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Abstract

Nucleation and Order of a Polymer in a Confined Liquid Crystal Matrix

by

Lan Liu

Phase separation of a binary mixture, which consists of isotropic fluid, such as a

flexible polymer, and nematic liquid crystal, can be induced from temperature quench.

The separation process proceeds through the initial nucleation of small particles and

subsequent growth and coarsening, and a variety of final morphologies can be obtained.

This work is focused on the numerical investigation of nucleation and ordered structure

formation of a flexible polymer in a nematic liquid crystal matrix confined between two

parallel walls in both a 2D and a 3D channel geometry. The model is of Landau-de Gennes

type for a conserved, compositional order parameter and a non-conserved, orientational

tensor order parameter and allows a study of the system at the nanoscale.

This is the first time the full model has been utilized to learn the phase separation

in confined geometries for a 3D geometry. The resulting system is numerically stiff,

with several high order nonlinear coupled terms. In addition, to preserve the total vol-

ume of the species and be consistent with the variation of the free energy, a nontrivial

boundary condition has to be enforced at the walls. These pose a significant numerical

challenge that we overcome with the implementation of a linearly implicit method and

an extrapolated boundary condition.

Our numerical investigation focuses on the effects of wall and surface anchoring on

the nucleation of ordered, polymer-rich domains as well as in the selection of lamellae. In

addition, the role of different energies in the system, and the elastic dipole configuration

which critically contributes to the formation of structures are also explored.
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In 2D, we find that chains of polymer-rich droplets nucleate, starting at the walls and

aligned with them, and continue to form until they fill up much of the channel. Without

orientational defects observed in the liquid crystal-rich phase, the droplets eventually

coalesce, coarsen, and the linear chain order is destroyed. We have justified this by

showing that the dipole defect cannot be sustained by the Landau-de Gennes model and

instead it splits into two −1/2 point defects in a 2D channel and a −1/2 disclination

ring in a 3D channel. In 3D, the polymer nucleates into layers of cylindrical structures,

instead of droplets, whose principal axis is oriented with the wall anchoring angle. We

also find that when the liquid crystal component is initially in isotropic state, stable

equilibrium lamellae can be obtained for both homeotropic and planar surface anchoring

conditions, in 2D and 3D.
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Chapter 1

Introduction

Nematic liquid crystals (LC) are an intermediate phase of matter between the commonly

observed solid and liquid states of matter, it possess anisotroic properties characterized

by the orientational order of molecules [1]. The average orientation of the molecules is

referred as the director n, which is a unit pseudovector with n and −n represent the same

state physically, and this is called head-to-tail symmetry. This anisotropic property makes

nematic LC useful in a wide range of electro-optical applications such as LC displays and

beam steering devices for optical communication. In most technological applications, the

liquid crystal material is not pure but a mixture of two or more species. For example,

nematic LCs have used as solvents for micro emulsions or particle dispersions in bio-

molecular sensors or in self-assembly structures. LC materials sandwiched between two

glass plates are also investigated frequently. In the confined geometries, the surfaces can

be treated to impose preferential orientational order, which leads to formation of the

regions where the director field is not continuous, these lines or points regions are called

topological defects.

In recent years, phase separation of binary mixture containing nematic liquid crystal

component has attracted increased attention as it offers a significant potential for techno-
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Introduction Chapter 1

logical innovation [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. After a temperature quench,

the phase separation proceeds through a fast initial nucleation of small particles, subse-

quent slow growth, coarsening until a steady state is reached [16, 17], and different equi-

librium states can be obtained. For example, polymer-dispersed liquid crystals (PDLCs)

which consist of an isotropic polymer matrix and a liquid crystal droplet phase are be-

ing used in switchable windows, displays, spatial light modulators, tunable filters, and

other devices [7, 18, 19]. There have been recent applications of PDLCs involving phase

separation induced from rapid temperature quenching [20, 21, 22, 23, 24, 25, 26, 27, 28].

In order to better control and design the properties of these materials, it is crucial

to understand the phase separation process and the ultimate morphologies. Due to the

complexity of physical models used for phase separation, it is necessary to resort to

numerical simulations for a systematic study. In this work, we report a computational

investigation of the nucleation mechanism of a polymer in a LC continuous phase in a

2D and a 3D channel with the following setup as shown in Fig. 1.1: the polymer-LC

system is confined between two parallel walls which provide strong planar long-range

wall anchoring, and rapid temperature quenching induces the nucleation of the minority

phase.

In earlier studies, a phase field model with a vector order parameter n has been

widely employed for these binary systems [2, 3, 29]. However, a vector does not have

head-to-tail symmetry and is incapable to learn biaxial states nor capture line defects. To

better describe the domain anisotropy, our framework employs the more comprehensive

Landau-de Gennes model which applies a tensor order parameter Q to describe the

orientation of the rigid-rod like liquid crystal molecules. The free energy of the system is

then formulated with the conserved volume fraction of the species and the non-conserved

tensor order parameter. The evolution of the system is governed by the coupled time-

dependent Ginzburg-Landau equations (model C) [30, 31]. Similar models have been

2



Introduction Chapter 1

Figure 1.1: The polymer-LC system is confined between two parallel walls which
provide strong planar long-range wall anchoring, and rapid temperature quenching
induces the nucleation of the minority polymer phase. φ represents the volume fraction
of isotropic polymer, with φ = 1 and φ = 0 represent the pure polymer phase and LC
phase, respectively.
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extensively used in phase separation with some degree of simplification [4, 5, 6, 12, 13,

14, 15]. To the best of our knowledge, this is the first time the full model has been

utilized to learn the phase separation in confined geometries for a 3D geometry.

The Landau-de Gennes model poses significant numerical challenges. It is a large,

highly nonlinear, and coupled system with up to fourth order derivative terms in the

compositional order parameter φ, and several second order terms in the tensor order

parameter Q equations. This makes the time integration markedly stiff. In addition, Q

must remain traceless at each time step, and to preserve the integral of φ and be consistent

with the variation of the free energy, a nontrivial boundary condition has to be enforced

at the walls. We overcome these computational challenges with the implementation

of a linearly implicit method, a strict enforcement of the traceless condition, and an

extrapolated boundary condition.

We find that the nematic component has profound effect on structure formation.

By varying thermotropic parameters which control the isotropic to nematic transition

temperature of the LC in the presence of the polymer component, we are able to select the

initial state of the LC to be nematic or isotropic and this leads to two strikingly different

results. In one case, small polymer-rich droplets nucleate in a LC continuous phase

and form ordered chain structures, layer by layer, in the early phase separation process

in 2D, and cylindrical chain structures in 3D. The colloidal dispersions and emulsions

of this type have attracted considerable attention because of the striking self-assembly

morphologies [32, 33, 34, 35, 36, 37, 38], which offer great potential applications [39, 40].

The colloidal particles disturb the orientational field and produce defects which stabilize

droplet chain structures. Theoretical [41] and numerical [42] studies on nematic liquid

crystal colloids indicate that a dipole configuration which is characterized by a −1 point

defect produced in between the droplets stabilize the chain. With the Landau-de Gennes

model we are able to observe these chain structures, starting at the walls and propagating

4



Introduction Chapter 1

into the interior, during a first stage in the phase separation process. However, as we

show with one example, the −1 point defect are not preserved in the Landau-de Gennes

model and split into −1/2 point defects in 2D and −1/2 disclination ring in 3D, which

destroy the dipole and forms quadrupole. As a result, without the presence of dipole

defects, the chain order is ultimately destroyed by coarsening and coalescence.

In a second study case, we consider a mixture in which the LC is initially in isotropic

state. We find that the system phase separates into stable equilibrium lamellae, with

alternating polymer-rich and LC-rich layers filling the entire region for both the 2D and

3D channel and when either homeotropic or planar surface anchoring conditions prevail.

The remainder of the dissertation is organized as follows. Chapter 2 describes the

theoretical background and Landau-de Gennes modeling, Chapter 3 discusses the ki-

netic equation, the boundary conditions and the numerical scheme employed to solve the

equations. Chapter 4 presents a summary of numerical results for 2D simulation and

Chapter 5 presents 3D simulation.

5



Chapter 2

Theoretical Background

2.1 Introduction

In this Chapter, we present the theoretical background to study the nucleation of

minority phase in the polymer-LC system. With a binary mixture of different species,

we apply the Flory-Huggins theory to model the mixing free energy of our system.

In the continuum theories to study nematic liquid crystals, the microstructure of the

material is described by functions taking values in an order parameter space. The choice

of order parameters varies between models. In the Oseen-Frank theory, the unit vector

order parameter n(x) is used, which is referred as the director that representing the

mean orientation of the rigid-rod like molecules at point x. In its simplest form, the

Oseen-Frank free energy functional reads

FOF (n) =

∫
Ω

|∇n(x)|2dx. (2.1)

The Oseen-Frank model has several deficiencies in describing nematic liquid crystals.

Firstly, the unit vector has no head-to-tail symmetry, and n and −n are treated as

6



Theoretical Background Chapter 2

discontinuity while physically they should be equivalent. In addition, the molecular

order is assumed uniaxial and puts a limit in the theory to learn biaxial states. Lastly,

it only accounts for point defects in 3D, and is incapable to capture the 2D point defects

or line defects, which are observed in real experiments. These defects possess infinity

energy in the Oseen-Frank theory.

A more comprehensive model is the continuum Ericksen theory, which is also re-

stricted to uniaxial liquid crystal as Oseen-Frank theory, however, it incorporates the

scalar order parameter S, which measures the degree of orientation of the molecules.

The state of liquid crystal is then described by a pair (S,n). With the capability to

study the spatially variation of orientational order, this energy can describe all physi-

cally observable defects [43].

The most general continuum model is the Landau-de Gennes theory which can ac-

count for both uniaxial and biaxial phases and learn all types of defects [1]. Landau-de

Gennes theory involves a tensor order parameter Q, which is a traceless symmetric 3× 3

matrice, and describes the orientational probability distribution of the molecules.

In the following sections, the theoretical background based on Laudau-de Gennes

model [44] are presented. To study the thermodynamic introduced by temperature

quenching, the thermotropic energy that describes the phase transition of nematic liquid

crystal, and the distortional energy imposed by the deformation of director field are con-

sidered in the bulk energy. To account for the anchoring effect induced by the confined

walls and the interface of the particles, the surface anchoring energy that penalize the

preferred orientation at the surface is included. These are used as central elements in

mathematical model in the next Chapter.

7
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2.2 Free Energy of Mixing

Since we have a mixture of two different species, we need to consider the mixing free

energy of our system. The general theory for modeling the mixing free energy is the

Flory-Huggins theory, which was independently derived by Flory [45] and Huggins [46].

The free mixing energy that governing mixtures of dissimilar component is

∆Gm = ∆Hm − T∆Sm, (2.2)

where ∆Gm is the Gibbs free energy, ∆Hm is the enthaply of mixing, ∆Sm is the entropy

of mixing, and T is the temperature.

Let Np and Nl be the number of the isotropic polymer and nematic liquid crystal

molecules, let Vp and Vl be the volume that are occupied by each isotropic and liquid

crystal molecule, respectively. The total volume of lattice sites of our system is given by

V = VlNl + VpNp. Therefore, the volume fraction of isotropic polymer is φ =
VpNp

N
, and

the volume fraction of the liquid crystal is 1− φ.

Based on Boltzmann relationship, the entropy of mixing for mixtures of dissimilar

components reads

∆Sm = kB ln Ω, (2.3)

where Ω =
(Nl +Np)!

Nl!Np!
represents summation of combinations of arranging Nl and Np

molecules into a regular lattice of NL + Np cells, and kB is the Boltzmann constant.

Apply Sterling’s approximation,

ln(N !) = N lnN −N +O(lnN), (2.4)

8



Theoretical Background Chapter 2

this yields,

∆Sm = −kB(Np ln(
Np

Nl +Np

) +Nl ln(
Nl

Nl +Np

)). (2.5)

In reality, the mole fraction was replaced by volume fraction to yield agreement with the

experimental observations,

∆Sm = −kB(Np lnφ+Nl ln(1− φ)) = −kBV (
φ

Vp
lnφ+

1− φ
Vl

ln(1− φ)). (2.6)

The enthaply of the mixture reads

∆Hm = kBTV χφ(1− φ), (2.7)

where χ is Flory-Huggins interaction parameter related to the isotropic van der Waals

interactions between unlike molecular species. The temperature dependence of χ has

often been expressed χ = a+ b/T .

Combining the equations above, we get

∆Gm

kBTV
=

φ

Vp
lnφ+

1− φ
Vl

ln(1− φ) + χφ(1− φ). (2.8)

Our aim here is to understand how the phase separation between two difference phases

occurs in a quenching experiment. There will be macroscopic regions of pure isotropic

fluid and pure nematic liquid crystal, separated by an interfacial layer. This can be

studied through an extension of the Flory-Huggins theory, allowing for spatial variations

of volume fraction φ. The extended equation reads

∆Gm

kBTV
=
c2(∇φ)2

2
+

φ

Vp
lnφ+

1− φ
Vl

ln(1− φ) + χφ(1− φ), (2.9)

where the first term represents the conformational entropy of the polymer chains, and c

9
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is related with the interfacial thickness [47]. Note that one could use a more appropriate

Lifshitz-deGennes term
c2(∇φ)2

φ(1− φ)
instead of the gradient square term [47, 48], this will

complicate the numerical simulation but essentially leads to the same results [11].

Based on the above discussion, we formulate the mixing free energy as

fmix(φ) =
λ

2
[(∇φ)2 +

βφ lnφ+ (1− φ) ln(1− φ) +
g0

T
φ(1− φ)

2ε2
], (2.10)

where λ is the mixing energy strength with units of J/m and ε is the capillary width with

units of length. β =
Vl
Vp

denotes the molecular volume ratio of liquid crystal and isotropic

polymer. The coefficient
g0

T
is the interaction parameter related to the isotropic van der

Waals interactions between unlike molecular species, where T is the temperature.

2.3 Nematic Order Parameter

As mentioned above, the director n is used to described the average molecular ori-

entation of nematic molecules. We use n(r, t) to account for the spatial and temporal

variations, and n(r, t) is physically equivalent with −n(r, t).

By inducing thermal fluctuations, the rod-like molecules are generally skewed off the

direction, and the phase of the nematic liquid crystal may vary. At high temperatures, the

axes for the liquid crystal molecules orients randomly which results in the isotropic phase.

When it cools down, the nematic phase with anisotropy appears. The distinction between

the isotropic phase and the nematic phase is due to the extent of orientational ordering

of the molecules u around the averaged director n, which can be quantified by the scalar

order parameter S. To be precise, S is the ensemble average of the second Legendre

polynomials of the scalar product between molecular direction u and the average direction

n [44].

10
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Let us consider a coordinate system with the director n parallel to z axis, i.e., n =

(0, 0, 1), and the orientation of each individual molecule is characterized by the unit

vector u. Let θm and φm denote the angular deviations of the molecule along the polar

and azimuthal directions, respectively. As a result, u can be parameterized as

u = (sin(θm) cos(φm), sin(θm) sin(φm), cos(θm)), (2.11)

therefore the scalar product n · u = cos(θm).

Let f(θm, φm) be the orientation distribution function of finding a molecule with

orientation angle θm and φm. For uniaxial nematic, f(θm, φ) = f(θm) because of axi-

ally symmetry. We can expand f(θm) with Legendre polynomials of the scalar product

between u and n,

f(θm) =
∞∑
k=0

fkPk(cos(θm)), (2.12)

where Pk(x) is the k-th Legendre polynomial, and

fk =
2k + 1

2

∫ 1

−1

f(θm)Pk(cos(θm))d(cos(θm)). (2.13)

Because of the head-to-tail symmetry, u and −u are equivalent and thus f(θm) =

f(π − θm). Hence, the odd terms of fk vanishes, and f0 = 1 does not convey orien-

tation information. The scalar order parameter is then defined by the first non-zero and

orientation sensitive expansion term f2,

S =
1

5
f2 =

1

2

∫ 1

−1

f(θm)P2(cos(θm))d(cos(θm)) =
3

2
< cos2(θm)− 1

3
> . (2.14)

The values of S lie in the interval [−1/2, 1], and the values can be interpreted as

follow: S = 1 corresponds to a perfect nematic order with all molecules orient exactly

11
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along the director n, S = 0 characterizes an isotropic state where molecules have no

preferential direction, and S = −1/2 indicates that all molecules order along a plane

perpendicular to n. At room temperature, S ∼ 0.5−0.6 in typical nematic like 5CB [49].

A uniaxial tensor order parameter Q can be obtained by combining the director n

and scalar order parameter S. Consider the orientational distribution function up to the

second order,

f(θm) = 1 + f2P2(cos(θm))

= 1 +
5

2
S2(3(nu)2 − 1)

= 1 +
15

2
S(ninj −

1

3
δij)uiuj

= 1 +
15

2
QU
ijuiuj.

(2.15)

Here i, j denote the summation over the repeated indices, and δij is the Kronecker delta.

The uniaxial tensor order parameter is defined as

QU = S(n⊗ n− 1

3
I). (2.16)

The largest eigenvalue of QU is 2S/3 with the director n as the corresponding eigenvector,

and the other two eigenvalues are −S/2 with eigenvectors perpendicular to n.

For the rod-like molecules, it may form uniaxial or biaxial configuration, as shown

in Fig. 2.1. The fundamental principle of a biaxial system is that it has no axes of

rotational symmetry, i.e, no axis about which that a rotation of any angle keeps the

system unchanged. In contrast, the uniaxial liquid crystal has rotational symmetry

around its director n. Typically, the nematic liquid crystal material exists in a uniaxial

phase in the bulk when below the nematic-isotropic transition temperature, and biaxial

state may occur near the confining surfaces or in the vicinity of defects. In order to
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Figure 2.1: Uniaxial and biaxial state for rig rod-like molecules.

describe the biaxial state, it requires two unit vector variables, n(x, t) and m(x, t), and

two scalar order parameter, S1(x, t) and S2(x, t), all depend on the spatial and temporal

variations. The more general form of Q reads

Q = S1(n⊗ n) + S2(m⊗m)− 1

3
(S1 + S2)I, (2.17)

which is a 3 × 3 symmetric traceless matrix, and only five of the nine components are

independent. This gives three spatial degrees of freedom and two orientational degrees

of freedom. The three eigenvalues are a measure of nematic orientational order along the

three orthogonal directions denoted by the corresponding eigenvector.

The eigenvalues of the matrix Q are

λ1 = (2S1 − S2)/3,

λ2 = (2S2 − S1)/3,

λ3 = −(S1 + S2)/3.

(2.18)

13
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When all the eigenvalues are the same, the system is isotropic, and S1 = S2 = 0, so that

Q = 0. When all the eigenvalues are different, it is the biaxial state. Uniaxial states

exist when two of these eigenvalues are the same, i.e., S1 = 0 or S2 = 0 or S1 = S2.

As mentioned by Majumdar et al. in [43], Q can also be equivalently expressed as

Q = S(n⊗ n− 1

3
I) +R(m⊗m− p⊗ p), (2.19)

where n, m and p are unit vectors and pairwise perpendicular eigenvectors of Q, and S,

R are given by S = S1 −
S2

2
, R =

S2

2
. This can be derived by the fact that

I = n⊗ n+m⊗m+ p⊗ p, (2.20)

with which (2.17) and (2.19) both equal to

Q =
2S1 − S2

3
n⊗ n+

2S2 − S1

3
m⊗m− S1 + S2

3
p⊗ p. (2.21)

This is the spectral decomposition of Q and indicates that the pairwise perpendicular

eigenvector n,m,p corresponds to the eigenvalues λ1, λ2, λ3 in Eq. (2.18).

The biaxiality parameter in the liquid crystal literature is usually defined as [50, 43]

β(Q) = 1− 6
(tr(Q3))2

(tr(Q2))3
, (2.22)

where β(Q) ∈ [0, 1], and β(Q) = 0 stands for the uniaxial case. We present a simple
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Figure 2.2: The relationship between the biaxiality parameter β(Q) and the order
parameters S1 and S2. β(Q) = 0 as S1 = 0, S2 = 0 or S1 = S2.

proof here. Apply Eq. (2.18),

trQ3 =
3∑
i=1

λ3
i =

1

9
(2S3

1 + 2S3
2 − 3S2

1S2 − 3S1S
2
2),

trQ2 =
3∑
i=1

λ2
i =

2

3
(S2

1 + S2
2 − S1S2),

(2.23)

which implies,

(trQ2)3 − 6(trQ3)2 = 2S2
1S

2
2(S1 − S2)2 >= 0. (2.24)

It follows immediately that β(Q) ∈ [0, 1], and β(Q) = 0 iff either S1 = 0, S2 = 0 or

S1 = S2, all correspond to uniaxial nematic states. The relationship between β(Q) and

the order parameter S1, S2 is shown in Fig. 2.2.
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2.4 Landau-de Gennes Model

2.4.1 Phase Transition

For most liquid crystal materials, the stability of the nematic phase depends either

on the temperature or the concentration of the molecules. In this work, we are interested

in the phase separation driven by abrupt temperature change, and the thermotropic

potential determines whether the liquid crystal is at isotropic or nematic phase. Phase

transition is usually classified into first order and second order continuous transitions.

First-order transition is characterized by the discontinuities in the first derivatives of the

thermodynamic potential. In the nematic to isotropic (NI) phase transition, it has been

observed experimentally that the order parameter S abruptly decreases from 0.25 ∼ 0.5

to zero at transition temperature, and discontinuities have also been found in the density

and heat contents, which indicates a first order transition. Consequently, the potential

shall be eligible to describe the first order transition. In addition, it needs to attain a

minimum in the isotropic state at high temperature, whereas at low temperature the

minimums exist at three uniaxial nematic states. The simplest form of such a function

is a truncated Taylor expansion about Q = 0, which reads

fther =
A

2
TrQ2 +

B

3
TrQ3 +

C

4
(TrQ2)2. (2.25)

The coefficients A,B,C are in general temperature and material dependent, although

it is usual to assume that B and C are independent of temperature whereas A = a(T −

T ∗NI), and T ∗NI is the super-cooling temperature at which the isotropic state becomes

unstable. Therefore, it is the first term which drives the phase transition as temperature

changes. The constant parameters a > 0, B < 0, C > 0, and typical values of a, B,

and C are of the orders of 105J/m3K, 106J/m3, and 106J/m3, respectively [44]. The NI
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transition temperature for the 5CB material is 308.4K [49], but can vary dramatically

for different materials.

Proposition: The set of Q which minimizing the thermotropic energy fther clearly

plays a crucial role, and we claim that this set consists of uniaxial Q, i.e., Q shall be of

the form Q = S(n⊗ n− 1

3
I).

Proof: We prove it by contradiction. Assume Q is uniaxial, i.e., all three eigenvalues

are distinct from each other. By applying trQn =
3∑
i=1

λni , the thermotropic potential can

be rewritten as a function of λi,

fther =
A

2
TrQ2 +

B

3
TrQ3 +

C

4
(TrQ2)2

=
A

2

3∑
i=1

λ2
i +

B

3

3∑
i=1

λ3
i +

C

4
(

3∑
i=1

λ2
i )

2.
(2.26)

Tensor Q needs to be traceless, which indicates
3∑
i=1

λi = 0. Therefore, we can consider

the Lagrange multiplier to find the minimum of fther subject to traceless condition, and

the minimizer is defined by the equilibrium points of the following function,

g(λ1, λ2, λ3) =
A

2

3∑
i=1

λ2
i +

B

3

3∑
i=1

λ3
i +

C

4
(

3∑
i=1

λ2
i )

2 − 2η
3∑
i=1

λi. (2.27)

The equilibrium is given by a system of three equations
∂g

∂λi
= 0, which is

Aλi +Bλ2
i + C

3∑
k=1

λ2
kλi = η, 1 ≤ i ≤ j ≤ 3, (2.28)

or equivalently,

(λi − λj)[A+B(λi + λj) + C

3∑
k=1

λ2
k = 0, 1 ≤ i ≤ j ≤ 3. (2.29)
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Since all three eigenvalues are different, this indicates

A+B(λ1 + λ2) + C

3∑
k=1

λ2
k = 0,

A+B(λ1 + λ3) + C

3∑
k=1

λ2
k = 0.

(2.30)

Subtracting these two equations yields B(λ2 − λ3) = 0, which contradicts with our as-

sumption that λ2 6= λ3. Therefore, the equilibrium solution of the thermotropic potential

fther must have at least two eigenvlaues equal and therefore corresponds to either a uni-

axial or isotropic phase, which ends the proof.

We consider a uniaxial state with S1 = S, S2 = 0, which makes λ2 = λ3, and the

corresponding tensor Q = S(n⊗ n− 1

3
I). Apply the eigenvalues information in (2.18),

we can rewrite the potential fther as a function of scalar order parameter,

fther =
A

2
TrQ2 +

B

3
TrQ3 +

C

4
(TrQ2)2

=
A

2

3∑
i=1

λ2
i +

B

3

3∑
i=1

λ3
i +

C

4
(

3∑
i=1

λ2
i )

2

=
1

27
(9a(T − T ∗NI) + 2BS + 3CS2)S2.

(2.31)

The terms can be interpreted this way, the first temperature dependent term drives the

phase transition, the second term ensures the asymmetry of S by breaking the S to −S

invariance, ant the third term provides the lower bound of S.

We are interested in the equilibrium state of fther with a given temperature, and we

find

f ′ther =
2

9
(3A+BS + 2CS2)S,

f ′′ther =
2

9
(3A+ 2BS + 6CS2).

(2.32)
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Figure 2.3: Relationship between thermotropic free energy fther with the order pa-
rameter S. The curves correspond to three special temperatures: super-heating tem-
perature T ∗∗NI , NI transition temperature TNI , and super-cooling temperature T ∗NI .
For illustration we use B = −0.7155× 106J/m3, C = 0.8758× 106J/m3.

By applying these information, the three stationary points are 0,
−B ±

√
B2 − 24AC

4C
.

The point
−B −

√
B2 − 24AC

4C
corresponds to a local maximum, and thus we are only

interested in S = 0 and S =
−B +

√
B2 − 24AC

4C
, which corresponds to the isotropic

and uniaxial nematic state, respectively.

Fig. 2.3 illustrates the dependence of fther on S with three special cases as A =

B2

24C
,
B2

27C
, 0. The interpretation is as follows,

• As A >
B2

27C
, the isotropic state S = 0 is globally stable with a global minimal

energy, and the nematic state S =
−B +

√
B2 − 24AC

4C
is metastable with a local

minimum for
B2

27C
< A <

B2

24C
, and undefined for A >

B2

24C
.
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• As A =
B2

27C
, the free energy of the isotropic state and nematic state are equal, as

shown by the red line in the Figure.

• As A <
B2

27C
, the nematic state is globally stable with a global minimal energy,

and the isotropic state is metastable with a local minimal for A > 0, and unstable

for A < 0.

The corresponding temperatures of the curves in Figure 2.3 are as follows,

• The high temperature T ∗∗NI where the nematic state disappears, which is called

super-heating temperature,

T ∗∗NI = T ∗NI +
B2

24aC
. (2.33)

• The temperature TNI at which the energy of isotropic state and nematic state are

equal, which is called the nematic-isotropic transition temperature,

TNI = T ∗NI +
B2

27aC
. (2.34)

• The low temperature T ∗NI at which the isotropic state loses stability, which is called

super-cooling temperature. Theoretically the isotropic can be cooled to this tem-

perature.

The expression of fther is essentially a Taylor expansion about Q = 0, therefore the

Landau-de Gennes theory is only valid near the nematic-isotropic transition temperature

TNI , where Q ≈ 0. Based on what is stated above, we can define the equilibrium Seq as

follows,

Seq =


0 T > TNI ,

1

4C
(−B +

√
B2 − 24a(T − T ∗NI)C) T < TNI .

(2.35)
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Figure 2.4: The equilibrium nematic order parameter S as a function of temperature
T . The NI transition temperature shown here is TNI = 308.4K for nematic 5CB, and
a = 0.553× 105J/m3K, B = −0.7155× 106J/m3, C = 0.8758× 106J/m3. This gives
T ∗NI = 308.0085K, and T ∗NI = 308.4489K.

Fig. 2.4 shows the variation of the Seq as a function of the temperature T . At the

nematic-isotropic transition temperature TNI , Seq undergoes a first order discontinuous

transition.

2.4.2 Nematic Elasticity

In an ideal nematic phase, the molecules are averagely aligned along the director

n. However, in most practical circumstances, there will be some deformation of the

alignment imposed by the confined surfaces and the electric or magnetic external fields

acting on the molecules, etc. The distorted state may then be described entirely on the

vector order parameter field n(r), and the typical deformation is one or a combination

of three basic modes: splay, twist and bend [51], as shown in Fig. 2.5.
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Figure 2.5: Three basic modes of the deformation of director field of nematic liquid
crystal in confined geometry [53].

The spatial variation in the director field disturbs molecular packing and creates a

free energy penalty. This type of description leads to the Oseen-Frank model, which

provides a fundamental formula for the nematic continuum theory, and the elastic free

energy density is

fFOela =
1

2
[K1(∇ · n)2 +K2(n · (∇× n))2 +K3(n× (∇× n))2

− (K2 +K4)∇ · (n(∇ · n) + n× (∇× n))],

(2.36)

where the first three terms accounts for the splay, twist and bend of the director field

with corresponding Frank elastic constants Ki ≥ 0 of units of J/m, and the last mixed

coefficient (K2 + K4) is called saddle-splay constant which gives spatial derivatives of

the director within the surface plane. The last term is often omitted when the anchoring

energy on the surface is sufficiently strong, since the integration of it adds only a constant

and does not contribute to the bulk equilibrium configuration [52].

Based on the discussion in [54], the Frank-Oseen free energy density representation

(2.36) can be rewritten into the Q tensor representation, which reads

fQela =
1

2
L1
∂Qij

∂xk

∂Qij

∂xk
+

1

2
L2
∂Qij

∂xj

∂Qik

∂xk
+

1

2
L3
∂Qik

∂xj

∂Qij

∂xk
+

1

2
L4Qlk

∂Qij

∂xl

∂Qij

∂xk
. (2.37)
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The elastic parameters Li are related with Ki as

L1 =
1

6S2
(K3 −K1 + 3K2),

L2 =
1

S2
(K1 −K2 −K4),

L3 =
1

S2
(K4),

L4 =
1

2S3
(K3 −K1),

(2.38)

where S is the order parameter of the liquid crystal when the experimental measurement

of Li was taken.

In practice, form (2.36) and (2.37) are too complex either because the values of the

Frank elastic constants are unknown, or because the equations are difficult to solve.

Further simplification is often applied by assuming the three elastic constants are equal,

K1 = K2 = K3 = K, and the coefficient K4 = 0, which is referred as one constant

approximation. This simplification reduces (2.36) into

fFOela =
1

2
K|∇n|2, (2.39)

where |∇n|2 = (
∂ni
∂xj

)2. For the Q tensor representation form, (2.38) implies that L1 =

K

2S2
, L2 = 0, L3 = 0, L4 = 0, and consequently (2.37) reduces to

fQela =
1

2
L1
∂Qij

∂xk

∂Qij

∂xk
. (2.40)

For 5CB nematic, the splay, bend and twist elastic constants differ from the average

elastic strength K = 6× 10−12J/m by around 40% [55].

Assume the nematic liquid crystal is uniaxial, i.e., Qαβ = S(nαnβ−
1

3
δαβ), we consider

the spatial variation of both S and n, and rewrite (2.40) in terms of variation in terms
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of S and n,

fQela =
L1

2

∂Qij

∂xk

∂Qij

∂xk

=
L1

2
[
∂S

∂xk
(ninj −

1

3
δij) + S

∂(ninj)

∂xk
]2

=
L1

2
[(
∂S

∂xk
)2(ninj −

1

3
δij)

2 + 2S(
∂S

∂xk
)(ninj −

1

3
δij)

∂(ninj)

∂xk
+ S2(

∂(ninj)

∂xk
)2].

(2.41)

Since n2
i = 1, ni

∂ni
∂xk

= 0, we have

(ninj −
1

3
δij)

2 = (ninj)
2 − 2

3
ninjδij +

1

9
δ2
ij =

2

3
,

(ninj −
1

3
δij)

∂(ninj)

∂xk
= 2(ninjni

∂nj
∂xk
− 1

3
δijni

∂nj
∂xk

) = 0,

(
∂(ninj)

∂xk
)2 = 2n2

i (
∂nj
∂xk

)2 + 2(ni
∂ni
∂xk

nj
∂nj
∂xk

) = 2(
∂nj
∂xk

)2 = 2|∇n|2.

(2.42)

This reduces (2.41) to

fQela =
1

3
L1(∇S)2 + L1S

2|∇n|2 =
1

3
L1(∇S)2 +

1

2
K|∇n|2, (2.43)

which matches with (2.39) as S is a constant.

2.4.3 Bulk Free Energy

Consider the bulk free energy density fbulk which contains the elastic free energy

that penalizes the distortion of the director field, and the thermotropic free energy that

describes the nematic order,

fbulk = fela + fther. (2.44)
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Assume the variation of S only, and set |∇n| = 0, then combining (2.31) and (2.43)

yields

fbulk(S,∇S) =
1

27
(9A+ 2BS + 3CS2)S2 +

1

3
L(∇S)2. (2.45)

The minimizer of fbulk obviously plays an important role. Consider the bulk free

energy F =
∫

Ω
fbulk(S,∇S)dV for the bulk domain Ω, then,

δF =

∫
Ω

∂fbulk
∂S

δSdV +

∫
Ω

∂fbulk
∂∇S

∇(δS)dV

=

∫
Ω

(
∂fbulk
∂S

−∇ · ∂fbulk
∂∇S

)δSdV +

∫
∂Ω

∂fbulk
∂∇S

· δSds

= 0.

(2.46)

This yields

∂fbulk
∂S

−∇ · ∂fbulk
∂∇S

= 0. (2.47)

Or equivalently,

∂fbulk
∂S

− 2

3
L∆S = 0. (2.48)

The order parameter S shall be around Seq that we introduced at (2.35). Therefore,

we assume S = Seq + δS and thus,

∂fbulk
∂S

≈ ∂fbulk
∂S

∣∣∣∣
Seq

+
∂2fbulk
∂S2

∣∣∣∣
Seq

δS =
∂2fbulk
∂S2

∣∣∣∣
Seq

δS, (2.49)

which with (2.48) implies,

δS

∆S
=

2

3

L

(∂2fbulk/∂S2)|Seq

=
L

A+ 2/3BSeq + 2CS2
eq

. (2.50)

This ratio characterizes a length scale which measures the spatial scale of the variation
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of the scalar order parameter S,

ξN =

√
δS

∆S
=

√
L

a(T − T ∗NI) + 2/3BSeq + 2CS2
eq

. (2.51)

As illustrates in [42], ξN is referred as nematic correlation length, and it roughly de-

termines the size of the defect in Landau de-Gennes model, which is generally at the

order of a few nanometers. ξN will be used later to determine the mesh resolution in the

numerical simulation.

2.4.4 Surface Anchoring

The surface of different materials such as fluid particles or glass slides affect the order

of nematic liquid crystal by imposing a preferred molecular orientation. Such behavior is

called anchoring. The usual types of anchoring are homeotropic (perpendicular) anchor-

ing, and homogeneous (planar) with respect to the interface. The homeotropic anchoring

is defined for which the molecules tend to align perpendicular to the interface, in contrast,

the planar anchoring is preferred with tangential alignment, as shown in Fig. 2.6. The

anchoring can usually be controlled by treating the surface in some way, for example,

rubbing the surface in a fixed direction easily creates a strong homogeneous anchoring

along the surface, and a suitable chemical detergent coating the surface tends to attach

their polar head on the surface which imposes homeotropic anchoring [1].

For a liquid crystal system, the free energies in the bulk of nematic phase must be

supplemented by the energy associated to the surface of the system. In practice, when

strong anchoring is imposed, it introduces a well-defined direction to the director n at

the surface, which provides a boundary condition with which the bulk energy terms only

are minimized. However, in general there is a competition between the surface energy

and the bulk energy, and their summation is minimized to reach the equilibrium. In
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Figure 2.6: Surface anchoring of a nematic liquid crystal: (a) homogeneous, (b)
homeotropic [44].

other words, the total free energy F in the nematic domain Ω with surface ∂Ω reads

F =

∫
Ω

fbulkdV +

∫
∂Ω

fsurds. (2.52)

The surface free energy density being applied widely is the Rapini-Papoular type free

energy

fRPsur (Q) =
W

2
tr(QS −Q)2, (2.53)

where W > 0 is the surface anchoring strength with units of J/m2, and QS is the

surface-preferred order parameter expressed as QS = Seq(n
∗ ⊗ n∗ − 1

3
I), where Seq is

the equilibrium order parameter defined as (2.35), and n∗ is the preferred molecular

alignment. Therefore, QS imposes the preferred director at the surface along with the

equilibrium order parameter describes the degree of orientation. Typically, W is range

from 10−3J/m2 to 10−7J/m2, where 10−3 ∼ 10−4J/m2 is strong anchoring and 10−6 ∼

10−7J/m2 is weak [42]. As introduced in [51, 56], the ratio between elastic energy strength

and anchoring energy strength also introduces a length scale to describe the strength

of anchoring, namely the surface extrapolation length ξS = K/W . Assume there is an

emulsion sphere particle with radius r in the nematic continuous phase, the characteristic

energy specifying the interface anchoring and bulk elasticity are given by Wr2 and Kr,

respectively. Therefore, ξS approximates the size of the particle which balancing the

27



Theoretical Background Chapter 2

elastic energy with the surface anchoring energy. With K ∼ 10−11J/m, ξS has order of a

few nanometers for surface possess strong anchoring W ∼ 10−3J/m2, and it may go up

to a few micrometers for weak anchoring W ∼ 10−6J/m2.

As mentioned in [57], (2.53) is a special case of the more general surface anchoring

energy strength

fsur = W11e ·Qe+W21trQ
2 +W22(e ·Qe)2 +W23Qe ·Qe, (2.54)

where Wij are the material dependent constants, and e is the preferred unit vector at

the surface.

In our system, we have an isotropic material, like a polymer, nucleating in the nematic

liquid crystal continuous phase induced from temperature quenching, which is charac-

terized by a fast initial nucleation of small particles and subsequent slow growth and

coarsening. Since numerous and uncontrolled particles appear, communicate and grow

in the bulk, it is not practical to mark the interface ∂Ω and impose the boundary type

energy (2.53). Instead, a volumetric anchoring energy is considered, which gives energy

penalty primarily at the interface of the particles. Denote φ(r, t) as the volume fraction

of the isotropic polymer that changes spatially and temporally, then the interface is the

region where φ has a significant variation. In the light of (2.54), the preferred anchoring is

specified by ∇φ, and the following volumetric anchoring free energy density is introduced

for the particles [4, 6],

Fsur(Q) =

∫
Ω

Wv

2
(∇φ) ·Q(∇φ)dV =

∫
Ω

Wv

2
(∇αφ)(∇βφ)QαβdV, (2.55)

where Wv is the volumetric anchoring strength of unit J/m3, and it specifies the ori-

entation at the interface between polymer-rich phase and LC-rich phase: as Wv < 0,
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the homeotropic anchoring is favorable, in contrast, as Wv > 0, the planar anchoring is

preferred. Since Wv is volumetric, the surface extrapolation length ξS does not appear

at this case.

2.5 Topological Defects

Defects in nematic liquid crystals are localized regions where the microstructure

changes suddenly and creates striking patterns when passing polarized light. The pres-

ence of defects not only changes the physical properties in their vicinity, but also it is not

energy favorable. Topological defects may be created between confined surfaces, under

external fields or during symmetry breaking phase transitions.

Describing defects is a basic challenge in theoretical study of nematic liquid crystals.

In the continuum theory, the microstructure of the material is described in the order-

parameter space. In the Oseen-Frank model, the chosen order parameter is the unit

director field n, which measures the mean orientation of the molecules throughout the

space, and defects correspond to discontinuities in n. The discontinuity could occur as

a point, line or on a surface, which are referred as point, line or sheet defects. The

sheet defects are considered unstable since they tend to smear out into structures called

walls and are omitted in the literature. The most common defects are then point and

line defects. Line defects are usually called line disclinations, and point defect can be

characterized by the number of times n rotates through 2π as an oriented circuit around

the defect is traversed, which is called winding number. Fig. 2.7 shows the point defects

associated with their appearance under crossed polarized light, and the defect locates at

the place where the sudden change occurs.

One of the limitations of the Oseen-Frank model is that it only accounts for point

defects in 3D, and point defect in 2D or line disclinations have infinity energy and failed
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Figure 2.7: From top to bottom are director fields of the point defects (left) and the
appearance under crossed polarized light (right) for hyperbolic hedgehog (−1), −1/2,
radial hedgehog (+1), 1/2. m denotes the winding number.

30



Theoretical Background Chapter 2

to be described by this model. A more comprehensive theory is the continuum Er-

icksen model, which is also restricted to uniaxial liquid crystal as Oseen-Frank model,

however, it accounts for spatially variation of the degree of orientational order besides

n, and the state of liquid crystal is described by a pair (S,n), where S is the scalar

order parameter. This energy can describe all physically observable defects [43]. The

most general continuum theory is based on Landau-de Gennes model which can account

for uniaxial and biaxial phases. The tensor order parameter Q is used to describe the

orientational order of nematic liquid crystal. As mentioned in [58], Oseen-Frank theory

corresponds to the regime where Q have (nearly) everywhere a (nearly) doubly degenerate

eigenvalue, and the unique nondegenerate eigenvector then corresponds to the director

n under Oseen-Frank theory. Therefore, the defect in Landau-de Gennes model occurs

where Q is far from having a doubly degenerate eigenvalue. The energy of point and

line defects are finite, which makes Landau-de Gennes model suppress the Oseen-Frank

model to capture different types of defects. The analytic description of defects in the

Landau-de Gennes model is challenging, nevertheless, there has been substantial progress

in recent years in analyzing the existence, structure and stability of certain defects with

LdG model [58, 59, 60, 61, 62, 43, 41, 42].

All the three continuous models admit radial hedgehog solution, which possess a

radially aligned director field n, as shown in Fig. 2.7. The order parameter S is zero

at the origin and positive elsewhere. For Landau-de Gennes model, it has been shown

both numerically and theoretically that the radial hedgehog solution is not stable for low

temperature in the deep nematic regime [50], instead the point defect will broaden into

a +1/2 disclination ring, where each point at the ring is a defect with winding number

+1/2. The nematic is uniaxial within the ring, and it is surrounded with a torus-shaped

region of biaxially. Similar behaviour occurs for line defects, which feature a central core

of uniaxiality, surrounded by a ring of biaxiality in which the Q-tensor changes to match
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the bulk orientation [63]. As we mentioned earlier, the Oseen-Frank model can only

admit isolated point defects and the disclination ring solution does not exist. For the

Ericksen’s model, although it has been argued that it can predict the disclination line

solution, the shape and stability of the line may be quite different from that predicted

by the Landau-de Gennes model because the Ericksen’s model does not allow biaxiality.

Fig. 2.8 shows the typical structures when there are suspension of surfactant-coated

water droplets in uniformly aligned nematic liquid crystal, and the homeotropic anchoring

is preferred at the interface, which perturbs the director field and creates defects. The

surrounding perturbation and defects are often referred as elastic dipoles (top left) or

quadrupoles (top right and bottom) [35], and the configuration depends on the size of the

particle, the surface anchoring strength W , the confinement, and the external electric or

magnetic fields [64]. As shown in Fig. 2.8, the first plot is the elastic dipole characterized

by a +1 radial hedgehog sits at the center of the water droplet accompanying with a −1

hyperbolic hedgehog besides the droplet. If the particle size decreases, the hyperbolic

hedgehog can be opened up to a topologically equivalent −1/2 disclination ring around

the equator of the particle, which is called Saturn ring, and this structure represents a

quadrupole. When the surface anchoring strength gets weaker, the Saturn ring shrinks

the size until it sits directly on the partial, which is named as a surface ring. All of these

configurations have been observed in real experiments.

Specifically, the dipole has attracted considerable attention since it is found in the

striking self-assembly chaining phenomena created by the colloidal dispersions and emul-

sions in the nematic liquid crystal continuous phase [32, 33, 34, 35, 36, 37, 38], which

offers great potential applications [39, 40]. Theoretical [41] and numerical [42] studies

have been conducted to nematic liquid crystal colloids, which show that the dipole con-

figuration with −1 point defects form in between the droplets stablize the chain. The

dipole was thoroughly studied with the help of ansatz functions which were motivated
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Figure 2.8: A spherical particle with a preferred homeotropic anchoring at its sur-
face that is placed into a uniformly aligned nematic liquid crystal exhibits 3 possible
structures: the dipole where the particle is accompanied by a hyperbolic hedgehog,
the Saturn ring where the particle is surrounded by a -1/2 disclination ring around
the equator, and the surface ring configuration where the -1/2 disclination ring shrink
to sit directly on the sphere.
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by the electric field solution of electrostatic analogy that a charged metal sphere placed

into a uniform electric field. We show two representing dipole configurations in Fig. 2.9.

The left plot of Fig. 2.9 shows the case when the bulk is confined between parallel plates

treated to force planar anchoring condition at the infinity and homeotropic anchoring

condition at the interface of the particles. The water droplets itself is a +1 point defect

accompanied with a −1 hyperbolic defect, which produce the total topological charge

to be 0. The right plot shows the case when a large nematic droplet contains five wa-

ter droplets. There is a −1 hyperbolic hedgehog between each pair of particles, thus

the number of droplets is always one more than the number of hyperbolic hedgehogs,

which produce +1 total topological charge. Both of these two phenomena are explained

experimentally [33, 32].

Figure 2.9: Two dipole configurations. Left: water droplets with homogeneous planar
anchoring at infinity and homeotropic anchoring at the interface. Each particle is a
+1 radial hedgehog accompanied with a −1 hyperbolic defect, and there are exactly as
many +1 droplets as the −1 defect, which possess a total topological charge 0. Right:
nematic droplet contains water droplets. The −1 point defects appear in between of
the droplets, and there is always one less −1 defect than the number of +1 droplets,
which generate total topological charge 1.
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Chapter 3

Mathematical Model and Numerical

Method

3.1 Introduction

In this Chapter, we present the mathematical model and numerical method to learn

the the nucleation of an isotropic material in the nematic liquid crystal continuous phase

induced from temperature quenching in 2D or 3D channel. The mixture is represented by

a compositional order parameter, which is generally the volume fraction of one species,

and an orientational order parameter, which describes the nematic liquid crystal. The

Cahn-Hilliard framework with these two parameters are extensively exploited to govern

the evolution of this type of systems.

In earlier studies, phase field model with a vector order parameter n is applied

widely [2, 3, 29]. However, as we mentioned in last Chapter, the vector description

has several deficiencies to describe the nematic liquid crystal, and the Landau-de Gennes

model which applies a tensor order parameter overcomes the shortcomings and is more

comprehensive to study the domain anisotropy. Our work employs the Landau-de Gennes
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model, and the free energy of the system is then formulated with the conserved volume

fraction of one chosen species and the non-conserved tensor order parameter. The evolu-

tion of the system is governed by the coupled time-dependent Ginzburg-Landau equations

(model C) [30, 31]. Similar models have been widely used in phase separation studies

with some degree of simplification [4, 5, 6, 12, 13, 14, 15]. To the best of our knowledge,

this is the first time the full model has been utilized to learn the phase separation in

confined geometries.

In the following sections, we discuss the formulation of free energy with Landau-de

Gennes model, non-dimensionalization, kinetic equation that minimizes the free energy

and governs the evolution, initial and boundary conditions, and the numerical scheme

applied.

3.2 Free Energy Formulation

Consider a binary mixture of isotropic fluid and nematic liquid crystal confined be-

tween two rigid walls, the system can be described with the tensor order parameter Q

and a compositional order parameter φ ∈ [0, 1] that represents the local volume fraction

of the flexible isotropic polymer in the binary mixture. Assuming the incompressibility

of the system, the local volume fraction of the nematic liquid crystal is thus 1−φ. There-

fore, the pure, bulk phases are identified with φ = 0 and φ = 1 for the nematic liquid

crystal and the isotropic fluid, respectively.

In order to model the thermodynamic behavior of our system, the free energy density

functionals introduced in Chapter 2 are the fundamental elements that govern the evolu-

tion of the mixture and drive the system to the equilibrium state. The total free energy

density f of the system depend on the Q, φ and their gradients, f = f(Q,∇Q, φ,∇φ),

and it consists of two parts: the Flory-Huggins free mixing energy, which governs phase
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separation, and the Laudau-de Gennes free energy, which governs the nematic compo-

nent. Therefore,

f(Q,∇Q, φ,∇φ) = fmix(φ,∇φ) + fnem(Q,∇Q, φ,∇φ). (3.1)

According to Flory-Huggins theory, fmix is given by (2.10). On the basis of the Q

tensor model, the free energy of the nematic ordering includes three parts: an orienta-

tional distortion energy density of the nematic, fela, a thermotropic energy density that

describes the preferred phase of the nematic, fther, and the anchoring energy density

of the nematic molecules at interfaces, fanc. The surface anchoring along the two rigid

walls is strong and imposed as a strict boundary condition instead of an energy penalty.

Therefore, we have

fnem(Q,∇Q, φ,∇φ) = (1− φ)[fela(∇Q) + fther(Q, φ) + fanc(Q,∇φ)]. (3.2)

To avoid detailed quantitative modeling of materials, the single elastic constant ap-

proximation is used, and fela is chosen as (2.40). The volumetric anchoring (2.55) is used

for the interface of the LC-rich and polymer-rich phase since the nucleation generates

uncontrolled interface which is not markable. In addition, the homeotropic anchoring

is the prevalent, preferential orientation of the director field at the experimentally ob-

served surfaces of the nucleated droplets, and thus we consider W < 0 mainly for fanc

given by (2.55). The thermotropic energy density fther takes the form (2.25), and we

assume T ∗NI = Tc− dφ, where Tc is super-cooling temperature in the absence of isotropic

fluid, and the relationship implies that nematic ordering is disturbed by the existence

of isotropic phase so that the transition temperature is a decreasing function of φ. This

form has been used theoretically [4] and it matches with the experimental observations
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[65]. More explicitly,

fmix(φ,∇φ) =
λc
2

[|∇φ|2 +
βφ lnφ+ (1− φ) ln(1− φ) +

g0

T
φ(1− φ)

2ε2c
],

fnem(Q,∇Q, φ,∇φ) = (1− φ)[
Kc

2
(∇γQαβ)(∇γQαβ) +

Wc

2
(∇αφ)(∇βφ)Qαβ

+
ac(T − (Tc − dφ))

2
TrQ2 +

Bc

3
TrQ3 +

Cc
4

(TrQ2)2],

(3.3)

where we use the subscript c to denote the dimensional parameters. With a rectangular

domain Ω = [0, Lxc] × [0, Lyc] for 2D channel, or Ω = [0, Lxc] × [0, Lyc] × [0, Lzc] for 3D

channel, the total free energy is

F (Q,∇Q, φ,∇φ) =

∫
Ω

f(Q,∇Q, φ,∇φ)dV. (3.4)

The parameters can be nondimensionalized by selected characteristic length and en-

ergy scales Lc and Ec, respectively. Then, the free energy parameters are made dimen-

sionless with λ = λcLc/Ec, ε = εc/Lc,W = WcLc/Ec, K = KcLc/Ec, A = AcL
3
c/Ec, B =

BcL
3
c/Ec, C = CcL

3
c/Ec, Lx = Lxc/Lc, Ly = Lyc/Lc, Lz = Lzc/Lc,∆x = ∆xc/Lc,∆y =

∆yc/Lc,∆z = ∆zc/Lc.

Therefore, the total free energy functional reads

F (Q,∇Q, φ,∇φ) = Fmix(φ,∇φ) + Fnem(Q,∇Q, φ,∇φ), (3.5)
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where

Fmix(φ,∇φ) =

∫
Ω

d~r
λ

2
[(∇φ)2 +

βφ lnφ+ (1− φ) ln(1− φ) + gφ(1− φ)

2ε2
],

Fnem(Q,∇Q, φ,∇φ) =

∫
Ω

d~r(1− φ)[
K

2
(∇γQαβ)(∇γQαβ) +

W

2
(∇αφ)(∇βφ)Qαβ

+
A

2
TrQ2 +

B

3
TrQ3 +

C

4
(TrQ2)2].

(3.6)

3.3 Kinetic Equation

The evolution of the conserved volume fraction of isotropic phase φ and the non-

conserved orientational order parameter Q are governed by the coupled time-dependent

Ginzburg-Landau(TDGL) equations (model C),

∂φ

∂t
= ∇ · (Mφ∇

δF

δφ
) + η,

∂Qαβ

∂t
= −MQ

δF

δQαβ

+ ηαβ + λδαβ,

(3.7)

where Mφ and MQ are the mobility coefficients that depend on the molecular weights of

isotropic and liquid crystal molecules as well as the local compositional order parameter

φ and orientational order parameter Q. The general kinetic equation expresses mobility

coefficients as a matrix, which could allow one order parameter to be driven by gradient

of the other. Here for simplicity, they are both assumed to be constants as employed by

Motoyama et al. in [4].

The thermal noise η and ηαβ are neglected. δαβ stands for the Kronecker delta and λ

is determined by the traceless condition TrQ = 0. We note that a Lagrangian multiplier

for the symmetry constraint, Qij = Qji, is omitted here because non-symmetrical terms
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in (2.37) were assumed to be zero. The system (2.12) comprises six coupled nonlinear

parabolic partial differential equations, with traceless condition is simplified as Q33 =

−Q11 −Q22.

Since Q is a traceless and symmetric matrix, there are only 5 independent components

of Q matters,

Q =


Q11 Q12 Q13

Q12 Q22 Q23

Q13 Q23 −Q11 −Q22

 .
The following computes the variation derivatives of (3.7), which generates the bound-

ary condition and differential equations of φ and Qαβ. In order to perform the variation

of F with repsect to Q and φ, one explicitly introduces the perturbation of φ and Qαβ

as φ = φ0 + εψ, Qαβ = (Qαβ)0 + εPαβ, where Pαβ and ψ are the testing function of Qαβ

and φ, respectively. Let v denote the outward normal vector to the boundary ∂Ω. The

Gauss divergence theorem are used to generate surface terms, as shown in the box,

∂

∂ε

∫
Ω

[
1

2
(∇(φ+ εψ))2]dV

∣∣∣∣
ε=0

=

∫
Ω

(∇φ∇ψ)dV

= −
∫

Ω

ψ∆φdV +

∫
Ω

∇ · (ψ∇φ)dV

= −
∫
ψ∆φdV +

∫
∂Ω

ψ
∂φ

∂v
ds ,

(3.8)
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∂

∂ε

∫
Ω

(1− φ)
K

2
(∇γ{Qαβ + εPαβ})(∇γ{Qαβ + εPαβ})dV

∣∣∣∣
ε=0

=

∫
Ω

K(1− φ)∇γQαβ∇γPαβdV

= −
∫

Ω

KPαβ∇γ{(1− φ)∇γQαβ}dV +

∫
Ω

K∇γ{Pαβ(1− φ)∇γQαβ}dV

= −
∫

Ω

KPαβ∇ · [(1− φ)∇Qαβ]dV +

∫
∂Ω

KPαβ(1− φ)
∂Qαβ

∂v
ds ,

(3.9)

∂

∂ε

∫
Ω

(1− φ− εψ)
W

2
(∇α{φ+ εψ})(∇β{φ+ εψ})QαβdV

∣∣∣∣
ε=0

=−
∫

Ω

ψ
W

2
(∇αφ)(∇βφ)QαβdV +

∫
Ω

W (1− φ)(∇βφ)(∇αψ)QαβdV

=−
∫

Ω

ψ
W

2
(∇αφ)(∇βφ)QαβdV −

∫
Ω

Wψ∇α{(1− φ)∇βφQαβ}dV

+

∫
Ω

W∇α{ψ(1− φ)∇βφQαβ}dV

=−
∫

Ω

ψ
W

2
(∇αφ)(∇βφ)QαβdV −

∫
Ω

ψW∇α{(1− φ)∇βφQαβ}dV

+

∫
∂Ω

ψW (1− φ)∇φ ·QT · vds .

(3.10)

Thus, we should impose the following boundary conditions to eliminate the boxed

terms in (3.8)-(3.10). For Qαβ,

∫
∂Ω

KPαβ(1− φ)
∂Qαβ

∂v
ds = 0. (3.11)

For φ, ∫
∂Ω

ψ[
∂φ

∂v
+W (1− φ)∇φ ·QT · v]ds = 0. (3.12)
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The coupled system of the equations that govern the evolution of the mixture are

1

MQ

∂Qαβ

∂t
= K∇γ[(1− φ)∇γQαβ]− (1− φ)[

W

2
(∇αφ)(∇βφ)

−W
6

(∇φ)2δαβ + {A+ C(TrQ2)}Qαβ +B(Q2)αβ −
B

3
TrQ2δαβ],

1

Mφ

∂φ

∂t
= ∇ · ∇[λ(−∇2φ+

β ln(φ)− ln(1− φ)− 2gφ

4ε2
) + (1− φ)

ad

2
TrQ2

−W∇α{(1− φ)(∇βφ)Qαβ} −
K

2
(∇γQαβ)(∇γQαβ)− W

2
(∇αφ)(∇βφ)Qαβ

−A
2
TrQ2 − B

3
TrQ3 − C

4
(TrQ2)2].

(3.13)

The terms −W
6

(∇φ)2δαβ and −B
3
TrQ2δαβ are being added to Qαβ equations to maintain

the traceless property of Q tensor.

42



Mathematical Model and Numerical Method Chapter 3

More explicitly,

1

MQ

∂Q11

∂t
= K∇ · [(1− φ)∇Q11]− (1− φ)[

W

2
(∇xφ)2 − W

6
(∇φ)2

+{A+ C(TrQ2)}Q11 +B(Q2)11 −
B

3
TrQ2],

1

MQ

∂Q12

∂t
= K∇ · [(1− φ)∇Q12]− (1− φ)[

W

2
(∇xφ)(∇yφ)

+{A+ C(TrQ2)}Q12 +B(Q2)12],

1

MQ

∂Q13

∂t
= K∇ · [(1− φ)∇Q13]− (1− φ)[

W

2
(∇xφ)(∇zφ)

+{A+ C(TrQ2)}Q13 +B(Q2)13],

1

MQ

∂Q22

∂t
= K∇ · [(1− φ)∇Q22]− (1− φ)[

W

2
(∇yφ)2 − W

6
(∇φ)2

+{A+ C(TrQ2)}Q22 +B(Q2)22 −
B

3
TrQ2],

1

MQ

∂Q23

∂t
= K∇ · [(1− φ)∇Q23]− (1− φ)[

W

2
(∇yφ)(∇zφ)

+{A+ C(TrQ2)}Q23 +B(Q2)23],

Q33 = −Q11 −Q22,

1

Mφ

∂φ

∂t
= ∇ · ∇[λ(−∇2φ+

β ln(φ)− ln(1− φ)− 2gφ

4ε2
) +

ad

2
(1− φ)TrQ2

−W∇α{(1− φ)(∇βφ)Qαβ} −
K

2
(∇γQαβ)(∇γQαβ)− W

2
(∇αφ)(∇βφ)Qαβ

−A
2
TrQ2 − B

3
TrQ3 − C

4
(TrQ2)2].

(3.14)

The equilibrium profile of the Q and φ are found by solving the above set of coupled

nonlinear equations with proper initial and boundary conditions.
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3.4 Initial and Boundary Condition

First we explore the relationship between Q and n, S, T rQ2, T rQ3, which are required

to display the director field and biaxiality parameter of the mixture,

TrQ2 = Q2
11 +Q2

22 +Q2
33 + 2(Q2

12 +Q2
13 +Q2

23), (3.15)

TrQ3 = Q3
11 +Q3

22 +Q3
33 + 3Q11(Q2

12 +Q2
13) + 3Q22(Q2

12 +Q2
23)

+ 3Q33(Q2
13 +Q2

23) + 6Q12Q13Q23.

(3.16)

For the uniaxial case, TrQ2 =
2

3
S2, which provides a fast way to obtain scalar order

parameter S from Q. However, since biaxial case might occur and we use a more general

way to update S and n. As mention in previous section, 2S/3 and n are found as the

largest eigenvalue and the corresponding eigenvector of tensor Q.

3.4.1 Initial Condition

The initial condition of director field n0, scalar order parameter S0, and local volume

fraction of isotropic phase φ0 are provided. Consequently Q0 can be initialized by n0

and S, i.e., Q0 = S0(n0 ⊗ n0 −
1

3
I).

We consider an initial state defined by a small perturbation of the uniform mixture,

φ0(xi, yj, zk) = 0.4 + γijk, (3.17)

where γijk is a uniformly distributed random number in (−0.001, 0.001).

Assume that the glass walls are coated with polyvinylalcohol and rubbed, which forces

the nematic continuous phase to homogeneously align parallel to the slides, this leads to
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the following initial director field n0,

n0(xi, yj, zk) =
(1, ωijk, 0)√

1 + ω2
ijk

, (3.18)

where ωijk is a random number that uniformly distributes between (0, ηj) with

ηj =


1.4(j∆y)

Ly
if j∆y <

Ly
2
,

1.4(Ly − j∆y)

Ly
if j∆y >=

Ly
2
,

. (3.19)

where Ly is the spacial size between the walls. This makes n0 aligns perfectly parallel

to the slides, and perturbed in terms of the distance to the wall. The farther away from

the wall, the more n0 is skewed from the planar direction.

The initial S0 is set to be the equilibrium of the nematic liquid crystal, which is given

in ( 2.35),

S0 =
1

4C
(−B +

√
B2 − 24a(T − Tc + dφ0)C). (3.20)

3.4.2 Boundary Condition

The boundary conditions of Q and φ are required to satisfy (3.11)-(3.12) in order to

eliminate the boundary terms generated from variation of calculus. With a rectangular

domain Ω = [0, Lx]× [0, Ly]× [0, Lz], where the walls locate at XZ plane and Ly denotes

the spacial size between the walls, it is natural to set periodic boundary conditions along

X and Z directions, which ensures (3.11) and (3.12) to be hold along the horizontal
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directions. Therefore, for any (x, y, z) ∈ Ω,

Q(x, y, z, t) = Q(x+ Lx, y, z, t) = Q(x, y, z + Lz, t), (3.21)

φ(x, y, z, t) = φ(x+ Lx, y, z, t) = φ(x, y, z + Lz, t). (3.22)

Figure 3.1: Mixture confined between two rigid surfaces N, S.

The walls are usually glass slides that being coated and rubbed to obtain strong

uniform long-range anchoring, which makes the molecules homogeneously aligned parallel

to the walls. This implies the prescribed boundary values for Q at the walls, and (3.11)

is satisfied with test function Pαβ which vanishes at the walls. More specifically,

Q

∣∣∣∣
y=0, Ly

= QS = Seq(τ ⊗ τ −
1

3
I), (3.23)

where Seq is determined by (2.35), and τ is the in plane director field along the walls

whose direction is determined by how the glass slides are rubbed.

Now we explore the boundary condition of φ at the walls to satisfy (3.12). Denote

the unit normal vector of the walls as v, with the planar anchoring at the wall, τ ·v = 0,
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which implies,

Q · v = Seq(τ ⊗ τ −
1

3
I) · v = −1

3
Seq · v, (3.24)

therefore,

0 =
∂φ

∂v
+W (1− φ)∇φ ·QT · v

=
∂φ

∂v
− W

3
(1− φ)Seq∇φ · v

=
∂φ

∂v
(1− W

3
S +

W

3
φSeq),

(3.25)

which implies,

∂φ

∂v

∣∣∣∣
y=0, Ly

= 0. (3.26)

The Neumann boundary condition at the walls is sufficient for φ to satisfy (3.12).

Since the differential equation of φ is 4-th order in (3.13), another boundary condition

of φ is required. It is derived from the fact that φ is a conserved quantity, i.e.

d

dt

∫
Ω

φdV =

∫
Ω

∇ · (Mφ∇
δF

δφ
)dV =

∫
∂Ω

Mφ
∂

∂v
(
δF

δφ
)ds = 0. (3.27)

Along X and Z boundaries, this holds because of the periodic boundary condition. Along

Y boundary, we need to set
∂

∂v
(
δF

δφ
)

∣∣∣∣
y=0, Ly

= 0. More explicitly,

∂(λ(∇2φ))

∂v

∣∣∣∣
y=0, Ly

=
∂

∂v
[λ(

β ln(φ)− ln(1− φ)− 2gφ

4ε2
) + (1− φ)

ad

2
TrQ2

−W∇α{(1− φ)(∇βφ)Qαβ} −
K

2
(∇γQαβ)(∇γQαβ)− W

2
(∇αφ)(∇βφ)Qαβ

− A

2
TrQ2 − B

3
TrQ3 − C

4
(TrQ2)2)]

∣∣∣∣
y=0, Ly

.

(3.28)

We conclude that the boundary conditions of φ and Q are: (i) along X direction,

periodic for both Q and φ, and (ii) along Y direction, prescribed value for Q, Neumann
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for φ, i.e. Q = QS,
∂φ

∂v
= 0 and (3.27) are to be hold.

3.5 Numerical Method

Typical numerical methods used in liquid crystal system for free energy minimization

are finite difference, finite element and lattice Boltzmann approach. They all start with

molecular fields for tensor order parameter Q or vector order parameter n with given

boundary conditions. In our system, the compositional order φ is also involved. They are

all discretized on the rectangular domain that represents the confined geometry. Both

refining and fixed grids are explored in various studies. The non-uniform refining grid

usually reduces resolution in the regions where variation of variables is small, and attains

dense resolution around the interface of the particles, which helps precisely describe the

defects. The square [66], staggered [67], cubic [68, 42], triangular [69] grids have all been

explored. In addition, adaptive timestepping has also been used extensively in phase

separation studies.

In our system, since numerous droplets nucleate and coalescence in the nematic con-

tinuous phase, and there is no track of interface, therefore we apply the uniform grid with

finite difference method. At each time step, we need to solve five second order partial dif-

ferential equations (PDEs) for Qαβ and one fourth order PDE for φ. We enforce strictly

the traceless requirement for Q by determining Q33 directly from this condition. This

coupled system is numerically stiff due to the presence of many high order spatial deriva-

tives. In addition, there are two distinctly different time scales, a fast one associated with

an initial fast phase separation and a slow one in which domain coarsening takes place.

In order to relax the numerical stiffness, we employ a semi-implicit method in which we

identify the linearly dominant terms at small scales and discretize these implicitly while

treating the remaining nonlinear terms explicitly.
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For 2D channel, we assume there are no gradients in the z direction, i.e. ∇zf = 0 for

any of the relevant functions f . The time discretized form of (??) are presented below.

3.5.1 Solver for Q

The Q equations in (3.13) are discretized along temporal direction as follows,

1

MQ

Qj+1
αβ −Q

j
αβ

∆t
= µ1(∆Qαβ)j+1 + g(φj, Qj

αβ), (3.29)

where µ1 =
max(K(1− φ))

2
=
K

2
is a numerical constant parameter introduced to relax

the timestep stability constraint [70], and

g(φ,Qαβ) =(K(1− φ)− µ1)∆Qαβ −K∇φ∇Qαβ − (1− φ)[
W

2
(∇αφ)(∇βφ)

− W

6
(∇φ)2δαβ + {A+ C(TrQ2)}Qαβ +B(Q2)αβ −

B

3
TrQ2δαβ].

(3.30)

These equations are solved in a rectangular domain with periodic boundary condition

along X and Z directions. Therefore, we can do discrete Fourier transform along X and

Z, respectively, and obtain a linear system along Y direction. The subscripts are omit

for simplicity.

We discretize the domain Ω = [0, Lx]×[0, Ly]×[0, Lz] intoM, N, P parts, respectively.

Apply central difference to approximate the Laplacian, for m = 2, 3, · · · ,M − 1, n =

2, 3, · · · , N − 1, p = 2, 3, · · · , P − 1,

1

MQ

Qj+1
mnp −Qj

mnp

∆t
=µ1

Qj+1
m+1,n,p − 2Qj+1

mnp +Qj+1
m−1,n,p

(∆x)2

+ µ1

Qj+1
m,n,p+1 − 2Qj+1

mnp +Qj+1
m,n,p−1

(∆z)2

+ µ1

Qj+1
m,n+1,p − 2Qj+1

mnp +Qj+1
m,n−1,p

(∆y)2
+ gmnp(φ

j, Qj).

(3.31)
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With the following DFT,

Qmnp =
1

MP

M∑
k=1

P∑
q=1

Q̂knq exp(
2πi(m− 1)(k − 1)

M
) exp(

2πi(p− 1)(q − 1)

P
),

Q̂knq =
M∑
m=1

P∑
p=1

Qmnp exp(
−2πi(m− 1)(k − 1)

M
) exp(

−2πi(p− 1)(q − 1)

P
),

(3.32)

it implies,

1

MQ

Q̂j+1
knq − Q̂

j
knq

∆t
= LkqQ̂

j+1
knq + µ1

Q̂j+1
k,n+1,q − 2Q̂j+1

knq + Q̂j+1
k,n−1,q

(∆y)2
+ ĝknq(φ

j, Qj), (3.33)

where

Lkq =
2µ1

(∆x)2
(cos(

2π(k − 1)

M
)− 1) +

2µ1

(∆z)2
(cos(

2π(q − 1)

P
)− 1). (3.34)

Rearrange the equation yields

Q̂j+1
k,n+1,q − 2Q̂j+1

knq + Q̂j+1
k,n−1,q

(∆y)2
=

(1− LkqMQdt)Q̂
j+1
knq − Q̂

j
knq − ĝknq(φj, Qj)MQdt

µ1MQ∆t
, (3.35)

which can be discretized as a tridiagonal linear system for each k = 1, 2, · · · ,M, q =

1, 2, · · · , P ,



−2− αkq 1

1 −2− αkq 1

· · · · · · · · ·

1 −2− αkq 1

1 −2− αkq





Q̂n+1
k,2,q

...

Q̂n+1
k,N−1,q


=



βk,2,q − Q̂k,1,q

βk,3,q
...

βk,N−2,q

βk,N−1,q − Q̂k,N,q


.

(3.36)

50



Mathematical Model and Numerical Method Chapter 3

where

αkq = (
1

µ1MQ∆t
− Lkq

µ1

)(∆y)2,

βknq = (−
ĝjknq(φ

j, Qj)

µ1

− Q̂knq

µ1MQ∆t
)(∆y)2,

(3.37)

and the terms Q̂k,1,q and Q̂k,N,q are determined by the Dirichlet boundary condition of Q

at the walls.

3.5.2 Solver for φ

Assume the mobility Mφ is a constant, the equation of φ in (3.13) is discretized as

follows,

1

Mφ

φj+1 − φj

∆t
= ∇ · ∇[−λ(∆φ)j+1 + µ2φ

j+1 + h(φj, Qj
αβ)], (3.38)

where

µ2 = max | d
dφ
λ(
β ln(φ)− ln(1− φ)− 2gφ

2ε2
)| (3.39)

is used to relax the timestep stability constraint [70], and

h(φ,Qαβ) =λ(
β ln(φ)− ln(1− φ)− 2gφ

2ε2
)− µ2φ+

ad

2
(1− φ)TrQ2

−W∇α{(1− φ)(∇βφ)Qαβ} −
K

2
(∇γQαβ)(∇γQαβ)

− W

2
(∇αφ)(∇βφ)Qαβ −

A

2
TrQ2 − B

3
TrQ3 − C

4
(TrQ2)2.

(3.40)

Similar with Q equations, the periodic boundary condition for φ ensures the DFT

along X and Z directions. Along Y there are 2 boundary conditions,

∂φ

∂y
= 0, (3.41)
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∂(∆φ)

∂y
=

1

λ

∂h

∂y
(3.42)

where

1

λ

∂h

∂y
=

1

λ
({(1− φ)ad− A− CTrQ2}Qαβ

∂Qαβ

∂y
−B(Q2)αβ

∂Qαβ

∂y

+ (
W

2
(φx)

2 −W (1− φ)φxx)
∂Q11

∂y
−W (1− φ)φx

∂(∇αQ1α)

∂y

−K(∇γQαβ)
∂(∇γQαβ)

∂y
).

(3.43)

At the walls we have a Dirichlet boundary condition for Q (3.23) and Neumann

boundary conditions for φ(3.41) and for the Laplacian of φ (3.42), respectively. The latter

involves derivatives of Q and since these are not specified at the boundary, condition (??)

represents a notable challenge. Other numerical investigations have avoided this problem

by opting to use instead the homogeneous Neumann boundary condition. We prove below

that this condition can be expressed in the following form:

Proposition: The discretization form of (3.38) remains the same if we simplify the

boundary condition (3.42) as follows

∂3φ

∂y3
=

1

λ

∂h

∂y
= 0. (3.44)

Proof: Consider 2D discretization of (3.38), for m = 1, · · · ,M, n = 1, · · · , N ,

1

Mφ

φj+1 − φj

∆t
− µ2(∆φ)j+1 + λ(∆φ)j+1

xx + λ(∆φ)j+1
yy = hjxx + hjyy. (3.45)

The terms that relevant to boundary condition (3.42) is Σ = λ(∆φ)j+1
yy − hjyy. After
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imposing the ghost points φm,0 and hm,0 for the bottom wall,

ΣS = λ
(∆φ)j+1

m,2 − 2(∆φ)j+1
m,1 + (∆φ)j+1

m,0

(∆y)2
−
hjm,2 − 2hjm,1 + hjm,0

(∆y)2
. (3.46)

Assume the boundary condition
∂(∆φm,1)

∂y
=

1

λ

∂(hm,1)

∂y
= ξ, by central difference it reads

(∆φ)m,2 − (∆φ)m,0
2∆y

= ξ,

1

λ

hm,2 − hm,0
2∆y

= ξ,

(3.47)

which implies,

ΣS = λ
2(∆φ)j+1

m,2 − 2(∆φ)j+1
m,1

(∆y)2
−
hjm,2 − 2hjm,1

(∆y)2
+

2λξ∆y

(∆y)2
− 2λξ∆y

(∆y)2

= λ
2(∆φ)j+1

m,2 − 2(∆φ)j+1
m,1

(∆y)2
−
hjm,2 − 2hjm,1

(∆y)2
.

(3.48)

This is the discretization form when we assume that φyyy = 0 and
∂h

∂y
= 0. The north

boundary can be treated similarly by imposing ghost points φm,N+1 and hm,N+1. There-

fore, (3.44) can be used and makes its enforcement more tractable than (3.42).

For 3D simulation, we want to take the following DFT along X and Z directions,

φmnp =
1

MP

M∑
k=1

P∑
q=1

φ̂knq exp(
2πi(m− 1)(k − 1)

M
) exp(

2πi(p− 1)(q − 1)

P
),

φ̂knq =
M∑
m=1

P∑
p=1

φmnp exp(
−2πi(m− 1)(k − 1)

M
) exp(

−2πi(p− 1)(q − 1)

P
).

(3.49)

After the discretization for (3.38) and Fourier transform, we could derive that for k =
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1, · · · ,M, n = 1, · · · , N, q = 1, · · · , P,

1

Mφ

φ̂j+1
knq − φ̂

j
knq

∆t
=− λ(α1k + α1q + 2α2kα2q)φ̂

j+1
knq + µ2(α2k + α2q)φ̂

j+1
knq

− λ(φ̂j+1
knq )yyyy − 2λ(α2k + α2q)(φ̂

j+1
knq )yy + (∆h)jknq,

(3.50)

where

α1k =
1

(∆x)4
(6− 8 cos(

2π(k − 1)

M
) + 2 cos(

4π(k − 1)

M
)),

α1q =
1

(∆z)4
(6− 8 cos(

2π(q − 1)

P
) + 2 cos(

4π(q − 1)

P
)),

α2k =
1

(∆x)2
(2 cos(

2π(k − 1)

M
)− 2),

α2q =
1

(∆z)2
(2 cos(

2π(q − 1)

P
)− 2).

(3.51)

Rearrange the equation yields,

λ(φ̂j+1
knq )yyyy + 2λ(α2k + α2q)(φ̂

j+1
knq )yy + λ(α1k + α1q + 2α2kα2q)φ̂

j+1
knq+

µ2(α2k + α2q)φ̂
j+1
knq +

φ̂j+1
knq

Mφ∆t
=

φ̂jknq
Mφ∆t

+ (∆h)jknq.

(3.52)
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This corresponds to the linear system,



β3 β2 + β4 β1 + β5

β2 β1 + β3 β4 β5

β1 β2 β3 β4 β5

· · · · · · · · · · · · · · ·

β1 β2 β3 β4 β5

β1 β2 β3 + β5 β4

β1 + β5 β2 + β4 β3





φ̂n+1
k,1,q

...

...

...

φ̂n+1
k,N,q



=



φ̂jk1q

Mφ∆t
+ (∆h)jk1q

...

...

...

φ̂jkNq
Mφ∆t

+ (∆h)jkNq



,

(3.53)

where

β1 =β5 =
λ

(∆y)4
,

β2 =β4 =
2λ(α2k + α2q)− µ

(∆y)2
− 4λ

(∆y)4
,

β3 =
1

M∆t
+ λ(α1k + α1q + 2α2kα2q)− µ(α2k + α2q)

+
−4λ(α2k + α2q) + 2µ

(∆y)2
+

6λ

(∆y)4
.

(3.54)

Note that in order to obtain h(φ,Q) at the walls (n = 1 and n = N) we extrapolate

∇νQαβ from the interior values. The algorithm flow is shown in Fig. 3.2.

3.6 Parameters

In this section, we want to specify the parameters used in the simulation. There is

a large number of parameters in the Landau-de Gennes model. We have chosen these

parameters to approximate those of a 5CB nematic liquid crystal [42]. Their values
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Figure 3.2: Algorithm flow of the coupled system. The dashed line at 0 and N + 1
are ghost points induced for φ and h, whose values are found by Neumann boundary
condition.

and the numerical mesh sizes are provided in Table 3.1. The quenching temperature,

and initial composition were selected so that some phase separation or nucleation takes

place before there is any significant orientational order away from the walls. Two sets

of thermotropic energy parameters ( a, B, and C) are considered (labeled Set 1 and Set

2 in Table 3.1) to obtain an initially nematic and isotropic state of the LC component

as determined by Seq, which is evaluated using (2.35) with φ = 0.4 as the initial, mean

polymer concentration. The two values of Seq in Table 3.1 correspond to a weakly nematic

initial state of the LC for Set 1 and an isotropic state for Set 2.

The correlation length ξN , which gives a measure of the orientational defect size

if there is any, was computed using (2.51). Consequently, to adequately resolve such

small length scale we take the uniform mesh size to be ∆xc = ∆yc = 10nm. The

(fictitious time) step size is ∆t = 0.1 and remains constant through all simulations. For

2D experiment, the rectangular domain size is set to be Lxc = 2.56µm and Lyc = 2.56µm.

For 3D case, Lxc = 1.28µm, Lyc = 1µm, and Lzc = 1.28µm. In both cases, the normal-

wall direction is y.

As mentioned in Section 3.2, the parameters are nondimensionalzed by choosing a
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Parameters Set 1 Set 2

λc 4× 10−11J/m *
Kc 4× 10−11J/m *
Wc −1× 10−10J/m *
ac 0.553× 105J/m3K 8× 105J/m3K
Bc −0.7155× 106J/m3 −0.1× 106J/m3

Cc 0.8758× 106J/m3 1.6× 106J/m3

MQ 10−20m3/J∆t *
Mφ 10−4m3/J∆t *
β 1 *
g0 2.8K *
T 1.3K *
Tc 2K *
d 2K *
εc 50nm *
Seq 0.384 0
ξN 22.29nm 85.05nm

∆xc 10nm *
∆yc 10nm *
∆t 0.1 *

Table 3.1: Two sets of parameters used for numerical simulations. Set 1 corresponds
roughly to 5CB nematic liquid crystal [42], and ∗ in set 2 takes the same value as in
set 1. The temperature related parameters are taken from [4].

characteristic length scale Lc and a characteristic energy scale Ec. We take Lc = 1µm

and Ec = 1× 10−14J .

We also want to check the evolution of the total volume fraction, which is expected

to be preserved, and the total free energy, which shall decrease monotonically per step.

The total amount of these quantities in the rectangular domain is approximated by the
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composite trapezoidal rule, which reads

∫∫
Ω

f(x, y)dxdy ≈ 1

4
∆x∆y(f(0, 0) + f(0, H) + f(L, 0) + f(L,H)

+ 2
M−1∑
i=1

(f(xi, 0) + f(xi, H)) + 2
N−1∑
j=1

(f(0, yj) + f(L, yj))

+ 4
M−1∑
i=1

N−1∑
j=1

f(xi, yj)).

(3.55)

For all simulation reported in this paper, it is verified that the free energy decreased

monotonically per step and the total volume fraction is preserved accurately with a 10−13

variation after 104 steps.
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Chapter 4

2D Order in Confined Walls

4.1 Introduction

In this Chapter, we present our numerical results of ordering and structure formation

of an isotropic material, such as a flexible polymer, nucleating in a liquid crystal (LC)

continuous phase in a 2D channel. The polymer-LC system is confined between two

parallel walls and periodic boundary conditions are imposed in the parallel-wall direction.

The walls are usually glass slides that being coated and rubbed to obtain uniform long-

range anchoring, which makes the molecules homogeneously aligned parallel to the walls.

We are particularly concerned with the interplay of phase separation and nematic ordering

induced by wall anchoring so we impose strong planar anchoring at the walls and examine

both homeotropic and planar anchoring at the polymer-LC surfaces.

The Chapter is organized as follows. First, we start with the Cahn-Hilliard equa-

tion which contains plain mixing energy only, and the nematic effect is omitted. The

result generated are compared with the full system, so that we could have a better un-

derstanding about how a nematic component affects the morphology of nucleation under

temperature quenching. Next, we present two fabulous structures found with appropriate
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parameter sets, which are chain order and lamellae order. The effect of elastic energy

strength, anchoring energy strength and mixing energy strength are discussed. Lastly, we

have shown that the Landau-de Gennes model in this framework is incapable to preserve

the dipole configuration, instead the −1 point defect opens up to two −1/2 point defects

in 2D and a −1/2 disclination ring in 3D, which represents a quadrupole. Therefore, the

dipole cannot be sustained and it provides an explanation about why the chain order

structure cannot be arrested in our model.

4.2 Cahn-Hilliard Equation

First, we consider only mixing free energy in the system, and the free energy generated

by nematic component is ignored. Therefore, the system only involves a compositional

order parameter φ, and the corresponding Cahn-Hilliard equation governs the evolution

of φ,

∂φ

∂t
= ∇ ·Mφ∇µ, (4.1)

where

µ =
δFmix
δφ

= λ(−∇2φ+
β ln(φ)− ln(1− φ)− 2gφ

4ε2
). (4.2)

The simulation is run with step ∆t = 0.1 up to t=15000 from the slightly perturbed

initial phase φ ∼ 0.4, the quenching temperature is T = 1.3, which is considered a

relatively shallow quench. The results are shown in Fig. 4.1, where the isotropic-rich

phase is shown in blue and the nematic-rich phase is red. The colorbar shows the volume

fraction of the red phase. Initially, there is diffusion of the volume fraction at t = 2000,

and the small isotropic particles start to nucleate at t = 3000 throughout the entire

domain and subsequently grow the size with coalescence at the following steps.

We have also explored different quenching temperature T at T = 1.1, 1.2. As shown
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Figure 4.1: From left to right phase separation evolution at steps
t = 2000, 3000, 4000, 20000 for Cahn-Hilliard equation containing mixing

energy only. The quenching temperature T = 1.3, capillary length ε =
∆x

2
.

Figure 4.2: The initial step at which minority phase starts nucleate with quenching
temperature (a) T = 1.1, (b)T = 1.2. The step is (a) t = 100, (b) t = 400.
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in Fig. 4.2, T has a significant effect on the speed and extent of phase separation. The

initial step that nucleation occurs with T = 1.1, 1.2 are t = 100, 400, respectively,

whereas for T = 1.3 is t = 4000. With smaller T and deeper quenching, the larger force

drives a faster and stronger nucleation, and the volume fraction φ also possess extremer

value. As T = 1.3, φ = 0.27, 0.72 characterize the LC-rich and polymer-rich region,

respectively. With deeper quench, the extreme values for φ are 0.19, 0.82 at T = 1.2,

and 0.13, 0.87 for T = 1.1. It is also worth noting that deeper quench yields smaller

droplet size as is evidenced in Fig. 4.2.

4.3 Nucleation with Nematic Component

4.3.1 Chain Order

Now we consider the full system with nematic effects, and compare the structures

created with the Cahn-Hilliard equation.

The experimental results of Loudet, Barois, and Poulin [32] show spectacularly that

a polymer phase can nucleate in a confined nematic LC matrix to form highly ordered

droplet chains whose orientation can be controlled by wall anchoring. We examine next

to which extent this fascinating phenomenon can be captured by the Landau-de Gennes

model.

We consider a relatively shallow quench (T=1.3) so that some phase separation occurs

prior to when the orientational order becomes significant. The surface anchoring at the

interface of the polymer particles is homeotropic, i.e. the preferential nematic orientation

at the polymer-LC interfaces is normal to those surfaces. This is also the prevalent,

preferential anchoring at the experimental surfaces of the nucleated droplets. The strong

wall anchoring is homogeneously align along the wall. After nondimensionalization of
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parameters in Set 1 of Table 3.1, the values of relevant parameters are a = 5.528, B =

−71.55, and C = 87.58 for the thermotropic energy, and W = −0.01, K = 0.004,

and λ = 0.004 for the anchoring strength, the elastic constant, and the mixing energy

strength, respectively.

Figure 4.3: Time sequence of the polymer volume fraction φ and the subsampled
director field for a polymer phase nucleating in a liquid-crystal matrix at (nondimen-
sional times) (a) t = 1000, (b) t = 2000, (c) t = 3000, and (d) t = 12000. The
thermotropic energy parameters are a = 5.528, B = −71.55, C = 87.58. LC-rich
phase in red and polymer-rich phase in blue.

Figure 4.3 displays a series of snapshots of the phase separation process in the 2D

channel. The polymer-rich phase is shown in blue and the LC-rich phase in red. A

subsampled, in-plane component of the director field is also displayed. In the early stages

of the spinodal decomposition [Fig. 4.3(a)], a row of polymer-rich droplets is nucleated
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adjacent to each wall in two corresponding LC-rich layers. The wall anchoring induces

an orientational order that quickly propagates from the walls inward, toward the channel

center, and produces a director field that is nearly horizontal in about 2/3 of the domain.

LC-rich layers immediately next to the walls have also been observed in the simula-

tions by Xia et al. [6] for a similar system but with free wall anchoring (i.e. no preferred

nematic orientation enforced at the walls) and with an affinity wall potential. Here,

however, the LC-layers are induced by the planar wall anchoring, which has a dramatic

long range effect as Fig. 4.3(b) shows; the director field is horizontal at the domain

center and more rows of polymer-rich droplets have formed. In contrast, in a typical

spinodal decomposition of a binary mixture with a dominant component as modelled by

the Cahn-Hilliard equation, the minority phase starts to nucleate throughout the entire

domain without any ordering.

Figure 4.4: The left and right plots are the order parameter S and biaxiality β(Q)
taken at t = 3000.

The nucleated droplets create some distortion on the orientational order induced by

the walls. Note that the surface anchoring is not strong (the director field is not entirely

normal to the polymer-LC surfaces). In the current model, to simulate homeotropic

surface anchoring W has to be negative and so a large |W | necessitates a larger mixing

energy strength λ to keep the system well-posed. As a result, when we increase both
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parameters we would see elongated polymer-rich domains instead of circular droplets. In

other words, there is a delicate balance of wall and surface anchoring, mixing energy,

orientational elasticity and thermotropic effects that comes into play within the Landau-

de Gennes model to give rise to this extraordinary ordered droplet chains. As shown in

Fig. 4.3(c), drop coalescence takes place in the middle of the channel at a later time and

the polymer-rich domains continue to coarsen [Fig. 4.3(d)].

In contrast to the phase separation process depicted in Fig. 4.3, the experiments of

Loudet, Barois, and Poulin [32] show that the coarsening is arrested once the droplets

reach a critical size, so that the chain structure is preserved and stable. This is explained

in [32] by the presence of a −1 hyperbolic point defect form between each droplet in a

chain, which represents the elastic dipole. As shown in Fig. 4.4, our numerical solution

obtains a continuous order parameter S without any singularity shows up. In addition,

the entire domain is nearly uniaxial with biaxiality parameter β(Q) is closed to zero.

Therefore, there is no indication of orientational defects in our result. In the absence of

defect, there is no mechanism to stop the coarsening of the polymer-rich droplets and

eventually the chain structure ordering is destroyed.

4.3.2 Effect of Elastic Energy

We want to check the effect of the elastic energy, which critically decides the dis-

tortion of the directional field and further influence the formation of the structure.

Fig. 4.5 shows the evolution with a weak elastic energy strength K = 0.001 at t =

500, 1000, 1500, 12000, respectively. With this smaller elastic energy, the initial LC-

rich layer still appears besides the wall in (a), as we have also observed with K = 0.004.

However, the distortion penalty is not strong enough to force the directional field aligns

homogeneously along the wall before nucleation starts. After the nucleation starts in (b),

65



2D Order in Confined Walls Chapter 4

droplets appear throughout the entire domain without any order, and the director field

is distorted by the surface anchoring. After a long time of running, the droplet size grows

with coalescence and there is no order found in the director field.

Figure 4.5: Nucleation of isotropic phase with K = 0.001 at (a) t=500, (b) t=1000,
(c) t=1500, (d) t=12000.

4.3.3 Effect of Surface Anchoring

We also examine the effect of the surface anchoring strength at the interface between

isotropic phase and nematic liquid crystal phase. Taking the same parameters as in pre-

viously discusses case but with different anchoring energy at the interface. Fig. 4.6 shows

snapshots of the planar interface anchoring with W = 0.03, no interface anchoring with
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W = 0 at step t = 4500. As we can see, the droplets tend to be elongated horizontally

or vertically to increase the interface area and adapt to the preferential surface anchor-

ing, and the finger-like regions are formed, which are different from what we captured in

Fig. 4.3.

Figure 4.6: (a) and (b) plots the volume fraction associated with subsampled director
field with W = −0.02, 0.03, which represents strong homeotropic anchoring/planar
anchoring at the interface, respectively. The step t = 4500. Isotropic fluid phase in
blue.

Also, it is worth noting that the mixing energy strength plays a critical role to the

formation of the droplets structure. With dominant mixing energy, the dynamic behaves

like Cahn-Hilliard type separation that the droplets coalescence at an earlier stage with

preserved round-like shape. However, with smaller mixing energy, the droplets tend to

be elongated horizontally or vertically to accommodate with the anchoring condition at

the interface of the droplets. Our model restricts the ratio between anchoring energy

strength W with mixing energy strength λ to be relatively small in order to maintain

the well-postedness of the differential equation (3.13). Therefore, we can not introduce a

strong anchoring at the interface, and a proper mixing energy strength is significant to

obtain the chain-like structure with round-shaped particle without much deformation.
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4.3.4 Lamellae Order

We consider next the same set-up as before, an initial mean polymer volume fraction

of φ = 0.4, but now the LC in the mixture is initially in isotropic phase. Such state is

obtained by changing the thermotropic energy coefficients to a = 80, B = −10, C = 160,

which with φ = 0.4 give Seq = 0. All the other parameters remain the same (Set 2 in

Table 3.1). As before, the wall anchoring remains planar. We consider first homeotropic

surface anchoring. Figure 4.7 shows snapshots of the phase separation process in the

2D channel. At early times [Fig. 4.7(a)] a layer of LC-rich material develops adjacent to

the each wall, just as in the chain structure nucleation case, but now these first LC-rich

layers are accompanied by equal polymer-rich layers. As initial isotropic binary mixture

phase-separates at the walls, the strong anchoring there induces the lamellae. A similar

appearance of phase-separated layers adjacent to walls has been observed in a thin film

of a polymer blend [71], a diblock copolymer [72], and a polymer dispersed nematic [6]

when they were confined between two walls. As Fig. 4.7(a) shows, these layers dras-

tically modify the orientational field, turning it vertically aligned to comply with the

homeotropic surface anchoring preference, a significant distance from the walls. This

orientational distortion favors the formation of more lamellae [Fig. 4.7(b)], which alter-

nate in polymer-rich and LC-reach composition, and propagate from the walls in to fill

the entire channel [Fig. 4.7(c)(d)]. Once this occurs the system is in equilibrium and the

lamellae will not coarsen, in striking contrast to what happens in spinodal decomposition

of a binary isotropic mixture (as modeled by the Cahn-Hilliard equation).

To have a more explicit understanding of the pattern, we also monitored the evolution

of the energies and related them with the formation of the system structures. As shown

in Fig. 4.8, the total free energy is decreasing coordinately while the layers are forming

and propagating, and it reaches to the minimum when the equilibrium configuration is
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Figure 4.7: From top left to bottom right Time sequence of the volume fraction φ and
the subsampled director field for isotropic lamellae in a nematic liquid crystal phase
at t = 500, 1500, 3500, 12000 with a = 80, B = −10, C = 160, W = −0.01. Nematic
phase in red and isotropic fluid phase in blue.
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Figure 4.8: From left to right The evolution of the anchoring energy, elastic energy
and total free energy in the domain for the lamellae case.

formed. It is the thermotropic energy which keeps decreasing and initiates the formation

of the structure. The anchoring energy and elastic energy at the interface tend to balance

with each other, which also contributes to the structure. Again, we provide the order

parameter S and biaxiality β(Q) at Fig. 4.9. There is no indication of defect since S

contains no singularities. The confinement walls introduce two lines of biaxial region

besides the wall.

Surface anchoring plays a crucial role in the formation of lamellae from an initially

isotropic mixture such as the one just considered (parameter Set 2 in Table 3.1). If we

choose planar surface anchoring, as shown in Fig. 4.10, the system phase separates into

lamellae growing from the walls inward, just as with homeotropic anchoring. However,
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Figure 4.9: The left and right plots are the order parameter S and biaxiality β(Q)
taken at t = 12000.

the orientational field undergoes a very different distortion that the orientational field

aligns along the surface of the polymer to match the planar anchoring requirement. If

we do not impose anchoring at the surface of isotropic particle, the result becomes quite

different. As evident in Fig. 4.11, the director field is still homogeneous planar to adapt

to the strong wall anchoring, however, without surface anchoring, the layers are thicker

than before and produce a distorted region when the top and bottom regions catach up

with each other, as shown in (b) and (c). It then takes 105 steps to straighten the region

and obtain a final lamellae, which is not equally spaced in the region. This indicates

that the surface anchoring, no matter planar or homeotropic, help stabilize the lamellae

configuration.

4.4 Elastic Dipole

The elastic dipole is characterized by a −1 hyperbolic point defect accompanied with

the +1 radial droplet defect. Since the dipole is critical to the formation of highly self-

assembly phenomenon, we want to investigate it using our model. It is difficult to capture

the appearance of defect when numerous particles nucleate from temperature quenching.
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Figure 4.10: Time sequence of the polymer volume fraction φ and the subsampled
director field for the phase separation of a polymer-LC mixture where the LC compo-
nent is initially in isotropic state (thermotropic energy parameters a = 80, B = −10,
C = 160) with planar surface anchoring W = 0.01 at (a) t = 500, (b) t = 1500, (c)
t = 3500, (d) t = 12000. LC-rich phase is in red and polymer-rich phase is in blue.
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Figure 4.11: Time sequence of the polymer volume fraction φ and the subsampled
director field for the phase separation of a polymer-LC mixture where the LC compo-
nent is initially in isotropic state (thermotropic energy parameters a = 80, B = −10,
C = 160) without surface anchoring W = 0 at (a) t = 3000, (b) t = 4000, (c) t = 5000,
(d) t = 130, 000. LC-rich phase is in red and polymer-rich phase is in blue.
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Figure 4.12: Graph of volume fraction φ as a function of distance distance d to the
center of the particle.

However, it is feasible to start with an initial configuration which is close to dipole, and

governing its evolution with the same system (3.13).

4.4.1 One Droplet

We consider the simplest case that a single droplet of polymer is dispersed in a nematic

matrix with an orientational field that approximately corresponds to a dipole.

Assume the volume fraction φ = φ0 outside the droplet and φ = φ1 inside the droplet,

whose value are taken as the local minimum of the mixing energy potential fmix. Set

T = 1.3, then φ0 = 0.27, φ1 = 0.72. To make a smooth variation of φ through the

interface, we define φ(x) using hyperbolic function as below,

φ(x) = φ0 +
φ1 − φ0

1 + exp(
12

∆x
(d− rc))

, (4.3)

where rc is the radius of the droplet, ∆x is the thickness of the interface, and d = ||x−x||

is the Euclidean distance between the position x with the center of the droplet x.
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The order parameter S is set the same way:

S(x) = S0 +
S1 − S0

1 + exp(
12

∆x
(d− rc))

, (4.4)

where S ∼ S1 = 0 inside the droplet, and S ∼ S0 outside the droplet, which is estimated

by (2.35).

Based on the plot of the hyperbolic function in Fig. 4.4.1, we find that,

d ≥ rc + ∆x/2, − x ≥ 6, φ→ φ0, S → S0,

d ≤ rc −∆x/2, − x ≤ −6, φ→ φ1, S → S1.

To define the director field n, we artificially make it to be close to a elastic dipole,

n = (1, 0, 0)− Pr2
c

x− x

d3
, (4.5)

where P is a constant which determines the initial position of the −1 point defect, here

we choose P = 2.08.

We set the parameters a = 5.528, B = −71.55, C = 87.58, λ = 0.004, K = 0.002,

W = −0.0015, and Fig. 4.13 shows the experiment result, where the left plots represent

the initial volume fraction accompanied with subsampled director field, the order param-

eter S and the biaxiality parameter β(Q). Apparently that the initial configuration is

close to dipole, with a hyperbolic hedgehog sits besides the particle. There is a singu-

larity point at the order parameter S which also indicates the defect existence, and the

entire region is uniaxial. The right three plots corresponds to t = 50, 000 with ∆t = 0.02,

which shows that the defect splits into two −1/2 defects, continuously moved away from

each other, and transformed into quadrupoles. Therefore, the elastic dipole can not be

sustained by the model. In addition, the two −1/2 defects are surrounded by a ring of
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Figure 4.13: The top/middle/bottom plots show the volume fraction φ with the sub-
smapled director field n, the scalar order parameter S, and the biaxiality parameter
β(Q), respectively. The left plots are the initial setting at t = 1 which approximates
an elastic dipole with a −1 defect besides the droplet, and the right plots are at
t = 50, 000. The parameters are a = 5.528, B = −71.55, C = 87.58, λ = 0.004,
K = 0.002, W = −0.0015. LC-rich phase in red and polymer-rich phase in blue.
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biaxility region in which the order parameter has a discontinuity. Similar observations

have been found that the hedeghog point defect is unstable for large droplet radii and low

temperatures with Landau-de Gennes model, instead forming a −1/2 disclination loop

about the particle which is surrounded by a region of biaxiality [50]. Therefore, in the

absence of elastic dipole, there is no mechanism in the Landau-de Gennes model to stop

the coarsening of the polymer-rich droplets and eventually the chain structure ordering

is destroyed, which further explains the result in Section 4.3.1.

4.4.2 Two Droplets Chain

Next we consider the case when there are two droplets align with each other. The

initial configuration is defined similarly as above.

φl(x) = φ0 +
φ1 − φ0

1 + exp(
12

∆x
(d1 − rc1))

,

φr(x) = φ0 +
φ1 − φ0

1 + exp(
12

∆x
(d2 − rc2))

,

(4.6)

where d1 and d2 are the Euclidean distance between the position x and the center of the

droplet x1 and x2, respectively. The order parameter S is defined coordinately. This

describes two particles chain up in the nematic host with radial orientational field around

them. Besides each particle there resides a −1 point defect, which represents a dipole.

Apply the same set of parameters with the one particle case, Fig. 4.14 presents the

initial structures on the left and the intermediate structures with t = 10, 000 on the

right. Again, the −1 defects open up to two −1/2 point defects as before, and we expect

that the two droplets will eventually coalescence together. Therefore, the chain ordered

structure is not stable in our model.

77



2D Order in Confined Walls Chapter 4

Figure 4.14: The top/middle/bottom plots show the volume fraction φ with the sub-
smapled director field n, the scalar order parameter S, and the biaxiality parameter
β(Q), respectively. The left plots are the initial setting at t = 1 which approximates
an elastic dipole with a −1 defect besides the droplet, and the right plots are at
t = 10, 000. The parameters are a = 5.528, B = −71.55, C = 87.58, λ = 0.004,
K = 0.002, W = −0.0015. LC-rich phase in red and polymer-rich phase in blue.
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4.4.3 3D Dipole

The other observations have shown that the hedgehog point defect transits into a

−1/2 disclination loop about the particle [50], and we instead observed two −1/2 point

defects in a 2D channel which may reflect a cross-section of the 3D ring defect. Here we

verify the formation of disclination loop by exploring further the 3D case.

Apply the same set of parameters with the one particle case in 2D, Fig. 4.15 presents

the initial structures on the left and the intermediate structures with t = 10, 000 on

the right. The plot shows the isosurface of volume fraction φ, order parameter S and

biaxiality parameter β(Q). As shown in the plots, the −1 hyperbolic defect opens up to

a disclination ring which is surrounded by the biaxial region, as we expected. It is also

worth noting that as time goes, the ring continuously grows the radius and moves toward

the droplet. Eventually it locates at the surface of the droplet and changes the shape of

the droplet. In the same experiment of two droplets dipole chain in 3D, the two droplets

again absorb the disclination ring defect, change their shape, and elongate to shrink the

distance between the droplets.
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Figure 4.15: The top/middle/bottom plots show the isofurfaces of volume fraction φ
with the subsmapled director field n, the scalar order parameter S, and the biaxiality
parameter β(Q), respectively. The left plots are the initial setting at t = 1 which
approximates an elastic dipole with a −1 defect besides the droplet, and the right
plots are at t = 10, 000. The parameters are a = 5.528, B = −71.55, C = 87.58,
λ = 0.004, K = 0.002, W = −0.0015. XZ plane represents the wall.
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3D Order in Confined Walls

In this Chapter, we present the same simulations as last Chapter but in the 3D channel.

Again, various surface anchoring and in-plane anchoring are explored.

5.1 Cahn-Hilliard Equation

As before, we study with the Cahn-Hilliard equation, which only take into account the

mixing energy. Subsequently, we explore the effect of the nematic components. Fig. 5.1

shows a time series of the isosurface of volume fraction in the rectangular domain X =

128, Y = 100, Z = 128, where XZ plane locates the walls. (a) represents the initial

state in which the mixture is slightly perturbed with uniform distribution around φ = 0.4.

After that, there is diffusion of φ at (b), and the minority phase starts to nucleate at

(c), and keeps growing the size by coalescence at (d). The result is similar with what we

observed in 2D case.
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Figure 5.1: From left to right phase separation evolution at steps
t = 1, 2000, 4000, 10000 for 3D Cahn-Hilliard equation containing mixing

energy only. The quenching temperature T = 1.3, capillary length ε =
∆x

2
.
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5.2 Cylindrical Order

In this section, we take the nematic effect into account and present the morphology

found in 3D nucleation with various interface and wall anchoring conditions. By retaining

the same set of parameters as the 2D droplet chain order case, we investigate the same

system but in a 3D channel. The relevant physical parameters and the initial condition

are the same as in the 2D channel discussed in last Chapter, and homeotropic surface

anchoring is chosen. The wall anchoring is again planar but now we consider two different

orientations: 1) aligned with the x-axis, and 2) aligned at a 45 degree angle between the x

and z axes. Fig. 5.2 displays isosurfaces of polymer volume fraction φ and a subsample of

the director field at time t = 1100, 3500 for the planar wall anchoring 1) and 2). Again,

there is first a LC-rich region enriched besides the walls, then the orientational order

induced by the wall anchoring and the favored homeotropic surface anchoring produce

chains of elongated cylinders of polymer-rich mate rial instead of droplets, in contrast to

the 2D case.

As seen in the bottom two plots in Fig. 5.2, wall anchoring controls the orientation

of these chain structures, which now align at a 45 degree angle between the x and z axis.

The nucleation of perfectly ordered layers of polymer-rich cylinders takes place, just as

in the 2D counterpart, from the walls inward, until coarsening and coalescence destroy

the order.

Even though homeotropic surface anchoring is more prevalent in these systems than

the planar one, we consider latter to examine its effects on the nucleated morphology.

Fig. 5.3 shows that again polymer-rich cylinders are nucleated but now the axis of these

cylinders is oriented in the the direction of the wall anchoring. It is important to note that

just as in the 2D case, the wall anchoring quickly produces a layer of LC-rich material

adjacent to the walls at which the nucleation of the first cylinder layers begins.
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Figure 5.2: The top (bottom) two plots show isosurfaces and a sample of the director
field at t = 1100 (left) and t = 3500 (right) when the wall anchoring is along the x
axis (top) and at a 45 degree angle (bottom). The surface anchoring is homeotropic
and the thermotropic energy parameters are a = 5.528, B = −71.55, C = 87.58.
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Figure 5.3: Isosurfaces and a sample of the director field for nucleation with planar
surface anchoring and planar wall anchoring along the (a) x direction and (b) in a 45
degree angle between the x and z axes. The time step is t = 3500. The thermotropic
energy parameters are a = 5.528, B = −71.55, C = 87.58.

5.3 Lamellae Order

Again, we investigate the case for a = 80, B = −10, C = 160, and set the other

parameters to be unchanged as above. In the 3D channel, the phase separation and

the formation of lamellae follows the same dynamics as the 2D case. Fig. 5.3 presents

isosurfaces of the polymer volume fraction and a subsampled director field at two different

times for both wall anchoring aligned with the x axis and at a 45 degree angle between

the x and z axis. The surface anchoring is homeotropic. As in the 2D case, once the

phase-separated layers cover the entire channel, the system reaches an equilibrium and

coarsening is arrested. Fig. 5.3 changes the anchoring at the surface of the particles to

be planar. Like before, the director field are fully controlled by the interface anchoring

and the strong long-range wall anchoring.
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Figure 5.4: The top (bottom) two plots show isosurfaces of φ and a sample of the
director field at t = 500 (left) and t = 3500 (right) when the wall anchoring is
along the x axis (top) and at a 45 degree angle (bottom). The surface anchoring is
homeotropic and the thermotropic energy parameters are a = 80, B = −10, C = 160.
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Figure 5.5: Isosurfaces and a sample of the director field for nucleation with planar
surface anchoring and planar wall anchoring along the (a) x direction and (b) in a 45
degree angle between the x and z axes. The time step is t = 3500. The thermotropic
energy parameters are a = 80, B = −10, C = 160.
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Chapter 6

Conclusion

We have presented a numerical investigation, both in 2D and 3D, of the ordering and

structure formation of a polymer nucleating in a LC continuous phase induced from

temperature quenching. The polymer-LC system is confined between two parallel walls

which are rubbed and coated to provide the strong planar long-range wall anchoring.

Both homeotropic and planar surface anchoring are considered at the polymer-LC inter-

face. The model is the Ginzburg-Landau theory for the conserved composition density

φ, which represents the volume fraction of the polymer, and the non-conserved nematic

tensor order parameter Q, which describes the orientation of the rigid rod-like nematic

molecules. To our knowledge, this is the first 3D numerical investigation of nucleation in a

confined geometry. Our study demonstrates that the presence of the nematic liquid crys-

tal has profound effect on the morphology of nucleation of the minority phase. Moreover,

the long-range wall anchoring and surface anchoring dramatically affect the orientation of

the ordered structures. With certain set of parameters, remarkable polymer-rich domain

chain structures are observed when quenching from the nematic initial state in both the

2D and 3D channel. However, there is no apparent mechanism in this Landau-de Gennes

model to arrest the coarsening of the polymer-rich domains and eventually the chain
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structure order is destroyed. As argued in [32], the highly ordered array of monodisperse

droplet chains observed in experiments is preserved and stable during phase separation

because of the formation of elastic dipole, which is characterized by −1 topological point

defects formed in between the +1 radial droplet defects. However, we show with a nu-

merical example that the −1 point defect opens up to two −1/2 point defects in 2D,

and a −1/2 disclination ring in 3D, or equivalently, the dipoles cannot be sustained and

eventually transits to quadrupoles in the Landau-de Gennes model. The use of variable

mobility that depends on both Q and φ might provide a mechanism to arrest or slow

down the coarsening once the ordered structures have formed.

We also find a stable lamellae order when quenching from isotropic phase. The system

reaches equilibrium with alternating polymer-rich and LC-rich layers, and the coarsening

is arrested. While the model considered here has limitations, the results reveal the strong

effects that the orientational order induced by the presence of a liquid crystal component

and by anchoring can have on nucleation and phase separation, and underlines a potential

mechanism for controlling morphology in this type of binary systems.
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[12] E. Soulé, N. Abukhdeir, and A. Rey, Thermodynamics, transition dynamics, and
texturing in Polymer-Dispersed Liquid Crystals with Mesogens exhibiting a direct
isotropic/smectic-A transition, Macromolecules 42 (2009), no. 24 94869497.

[13] A. Lapena, S. Glotzer, S. Langer, and A. Liu, Effect of ordering on spinodal
decomposition of liquid-crystal/polymer mixtures, Phys. Rev. E 60 (1999), no. 1
R29.
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