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Abstract

BACKGROUND: Education influences brain health and dementia. However, its impact

across regions, specifically Latin America (LA) and the United States (US), is unknown.

METHODS:Atotal of 1412participants comprising controls, patientswithAlzheimer’s

disease (AD), and frontotemporal lobar degeneration (FTLD) from LA and the US

were included. We studied the association of education with brain volume and func-

tional connectivity while controlling for imaging quality and variability, age, sex, total

intracranial volume (TIV), and recording type.

RESULTS:Education influenced brainmeasures, explaining 24%–98%of the geograph-

ical differences. The educational disparities between LA and the US were associated

with gray matter volume and connectivity variations, especially in LA and AD patients.

Education emerged as a critical factor in classifying aging and dementia across regions.

DISCUSSION: The results underscore the impact of education on brain structure and

function in LA, highlighting the importance of incorporating educational factors into

diagnosing, care, and prevention, and emphasizing the need for global diversity in

research.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.
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Highlights

∙ Lower education was linked to reduced brain volume and connectivity in healthy

controls (HCs), Alzheimer’s disease (AD), and frontotemporal lobar degeneration

(FTLD).

∙ Latin American cohorts have lower educational levels compared to the those in the

United States.

∙ Educational disparities majorly drive brain health differences between regions.

∙ Educational differences were significant in both conditions, but more in AD than

FTLD.

∙ Education stands as a critical factor in classifying aging and dementia across regions.

1 BACKGROUND

Formal educational attainment is an important indicator of socioe-

conomic disparities,1–3 significantly influencing brain health3–6 and

dementia.7–10 Education also fosters brain structure and function,

shaping the gray matter volume11,12 and connectivity13,14 of the

frontal, temporal, and occipitoparietal areas. Individuals who have

achieved higher education tend to have a lower incidence and delayed

onset of dementia.9,15 Compensatory educational mechanisms may

mitigate tau and amyloid beta aggregation in those key brain areas

or primary targets in neurodegeneration.16,17 Thus, higher education

is associated with reduced risks, prevalence, and delayed cognitive

decline in Alzheimer’s disease (AD) and frontotemporal lobar degener-

ation (FTLD).9,18

Latin America (LA) is characterized by larger socioeconomic dis-

parities, leading to a higher prevalence of dementia compared to the

United States (US).7,19 Latinos face a larger prevalence of dementia, a

problem set to escalate in the upcoming decades,20 influenced by lim-

ited educational opportunities.8,19 Nonetheless, previous reports on

dementia, including education measures, have multiple gaps. First, the

effects of education on brain health and dementia have been predom-

inantly examined only as a protective factor in epidemiological studies

or as a confounder in group comparisons.7,9 Second, the impact of edu-

cation on brain structure and function in the context of dementia has

rarely been evaluated.21,22 Third, there are no comparative data on

the effect of education on brain structure and function across diverse

geographical populations with varying levels of socioeconomic dispar-

ities, including LA.23 Thus, it remains unknown whether education

affects brain structure and function differently in aging and dementia

in LA compared to the US. Filling these knowledge gaps is impor-

tant to understand the differences in dementia presentation between

these regions7,18,19,23 and the potential variable impacts on different

dementia types (AD and FTLD).

In this study, we aimed to elucidate the impact of educational

disparities on the brain structure and function of healthy controls

(HCs) and individuals with dementia (AD and FTLD) across LA and

the US in two geographical samples exhibiting comparable levels of

cognitive impairment. We assessed gray matter volume and network

measurements through voxel-based morphometry and resting-state

functional connectivity, respectively. We addressed potential con-

founders related to imaging quality and inter-scan variability while

controlling for age, sex, total intracranial volume, and type of resting-

state recording. First, we assessed geographical variations in the brain

correlates of education. Subsequently we explored the geographical

differences explained by education on whole-brain analysis across

conditions. Finally, employing machine learning algorithms, we disen-

tangled the contributions of demography, education, cognition, and

measures of brain structure and function to a multiclass classification

(i.e., each group against all others) of conditions (HCs, AD, FTLD)

and geographical regions (LA and US). Using a large sample size

(n = 1412), the multiclass algorithms were trained with 80% of the

data and testedwith the remainder, following a 5-fold, cross-validation

procedure for robust model assessment. Considering the pronounced

economic disparities in LA, we hypothesized a substantial influence

of education on brain structure and function with a specific gradient

depending on geographical distribution (LA > US) and condition

(HCs < AD = FTLD). We also hypothesized that education would

emerge as a top predictor in the multiclass group characterization,

encompassing demography, cognition, gray matter volume, and func-

tional connectivity. The Alzheimer’s Disease Neuroimaging Initiative

(ADNI) has been the cornerstone of this project, augmented by data

sets from additional initiatives.We anticipate that our results will have

significance for understanding phenotypical heterogeneity in healthy

aging and dementia24–26 and its social determinants,2,27 providing

valuable insights for developing tailored models and personalized

care.19
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2 MATERIAL AND METHODS

2.1 Participants

This cross-sectional observational study comprised 1412 participants

(meanage = 66.8, SDage = 9.4; 55.8% women) from LA and the US,

with 625 HCs with preserved cognition (Mini-Mental State Exam,

MMSE > 24 points) and no antecedents of psychiatric and neurologi-

cal conditions. These antecedents were verified through a structured

clinical interview, confirming that none of the HCs had any relatives

with a history of neurodegenerative diseases. A total of 385 partic-

ipants met the criteria for probable AD.28 A group of 402 subjects

with FTLD29 met diagnostic criteria for different variants, including

behavioral variant frontotemporal dementia,30 primary progressive

aphasia,31 and motor syndromes.32,33 LA participants were recruited

from the Multi-Partner Consortium to Expand Dementia Research

in Latin America (ReDLat, with participants from Mexico, Colombia,

Peru, Chile, and Argentina).34 US participants were non-Latino indi-

viduals fromReDLat, ADNI,35 and the neuroimaging in frontotemporal

dementia (NIFD)36 repositories. To ensure data reliability, we excluded

subjects who reported a history of alcohol/drug abuse or psychi-

atric or other neurological illnesses. Supporting the clinical criteria,

each dementia diagnosis presented its expected atrophy pattern (Sup-

plementary Material 1). ReDLat gathers data from different centers

across countries, utilizing a standardized data framework and har-

monized diagnostic protocols (e.g.,19,37–40). Exclusion criteria include

participants with syndromes other than AD, FTLD, or impairments

that prevent task completion. Diagnosis is determined by consensus

among expert groups41,42 at each site, taking into account cognitive

and neurological examinations, clinical interviews, and magnetic res-

onance imaging (MRI).43 A standardized battery captures clinicians’

evaluations.44 Both clinical and cognitive assessments across ReD-

Lat sites are harmonized, normalized, and validated.40 All clinicians

undergo training and certification by a specialized team34 and adhere

to a quality control protocol. Demographic variables on each condi-

tion and region for both T1-weight and resting-state functional MRI

(rs-fMRI) samples are shown in Table 1 (more details in Supplementary

Material 2). Education wasmeasured as the number of schooling years

completed satisfactorily in any country. All participants provided writ-

ten informed consent in agreement with the Declaration of Helsinki.

The institutional review boards from each recruitment site and the

Executive Committee of ReDLat approved the study procedures.

2.2 MRI acquisition

Images were obtained from 16 different scanner models (Table

S3), following ADNI protocols. Whole-brain structural T1-weighted

and resting-state sequences were registered in the whole sample

(n = 1412) and from a subset of participants (n = 1263), respectively.

To ensure quality, all images were carefully selected and confirmed by

visual inspection and quantitative metrics calculated using MRIQC44

(see Supplementary Material 4 for further details). We included two

RESEARCH INCONTEXT

1. Systematic review: The impact of education disparities

on brain structure and function, particularly in demen-

tia, is not yet understood. Latin America (LA) experiences

more pronounced socioeconomic disparities and limited

educational opportunities compared to the United States

(US), potentially contributing to the higher prevalence of

dementia in LA than in the US.

2. Interpretation: Results showed a robust effect of edu-

cation on aging and dementia, especially in LA. This

calls for incorporating education into strategies for diag-

nosing, managing, and preventing dementia. Specifically,

improved public policies in LA must increase educational

levels to reduce the impact of dementia.

3. Future directions: Our research underscores the need

to increase the diversity of registries in dementia world-

wide, analyzing the geographical differences between

populations and highlighting the impact of education

on these discrepancies. The Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) could explore similar effects

across other regions, emphasizing the requirement for

globally adaptable study designs.

resting-state recordings, closed and open eyes, to increase the sam-

ple size for rs-fMRI data. The potential impact of the scanner models

on our analyses was assessed through machine learning algorithms.

The scanner model did not affect the multiclass classification of condi-

tions (SupplementaryMaterial 3). In addition, we controlled variability

using another approach. Because site harmonization can affect results

due to scanner variability across geographic regions, we implemented

an intra-subject harmonization for each modality. In previous work,

we have combined data from ReDLat with ADNI databases, showing

adequate comparability.45

2.3 MRI preprocessing

T1-weighted images were pre-processed and analyzed using the

voxel-based morphometry method with the Computational Anatomy

(CAT12) toolbox (https://neuro-jena.github.io/cat/) in Matlab R2022a.

Thepre-processingpipeline includedbias-field correction, noise reduc-

tion, skull stripping, segmentation, and normalization to the Montreal

Neurological Institute (MNI) space at a 0.5 mm isotropic resolution,

following the default parameters of the toolbox. CAT12 applies an

intra-subject harmonization approach based on normalizing the data

to the mean global intensity for each subject. Subsequently, gray mat-

ter segmentations underwent smoothing with a Gaussian kernel of

6 × 6 × 6 mm. The homogeneity and orthogonality of the resulting

samples were thoroughly verified.

https://neuro-jena.github.io/cat/
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TABLE 1 Demography and cognition of subjects in the T1 and rs-fMRI datasets.

HC (LA/US) AD (LA/US) FTLD (LA/US)

T1

Sample size 318/307 193/192 208/194

Age (mean years) 64.6/69.5a 72.2/67.2a 65.8/63.7a

Sex (no. female) 205/175a 129/106 102/78

Education (mean years of education attainment) 15.1/17.2a 10.5/16.3a 12.9/16.3a

Cognition (meanMMSE) 28.6/28.1 18.7/17.8 22.3/22.5

rs-fMRI

Sample size 240/332 168/152 177/194

Age (mean years) 67.5/62.8a 72.4/67.9a 66.2/63.7a

Sex (number of females) 159/184a 114/75a 87/77

Education (mean years of education attainment) 15.4/16.9a 10.9/16.3a 12.7/16.2a

Cognition (meanMMSE) 28.7/27.9 20.4/19.9 22.3/22.6

Note: Kruskal–Wallis test was used to compare continuous variables, as the data were non-normally distributed (Shapiro–Wilk test p < 0.001). The Χ2 test

for equality of proportions with continuity correction was used to compare sex variables. All p-values were adjusted using Bonferroni correction and set to
p< 0.05.

Abbreviations: AD, Alzheimer’s disease; FTLD, frontotemporal lobar degeneration; HCs, healthy controls; LA, Latin American; MMSE, Mini-Mental State

Exam; US, United States.
aSignificant differences in the comparison between geographical regions (LA vs. US).

Preprocessingof rs-fMRIwas conductedusing the fmriprep (version

22.0.2) standard pipeline to ensure replicability.46 Further steps and

analyses were performed using the CONN22.a toolbox.47 CONN pre-

processing involved smoothing with a Gaussian kernel of 6 × 6 × 6mm,

de-noising through linear regression to account for confounding

effects of white matter, cerebrospinal fluid, realignment, and scrub-

bing. A band-pass filter within the frequency range of 0.008–0.09 Hz

was also applied. The global correlation measure was adopted to

characterize brain connectivity, quantifying the average correlation

coefficient between each voxel and the rest of the brain.47 To enhance

comparability in functionalmeasures,we implementedan inter-subject

harmonization, which normalized voxel-level values for each subject

into a Gaussian distribution with amean of 0 and a SD of 1.47

We employed region-of-interest (ROI) analysis based on the auto-

mated anatomic labeling (AAL) atlas48 to reduce the dimensionality

of MRI data for machine learning algorithms. For structural data,

we calculated the volume divided by the total intracranial volume

(TIV) for each ROI within the AAL. The mean Pearson correlation

was computed for each ROI with the rest of the ROIs in functional

data. This method was used previously at the voxel level in functional

connectivity analysis.47

2.4 Statistical analysis

To assess the potential effects of heterogeneity, our study employed

three analyses: regression, geographic comparisons by groups, and

multiclass classifications. All these were corrected for age and sex. The

sample size in all analyses allowed us to achieve a power analysis of

0.99, calculated with G power software to detect a large effect size

(δ> 0.8) with a p< 0.001.

2.4.1 Impact of education on gray matter volume
across conditions and geographical regions

Structural correlates of education

To investigate the impact of education, we began by examining its neu-

ral correlates and how they change across geographical regions. We

focused on the associations between gray matter volume and educa-

tion. For this, we conducted a voxel-based morphometry regression

analysis using the entire sample while controlling for age, sex, and TIV.

All analyses were corrected via the threshold-free cluster enhance-

ment (TFCE) method49 for multiple comparisons, utilizing the TFCE

toolbox (http://www.neuro.uni-jena.de/tfce). This method integrates

voxel and cluster thresholds, thereby eliminating the need for arbitrary

thresholds to form clusters. It also offers heightened sensitivity to both

focal and peripheral effects compared to traditional correction meth-

ods, striking an optimal balance between familywise error (FWE) rates

and replicability.49 The statistical significancewas determined through

5000 permutations and set at p < 0.05 (FWE-corrected). Then, sta-

tistical parameters changed from t to TFCE distributions.49 After

identifying the structural correlates of education, we examined their

differences between the LA and the US participants. We employed

the significant areas from the initial analysis as a mask to calculate

the individual volume within these areas; these volume values were

then normalized using a min–max scale and adjusted for TIV to avoid

potential confounding due to variations in head size. Subsequently, we

http://www.neuro.uni-jena.de/tfce
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compared LAand theUS subjects across conditions through aKruskal–

Wallis test; in addition, we used 5000 bootstrap resamples to calculate

the mean differences. To assess the impact of cultural differences, we

compared each LA country with the US (SupplementaryMaterial 5).

Geographical differences in structural whole-brain analysis

We assessed the amount of variance explained by education in the

geographical differences. Specifically, within each group (HCs, AD, and

FTLD), we first compared whole-brain gray matter volume between

geographical regions (LA vs US) while controlling for age, sex, and TIV.

Then, we introduced education as an additional controlling variable in

a subsequent comparison. To evaluate the association in both compar-

isons, we compared the whole-brain β values across conditions using a
Kruskal–Wallis test.50 These coefficients indicated the extent towhich

gray matter volume is expected to change after each subsequent year

of education while holding the other variables constant. In line with

standard practice to increase reliability,50 these valueswere calculated

for each voxel that presented a significant difference in the geographi-

cal comparisons. To measure the variance explained by education, we

calculated the differences in the statistical values at the voxel level

between both comparisons across conditions. Use of the TFCEmethod

to account for multiple comparisons imposed the use of the TFCE val-

ues as the result of these comparisons. We calculated the variance on

the whole-brain TFCE values of the uncontrolled comparisons and the

subtraction. The geographical differences explained by educationwere

measured by calculating the percentage represented by the variance

of the subtractions in the variance of the uncontrolled comparisons.

We also did the same operation to extract the variance explained by

education within the frontal, temporal, parietal, and occipital lobes.

Furthermore, we analyzed the anatomic structures implicated in the

map of the resulting subtractions.

2.4.2 Impact of education on functional
connectivity across conditions and geographical
regions

The functional connectivity analysis followed the same steps as the

gray matter analysis. In these analyses, global correlation47 served as

the dependent variable. Age, sex, and the type of resting-state record-

ing e controlled as covariates. A global correlation index represented

the average correlation coefficient between each voxel and all other

voxels in the brain,47 and the type of resting-state recording was

codified as a dummy variable (open or closed eyes).

2.4.3 Multiclass classification

We assessed the contribution of demography, education, gray mat-

ter volume, and functional connectivity to a multiclass classification51

between groups (across conditions and geographical regions). An

XGBoost multiclass classification targeted the interaction between

conditions and geographical regions (six groups). This classification

was accomplished using a one-vs-rest strategy,52 in which each group

(each geographical condition) was individually classified against the

remaining groups. To ensure a robust model assessment, a 5-fold,

cross-validation procedure was implemented using 80% of the avail-

able data for training.52 The multi-logloss metric was used during

model training to assess classification error.52 The model parameter

optimization involved a Bayesian hyperparameter tuning, a probabilis-

tic model-based search method.52 Bootstrap resampling techniques

were employed to estimate the variance in the multiclass receiver-

operating characteristic (ROC) curves. The performancewas evaluated

by calculating the area under the curve (AUC) score, accuracy, sensitiv-

ity, specificity, precision, recall, and F1 for each target group relative

to all others. Finally, an in-depth feature importance analysis was

conducted through bootstrapped feature lists. This method involved

creating numerous subsets of the original data set through bootstrap-

ping with random sampling and replacement. A separate instance of

the classification model was trained on each of these subsets, allow-

ing the evaluation of their feature importance within several data sets.

By repeatedly introducing models on these bootstrapped samples, it

was possible to calculate the importance of each feature. The impor-

tant scores derived from this process were averaged to determine a

stable estimate. This step aided in classifying the order of relevance of

the implemented features.

We adopted twomodels to classify groups. The first model included

gray matter volume data for each ROI defined in the AAL atlas.48

The second model used functional connectivity data from the same

atlas. We calculated the average per ROI of the functional connectiv-

ity matrix47 to have two comparable models regarding the number

of features. In both cases, we included cognition (as measured by

MMSE scores), demography (age and sex), education, and, in the case

of functional connectivity, the type of resting-state recording (dummy).

3 RESULTS

3.1 Demography

Formal educational attainment was significantly lower in LA than in

the US across all conditions (Table 1). Geographical comparisons (LA vs

US) revealed differences in mean age in all conditions, and the major-

ity exhibited imbalances in sex distribution. Conversely, no significant

differences were observed in cognition between the LA and the US

group’s HCs, AD, and FTLD pairs. However, as expected, cognition sig-

nificantly differed when comparing AD and FTLD against the HCs in

both geographic regions (SupplementaryMaterial 6).

3.2 Education impacts gray matter volume across
conditions and geographical regions

3.2.1 Structural correlates of education

Associations between higher education and larger gray matter volume

were significant with temporal areas, including the hippocampus and
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F IGURE 1 Structural correlates of education differ between geographical regions. (A) Brainmaps showing the association of brain volume
with educational attainment, controlled by age and sex. Multiple comparisons were correctedwith the threshold-free cluster methodwith a
pFWE < 0.05. (B) Top panel: Scatter plots showing geographical comparisons across conditions for brain volumewithin areas positively associated
with educational attainment. Comparisons were computed using the Kruskal–Wallis test. Bottom panel: The effect size of the geographical
comparison across conditions.We utilized 5000 bootstrap resamples to calculate themean differences. TFCEmethod to account for familywise
error was used to correct multiple comparisons. AD, Alzheimer’s disease; FTLD, frontotemporal dementia with lobar degeneration; HCs, healthy
control; LA, Latin America; TFCE, threshold-free cluster.

inferior and superior temporal gyri. Similar associationswere observed

in the posterior cingulum and the orbitofrontal cortices (Figure 1A;

more details in Supplementary Material 7). Comparative analysis

within these significant areas revealed consistent volume reduction in

individuals from LA compared to those from the US: StatsHC: Χ2 = 23,

p < 0.001; StatsAD: Χ2 = 17, p < 0.001; StatsFTLD: Χ2 = 21.5, p < 0.001

(Figure 1B, top panel), with higher mean differences in AD and FTLD

than in HCs (Figure 1B, bottom panel). All analyses were controlled for

age, sex, and TIV. These results remain consistent even when account-

ing for intercultural effects by comparing the US against each LA

country (SupplementaryMaterial 5).

3.2.2 Geographical differences in structural
whole-brain analysis explained by education

The correction through education in the geographical comparisons of

whole-brain gray matter volume diminished the geographical differ-

ences (comparisons adjusted for age, sex, and TIV). A more robust

association was evident in the controlled than uncontrolled educa-

tion comparisons, as indicated by the higher β values in the controlled
comparison. This pattern was observed across all conditions (StatsHC:

Χ2 = 84, p < 0.001; StatsAD: Χ2 = 411, p < 0.001; StatsFTLD: Χ2 = 84.2,

p< 0.001). The results from these comparisons showed smaller sizes in

the significant clusters of the corrected comparisons (Supplementary

Material 7).

To examine the geographical differences explained by education,

we subtracted the TFCE values at the voxel level between the two

comparisons across conditions. The percentage of the variances in

geographical differences explained by education were 24.6%, 65.0%,

and 42.4% in HCs, AD, and FTLD, respectively. Figure 2A showed

these variances within the frontal, temporal, parietal, and occipi-

tal lobes across conditions. The maps resulting from the previous

subtractions showed lower gray matter volume in the LA sample

across all conditions (Figure 2B). In HCs, geographical differences

explained by education were identified in the temporal pole, middle

and inferior temporal gyri, precuneus, posterior cingulate, primary

motor, and the occipital cortices (Figure 2B, panel I; details in Sup-

plementary Material 7). In AD, differences depending on education

appeared in the superior and inferior temporal gyri, the motor cortex,

and occipital areas (Figure 2B, panel II; details in Supplementary

Material 7). In FTLD, these differences included posterior temporal

regions, occipital cortex, precuneus, posterior cingulum, and the

primary motor cortex (Figure 2B, panel III; details in Supplementary

Material 7).

3.3 Education impacts functional connectivity
across conditions and geographical regions

3.3.1 Functional correlates of education

Individuals with higher education exhibited increased functional con-

nectivity in key brain areas, including the orbitofrontal cortex, pre-

cuneus, posterior cingulum, hippocampus, right insula, and the right

superior temporal gyrus (Figure 3A; details in Supplementary Mate-

rial 7).Within these areas, themean functional connectivitywas higher

in US individuals than in those from LA. This pattern remained consis-

tent across conditions: StatsHCs: Χ2 = 22, p < 0.001; StatsAD: Χ2 = 21,

p < 0.001; StatsFTLD: Χ2 = 28, p < 0.001 (Figure 3B, top panel). How-

ever, the effect sizes, as quantified by the mean differences, were

higher in patients with AD and FTLD compared to HCs (Figure 3B,

bottom panel). All analyses were controlled for age, sex, and type

of resting-state recording. These findings stay stable after analyzing

the intercultural effect and comparing the US and each LA country

(SupplementaryMaterial 5).
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F IGURE 2 Geographical differences (LA v. the US) explained by education in graymatter volume across conditions. Sections I, II, and III
present information regarding HCs, AD, and FTLD, respectively. (A) Variance of the TFCE values within the cerebral lobes explained by education
or other factors. All analyses were adjusted for age, sex, and total intracranial volume. (B)Map of the geographical differences explained by
education. The image represented the subtraction of the TFCE values at the voxel level from two comparisons between (LA vs the US), controlled
and uncontrolled through education. In these comparisons, the TFCEmethod accounted for familywise errors to correct multiple comparisons.
AD, Alzheimer’s disease; Fro, frontal; FTLD, frontotemporal lobar degeneration; HCs, healthy controls; LA, Latin America; Occ, occipital; Par,
parietal; Temp, temporal; TFCE, threshold-free cluster enhancement; US, United States.

3.3.2 Geographical differences in functional
whole-brain analysis explained by education

Correcting for education in geographical comparisons of whole-brain

functional connectivity reduced the differences between LA and the

US (all comparisons were adjusted for age, sex, and type of resting-

state recording). Consistently, the β values were higher for com-

parisons controlled than uncontrolled through education, showing a

better association in the first-mentioned comparison. This pattern was

observedconsistently across all conditions (StatsHC:Χ2 =56,p<0.001;

StatsAD: Χ2 = 567, p < 0.001; StatsFTLD: Χ2 = 76.8, p < 0.001). Results

from both comparisons showed smaller sizes in the significant clus-

ters of the corrected comparisons (Supplementary Material 7). The

total variance explained by educationwere 30.0%, 98.7%, and 27.0% in

HCs,AD, andFTLD, respectively. Figure4Ashowed this variancewithin

the frontal, temporal, parietal, and occipital lobes across conditions.

The TFCE values resulted from the subtraction between uncontrolled

and controlled through education comparisons included both negative

and positive values (Figure 4B). In HCs, the geographical differences

explained by education had lower connectivity in the orbitofrontal and

the insular area and higher connectivity in the temporal and occipital

regions in the LA sample (Figure 4B, panel I; details in Supplemen-

tary Material 7). In AD, these differences for LA subjects comprised

lower connectivity in the orbitofrontal and precuneus areas but higher

connectivity in the temporal pole (Figure 4A, panel II; details in Sup-

plementary Material 7). Similarly, FTLD patients from LA exhibited

geographical differences explained by educationwith lower connectiv-

ity in the insula, precuneus, and posterior cingulum but higher in the

temporal pole, dorsolateral, and occipital areas (Figure 4A, panel III;

details in SupplementaryMaterial 6).

3.4 Education is a critical contributor to
multiclass classification

We employed a multiclass classifier combining ROI’s gray matter vol-

ume, education, age, sex, and cognition, utilizing k-fold cross-validation.

The algorithm predicted the condition across geographical regions,

with a mean AUC of 0.92 (confidence intervals (CIs) of 0.90–0.94). The

performance for each group rangedbetween0.82 and0.96AUCscores

(Figure 5A, panel I). As a result, education emerged as the second top

feature in importance, surpassedby cognition (Figure 5A, panel II). Sim-

ilarly, the model based on functional connectivity data yielded a mean

AUC of 0.91 (CIs through k-fold 0.88–0.93), with a range of 0.84–0.95

AUC score for each group (Figure 5B, panel I). Again, education played

a pivotal role, ranking highest after cognition (Figure 5B, panel II).

Table 2 provides comprehensive details, including accuracy, sensitivity,

specificity, precision, recall, and F1 metrics for each condition across
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F IGURE 3 Functional correlates of education differ between geographical regions. (A) Brainmaps showing the association between
educational attainment and functional connectivity, controlled by age and sex. Multiple comparisons were corrected with the TFCEmethodwith a
pFWE < 0.05. (B) Top panel: Scatter plots showing geographical comparisons across conditions for mean functional connectivity within areas
associated with educational attainment. Comparisons were computed using the Kruskal–Wallis test. Bottom panel: The effect size of the
geographical comparison across conditions.We utilized 5000 bootstrap resamples to calculate themean differences. TFCEmethod to account for
familywise error was used to correct multiple comparisons. AD, Alzheimer’s disease; FTLD, frontotemporal lobar degeneration; GCOR, global
correlation; HCs, healthy controls; LA, Latin America; TFCE, threshold-free cluster.

F IGURE 4 Geographical differences (LA vs the US) explained by education in functional connectivity across conditions. Sections I, II, and III
presented information regarding HCs, AD, and FTLD, respectively. (A) Variance of the TFCE values within the cerebral lobes explained by
education or other factors. All analyses were adjusted for age, sex, and type of resting-state recording. (B)Map of the geographical differences
explained by education. The image represented the subtraction of the TFCE values at the voxel level from two comparisons between (LA vs the
US), controlled and uncontrolled through education. In these comparisons, the TFCEmethod accounted for familywise errors to correct multiple
comparisons. AD, Alzheimer’s disease; Fro, frontal; FTLD, frontotemporal lobar degeneration; HCs, healthy controls; LA, Latin America; Occ,
occipital; Par, parietal; Temp, temporal; TFCE, threshold-free cluster enhancement; US, United States.

geographical regions regarding data from the gray matter volume and

connectivity classifiers. Additional top features for gray matter vol-

ume included the right thalamus, age, right fusiform, left hippocampus,

inferior occipital, cerebellar, and subcortical areas (Figure 5A, panel II).

In functional connectivity, other critical features of importance com-

prised age, type of resting-state recording, left angular, right thalamus,

left superior temporal, and several prefrontal areas (Figure 5B, panel

II). Thus education is a strong contributor compared to measures of
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F IGURE 5 Multiclass classification across conditions and geographical regions. Classifiers used graymatter volume (A) and functional
connectivity (B) data. Panel I displays performance through the ROC curve and the AUC score for the classification of each group against the
others. Panel II displays the top 10 features, ranked by importance. Legend footnote: AD, Alzheimer’s disease; AUC, area under curve; FTLD,
frontotemporal dementia with lobar degeneration; HCs, healthy controls; Inf, inferior; LA, Latin America; L, left; Post, posterior; R, right; Supp,
Supplementary; US, United States.

TABLE 2 Performancemetrics for each condition by region in amulticlass classification using brain volume and functional connectivity data.

Group Accuracy Sensitivity Specificity Precision Recall F1

Brain volume data

HCs (US) 0.94± 0.02 0.95± 0.02 0.93± 0.01 0.95± 0.02 0.84± 0.02 0.89± 0.03

HCs (LA) 0.94± 0.01 0.93± 0.01 0.95± 0.02 0.93± 0.01 0.89± 0.03 0.91± 0.02

FTLD (US) 0.91± 0.03 0.92± 0.01 0.89± 0.03 0.92± 0.01 0.92± 0.01 0.92± 0.01

FTLD (LA) 0.94± 0.02 0.95± 0.02 0.93± 0.01 0.95± 0.02 0.93± 0.02 0.94± 0.02

AD (US) 0.88± 0.01 0.92± 0.01 0.84± 0.02 0.92± 0.01 0.84± 0.02 0.89± 0.01

AD (LA) 0.92± 0.03 0.93± 0.01 0.92± 0.01 0.93± 0.01 0.89± 0.03 0.91± 0.03

Functional connectivity data

HCs (US) 0.88± 0.03 0.84± 0.02 0.92± 0.01 0.84± 0.02 0.95± 0.02 0.90± 0.02

HCs (LA) 0.88± 0.03 0.84± 0.02 0.92± 0.01 0.84± 0.02 0.93± 0.01 0.89± 0.02

FTLD (US) 0.90± 0.02 0.92± 0.03 0.88± 0.03 0.92± 0.03 0.84± 0.02 0.88± 0.03

FTLD (LA) 0.91± 0.03 0.89± 0.03 0.95± 0.02 0.89± 0.03 0.88± 0.03 0.88± 0.02

AD (US) 0.88± 0.03 0.88± 0.03 0.89± 0.03 0.88± 0.03 0.92± 0.01 0.90± 0.01

AD (LA) 0.91± 0.02 0.95± 0.02 0.88± 0.03 0.95± 0.02 0.96± 0.02 0.95± 0.01

Note: Data aremean± standard error.

Abbreviations: AD, Alzheimer’s disease; FTLD, frontotemporal lobar degeneration; HCs, healthy controls; LA, Latin American; US, United States.
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brain structure and function in classifying conditions and geographical

regions.

4 DISCUSSION

We investigated the impact of educational disparities on brain struc-

ture and functions in the context of healthy aging and dementia

diversity, focusing on AD and FTLD across different geographical

regions (LA and US). Our findings revealed that fewer years of educa-

tion attainment were associated with reduced graymatter volume and

lower functional connectivity of key brain areas. Notably, the LA cohort

exhibited a lower educational level than the US, and these disparities

played a crucial role in shaping the geographical differences in gray

matter volume and connectivity. This factor explained 24.6%–98.7%

of the geographical differences in brain structure and function, with a

more pronounced impact on AD and FTLD. Finally, education emerged

as the second top contributor in the multiclass classification across

conditions (HCs, AD, and FTLD) and geographical regions (LA and the

US). This finding highlights the critical role of education in explaining

the geographical differences between LA and the US on healthy aging

and dementia.

Although most previous reports have primarily evaluated cognitive

reserve aspects,13,53 our research assessed the impact of education on

brain structure and function. The association of education with tem-

poral areas11,54 in our structural findings aligns with their role in long-

termmemory,55 highlighting the potential impact of lifelong education

on brain health. In addition, more years of education were associ-

ated with higher functional connectivity in relevant brain hubs, such as

the orbitofrontal, posterior cingulate, and precuneus.13,14,53,54 These

areas are critical for integrating information,56 social cognition,57 and

memory retrieval,56 all relevant processes for maintaining optimal

brain health. Despite healthy aging, our findings indicate that educa-

tion accounts for ≈24.6%–30% of the variance in brain structure and

function observed between the LA and the US. To our knowledge, this

is the first study showing how education influences brain structure

and functional connectivity in participants fromdifferent backgrounds,

including diverse LA populations and the US.

Education impacted brain structure and function, particularly in

dementia, explaining 25.0%–98.7% of the geographical differences in

these conditions. Specifically, brain areas susceptible to neurodegen-

eration, such as the temporal pole, orbitofrontal, and occipitoparietal

areas,58,59 showed selective educational associations. Brain differ-

ences between LA and the US across the three conditions dimin-

ished when controlling for education, especially in dementia. These

results provide evidence for theoretical claims suggesting that edu-

cation may contribute to the phenotypical heterogeneity of dementia

in LA.24–26 In AD, geographical differences explained by education

represented between 65.0% and 98.7% of the grey mattern and con-

nectivity differences, respectively. This high percentage confirmed the

more significant impact of educational disparities in AD than other

neurodegenerative conditions.9,15,60 Notably, a considerableportionof

these differences were in the temporal lobe, an area implicated in the

pathogenesis of the disease.28,59 In FTLD, education explained 25.0%–

42.4% of the geographical differences, primarily encompassing the

insula, superior temporal gyrus, and precuneus, areas usually impaired

by this disorder.58 From a perspective of biological embedding,61 the

structural inequality associated with low education can significantly

influence different pathophysiological pathways, leading to reduced

brain volume and connectivity. Physical and social exposomes in

socioeconomically vulnerable populations, inwhicheducationprovides

an indirectmeasure, can influencewhole-body and brain inflammation,

epigenetics, and allostatic loadmechanisms.62 These factors start early

in the development of LA populations.63 Conversely, cognitive stim-

ulation and learning promote neuroplasticity and can increase brain

reserve.64 This process helps to strengthen neural connections, which

can enhance cognitive functions andpotentially delay the development

of neurodegenerative diseases. Our results underscore the disease-

specific nature of the effect of education on dementia subtypes and

their variation across geographic regions.

Education resulted in the second toppredictor discriminating across

conditions andgeographical regions in amulticlass classification frame-

work. In clinical settings, a single neurodegenerative conditionmust be

differentiated from multiple outcomes.51 The same approach was fol-

lowed for our multiclass classifiers. In them, education was a relevant

predictive feature across conditions (HCs, AD, FTLD) and geograph-

ical regions (LA, US). Cognition was the first top contributor, which

is expected,39,51 as it covaries with clinical diagnosis. By comparing

each group against all others, the multiclass characterization always

involved comparisons of patients and HCs, where cognitive differ-

ences are prominent. Our result showed that these factors (education

and cognition) are more noticeable than measures of brain structure

and function in discriminating among conditions, supporting recent

reports of weaker brain–phenotype associations in more diverse

dementia populations.39,51 Including educationmay allow a higher per-

formance on machine learning algorithms to classify dementia.51,65

Together, these results suggest that multimodal dementia characteri-

zation, including socioeconomic factors (education), can provide more

robust discriminationof brainhealth anddisease across global samples.

Multiple methodological steps were performed to control potential

confounders. Effects were robust even when controlled for age, sex,

TIV, and type of resting-state recording. Imaging quality and inter-scan

variability were also controlled in the results. Nonetheless, essential

limitations call for further research. Although we lack direct measures

of socioeconomic status, education represents the more useful met-

ric to register this component2; future studies should consider other

measures such as income and profession.2 Years of education attain-

ment may be a rough estimate of the quality of education, especially

regarding multi-country studies. Despite excluding the Latino popula-

tion, the demographic landscape of the US remains complex due to the

interplay of socio-ethnic and economic factors.66 However, our work

suggests that the variability in brin measures is lower in LA than in

the US. Indeed, one year of schooling in the US may be equivalent to

three or more years in LA.67 LA exhibits vast cultural and economic

diversity.19,34 Our research demonstrates that, despite this hetero-

geneity, the US consistently displays larger educational correlates
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of brain structure and connectivity than each LA country (Supple-

mentary Material 5). Future investigations that integrate cultural and

socioeconomic variables could provide valuable insights into how spe-

cific local contexts influence the association between education and

brain health. Future efforts should develop metrics that harmonize

education across different countries while integrating digital literacy.

Although our study does not directly investigate the impact of educa-

tion on cognitive performance, we accounted for cognitive differences.

Specifically, we found no significant variations in cognition amongHCs,

AD, and FTLD between the LA and US groups. Assessing the role

of educational disparities in clinical severity, functional abilities, and

specific symptomatology across AD and FTLDmay also expand the rel-

evance of current results. Future studies in Latino and other diverse

populations should also disentangle the effects of race/ethnicity from

geographical origins.

In conclusion, our results reveal an important influence of educa-

tional disparities on brain health and dementia across LA and the US.

Correlates of education presented a greater performance in US partic-

ipants than in their LA counterparts. Furthermore, education explained

a substantial part of the geographical differences in gray matter vol-

ume and connectivity and was crucial in classifying conditions. These

findings emphasize the need to integrate individual educational attain-

ment measures in approaches to prevent, diagnose, and intervene in

neurodegenerative disorders.24–26 Our study represents a significant

effort in integrating data from different regions following the ADNI

protocols, opening new opportunities to replicate this approach with

data from other parts of the world. As we move forward, it becomes

imperative to incorporate educational factors into tailored models of

brain health, offering a more comprehensive understanding of the

complexities involved in neurodegenerative conditions.
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