to respond if the animal is in one of a periodic of array of locations. We have
the whole coding range to be 8m, and the two neurons in the largest module have
the period \; = 8m and the tuning curve of width [; = 4m so that their response
just indicates the left 4m range or the right 4m range. The successive modules have
periods Ay = 4m, A3 = 2m. These neuron pairs can successively localize the animal
into 1 — m bins. For example, if the animal is at the location © = 6m, the right
neuron in the largest module fires because x = 6m is within the right 4m range of
the whole, and the left neuron in the second module fires, the right neuron in the
third module fires the same way above. If we define that the left neuron firing is bit

0 and the right neuron firing is bit 1 in our binary coding scheme, then a decimal
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representing of location © = 6m are changed into binary code (1 0 1) with the largest
module at the left side (Fig. 3.1 right).

It is verified that using grid population code (GPC) to explain how the brain
effectively codes location grossly outperforms the CPC in several areas: 1) The coding
range of GPC grows exponentially with neuron number N; 2) GPC shows extraordi-
nary noise robustness over the reduced coding range; 3) GPC can greatly increase the
spatial resolution (difference between the closest two locations). In Fig. 3.1, classical
population codes (CPC) need at least 8 neurons to identify all range locations with
a spatial resolution dxr = 1m, while 3 neurons are sufficient to encode all locations in
GPC with binary coding. Those 3 neurons shall be lying in 3 modules with different
periodicity (wavelength).

In reality, we cannot simplify the grid cell coding to be binary, but experi-
ments[2] proved that the firing pattern of grid cells in different layers shows different
wavelengths. In Sreenivasan and Fiete’s work [16], they developed an coding scheme
using the x mod \ with x to be animal’s location divided and A to be each grid cell
layer’s spacing (wavelength). In other words, assuming N grid cell layers’ with periods

A1, ..., Ay, the grid population code is defined as the vector of N spatial phases:

T mod \g T mod Ay

&z, ) = ( ST )

(3.1)

with x,t indicates current location of animal. Their theoretical model of GPC suc-
cessfully construct the coding network. However, there is no theory to explain why

the grid cell codes use the 'phase vector’. Furthermore, this model makes it hard to
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show what will happen if the grid cells are damaged like that in Alzheimer’s disease,
considering that we cannot observe above spatial phases of grid cells through exper-
iments and how it changes under damages. What we did different here is to get the
firing rate r(z) from simulations using dynamics of grid cells attactor model. Since
the grid cell attactor model has been verified by accurate path-integration map in
chapter 2, we can get trusted result of firing rate r(x) when animal is at location x.

In chapter 2, we are able to track animal’s path integration map using con-
tinuous attractor models [10] of grid cells. The path integration map of grid cells
shows firing rates when an animal moves within the enclosure; these firing patterns
contain the real-time location information x,¢t. Thus here, we develop an enhanced
GPC scheme relative to Ref. [16], employing a one-dimensional model for the grid
cell firing rate from continuous attractor model simulations, which leads to emergent
periodic firing behavior rather than fixed period oscillatory signals. The enhanced
method for GPC shows the same benefits compared with CPC, and it skips the use
of the spatial phase vector. We start with an animal’s current external information
(location, moving time and velocity), and determine the grid cell firing rates in all
layers 74 ;(z,t) (o module index, j grid cell index in one module). We then sum all
the grid cells firing rates together into a readout stage, where model place cells are
able to infer the animal’s location. Details about the network model are given in the
methods section below.

We verified the effectiveness of place coding in this newly-developed GPC
network, with a noise-free linear relationship between input location x and inferred

location & (shown in Fig. 3.7) provided the geographic range is sufficiently small. We
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analysed the quality of several different of GPC networks (different coding ranges,
grid cells wavelength and numbers, etc.) using the fractional error and the root-mean-
square standard deviation of error values (with error defined as the difference between
input location x and inferred location z), and presented their change with increasing
coding range for both healthy and damaged cases. Applying the model of damage
arising from synaptic degradation among grid cells, we also constructed a complete
landscape of GPC network quality heat-map of different levels of damage. The land-
scape diagram shows the borderline between normal and interrupted networks, and
it helps to prove that, in the hierarchical organization for grid cell layers that layers

with bigger periodic spacing dominates the place coding.

3.2 Methods
3.2.1 Structure model of EGPC coding network

We use a relatively simple neural network architecture, consisting of grid cells
and readout cells. Grid cells are arranged in several layers known as modules, with
different layers contains different wavelengths of the periodic firing pattern. The
wavelength decreases from the top layer to the one below.

The spatially patterned firing rates of all grid cells across the networks are
the inputs to the readout cells. Those grid cells project forward to a readout stage,
recurrent global inhibition in the readout stage and symmetric back projections from
the readout stage to grid cells.

The connection between grid cells and readout cells are gridcell-to-readout

weights W. It is set by Hebbian Learning on the activation of grid cells and readout
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cells as the animal runs through a space in the presence of spatially informative exter-
nal cues. In this run, we assume that grid cell activation is without path integration
errors because of the external cues. During this learning process, the readout cells
are separately driven to be sparsely active at one preferred location.

After learning, each readout cell is wired to grid cells of all layers, and the
gridcell-to-readout weight W is unchanged. When the external cues are absent, grid
cells with its activation at different animal’s position from its own path integration
drive the readout cell. The maximally driven readout cell is identified through winner-
take-all dynamics using global inhibition, and its preferred location is the decoded or

inferred location.

3.2.2 General algorithm for EGPC

Here we provide a clear description of how the EGPC algorithm works in place
coding/decoding (Fig. 3.3). An instantaneous location z is the input, and through its
time series it contains information that how fast and how long that animals moves.
Grid cells modules are sensitive to those external velocity information and generate
corresponding periodic firing patterns. All grid cell firing rate r,;(x,t) are added
in a feed-forward fashion to activate readout cells. The summed input h;(x) in the
readout cells vary from each other and we can decode the inferred location by reading

the preferred location of the most active readout cell.
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Figure 3.2. Neuron model of readout-grid cell GPC network. CA1 of the hippocam-
pus receives direction convergent input from many dorsoventral levels of the entorhinal
cortex where the grid cells vary in spatial period. Top box is the readout cells stage in the
CA1 and the bottom box is grid cells modules in the entorhinal cortex. Entorhinal-CA1l
synapses are indicated using black arrows. The spacing of grid cells periodic firing pattern
are decreasing from top module to bottom ones, and the summed input into CA1 are plotted
in a red bell-shaped line, showing the right readout cell is activated.



Continuous Attactor Model
+ Path Integration

Figure 3.3. General algorithm of EGPC network. (top) Input location, (middle)
GPC box, including grid cell layers and readout stage, (bottom) Output location/ inferred
location decoded by the brain.
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3.2.3 Coding range and readout stage

In this 1D GPC decoding model, the coding range is defined as R. It is proved
[16] that the length of coding range R influences the noise robustness of GPC or CPC
networks: a high-range GPC is pathologically sensitive to noise, and very small noise
in the GPC results in massive, nonlocal errors in decoded location.

If the coding range shrinks to a subrange [0, R;], and R; satisfy R; < R and
R; > A, (we use A to indicate grid cell firing rate spacing), the reduced coding range
R, brings extraordinary noise robustness to GPC network, and it outperformed the
CPC network grossly [16]. Thus, when we set the coding range, we don’t expect the
R; to be too big.

Given the coding range, we can now define decoding resolution dz to be the
minimum position difference that can be distinguished by readout cells, and any two
positions with difference less than dx cannot be determined by readout stage. Then

the minimum number of readout cells required (indicated as Ny eqqout) iS given as:

R
Nreadout = d_Zl' (32)

Each readout cell helps to decode one certain position in the whole coding
range [;, and we call the certain position as readout preferred location x;*, with

index ¢ varies from 1 to N, eqdout-
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3.2.4 Locally peaked response of the readout cells

Given N,cqqour Teadout cells listed in a single layer as readout stage, we use
ri(z) to present the firing rate of ith readout cell when animal is at location z (unit
in em or m).

Considering that we have required each readout cell has its own special pre-
ferred location x;, which means it activates most when animal is at the right preferred
location. We have a bell-shaped function G, (x — p) with mean value p and variance

o2 to present locally peaked response of the readout cells:

) (3-3)

the mean value of Eq. 3.3 is at its preferred location z} to satisfy that readout cell

activates the most at its right location.

3.2.5 Grid cells arrangement

Grid cells are found to be arranged in several discrete layers or modules (num-
bers are indicates as N), and with descending wavelengths from the top module to
bottom ones. The experimental results indicate that there are about 5~6 modules
of grid cell in mammals’ AMEC. For quick simulations, we apply three modules of
grid cells and list them in descending wavelengths with a fixed decreasing ratio equal
to v/2, and then we name the top module’s wavelength (also called as ’spacing’) as

Ao,em, and em here means that we measure the wavelength in centimeters.
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The three modules of grid cells with their wavelengths are listed below:

top module :  Xyem

/\O,cm )\O,cm

V2 T 141
)\1,cm ~ )\O,C’m

v/2  1.98

middle module : Ay o = (3.4)

bottom module : Ay ¢, =

Each module contains approximately the same amount of grid cells, indicated as M.
A network contains N modules with each module containing M neurons are expected
to decode locations accurately up to M”. This is the outstanding characteristic
of GPC decoding network compared with CPC [47]. Thus, for a narrow range of
encoding range R; < 500cm with 500 location points, the number of M only need to
satisfy:

M > /500 ~ 8 (3.5)

We choose M = 40, the same as the grid cells setting in chapter 2 (in which
there is a 40 x 40 2D grid cells sheet), and with the same periodic boundary condition
that links the head of neurons list with the tail. Following Eq. 3.5, such a 40 x 3 grid

cells network is able to accurately decode up to 40% ~ 64000 different locations.

3.2.6 Periodic firing rate of grid cells

Different from Sreenivasan and Fiete’s method to characterize the firing rate
of grid cells using a spatially periodic Gaussian function, we apply the continuous
attractor grid cell model of Burak & Fiete, so that we can let grid cells activate

corresponding to animal’s external location, as the path integration does. The benefit
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of the new method for modeling the grid cell firing rate is stated in detail in the
discussion part of this chapter. We name the new method ”enhanced GPC” (EGPC)

compared with the original GPC.

tvelocity input B(v)

b Si 0.1
01 /[VV VV VNJ/ VV VV

initial noise HOOOOOOOO

Si g4

periodic firing patter

Figure 3.4. 1D continuous attractor model of grid cells. (a)1D list of spheres represent
the arrangement of grid cells, with the orange arrows indicating their preferred directions
lég, and there are only two directions defined in the one dimensional case, right and left.
The grid cell layers receive velocity input B(v) containing animal’s moving information.
The red arrows are grid cell weights (w) as in Eq. 3.7 3.8. (b) the firing pattern of a
grid cell layer; top curve is the initial noise (random number within —0.1 ~ 0.1) at the
beginning as input, and the bottom shows that the stabilized grid cell firing rate involves
periodic pattern with a spatial spacing between two nearby peaks.

We have a list of neurons as the model for one dimensional module of grid

cells, and use s; to present the grid cell firing rate with ¢ to be the index of the list.
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We use neuron list of a size 40 to speed up numerical simulations. As in the two
dimensional situation in Chapter 2, the dynamics of grid cell activity are described

by the coupled differential equations [10, 44]

T = st f(z w;; - si + B;) (3.6)
wo(x) = ae~ el — e=Alel” (3.8)

with s;, B;, f to be same definitions as in Chapter 2. To distinguish with the weight
matrix W between grid cells and readout cells, we use w to represent the recurrent
relationship within the layer of grid cells, and #¢ with subscript ¢ represents the grid
cell’s coordinates on a 1D neuron list, different from the real position indication x.
The shifted location term [éy plays an important role in driving a statistical
flow of the grid cell firing pattern, and we apply the same amount of shift: [ = 1, but
preferred direction éy can only be either pointing left or right in 1D case. We define
pointing to the right being positive direction, and then Eq. 3.7 obtains a simpler form:

wo (7] — T —1) (&g, to the right)

wo(T] — 7 +1) (€, to the left)

In our 1D neuron list, the neurons with different preferred directions é, are tiled

uniformly and each 2 neuron block contains all two preferred directions (see Fig. 3.4).
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Then we have the feed-forward input to neuron ¢ in the 1D cases given by

1+ no¥ (&g, to the right)
Bi(z) = (3.10)

L =m0 (&g, to the left)
where ¥ is the velocity of the animal, in units of m/s. 1o is the coefficient that
characterizes the effects of velocity inputs to the driven pattern flow.

We start each simulation with small random noise within the range from -0.1
to 0.1 (arbitrary units, but referenced to the static background input of 1), then
apply the aperiodic boundary condition for a 250ms stimulation process followed by
another 250ms simulation under periodic boundary conditions, so that we develop a
complete periodic lattice of firing peaks. After that we apply annealing process to
cure the defects, using 500ms simulation with a nonzero velocity input (0.8 m/s) in

right and then left direction.

3.2.7 Firing rate of grid cells at location x

The code/decode network takes the location x as the input, and decode the
external cues(like landmarks) as location information inside the brain. What we want
to verify here is that given an input location x, the whole GPC network can correctly
decode the output location & (equal z).

Take a real location x as the input, we would like to know what is the firing
rate of each neuron in the network. For grid cells, we use 7,;(x) to represent the

firing rate of ' neuron on o module when animal is at location x. The detailed
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methods of the simulations of Burak & Fiete’s model to get 7,;(z) are included in

the Appendix B.

3.2.8 Summed inputs to the readout cells
The readout network infers instantaneous location z by finding the maximally
activated readout neuron

~

| = argmaz;h; (3.11)

where h;(z,t) are the summed inputs to the readout cells. The operation to identify
the maximally driven readout cell is assumed to happen in CA1 through (group)
winner-take-all dynamics or other attractor dynamics which produce a narrow distri-
bution of active cells.

The preferred location of the most active cell (marked as ¢) is the inferred

location

Tt =17 (3.12)

The summed input h; to the i** readout cell depends on the firing pattern of

the grid cells r,;(x) and on the learned grid cell-readout weights W;,:

hi(a,t) = Wijaras(z,t) + h)(x,t) (3.13)

ja

Here we have hY represent any non-grid cell input to readout cell 7, including in-
put originating from external sensory cues, or input based on predictions or learned

contextual priors.
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3.2.9 Grid cell-readout weights

The grid cell-readout weights W;;, are set once at the beginning, and we
assume they are unchanged after learning. The grid cell-readout weights won’t change
unless we study the damaged situation of GPC. The learning method is Hebbian
learning, within one simulated run over the coding range R; with noise-free grid cell

activation due to external cues and sparse readout cell activation.
Ry
Wija = 3 _ 1i(a')raj(a) (3.14)
x'=0

where 7;(2') is from Eq. 3.3 representing the locally peaked response of i’ readout cell
and r,;(2’) is the correct activity pattern of the grid cells for the location 2’. Because
the learning trajectory is only over the range R;, readout cells are only activated and

assigned preferred locations in that range.

3.2.10 Central damage model on EGPC

As discussed in Chapter 2, we studied the central damage situation on 2D grid
cells sheets and its influence on animals’ path integration map. The disease we are
concerned with, Alzheimer’s, may proceed by the diffusion of damage (‘tau tangles’)
among grid cell modules. We consider such damage and its influence on the EGPC
decoding networks by assessing the change to the linear relationship between x and
Z.

We consider how the synaptic strength within grid cell modules are degraded

in this model, and multiply w by a coefficient o, with 0 < a < 1, for neurons that lie
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within the damage region. In Fig. 3.5, the range of the damage region in one single
layer is quantified using radius R, and we center the damage in the middle of the grid
cells list. Because the 1D grid cell list with periodic boundary conditions actually is
a ring, it doesn’t make any difference if we change the center location on the ring.
For the damage coefficient o that changes the connection strength within grid
cells, we differentiate the presynapses from the postsynapses in following way: for a
grid cell that lies in the damage region, its connection to the outside shall be weaker
than the input to itself, in other words, the postsynaptic coupling (from damaged
neurons to healthy neurons) is smaller than the presynaptic coupling (from healthy
to the damaged neurons). As in the Fig. 3.5, the arrows indicate the weight w, and
we define the damage region to be D. For i* neuron within the damage region, we
call it « € D, and j neuron outside the damage region, j ¢ D, the arrow w;; from
i" to j™ is narrower than wj;, indicating postsynapstic couplings are weaker. Details

are given in following equation Eq. 3.15

Wi =aW;; =aW, (i€D,j¢D) (3.15)

Wi; =W =aW, (i,j €D)
\

The overall grid cell model contains multiple layers, and the single layer dam-
age defined above can also be applied to multiple layers (Fig. 3.5). For multiple layers,
we applied the same damage radius and damage coefficient «, and future work can be

done applying different damage parameters in different layers. Here we don’t consider
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Figure 3.5. Neural network model of damage to the EGPC network. (a) Three
layers of grid cells with central region to be damaged (in orange, length of damage region
equals 2R). Within the damaged region, weights between neurons are influenced: the
connection from j** neuron to i*" neuron Wij (the narrow red arrow) is weaker than the
connection from " neuron to j* neuron Wj; (the wide red arrow). The whole grid cells
part still receive normal velocity input via B(%). (b) Different arrangement of damage
layers. Six possible situations are given as single top layer, middle layer, bottom layer, and

top two layers, bottom two layers, and all three layers damaged.
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the grid cell connections between different layers, so that with the same velocity input
B(7), each layer of grid cells works independently from other layers.

We assume no damage happens to the connection between grid cells and read-
out cells, and there is no change on the arrangement of readout cell layer. We summed
the firing rates from damaged grid cell modules into the readout stage, as in Eq. 3.13,

to encode the new inferred location.

3.3 Discusses and results

3.3.1 Accurate decoding performance of the EGPC

The EGPC decoding can be performed by above simple neural network, and
with input location information x put into the grid cell modules, so that the right
target place cell on the readout stage can decode the location to be . The accuracy
of the coding/decoding performance can be shown by the linear relationship of = and
z (Fig. 3.6a & b). The linear response of EGPC scheme weakens with increasing
coding range R;, when R; increases to 200cm, in which errors happens (some inferred
locations are shifted from the expected locations) (Fig.3.6¢), and more error points
are introduced when R; increased to 400cm ((Fig.3.6d)). However, the errors fraction
(number of errors divided by total number of location points) among all locations
within the range is low and the linear relationship is conspicuous in all given examples
in Fig. 3.6.

To track the change in quality of the EGPC linear relationship with differ-
ent coding range, we applied two characteristics: the fraction of error locations

and the root-mean-square of the error (rms), with the error defined as the abso-
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Figure 3.6. Linear relationship of input location z and inferred location
normal EGPC. (a) Reduced coding range R; = 40cm. (b) Reduced coding range R;

100em. (c¢) Reduced coding range R; = 200cm. Coding errors occur and two locations are
shifted: Nepror = 2 (z = 3lem — & = 118cm), (x = 47em — & = 144em). (d) Reduced

coding range R; = 400cm. More error location points occur, Nepror = 22.
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lute difference between expected location and the experimental location. Here, we
have rmsg,—200em = 9.21cm and fractiong,—soem = 0.01(Fig. 3.6¢); rmsg,—s00em =
36.98cm and fractiong,—ap0em = 0.055 (Fig. 3.6d). More figures are given in Fig. 3.7a
with the R; increase from 5cm to 500cm. The rms and errors fractions fluctuate

near zero when R; < 200cm, and they increase with increasing R; above this.
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Figure 3.7. Error fraction and root-mean-square errors in damaged and undam-
aged EGPC networks. (a) rms (top) and errors fractions (bottom) in undamaged
normal GPC network (500cm): three modules of grid cells and each layer contains N =
40 neurons, step between two nearby location dz = lcm, reduced coding range R; range
from 10cm to 500cm. (b) rms (top) and error fractions (bottom) in undamaged normal
GPC network (200cm): three modules of grid cells and each layer contains N = 40 neurons,
step between two nearby location dx = lem, reduced coding range R; range from 10cm
to 200cm. Damage setting: central damage range radius r = 5 neurons, synapses weaken
coefficient = 0.0. Damage occurs only at the top two layers of grid cell. Error bars are
calculated using multiple trials of experiments data and shown in black.

3.3.2 Damage case on grid cells modules
The Error is defined as the absolute difference between correct decoded loca-
tion and the wrong one. The damaged situation (R = 5, « = 0.0, applied on top layers

of grid cells modules) are shown in Fig. 3.8, with the same EGPC network setting as
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that in section 3.2.3: there are three grid cell layers with wavelength Ao .,, = 99cm,
Mem = 70.21em, Ag e = 49.79cm, and each layer contains N = 40 neurons for ef-
fective simulations. The readout stage contains R; readout cells (place cells) with
decoding resolution dxr = lem, and the reduced coding range from R; = 10cm to
200cm. The linear relationship between x and z is disrupted in the damaged case,

and as shown in Fig. 3.8a, has N,.,..,.s = 18 location points deviated from the correct

18 _

10 = 0.45, and root-mean-square of error

locations, so we have the error fraction =
= 24.07021cm. Fig. 3.8 shows an increasing tendency of errors when coding range
gets bigger, and a more general analysis is shown in Fig. 3.6 b, in which the coding
range varies from 10cm to 200cm with a baseline consisting of data from undamaged
situation. Within a reduced coding range R; < 200cm, the undamaged GPC scheme
can effectively and accurately codes the animal’s location with the maximum rms of
errors 12.56¢m and maximum error fraction 0.39%. In the damaged case, the average
rms of errors increases with the coding range and can be up to 72.36cm when the
coding range is bigger than 160cm, and the errors fraction is higher above the baseline
with a minimum of 25% and a maximum of 96%.

For all possible situations including single layer damage, two layers damaged
and all three layers damaged, we studied different levels of damage: from the weakest
(av ~ 1.0) to the killing neuron (o = 0), and the radius are changed within no damage
(R = 0) and whole layer diminished (R = 20). All results are presented in Fig. 3.9.

Root mean square (rms) of errors are plotted with variable radius R and coef-

ficient « in Fig. 3.9a, and another characteristic error fraction is shown in Fig. 3.9b.

Those two heat-maps are consistent with each other, showing that the damage case
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with bigger error fractions comes with bigger root mean square of errors at the same
time. We can observe the borderline between the blue region and the grey region
(with grey indicates interrupted case), and the borderlines are also self-consistent in
Fig. 3.9a and b, except the error fraction boundary gets fuzzy in single layer cases.
Most regions in top panels of the Fig. 3.9a and b are colored blue, showing that
the damage on one single layer out of three can still allow robust function for place
coding.

A more general behavior among all six cases is that a narrow blue region shows
up when the damage coefficient is close to 1.0, or the radius is very small (R < 2
neurons), which agrees with expected result that small size of damage or weak damage
doesn’t influence the EGPC network severely. The increasing color shade of the grey
from top to bottom panels shows that increasing the number of damage layers brings
more severe disruption.

What’s interesting is the variety of behaviors that arise within the single layer
cases (or two layer cases). In the top panels of Fig. 3.9a, we observed that the
landscape in middle layer and top layer fluctuates much more than the bottom layer.
Root mean squares are higher than that in bottom layer case even the error fraction
plottings are similar. In the bottom panels, top two layers case is more severe than
bottom two layers. The variation within the same damage layer situations show that
the same damage leads to different effects on different layers, and it turns out that
the damage on the layer with bigger grid spacing exerts more influence on the EGPC
decoding. It is consistent with the previous motivation of GPC (Fig. 3.1), where we

stressed that the grid layer with bigger spacing dominates the place coding. The
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Figure 3.9. Damage analysis over the whole variable space. (a) Root mean square
of errors (b) Error fraction in six damage cases. Damage radius (0 < R < 20 neurons)
in horizontal axis and damage coefficient (0.0 < o < 1.0) along the vertical. Top panels,
single layer damage; Bottom panels, left, bottom two layers are damaged and the top one
remain normal, middle, top two layers are damaged, right, all three layers are influenced.
The colorbar are scaled into the same levels for all six cases. grid cells wavelength are (99,
70, 50) and the reduced coding range is R; = 40.



top modules of grid cells determine bigger range of the locations and the following
modules help to refine the resolution. The same behavior is found when we switch
different grid cells wavelengths and coding range (see in Appendix B).

About the borderline in heat-map, we observe a narrow blue region shows at
the right side, with big size of damage (R > 19) and the coefficient a € (0.6, 1.0).
The radius indicates that a widespread damage in the whole layer (one layer contains
N = 40 grid cells) does not influence EGPC function if the coefficient is above a
threshold. The thresholds are similar (close to 0.6) in all bottom panels of the Fig. 3.9

b.
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Chapter 4
Conclusion
Part I: Neurodegenerative damage reduces firing coherence
in a continuous attractor model of grid cell

We start from Burak & Fiete’s attractor model of grid cells [10] to study their
firing pattern on much smaller periodic neuron sheets. Smaller neuron sheets can pro-
vide good statistics on the firing pattern flow and provide reasonable results for finite
and relatively short simulation times. The linearly proportional relationship between
the firing pattern flow and animal’s velocity input helps build a stable hexagonal
lattice in the path integration map.

Applying simulated damage to the model grid cells, we observe that the firing
pattern flow continues but shows bigger fluctuations (in flow speed and direction) in
a longer time range. Those fluctuations accumulate errors in path integration and we
observe the loss of coherent grid firing.

To identity the tolerance of grid cells to different levels of synaptic damages,
we study the Bragg peaks in the Fourier Transformed pattern of position space firing
fields for model grid cells, and we have shown that damage to a model grid cell layer
parameterized by reduced synaptic output strength o and damage radius R leads to
a predictable sequence of reduced grid cell firing symmetry from hexagonal lattice, to
orthorhombic lattice, to stripes, and onto no coherent pattern (single central peak).
We find that the central Bragg peak in the region with no coherent grid structure

is largely unchanged for grid cells outside the damaged region, but strongly reduced
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for grid cells in the damaged region. For large area damage, there is a re-entrant
transition to the fully hexagonal grid structure. Grid cells can show a tolerance of
certain damages. With the help of borderline in phase diagram to identify grids/no-
grids region, we can control different levels of synaptic damages on grid cells and
study its influence on place coding/decoding.

The modifications of the orientation of firing patterns associated with the
less ordered structures should be visible in fMRI experiments which can pick up the
full six fold symmetric firing pattern in the dMEC for undamaged subjects. This
makes for an important tool in assessing potentially the level of synaptic damage
associated with neurodegenerative diseases such as Alzheimer’s, that may allow for
early diagnosis and the use of small molecule aggregation inhibitor treatments such
as anle138b[57, 58].

Part II: Damage impact on the grid-cell
population codes for animal’s locations

We aim to understand how to translate the grid periods into place coding
based on the inspiration from modulo remainder coding idea [17]. The most common
idea is to use the remainder of location over different grid periods for possibly effective
place coding. It has the advantage of great tolerance to noise or fluctuations, and the
grid population code (GPC) can code wider range of locations with fewer neurons
compared with the classical population code (CPC). However, we want to know the
algorithm of grid coding from the view of the neuron network, in a way that is much

more realistic than the view of simplified phase vector theory. Using the readout-grid
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cell networks proposed by Sreenivasan and Fiete, [16] (which still uses the modulo
remainder method to associate location and grid cell firing rate), we employed the
Burak & Fiete continuous attactor model for 1D case to track grid cells’ firing rate
as a function of animal’s location. The firing rate with variable of location (r(x,t))
follows the same algorithm as the path-integration map in chapter 2, and it surpasses
the previous GPC using the modulo remainder phases, since r(x,t) is the immediate
firing rate when grid cells are self-developing with rat’s given destination and velocity.
The new readout-cell network that we proposed is closer to real experiments, and it
makes it possible to develop further study on impacts of damage.

Our enhanced readout-grid cell network with explicit simulation results of
place-coded firing rate proves its effectiveness for accurate place coding. The stable
linear-relationship between input location z and inferred location & within maximum
coding range (R, < 500cm) shows that the readout-grid cell network bonded sim-
ulation firing rate r(x,t) works accurately. The success in achieving effective place
coding using this enhanced GPC (EGPC) made it possible for us to think about the
impact of damage on grid cells in the same manner as for path integration. We have
already seen the damage influence on path-integration map from chapter 2, and here
we aimed to figure out what is the influence of damage on place coding. Using the
center damage model with weakened synapses among grid cell, we studied different
cases for various damaged layers, damaged region sizes (R) and damage coefficient
(). To identify the tolerance of grid cell layers to different levels of damages, we
study the root-mean-square coding error and error points fraction. The landscape

of EGPC quality heat-map of different levels of damage shows the boundary of nor-
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mal/interrupted network, and a global decline of synapses weight doesn’t influence
the network’s effectiveness when o > 0.5 (the connection among grid cells reduces by
half). We found that the damage within a single layer of grid cells doesn’t destroy
accurate EGPC considering that the maximum possible coding range (R ~ NM)
overloads the reduced coding range (Rl < 500c¢m), which require fewer layers of neu-
rons. We noticed that the layers with bigger spacing (top layers in models, layers with
deeper dorsoventral location from brain surface in experiments) show more severe dis-
ruption for the same level of damage. The fact that the fluctuations on large-spacing
modules increases errors reflects the hierarchy theory of brain structures that the top

panels in GPCs dominate place coding.
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Chapter 5

Future work

In chapter 2 & 3 we study the continuous attractor models of grid cell network,
and construct a readout-grid cell neural network that can accurately operate the grid
coding of locations, and then we work on central damage model on grid cells to figure
out how the possible damage (from Alzheimer’s Disease) affect the path-integration
map and the GPC coding qualities. What the experiments rely on is the simulations
based on either 2d grid cells sheets or multiple layers of 1D gird cell lists, and to reach
an effective result, we control the amounts of total grid cells within 40 x 40 = 1600 for
2D case, 3 x 60 = 180 for GPC network. We expected a much larger number of grid
cells in the layers of the AIMEC and experiments shows there are up to 4 or 5 modules
of grid cell spacing[4], potentially up to millions of neurons. Even though we applied
periodic boundary condition in all models, which can be used to represent infinite
range of grid cells theoretically, we still want to know how to manipulate all models
or methods in this dissertation using larger number of neurons. It may sacrifice
the computational convenience but can be more realistic compared with experiments
finding. We wish to see more advancement in computational ability (like clusters,
parallel running setting, etc.) or better algorithm that can help speed up simulations
in the future.

And for the same reason as above, we worked on coding range up to 200cm for

both healthy and damaged GPC networks. We expected to observe the behavior when
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the coding range gets bigger and even close to the GPC limitations (the theoretical
limitation equals N™ where N is the number of grid cells in a layer and M is the
number of layers (modules). For the 40 x 3 grids cell modules, the maximum coding
range is 40° = 64000.) As we also mentioned in chapter 3, GPC only outperforms
the CPC within a reduced coding range(R; < 500cm), and when the coding range
gets larger, the noise shows up and the inferred location has increased fluctuation
around the true. How to extend the GPC coding beyond its limitation and still keep
its extraordinary noise robustness is an interesting question for next stage.

As for damage model, we start from central damage model of weakening the
synapses among grid cells. The periodic boundary condition helps avoid the problem
of shifting location of the damage region center. But at the same time, we proposed
another possible model for multiple discreet small damages on grid cell layers. How
such a damage model affects the grid coding and how can we control the damage to
generate a completed landscape of damage-coefficient heat-map remain unsolved. And
for damaged GPC network, the weakening of neuron synapses happens among grid
cells in single layer independently. So possible new situations can be the readout cell
(place cell) - grid cell synapses or different layers grid cell synapses can be influenced
by the lesion. As for the connection among grid cells modules, we made assumption
that each layer works independently under a given spacing and no connection between
adjacent layers. This helps construct GPC networks but there is no evidence to prove
the irrelevance among layers of different spacing. An important question is how to

fit the continuous attactor model into multiple layers case, because most current
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research on grid cells attractor dynamics is for single grid spacing (the grid firing
pattern wavelength).

Another surprising question about grid cells is that there exists 3D grid cells in
nature. Considering we worked on 2D model of grid cells in chapter 2, and 1D model
of multiple modules of grid cells in chapter 3, it is interesting to think about how to
fit the GPC network into two dimensional plane, or what is the situations if grid cells
can be applied into three dimensional space. The answer to the first question may be
answered by adding one more axis in 2D space since we have already have an x-axis in
GPC network from chapter 3. However, some details need to be considered carefully
like how to project the 2D spacing into two axis, the 2D grids pattern has more
characteristics (including rotation, ellipticity transformation, orientation [59]) besides
the spacing wavelength. As for 3D cases, lots of findings [60-62] provide an indication
possibly valid for some animals living and moving extensively in three dimensions, like
for example dolphins, monkeys and even non-mammalian species (honeybees). Yet it
remains unclear how brain circuits encode the animal’s 3D position, but animal’s (like
bats) hippocampus represents 3D volumetric space by a uniform and nearly isotropic
rate code[63], similar to girds pattern in space. It is an interesting brand new research

field for organization of grid cells in 3D [18].
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Appendix A
Supplement to Chapter 2

1. Influence of time step dt for accelerating simulation

To improve simulation effectiveness, we found the time step dt plays a big part
in simulation speed. A bigger time step dt means fewer numerical simulating cycles
within the same period of time. A small time step dt can improve the simulation
accuracy; we find that a larger time step can also generate the hexagonal grid struc-
ture. In particular, dt = 0.5,1.0,2.0ms can each generate a hexagonal lattice grid
for a long enough animal trajectory as shown in Fig. A.1. Accordingly, we sacrifice
some accuracy for better simulation speed by choosing a larger dt, which can still get

sufficiently accurate results for average path integration maps.
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Figure A.1. Influence of time step size dt on simulations. (a) Average path integration
map of Neuron # 800, healthy grid, dt = 0.5ms. (b) Neuron # 800, healthy grid, dt = 1.0ms.
(c)different time steps dt = 0.1ms, 0.2ms, 0.5ms, 0.8ms, 1.0ms don’t affect the flowing speed
when velocity inputs are the same (7 = 1m/s)

69



2. Explanation of flow determined by preferred direction and shifted
location vectors

The grid cells can create a grid like firing pattern without the shifted location
vectors [ép;, but the inclusion of /&, is the key to generate a steady firing pattern
flow. The addition of /¢y, breaks the symmetry of weight matrix W to make W;; #
W;i between two neurons. In Fig. A.2ab, all the neurons have the same preferred
direction &y, to the right, and the new weight matrix Wi;(z; — x; — léy;) is bigger in
magnitude than W;;(x; —z; — léy,) considering léy, = lég,. Because the weight matrix
is negative, the connection along the preferred direction has bigger inhibitory affects
than the connection in the opposite direction, which drives the grid-like firing pattern
to move opposite to the preferred direction. When neuron groups with different
preferred directions €y, work together equally, the symmetry of the weight matrix can
be restored and that explains why there is a static firing pattern when the velocity
input is zero(Fig. A.2c). When the velocity input is nonzero, it can strongly activate
the neurons that share the same preferred direction, which drives the grid-like firing

pattern to flow in the opposite direction to the velocity.

3. Influence of velocity input coefficient

1o is the coefficient that characterizes the effects of velocity inputs to the driven
pattern flow, and in the paper we have taken it to be 0.10315. 7y controls the gain
from velocity to the feed-forward input B. 79 can be used to determine the driving
force to the grid cells from the rat’s velocity, and for the same velocity magnitude,

a bigger ng can make the flow faster. The results are summarized in Fig. A.3 for
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Figure A.2. 1D grid cell model with preferred direction. (a) Neurons have preferred
direction pointing to the right, breaking the symmetry of weight matrix(W;; < Wj; < 0),
the inhibitory connection to left is bigger than that to the right, which drives the grid firing
pattern to move to the left. The blue arrow indicates driving flow direction, the solid blue
curve is current firing pattern and the dashed curve indicates the firing signal the next
moment. (b) Neurons with preferred direction pointing to the left drive the flow pointing
to the right. (c) neurons with different preferred directions work together evenly make the
grid-like pattern stationary, and with non-zero velocity input pointing to the left(big blue
arrow) will drive the grid to flow to the left.
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Figure A.3. Linear relationship between flow speed and velocity input coefficient
No. Top: healthy neuron sheet, with input velocity taken to be 0.4 m/s. Bottom: damaged
neuron sheet (R = 4, = 0) with the same input velocity. The red error bars are the
standard deviation based upon choosing 5 trials with different random number seeds for
the input noise. The first three values of flow speed are 0 in each case, indicating that the
firing patterns are stationary below a critical value ng ~ 0.05.

both a healthy and damaged neuron sheet. This shows a linear relationship between
1o and flow speed indistinguishable for undamaged neurons in either case. However,
the larger variance for the healthy sheet with increasing 7y shows that we want to
choose (|noég, - 7] < 1) to keep the formed lattice stable. If |noéy, - ¥] is too big
(mo > 0.35 when |¢] = 0.4m/s) then the grid-like firing pattern will disappear, and

when [1oég, - U] is too small (o < 0.05 ), the grid-like firing pattern is frozen and

not flowing any more. The same linear relationship exists for damaged neuron sheets
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(Fig. A.3 bottom), with the only significant difference being that a healthy neuron
outside the damaged region shows bigger variance of the flow velocities than for the

undamaged sheet.

4. Mean Field Analysis to explain triangular grid

The firing rate equations for Burak and Fiete are:

T% =—5+f (Z Wij - si+ Bi) (A1)

where:

W, = e NEi=Tj| _ =BT —z; (A.2)

with w;; < 0 uniformly and s; > 0, B = 1. There is no region of s; space where the
argument of the rectification in (C'1) is negative hence (C1) is always in the linear
regime.

The fixed point is set by the condition

dSi
dt

~0 (A.3)

with s; = Y W;;-s; + B which can be viewed as the solution arising from minimizing

the “cost function”
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Fourier transformation of the firing rates is given by

si = ¢LN > S(@)e (A.5)

75 is the neuron position in N x N sheets; 75+ N2 = 7i+Ny = 7. ¢ C [qo, @y}, ——F7— <
(o < T, = x,y. Where
—_— 2 2
W@="ebt-Zeh (A.6)
Y
With W(@) > 1, an instability at finite g is possible. W(O) =2 —3 and W@) is

maximum when gy = 24 /2(%) In(3).

We can assume different solutions of the form

5i(F) = aill +0; Y file 7] (A7)

where |gr| = qo, and there are constraints:

(D) 140> filge - 7) = 0

(2) fi(gy - ¥) must be periodic.

Examples are:

(1) so(7) = ag, uniformly.

(2) s1(7) = a1[1 + cos(gox)], periodical along x direction.

(3) s2(7) = a2[1 + 3 cos(qox) + 3 cos(go)], orthorhombic grid.

(4) s3(7) = as[1 + % cos(q17) + 2 cos(Gar) + 3 cos(gs7)], triangular grid.
where g1 = go(1,0), & = qo(—3, *2), & = ao((—3, — %)

Their Fourier Transforms are
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(1) 56(@ = a05q,0

(2) 51(@) = a1[050 + 3 0G40z + 03, —q02)]

(3) 52(4@) = a2(05.0 + 3 (07000 + 07.—qow + Ogiqoy + 9G—qoy)]

(4) 53(9) = as[dz0 + 2(6q.7 + 0_grr + Oy + O + Oy + O—g7)]

Substituting these in the cost function yields the results

Cli) = 5 S @I - W@) - VB3 =0

—~

(1) Co = —v/NBag + %2 [1 — W(0)]

(2) C1 = —V/NBay + 9 {[1 — W(0)] + 1[1 — W(qo)]}

[1—Wi(q)l}

(4) Cy = —v/NBag + % {[1 — W(0)] + 2[1 — W(qo)]}

(3) Cy = —v/NBay + 22 {[1 — W(0)] +

=

We can summarize these results as:

C; = —V/NBa, + %2{[1 — W(0)] + ai[1 — W(qo)]}

Introducing

pi =[1—=W(O)] + o[l — W(g)]

Equation (C9) can be changed into:

pz-< \/NB>2 NB?
Ci: a; — . —

5 Pi 2101
NB? VNB
Ci,rnin = — when a; =
2pi Pi

75

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)



For a 40 x 40 neuron sheet with a =1, N =1600, B=1,7y=6.7x 3, 8 = 614; We
have gy = 0.916, and W (0) = —57.02, W (qy) = 4.37.

(1) Comin = —13.79, ay = 0.689

(2) Cymin = —14.20, a; =0.71

(3) Comin = —13.99,  ay = 0.6995

(4) C3pmin = —14.34, a3 =0.7172

Notice that the hexagonal grid shows the lowest cost, indicating it is more stable than

grid structures.

5. Aperiodic boundary conditions

the feed-forward input to neuron i is:

Bi(z) = Ai(2)(1 + 10 - &, - D) (A.13)

A;(x) is called the envelope function which helps to modulate the strength of the
input to the neurons.

1 |Z] < R— Ar
A(Z) = (A.14)

expl—ag(TEHATY2) R Ar < |7 <R

R = 20 is the radius of the 40 x 40 network and ag = 4. Ar determines the range of
radius over which input tapering occurs, the larger Ar, the more gradual the tapering.

In all aperiodic simulations, Ar = R. [Burak. & Fiete.]

76



a path_integration b path_integration

1.0 1.00 1
0.75
0.5 - 0.50

0.25 0.25 1

0.0 4 0.00 1

=}
N
O
activtion
=}
N
k=3
activtion

0.15 —0.25 4
—0.50 4
—0.75 1

—1.00 4

T T T T T T T T T T T T T T
-1.0 -0.5 0.0 0.5 1.0 —1.00 -0.75 -0.50-0.25 0.00 0.25 0.50 0.75 1.00

Figure A.4. Longer path integration maps of healthy and damaged neuron sheets.
a, Healthy neuron sheets, 500s path integration map of neuron #800, b, Damaged neuron
sheets (a = 0.8, R = 7), 500s path integration map of neuron #800.
6. Influence of increasing length for path integration map

To check the what happened when we use longer paths for simulation, we ran
for 5x longer trajectories (500s) and present the result in Fig. A.4. The healthy
neuron sheets can generate a grid-like pattern and the damaged one loses its grid.
Comparing with the method (in the main paper) of using the average of five inde-
pendent shorter trajectories (100s), the results of those longer runs are similar to
those of the shorter ones, so that an increasing length doesn’t destroy or enhance the
grid-like pattern in a healthy neuron sheet. We can say the path integration map is
still stable within a long time range (up to 500s), and for the same damage situation
( = 0.8, R = 7), we find similar loss of grid firing as for the shorter time runs.
It is safe to conclude that the grid pattern loss is not eliminated by a longer path
integration but the defects. Meanwhile, using an average of independent trajectories

is more effective because we can do parallel simulations at the same time.
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Appendix B

Supplement to Chapter 3

1. Place coded firing rate r,;(z,t) from 1D Burak & Fiete’s model

The original Burak & Fiete’s model can accurately integrate velocity inputs
over a certain range to simulate rat’s path integration map in a circular enclosure.
What we need here in GPC network is the accurate firing rates of grid cells when
animal is at one target location. We want to explain how to bond the velocity input
with animal’s current location here.

Inherited from Chapter 2, we assume that the linear relationship between
firing rate flow speed and animal’s moving velocity always exists for healthy gird cells

network. That is:

flowing speed = K - |V (B.15)

The linear relationship above make sure that the firing rate change is only
the function of animal’s displacement vector, regardless of animal’s moving velocity
or the time it takes to reach the destination. Using a simple toy model in Fig. A.5:
there is a 1D list of 20 grid cells and firing rate is shown above the neurons. Suppose
at the beginning time, the firing peaks is at the first one in the neuron list, and the
wavelength of the periodicity is 10 neurons, and we can assume K = 20 neurons/m

in the model. We have initial states that neurons 1**, 11** are active (Fig. A.5a).
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a A =10 neurons
I

A 04
oxX—=—uasm

t =1.25s

)
Ax = 0.5m

Figure A.5. Linear model of rat’s displacement in real space and firing rate flow
moving. (a) Blue spheres represents 1D list of 20 gird cells with number indicating index,
the spacing between peaks is the wavelength of the firing pattern: A = 10 neurons. The
rat is moving along horizontal axis towards left with a constant velocity |U] = 0.4 m/s.
The initial location is shown in black. (b) t = 1s, the rat moves 0.4m to new location in
blue. The firing peaks flow to the right direction and now 9, 19" neurons are active. (c)
t = 1.25s, the rat moves 0.5m to destination in red. 1%, 11*" neurons fire again as the
initial states.
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Thus, when rat starts to move at a constant velocity pointing to the left side
v = 0.4 m/s, it indicates the firing rate flow moves to the left side with flow speed =
20 x 0.4 = 8 neurons/s. And it takes 1s to reach new position Az = 0.4m while the
initial peaks are shifted to the right by 8 neurons. Now the 9, 19"* neuron are active
(Fig. A.5b). To make the firing rates back to initial states (1%, 11%" activates), we
need 0.25s more and the new displacement is Az = 0.5m and the firing peaks shifted
by 10 neurons, which equals the periodicity (Fig. A.5c).

This 1D model proves that the linear relationship between flow speed and
velocity input tightly bind the firing rate change with animal’s displacement vectors.
Like in above example, the firing rates peaks are shifted by 10 neurons when the rat
moves every 0.5m. Thus, we can figure out what is the place coded grid cell firing
rates ro;(x,t) in the following way:

(1) Choose an initial state of periodic firing pattern on grid cell layers, which
can be the first states right after the annealing process (see in section 2.2.1). Name
it as initial firing rates: rq;(x = x;,t = 0) with x; to be the initial position of the rat.

(2) Set the target location be x4, s0 74(x = 24, t) is the firing rate of grid cells
when animal moves to location x;. Set average moving velocity of rats be |¢], and
then:

Toj(T,t) = rai(z,t = x/]70]) (B.16)

We get the place coded firing rate at x; after the initial states develops for a period

time of t = x,/|V].
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In the above example where || = 0.4 m/s, if the target location is x; = 0.4m,
the states after a period of time ¢ = 1000ms can provide us the place coded firing

rate:

1 (j=09,19)
raj(z = 0.4m) = (B.17)
0 (otherwise)

with 1 indicates neuron fires, and 0 indicates neuron mutes. And the simulation time

increases with the growing coding range R;.

2. Landscape map with different grid periods \ and reduced coding
range R,
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Figure A.6. Damage analysis over the whole variable space. Gird cells wavelength
are (90, 63, 45) and the reduced coding range is R; = 40.
of errors (b) Error fraction in six damage cases.
in horizontal axis and damage coefficient (0.0 < o < 1.0) along the vertical. Top panels,
single layer damage; Bottom panels, left, bottom two layers are damaged and the top one
remain normal, middle, top two layers are damaged, right, all three layers are influenced.
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Figure A.7. Damage analysis over the whole variable space. Gird cells wavelength
are (99, 70, 50) and the reduced coding range is R; = 60. (a) Root mean square
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The colorbar are scaled into the same levels for all six cases.
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