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ABSTRACT OF THE DISSERTATION

Hybrid Power Models for Data Center Energy Efficiency

by

Nigel Bernard

Master of Science in Electrical Engineering and Computer Science

University of California Merced, 2021

Professor Hyrean Jeon, Chair

With the growing complexity of big data workloads that require abundant data

and computation, data centers consume a tremendous amount of power daily.

In an effort to minimize data center power consumption, works in the literature

developed power models that can be used for load balancing algorithm decision

making. There are several difficulties that make power modeling a nontrivial

task. For one, the inter-dependencies between components must be captured in

addition to the direct effect components have on energy consumption. Addition-

ally, a power model should persist for a wide variety of workloads and generalize

to different platforms. In the past, analytical power models mainly focused on

single-variable CPU utilization functions to predict power consumption. How-

ever, with the increase of system memory and disk/cache accesses in emerging

workloads like machine learning, these models face a significant accuracy re-

duction because they do not account for power hungry memory related events.

As a result, machine-learning-based power models attempt to consider relevant

parameters that capture these memory relevant events in emerging workloads.

However, these machine-learning-based power models exhibit high latency and

accuracy improvement mostly on non-compute-intensive workloads. Addition-

x



ally, machine learning power models are not easily generalized to different plat-

forms because they are trained with profiling data of certain server nodes, given

the increasing hardware heterogeneity in data centers. Additionally, as more

datacenters are migrating to run containerized applications to leverage the iso-

lation, security and scalability of containerized technology, there is a lack of

study in the literature regarding container power modeling. Thus, load mi-

gration algorithms are unable to make accurate migrating decisions regarding

the appropriate containers. This thesis tackles these issues by proposing sev-

eral ideas. First, a hybrid power model is proposed that selects the best power

model out of a lightweight analytical model and a more accurate DNN model by

considering prediction accuracy and performance/power overhead. A workload

classifier is incorporated in the hybrid power model that evaluates the common

characteristics of currently working workloads and determines the better power

model that captures the characteristics. Then the hybrid power model outputs

a power prediction specific to the power model the workload is classified as.

Secondly, a ground truth standardization method is proposed that enables one

machine learning model to be used by various heterogeneous server nodes with-

out a significant accuracy discrepancy due to server-specific features. Thirdly, a

novel container power prediction is proposed to predict the power draw of indi-

vidual container applications for accurate load migration decision making. We

compare our hybrid power model against a state-of-the-art recursive autoen-

coder power model (RAE) and an analytical power model. Our experiments

show that our hybrid power model provides up to 5-10% energy savings when

integrated as a load migration trigger, compared to RAE and analytical power

model.
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Chapter 1

Introduction

As almost every computing device is connected to the internet these days,

demands for data center services have increased significantly, which leads to

concerns about data center energy consumption. Between 2010 and 2018, global

network traffic (the quantity of data traversing the internet) increased more

than ten-fold, while global data center storage capacity increased by a factor

of 25 in parallel [16]. In 2020, data centers in the USA consumed 91 billion

electricity units (kW/h) yielding $13 billion per year for electricity bills in the

business sector [16]. In fact, some of the world’s largest data centers can each

contain many tens of thousands of computing devices and require more than 100

megawatts (MW) of power capacity, which is enough to power around 80,000

U.S. households. The significance of maximum energy efficiency in data centers

cannot be overstated.

There have been efforts from both academia and industry to minimize data

center energy consumption. Some studies used hardware actuators such as var-

ious sensors to monitor and control the power and thermal levels of individ-

ual hardware components [18, 29, 38]. Some other studies used software pro-

filing tools to collect system parameters such as CPU utilization, cache miss

1
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rate, network IO, and many more, and developed power consumption mod-

els [24, 27, 30, 35]. Software profiling-based power modeling is a more flexible

and cost efficient alternative when hardware equipment is not available for mon-

itoring system parameter modeling.

In this thesis, we explore limitations and advantages of various software

profiling-based server power models and proposes a novel lightweight and highly

scalable Hybrid Server Power model. We demonstrate the effectiveness of the

new server power model in a small-scale data center by integrating the model

into a data center workload scheduling algorithm. The proposed power model

showed superior prediction accuracy and the lowest overall data center power

consumption by assisting the workload scheduling algorithm, compared to state-

of-the-art solutions [6, 43].

Server power modeling has been extensively studied. However, under in-

creasing heterogeneity in both software and hardware [26], there is no single

model that rules all possible server configurations. For example, unlike many

conventional analytical models assumed, CPU is no longer the only significant

power consumer in server systems. In the big data era, heavy memory traffic

is an inevitable computing pattern shown in many server workloads. Various

recent studies demonstrate notable impact of memory subsystems to the server

power consumption. Therefore, the accuracy of CPU-utilization-based analyti-

cal models is questionable.

To accommodate the hardware heterogeneity, some studies included non-

compute components such as memory, storage, and network for the power mod-

eling [28,47,52]. However, including new parameters to existing analytical mod-

els and finding the optimal weight values have a scalability issue given the ever-

increasing system heterogeneity. In domain-specific computing era, various new

accelerators are being adopted in server systems that prove to be significant

power drivers [25]. For a hassle-free model development, some recent studies
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adopted machine learning algorithms [31, 39, 41, 49, 50]. To reflect non-linear

impact of various system parameters towards server power consumption, while

other researchers used deep learning algorithms [31, 39, 41]. These studies used

hundreds to thousands of past system parameters and power measurements to

train a power prediction model. These models show superior performance than

many conventional models. However, given the inherent compute intensity of

machine learning algorithms, machine learning-based power models themselves

may cause performance and power overhead. Therefore, the usage of those

compute-heavy power models should be carefully determined so that the mod-

els can be used only when necessary.

The hardware heterogeneity can be also sourced from CPU generations and

vendors. Even in the same Intel CPUs, different CPU generations show dif-

ferent energy efficiency (CPU utilization per watt) patterns. According to our

stress test results, Intel Cascade Lake CPUs and Intel Broadwell CPUs show

peak energy efficiency point at 60% and 50% of CPU utilization, respectively.

Also, the amount of on-chip resources such as caches cause different idle power

consumption in different CPU models. However, many previous studies have

not considered this low level heterogeneity, leading to issues with model’s abil-

ity to generalize. For example, if absolute system power values are used as

ground truth of machine learning algorithms, the prediction accuracy will vary

depending on the underlying CPU model. Therefore, there should be a way to

generalize the power prediction results across different CPU generations.

To reduce data center power consumption, the power models can be used

as a delimiter of controlling individual server loads such that all servers can

maintain the loads at their energy efficiency level [56]. To migrate loads across

servers, it is important to understand individual workloads’ power contribution.

Though a few studies assumed that workload characteristics are known apriori

through offline profiling, there will be a scalability issue if the scheduling relies
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on static information. Also, profiling itself will take up extra power consump-

tion. Therefore, there should be a mechanism that dynamically capture power

contribution of individual workloads. Given the increasing usage of containers in

data centers for more secure computing and efficient resource management, the

mechanism should predict power consumption of individual containers. There

have been some studies that analyzed virtual machine-based workload execu-

tion [53]. However, to our best knowledge, there has not been a study that

designed container-level power model.

Figure 1.1: Proposed Hybrid Power Model Architecture : the power model

selector chooses the best power model (between DNN model and analytical

model) based on the current system condition.

This thesis tackles the aforementioned issues with the following approaches:

• A novel hybrid power model is designed to both tackle the accuracy defi-

ciencies of conventional analytical models and the computational overhead

of machine learning-based models. Figure 1.1 shows the overall archi-
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tecture of the hybrid power model. Our model internally calls either a

lightweight conventional CPU-utilization-based analytical power model or

a DNN power model depending on the sampled workload characteristics

at runtime. The DNN power model is trained with 11 system param-

eters that show over 90% correlation (when using Pearson’s correlation)

with server power consumption. Because the DNN power model associates

server power consumption with both CPU and memory related events, our

DNN model provides at least 13% greater prediction accuracy than con-

ventional models for memory-intensive workloads. On the other hand,

the conventional analytical model is orders of magnitude faster than DNN

model prediction and shows a comparable accuracy for compute-intensive

workloads. To take advantage of both models, our hybrid power model

incorporates a random forest classifier that selects the best power model

between DNN and analytical based on the classification results of work-

loads at run time. If the system statistics reveal that the currently execut-

ing workloads are mostly compute intensive, analytical model is selected.

Otherwise, DNN model is selected. Our random forest classifier yields an

average of 83% classification accuracy when classifying 1000 datapoints

from both compute- and memory-intensive workloads.

• A new ground truth is designed to generalize the prediction results across

different server types and CPU models. The new ground truth only takes

care of dynamic portion of power consumption by excluding idle power.

Also, to reflect different energy efficiency rate of individual servers, the new

ground truth takes the relative power level within the maximum dynamic

power range (maximum power at the peak utilization - idle power). Once a

power model predicts the relative dynamic power value, the actual power

value is calculated with a quick post processing. With the new ground

truth, our models showed up to 50% increase in accuracy compared to
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those that were trained/validated on absolute power values.

• We demonstrate the effectiveness of the proposed power model through

exhaustive evaluations and thorough analysis. Our evaluations include ex-

periments and analysis on the prediction accuracy of various power models

for containerized applications as well as overall power savings in a small-

scale data center when the power models are integrated to the first-fit

decreasing (FFD) workload scheduling algorithm. Inspired by the state-of-

the-art energy-proportional data center scheduler [56], we defined energy

efficiency thresholds for individual server nodes and triggered migrations

when any server exceeds the threshold. Our hybrid model is shown to

yield up to 10% more energy savings when compared to a state-of-the-art

power model.

• We compiled a containerized benchmark suite with workloads that rep-

resent various types and levels of computing loads of data centers. The

benchmark suite workloads include micro-benchmarks that provide stress

tests for important computing components such as CPU, memory, and

storage etc., as well as assorted workloads of SPEC, PARSEC, and SPLASH

benchmarks that provide single and parallel processing workloads. All our

experiments used this benchmark suite to show the performance of the

tested power models for various data center workloads, thereby providing

unbiased conclusions.

The remainder of this thesis is organized as following. In Chapter 2, we

discuss background information and related work. In Chapter 3, we describe the

experimental setup, load migration trigger points and datasets. In Chapter 4, we

explain the proposed hybrid power model. In Chapter 5, we evaluate the power

impact of containerized application executions and propose a DNN container

power model. In Chapter 6, we compare prediction accuracy and effectiveness
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for data center power savings of our hybrid model, analytical models, and a

state-of-the-art recursive autoencoder designs. In Chapter 7, we conclude the

thesis and discuss potential future directions.



Chapter 2

Background and Related Work

2.1 Background Technologies

2.1.1 Classifiers

Classifiers are used for understanding the patterns of a given input data by

extracting the common features and outliers among datapoints. K-NN Classi-

fiers work to classify all training vectors in N dimensional space. Then, when

classifying a novel input, K-NN chooses the class corresponding to the closest

K nearest known datapoints in N-dimensional space. A Decision Tree builds

classification models for its inputs in a tree-like structure. The rules for deci-

sions along the tree’s path are learned according to training inputs. A Random

Forest Classifier consists of a large number of individual decision trees that op-

erate as an ensemble. Each individual tree in the random forest decides on a

class prediction for an input. The Random Forest Classifier then aggregates the

votes from different decision trees to decide the final class of the input sample.

Random Forest Classifiers are highly efficent, and can handle thousands of input

variables. Random Forest Classifiers are shown in the literature to have high

8
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learning capabilities, as they infer accurately even when a large part of training

data labels are missing from the dataset.

2.1.2 Deep Neural Networks

Deep Neural Networks are a kind of machine learning that uses multi-layers

of neurons and back-propagation for machine training. Each layer in a deep

learning model translates the representation of input data from one form to

another by extracting partial information from raw input data. This approach

is implemented from the first layer where raw data is fed, till the final layer where

final representation is obtained. Each layer extracts a type of features from input

and provides the abstracted data to the next layer. Deep learning consists of

two phases: training and inference. At training phase, a deep learning model

is developed by feeding the model with a large dataset. To make the machine

learn the meaning of the input data, feed-forward and back-propagation paths

are interleavingly processed. In back-propagation, the prediction and actual

result are checked and the weight values of all layers are refined with respect

to the prediction error. At inference phase, only feed-forward path is executed

with the trained weight values.

2.2 System Power Modeling Solutions

There is substantial work regarding software solutions to power modeling.

Previously, most works focused on linear and polynomial models utilizing CPU

percent utilization for instantaneous power prediction. More recently however,

research has evaluated a variety of deep learning models to address the dimin-

ishing accuracy of previous models when modeling emerging workloads with

memory intensive operations. In this section we both introduce works that we

will use as comparison and provide background and precedent for our approach.
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2.2.1 Analytical Power Prediction

Farahnakian et al. [27] presented a linear regression based CPU usage pre-

diction (LiRCUP), for VM migration. Specifically, the authors estimated the

future CPU usage to predict overloaded and under-loaded hosts; then, some of

VMs are migrated to other hosts before an SLA violation occurs. Consequently,

such a solution relies on early migration of VMs even when the current resource

usage of the considered hosts is still acceptable, thus resulting in unnecessary

migrations.

To calculate power consumption of a server, Han et al. [30] use a CPU

utilization linear model to account for the servers idle power consumption. An

idle server consumes about 66-70% of its fully loaded configuration. This is due

to the fact that servers must manage memory modules, disks, I/O resources, and

other peripherals in an acceptable state. The rate of change of the linear model

is given by the percent CPU utilization times the dynamic power consumption

of the server.

Power = PMAX × (0.7× PIDLE + 0.3× UtilCPU) (2.1)

In their creation of a GreenCloud, a simulation environment for energy-aware

cloud computing data, Kliazovich et al [35] used a single variable CPU Uti-

lization model to account for the recent implementations of Voltage/Frequency

Scaling (DVFS) [40] in server platforms. DVFS introduces a tradeoff between

computing performance and the energy consumed by the server. The DVFS is

based on the fact that switching power in a chip decreases proportionally to

V2*f. Moreover, voltage reduction requires frequency downshift. This implies a

cubic relationship of CPU frequency with Power.

P = PIdle + Pf ∗ f 3 (2.2)
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2.2.2 Microbenchmark Power Prediction

D. Economou et al. [24] proposed to develop an online power model that

can be deployed in data center schedulers without adding up to the hardware

cost to the end user. Their study is based on understanding the server power

consumption across different systems, breaking down of different components

and temporal variation. Power characterization was done based on the average

dc power of the components by running different benchmark applications on

system under test. The power prediction model takes in performance metrics

at each point in time and produces an output that estimates AC power at each

point in time. This power model gives a reasonable approximation of power

when high level metrics are given. However, SPEC benchmark suites do not

container containerized applications as well as

RAPL (Running Average Power Limit) technology present in Intel archi-

tecture provides power limiting features and accurate power readings for CPUs

and DRAM which are easily accessible through different interfaces on large dis-

tributed computing systems. Evaluations on RAPL show promising results, as

readings are highly correlated with overall system power and have negligible

performance overhead. [33] shows the utility and gives a use case of microbench-

marks within software power modeling, but RAPL is only included on Intel

processors. Our deep learning power model utilizes a containerized application

suite to quickly learn how the components per system relate to power consump-

tion and may be utilized across a variety of different processors.

Researchers in [37] investigate the quality of microbenchmark suites with

a focus on suitability to deliver quick performance feedback and CI integra-

tion. The authors studied ten open-source libraries written in Java and Go with

benchmark suite sizes ranging from 16 to 983 tests. The authors then provided a

rating system to evaluate these benchmarks in terms of stability and slowdown.

However, these benchmark suites are not containerized applications and do not
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stress the system on a granular basis much like our approach does. Rather the

benchmarks in this study work to stress test a system to a particular components

threshold. We do not believe that training a machine learning model on data-

points sampled from systems stressing at full capacity would give the model the

capacity to recognize the power consumption of a system at lesser-intermediate

loads.

2.2.3 Machine Learning Power Prediction

Shen et al. [49, 50] used LSTM-based multi-granularity power prediction.

With the predicted power of immediate (next second) and further future (next

30 second), they aim to support efficient data center resource assessment. Hsu

et al. [31] developed DNN-based power prediction model and used it to task

allocation problem in a data center. The model predicts the total amount of

power to complete a given task for the current server workload distribution and

data center air conditioner temperature. A central controller decides workload

allocation to minimize the total energy consumption for the series of workloads.

Li et al. [39] used a recursive auto-encoder to predict server power consump-

tion by using server power history data, per-server system counters, and total

power draw of a data center. They predicted the current power consumption

with server performance counters and the future power consumption with the

historical power data. This work is the closest to ours. However, they only con-

sidered six system parameters without detailed correlation analysis. Also, they

assumed a bare workload execution while we consider containerized execution,

which is a necessary consideration as containers are becoming more prevalent

within cloud environments and IoT systems [23, 46]. Also, we evaluated our

model in a workload balancing problem. Lin et al. [41] evaluated four artificial

neural networks (ANNs) for power prediction. They collected 16 system param-
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eters and developed four different neural networks including LSTM and ENN.

Unlike this study, we provide a clear correlation between system parameters and

the server power consumption and design a hybrid model that considers both

accuracy and overhead.

Machine learning has been also adopted in load forecasting to understand the

power consumption pattern of server systems. Increasing energy demands are

met efficiently by the use of smart grids. It is necessary to forecast short term

load accurately and quickly so that power needs can be met by smart grids.

Tinghui Ouyang et al [1] use a Gumbel-Hougaard Copula model to identify

dependency between temperature, electricity price, and power load. Using the

relation analysis, a deep belief network (DBN) to determine the day ahead and

week ahead power load forecasting. It presents a LSTM machine learning model

to forecast short term load. On comparing with the ARMA and SARIMA

models, LSTM promises higher accuracy. Jatin Bedi et al [19] also use machine

learning as they are very effective in handling non-linear problems. They use a

D-FED model that they created which outperforms various standard machine

learning approaches such as recurrent neural networks, support vector machines

and artificial neural networks. These works present a basis for our novel work

involving gradient containerized benchmarks for training.

2.3 Container Technology

Since containers have been introduced as a lightweight virtualization sys-

tem, a variety of domains are looking to evaluate and implement containerized

applications to take advantage of the hardware independence, isolation and sus-

tainability of the technology. The related works in this section investigate the

viability, advantages, and disadvantages of containers in different domains. In

general, these works lend credibility to the utility of our container power model
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design in future works. Reproducibility in experiments on both virtualized and

real world hardware is a challenging task for a wide variety of reasons. For

instance, because researchers conduct experiments on different hardware plat-

forms and software environments, the effects of these various environments’ must

be considered when attempting to reproduce experiments from existing work.

Jimenez et al. [32] assessed the distinct characteristics of containerized technol-

ogy that can reduce or eliminate the hardware and software complexities involved

in reproducing experiments. A hardware mapping methodology is proposed to

maintain an execution and hardware profile for generalizability. The authors

discussed the benefits and limitations of using containers in tandem with this

methodology as well as demonstrate a use case of container technology applica-

tions in distributed storage systems. The researchers showed that their system

derived similar results when running a scalability experiment from Ceph [55]

after replacing older hard drives with newer models. This work demonstrates

the utility for containerized applications within the system performance analy-

sis domain. With the growing use of containerized applications across domains,

workload balancing with respect to containerized applications must be consid-

ered for data center energy efficiency.

2.3.1 Container Overhead Analysis

Containerized technology’s versatility makes it more likely to be viable than

a hypervisor alternative when constrained environments desire virtualized tech-

nology. For instance, domains such as Internet of Things (IOT) and Software

Defined Networking (SDN) require a lightweight virtualization software to be at

all viable. In an effort to evaluate the costs of container overhead on IOT devices

and therefore lend credibility to its use, [45] compares the performance of native

execution of benchmarks to containerized execution. To properly evaluate the
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overhead consumption of containers, [45] uses synthetic benchmarks to gener-

ate different types of workloads to challenge a specific sub-system of hardware

under test. CPU, Network I/O, Disk I/O, and Memory were all evaluated with

the sysbench [11] testing suite. Researchers then evaluated performance metrics

according to real-world workflows with an Apache server servicing requests and

database instances. When running the benchmarks on top of a Raspberry Pi 2,

the authors found that there is an almost negligible impact (under 5%) of the

container virtualization layer compared to native execution. In fact, there is an

increased efficiency of up to 7% on Dokcer UDP Client instances. The authors

research lends credibility to the more widespread use of virtualized technology

within constrained environments. This may lead to the need for workload bal-

ancing within these domains as well.

2.3.2 Container and Virtual Machine Comparative Anal-

ysis

Because a container only includes the executables and dependencies required

to run specific applications, they are much more lightweight than hypervisor al-

ternatives. The authors of [60] compare the performance and overhead of VM

and container technology on a five server testbed. The authors perform a gra-

dient analysis of the performance of multiples of instances of containers and

virtual machines running simultaneously. This gradient approach perhaps pro-

vides a more accurate depiction of workloads than previous comparative studies

in this domain. Their testing workload consists of Kmeans, Logistic Regres-

sion, Pagerank, and SQL Join. The authors found several notable results from

their experiments. Most notably, they found that containerized applications are

more convenient in startup and deployment for system administrators, display

greater capacity for scalability in big data workloads, and achieve higher CPU
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and memory utilization with similar workloads. This study provides evidence

for the transition from hypervisor technology to containers for applications that

require virtualization.

In [22], the authors compare Docker containerized applications to Hypervisor

virtualization. The authors present a model for distributing Docker containers

for increased efficiency by exploiting the capacity for Docker containers to share

common files because their images are constructed from layered filesystems. Ad-

ditionally, the authors evaluate Docker’s performance in a HPC datacenter as

well as evaluate their performance on prevailing HPC workloads. Chung et al

finds that Docker containers are more efficient in terms of execution with data

intensive workloads as well as overhead reduction compared to Virtual Machines.

The authors work adds to an vast field of study that evaluates the two promi-

nent virtualization technologies. When work evaluates container technology to

perform more efficiently than hypervisor technology, it lends credence for appli-

cations to take advantage of virtualized technology when hypervisor overhead

would render it impossible.

Before concluding the lightweight flexible nature of containerized applica-

tions outweigh the security and stability of hypervisor visualization, researchers

compare the performance between Docker and virtual machines with respect

to makespan, execution time, and CPU/Memory utilization [20]. In particular,

the authors assess the performance differences in a big data use case, imple-

menting the Apache Spark framework with both Docker and Virtual Machines

to evaluate each with regards to makespan, execution time, and CPU/Memory

utilization. Researchers organized up to N instances of both VM and Docker

containers for worker nodes in their respective Spark instances. Then, they

tested a variety of different Machine Learning, Graph Computation, and SQL

Query applications. From their results, researchers advise to use Docker for map

and calculation intensive applications because Docker provides lightweight op-
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eration, copy-on-write (COW) and intermediate storage drivers for calculation

instances. These results lend further credibility to a transition from hypervisor

to container virtualization in the near future.

2.3.3 Containers in HPC

In high performance computing systems, virtualization was rarely utilized.

Hypervisor technology’s overhead outweighs the benefits of hardware indepen-

dence, availability, isolation and security. However, with the rise of lightweight

containerized technology, virtualization within HPC becomes more viable. Xavier

et al. [57] evaluate the feasibility of containerized applications within emerging

High Performance Computing workloads and environments. Linux VServer,

OpenVZ and Linux Containers (LXC) instances were ran on various HPC work-

loads for isolation and security evaluations. To test a container technology’s

capacity to isolate, researchers ran different containers running different stress

tests simultaneously and measured the performance degradation. Because con-

tainers share the same kernel, a container that greedily consumes resources will

impact the execution of other containers. Researchers used the Isolation Bench-

mark Suite [33] and compared the baseline execution time of a single container

and compared it to instances where several containers were executing simulta-

neously. Researchers found 10% performance degradation with network inten-

sive stress tests, and found no significant performance loss with CPU intensive

stress tests. To test performance, researchers evaluated containers on various

microbenchmarks testing memory, CPU, and network. The researchers found

that the containerized applications had near native performance but incurred

faults due to security issues related to namespace designation with cgroups. This

study further lends credibility to the emerging use of container virtualization in

different domains. However, this study also notes security issues with container
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technology. If these security issues are resolved it perhaps lends further credi-

bility for the need of container power modeling for appropriate energy efficient

scheduling.

Containerization has emerged as a new paradigm for software management

within distributed systems. Containerization provides a new methodology for

software development, management, and operations for online services. Con-

tainers enable developers to specify the exact environment of a software so-

lution. Beyond this, there are several notable advantages to using containers

within HPC environments. They include composability - allowing developers to

explicitly define the modular design of their environment/project, portability-

capacity to share containerized product across different computing systems and

platforms, and version control integration- users are able to access public images

defined on Docker Hub for painless updates and integration. However, this study

also notes potential drawbacks of containerized applications in HPC [59]. Most

notable are security- containers often allow root-level access to users which is

undesirable in industry and networking- unnecessary in HPC workflows as often

times HPC clusters utilize custom interconnects that bypass TCP/UDP proto-

cols. Younge et al. propose that Singularity [36], custom Docker images created

by Lawrence Berkeley National Laboratory address these issues. Singularity

improves upon Docker security concerns by mounting volumes without granting

root access. Singularity also addresses the would be unnecessary network shar-

ing in containers by image wrapping for cross user access to shared resources.

Researchers found that Singularity deployment on a Scray system had no signif-

icant overhead with performance. This work considers the possible drawbacks

of containerized applications and provides a use case of containers to address

these issues. Ultimately, it presents a notable nuanced approach towards using

containerized applications within constrained supercomputing resources.



Chapter 3

Methodology

3.1 Experimental Setup

We use four worker servers (two distinct platforms) and one GPU modera-

tor server from our MoCa Lab located at the University of California, Merced

to gather various datasets while running emerging data center workloads. The

GPU server, Galbi, polls each worker server every 5 seconds for relevant pa-

rameters used within our DNN model. To gather these parameters, each server

uses psutil [5] to gather system parameters and contacts docker API for con-

tainer statistics. When prompted by the GPU moderator server, the worker

nodes reply with the relevant statistics. Using these parameters, Galbi classifies

the workload with a random forest classifier, then uses either the trained DNN

output or the conventional power model to determine the instantaneous power

consumption of each worker node. If any worker node has eclipsed their efficient

power threshold determined through research [56] the GPU server will predict

the power consumption of each container on that specific node. The GPU server

will then migrate the container with the lowest power consumption load to an

underutilized server until when the migration source server falls below the effi-

19
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cient power threshold. We choose the lowest power consuming application for

migration because it can prevent migration bouncing issues and reduce migra-

tion overhead. However, different algorithms such as migrating the most power

hungry application may be a faster power unbalancing problem solution. We

will explore the pros and cons of the application selection algorithms as future

work. Thanks to GPU acceleration, the DNN power model runs 78% faster on

the GPU moderator server than on the other CPU-based worker nodes.

Two worker servers (namely Kraken and Medusa) utilize the Intel(R) Xeon(R)

Silver 4214 CPU @ 2.20GHz with 3.2 Hyperboost technology. Another pair of

worker servers (namely Kimchi and Gimbap) utilize Intel(R) Xeon(R) CPU

E5-2620 v4 @ 2.10GHz. Intel® Turbo Boost Technology accelerates proces-

sor and graphics performance for peak loads, automatically allowing processor

cores to run faster than the rated operating frequency if they’re operating below

power, current, and temperature specification limits [4]. Including this technol-

ogy within our dataset will most likely increase the intricacies our model must

learn, and therefore lower its effectiveness. We turn off this functionality while

gathering our dataset.

These heterogeneous server types (e.g., using different CPU model, cache

size, and core count) enable us to evaluate the ability for the deep learning model

to generalize its learning across different platforms. Given that heterogeneity is

a norm of modern data centers due to legacy servers, our evaluation environment

provides a realistic setup.

3.2 Standard of Error - MAE

We evaluate our power models by mean absolute error (MAE) shown in

equation 3.1. Conventionally, models are evaluated using root square mean error

(RSME). However, RSME penalizes larger predictions compared to MAE in its
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Platform Processor Specs CPU/GPU core

count

Kraken and Medusa Intel Xeon Silver

4214 CPU @

2.20GHz (up to 3.2

GHz Turbo Boost)

32 cores

Kimchi and Gimbap Intel Xeon CPU

E5-2620 v4 @

2.10GHz

24 cores

Galbi Intel(R) Xeon(R)

Gold 6248 CPU @

2.50GHz, NVIDIA

Volta GPU @ 1.38

GHz

80 CPU cores, 5120

GPU Cores

Table 3.1: MoCA Lab platform specifications
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Worker Node #1

Worker Node #2

Worker Node #3

Worker Node #4

GPU Moderator

Figure 3.1: MoCA Lab Server Setup: GPU Moderator polls worker nodes for

system parameters and predicts instantaneous power consumption by utilizing

the proposed hybrid power model. GPU triggers migration when threshold is

reached on overloaded worker nodes to underutilized nodes.

loss because it squares the errors before taking the mean error across samples.

This can lead to confounding errors that don’t necessarily represent the accuracy

of particular a power model when comparing results across substantially different

sample sizes. Outliers are normally penalized heavily in machine learning, but

because we need to make assessments about analytical models with respect to

SPEC datasets and our experiments (and therefore different sample sizes), MAE

provides a better error standard for comparison for both our purposes and across

future works. Additionally, MAE provides a clear expectation of error in Watts.

MAE = (
1

n
)

n∑
i=1

|yi − xi| (3.1)
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Platforms Power Threshold (W)

Kimchi and Gimbap 135

Kraken and Medusa 130

Table 3.2: Load Migration Triggering Point for Distinct Platforms

3.3 Load Migration Triggering Points

We take inspiration from the state-of-the-art energy proportional data cen-

ter scheduling study [56] for our designation of optimal power consumption effi-

ciency points for MoCA Lab’s platforms. From Figure 3.2, the kraken/medusa

platforms (right) show disproportionate power consumption past the 135-Watt

threshold for proportional increases in CPU utilization. For kimchi/gimbap

(left) the wide distribution of plotted power consumption points at both 40% and

50% CPU show there is a disproportionate jump at around 130 Watts. We pro-

ceed with a 135-Watt and 130-Watt load migration threshold for kraken/medusa

and kimchi/gimbap respectively.

3.4 Datasets

To gather datapoints from containers reflecting emerging workloads in data-

centers, we ran a variety of applications on each respective platform and collected

system parameters using two Linux commands, psutil and perf, during execu-

tion. When collecting datapoints we append the ground truth instantaneous

power consumption via the a Wattsup Pro Power Meter [14]. We collected a

total of 2000 data points for both the training and test suites respectively. The

details about the workloads and the data collection settings are discussed below.
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Figure 3.2: Instantaneous Power Consumption in Watts: X-axis is CPU utiliza-

tion (%). Two distinct platforms show different energy efficiency curves where

Gimbap (left) and Kraken (right) have peak energy efficiency at 50% (135 Watts)

and 60% (130 Watts) CPU utilization, respectively.
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3.4.1 SPEC dataset

SPEC, or Standard Performance Evaluation Corporation is a non-profit cor-

poration formed to establish, maintain and endorse standardized benchmarks to

evaluate aspects of emerging computing systems [8]. SPEC is also used in a mul-

titude of prevailing works [34,54] due to its variety of benchmark suites for vari-

ous evaluation tasks. SPEC provides public results for their SPECpower ssj2008

benchmark [9]. For every year since its introduction, SPECpower ssj2008 pro-

vides a variety of different platform’s average load ranging from 0-100% (mul-

tiples of 10) and corresponding average active power. The benchmark work-

load includes typical server-side Java business applications. It exercises CPUs,

caches, memory hierarchy, and the scalability of shared memory processors. Be-

cause only the CPU percent utilization is reported with these results, only our

conventional power models will be evaluated upon this dataset. This will allow

us to evaluate these conventional power models on emerging workloads executing

on platforms significantly different from MoCA labs.

3.4.2 Micro-benchmark stress tests

For the DNN model to aptly learn the direct influence of events and pa-

rameters on power consumption, we applied a granular stress test approach in

an effort to isolate components and active cores during test execution. We use

the Linux/Unix tool Stress-ng [10] to generate loads on the CPU, rate of cache

access, memory access, interrupts and number of processes. We gathered dat-

apoints by running each specific test 6 different times with a gradient amount

of process instances running simultaneously. For kimchi/kraken we ran tests

with 1, 2, 4, 8, 16, and 32 active processes and for gimbap/kimchi we ran tests

with 1, 2, 4, 8, 16, and 24 active processes. We informally verified that both

the CPU load and relevant parameters increased with the increase of processes
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via a visualization tool, htop. We collected about 10 datapoints per sample for

about 10 datapoints per test and 360 datapoints overall for DNN model on each

distinct platform.

To gather specific stress tests with respect to the CPU, we utilized a system-

load-generator docker container [12]. We generated loads of 0-100% (multiples

of .5%) on simultaneous core instances identical to the Stress-ng tests for each

distinct platform. We collected about 5 datapoints from each multiple of CPU

load for a total of 600 CPU utilization datapoints.

3.4.3 PARSEC benchmarks

The Princeton Application Repository for Shared-Memory Computer (PAR-

SEC) [21] is a benchmark suite composed of multithreaded programs. PARSEC

is a joint venture between Intel and Princeton University that seeks to provide

researchers with an accessible suite of high-performing workloads. The suite

focuses on emerging workloads and was designed to be representative of next-

generation shared-memory programs for chip-multiprocessors. Because of their

dynamic execution profile as is common with HPC applications, we collected

about 75 datapoints from each of the 6 PARSEC applications used within our

datasets for a total of 450 PARSEC datapoints.

3.4.4 SPLASH benchmarks

We also utilize several SPLASH benchmarks for datapoints included in our

test set. SPLASH [48] is a benchmark suite that is popular with scientific stud-

ies of parallel machines with shared memory.Research shows that SPLASH-2

and PARSEC benchmark suites are significantly different in term of their work-

load/architectural characteristics such as instruction distribution, cache miss

rate and working set size.
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Application/Suite Components

Stressed

Description

Blackscholes/PARSEC CPU Prices a portfolio of

options

Bodytrack/PARSEC CPU/MEM Tracks a human body

through space

Streamclust/PARSEC CPU/MEM/Network Online clustering of an

input stream

Canneal/PARSEC CPU Optimizes the routing

of a chip design

Ferrit/PARSEC CPU Identify most similar

images in a database

Raytrace/SPLASH CPU Real-time raytracing

OCEANNCP/SPLASH CPU Computes the cholesky

factorization of a sparse

matrix

Radix/SPLASH CPU iterative integer radix

sort

Swaptions/PARSEC CPU Pricing of a portfolio of

swaptions

Cache/Stress-NG CPU/Cache Miss Perform random wide

spread memory read

and writes

Sleep/Stress-NG CPU/Interr/Proc Stress-NG

iCache/Stress-NG CPU/Instruction Cache

Miss

Stress the instruction

cache by forcing

instruction cache

reloads

STREAM/Stress-NG Cache Miss/Network perform multiple sleeps

of ranges 1us to 0.1s

system-load-generator CPU Runs specific load

0-100% on select cores

Table 3.3: Containerized Workload Benchmark Suite
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Training Sets Test Sets

Stress-NG,

System-Load-Generator

PARSEC, SPLASH benchmarks

Table 3.4: Test Set and Training Set Dataset

Application/Suite Mem Intensity MPKI

Blackscholes/PARSEC LOW 1.44

Bodytrack/PARSEC MEDIUM 8.98

Streamcluster/PARSEC HIGH 17.38

Canneal/PARSEC HIGH 21.16

Ferrit/PARSEC LOW 0.58

Raytrace/SPLASH LOW 1.24

Swaptions/PARSEC MED 9.17

Cache/Stress-NG HIGH 10.45

Sleep/Stress-NG MED 3.09

iCache/Stress-NG MED 6.47

STREAM/Stress-NG HIGH 15.72

system-load-generator LOW 0.32

Table 3.5: Memory Intensity of Individual Workloads

Container Applications Component Stressed

Blacksholes, Ferrit, Raytrace,

system-load-generator (0-100%)

CPU

Raytrace, Bodytrack,

StreamCluster, Canneal,

STREAM, Cache

MEMORY

Table 3.6: Workloads Used In Load Migration Experiments
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Platform Platform Specifications

SPEC Platform-1 Intel Xeon Platinum 8176 CPU

2.10 GHz (Intel Turbo Boost

Technology)

SPEC Platform-2 Intel Xeon E5-2699 v4

SPEC Platform-3 AMD EPYC 7763 2.45GHz

Table 3.7: SPEC Platforms used for Analytical Power Model evaluation

3.5 Load Migration Workloads

For our load migration use case experiments we devise subsets of our appli-

cations to stress both the CPU and Memory in Table 3.6. From and overview of

our results gathered within Table 3.5, we denote potential containers that can

be assigned to servers based on workload type.

3.6 DNN Model Input Standardization

DR = Pmax − Pmin (3.2)

GT = (P − Pmin)/DR (3.3)

Because of the differences in idle and maximum power consumption between dis-

tinct platforms, we apply standardization on the absolute power measurements

when gathered data-points. To this end we train a power model that associates

our selected parameters with the proportion of dynamic power consumption for

a specific platform sampled (Equation 3.3). We denote this adjusted dynamic
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Platforms Dynamic Range

kraken and medusa 66.2-173.1

kimchi and gimbap 94.9-160.4

Table 3.8: Platforms and Their Dynamic Power Ranges: Minimum is found by

finding the median idle power consumption and median power consumption at

100% CPU utilization across 500 datapoints, respectively

range of power consumption as a standardized ground truth. We compared

the prediction accuracy with DNN models that are trained with absolute power

value and with the standardized ground truth for two distinct platforms, as can

be seen in Figure 3.3 and Figure 3.4. Note that the DNN models will be ex-

plained in detail in Section 4. With the standardized ground truth, the models

showed faster convergence in the training because similar value ranges are used

as prediction results for different platforms by excluding platform-specific power

values such as idle power. More specifically, the DNN model trained with new

ground truth yielded a MAE of approximately 2%. To interpret these errors, we

consider the dynamic range of each platform from Equation 3.3 and Table 3.8.

This is because at runtime, the standardized output of a power model will be re-

converted into power consumption in Watts for comparison with each platform’s

load migration trigger. Specifically, the GPU moderator will first use a power

model to predict this standardized value for a platform. Then, the GPU moder-

ator will evaluate Power = DNNoutput∗RANGE+PIDLE. Therefore, for kraken

and medusa, our model yields a 106.9 ∗ .02 = 2.2W error, and for kimchi and

gimbap, our model yields a 65.6 ∗ .02 = 1.31W error. A DNN model yielded a

MAE of approximately 14 watts when trained/validated on our training dataset

without platform idle/max power standardization.
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Figure 3.3: DNN Train-

ing/Validation Accuracy with

Dynamic Range as Ground Truth

Figure 3.4: DNN Train-

ing/Validation Accuarcy with

Absolute Power Value as Ground

Truth



Chapter 4

Server-Wide Hybrid Power

Model

Server power models have been extensively studied. To reflect the domi-

nant contribution of CPU towards system power consumption, many models

use linear or polynomial power prediction models that use CPU utilization as

a primary parameter. CPU utilization and overall system power consumption

is known to be highly correlated, especially for compute-intensive workloads.

However, in the growing big data era, analytical power models are less effec-

tive due to accounting of power consumption inherent to system memory and

disk accesses, and parallel computing communication. Figure 4.1 shows the root

mean square error (RMSE) prediction accuracy of various power models against

varying memory intensity of applications. Memory intensity is measured by us-

ing cache misses per kilo instructions (MPKI). We classified applications into

low (less than 2), medium (greater than 2 but less than 10) to high (greater than

10) memory intensive groups according to MPKI, as shown in Table 3.5. We

evaluated the prediction correctness of three different deviations of a analytical

power model used in cloud systems [43] plane shown for reference simplicity as

32
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Equations 4.1-4.3.

P = Pmin + (Pmax − Pmin)× UtilCPU (4.1)

P = Pmin + (Pmax − Pmin)× Util2CPU (4.2)

P = Pmin + (Pmax − Pmin)× Util1/2CPU (4.3)

As can be seen in Figure 4.1, across all the models, the error rate exponen-

tially increases when executing more memory intensive workloads. Therefore,

server power models should accommodate various system parameters rather than

relying only on the CPU utilization. Instead of explicitly microbenchmarking

for each architecture to aptly define a polynomial model for power consump-

tion while considering these different events, machine learning models can be

trained to model different architecture power consumption with limited train-

ing data. The difficulty lies within sampling particular system parameters that

both capture the interdependency between these different events as well as their

isolated influence on power consumption. Including parameters that capture

redundant events or contribute a negligible amount to power consumption as

input to a deep learning power model will hinder its ability to generalize to

other workloads.

It is challenging to design an accurate analytical model that accounts for

multiple parameters for power prediction. Even when one model is designed,

the model is not easy to be generalized or extended to other servers due to

wildly varying platforms and architectures configurations, such as cache size,

CPU min/max frequency, number of CPUs, and so on. Instead, to account

for analytical power model inaccuracies on these workloads, many studies have

shown the effectiveness of machine-learning algorithms. However, these ap-
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Figure 4.1: Server Power Prediction Errors of Analytical Models w.r.t. Appli-

cation Group’s Memory Intensity

proaches often employ compute-intensive algorithms such as support vector ma-

chine (SVM) [42], or tend to overfit with a Lasso regression approach [44]. Ma-

chine learning power models also do not account for the quality of service (QoS)

constraints necessary for workload scheduling algorithms such as load balancing

and migration [17]. In the following sections we describe the analytical power

model, DNN and random forest classifier utilized within our hybrid power model.

4.1 Analytical Power Model

We compared the analytical power models depicted in Equations 4.1, 4.2,

and 2.2 for use in tandem with our DNN power model. A fully detailed listing

of results between the three analytical power models are noted in Chapter 6.2.

Equation 4.1 was selected for inclusion within the hybrid power model as its

MAE accuracy was up to 50% higher across both SPEC datasets on SPEC

platforms and our train/test dataset on MoCA Lab platforms.
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4.2 DNN Power Model

To capture complex correlations among multiple to many parameters, deep

neural network (DNN) is an effective solution. In order to train a DNN model,

the outputs of each layer within the model are fed as inputs into the next layer.

Through back-propagation, the DNN weight values are updated/optimized in

an attempt to reflect the underlying function describing the parameter/power

consumption relationship.

Our DNN model uses 11 system parameters to predict the instantaneous

system power. The input parameters were chosen by collecting 2000 datapoints

of parameters from our training set and evaluating their Pearson correlation

(Figure 4.4) with power consumption on the platforms in MoCA lab (Table 3.1).

After evaluating 22 different parameters in Figure 4.4, we selected parameters

with a correlation > 0.9 to be included as a set within each sampled data point.

The parameters chosen for our model are CPU frequency, user time, CPU

utilization, software interrupts, number of processes, cache miss ratio, virtual

memory usage, instructions, and shared memory usage. To justify the inclu-

sion of solely these 11 parameters, we trained/validated 11-parameter and 22-

parameter models on the training dataset. Before comparing performance, we

first cross-validated each respective model to their optimal DNN architecture.

11-parameter models yield a minimum MAE of 2.3, while models trained with all

22 parameters yield an minimum MAE of >6. We therefore make the assump-

tion that the 11 most highly correlated parameters make the best candidates for

inclusion within our DNN.

4.2.1 Cross-Validation

In order to determine the best architecture for the DNN model, we utilized

Talos [13] which fully automates hyperparameter tuning and model evaluation.
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Figure 4.2: Prediction Accuracy in MAE of Various DNN Architectures: Each

comma separated number presents the number of neurons per layer in order.

The right most DNN that has the lowest MAE is selected as the final design.

The selected DNN has eight layers of 11, 16, 32, 64, 32, 16, and 8 neurons per

layer and the last layer with one neuron.
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Figure 4.3: Analytical Power Model vs DNN model MAE: DNN model performs

best on TEST workload while Analytical Power Model performs best on Training

workload.

We select the model with the lowest MAE as the final architecture. Specifically

we use an eight-layer fully-connected DNN model with 11, 16, 32, 64, 32, 16,

8 neurons for each hidden layer, respectively. The last layer has one neuron to

predict one power value. As seen in Figure 4.2, models with higher amounts of

neurons and therefore parameters fail to converge well on our selected dataset.

We used a uniform random initializer, Adam optimizer, and RelU and TanH

activation functions within our model for training.

4.2.2 Model Performance

On compute-intensive tasks, the conventional analytical power model showed

comparable accuracy with our DNN model on both platforms. However on the

memory-intensive workloads, our DNN model showed superior accuracy. This

trend persisted for the DNN model on all four worker servers in MoCA Lab as
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Figure 4.4: Pearson’s Correlation Coefficient between System Parameters and

Server Power (closer to 1 has stronger relationship)

seen in Figure 4.3.

4.3 Random Forest Classifier

We classify a workload using the sampled 11 parameters of a server according

to which model– DNN or analytical– performs best. Our hybrid power model ul-

timately outputs the power prediction of the predicted better performing model

by the random forest classifier (RF). To train this classifier we designed a train-

ing workflow. The difficulty within training lies within creating an encompassing

enough dataset sampled from simultaneously executing containers that gener-
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alizes to other possible workloads within our containerized use case. To this

end we design a workflow that executes simultaneous containers of a given ap-

plication set. For instance, one instance of a testing workload might be three

containers executing Streamcluster simultaneously. Another workload might ex-

ecute four containers of Swaptions and two containers of Bodytrack applications

simultaneously. Our workflow then samples the 11 parameters used within our

DNN power model, as well as Wattsup power readings. If the analytical power

model (Equation 4.1) yields a lower MAE for power prediction than the DNN

power model on the specific datapoint, the workflow enumerates the ground

truth of that datapoint as 1, and if otherwise as 2. The RF is then trained on

this dataset and its associated labeling.

We use a RF from the python package sklearn [7] to make the classifications.

If the classifier has a confidence > 0.6 on its prediction of the better perform-

ing power model, the selected power model is used for power prediction. This

confidence threshold was decided after empirically testing model accuracy on

confidences and noting the trends of accuracy on values ranging from 0.2 to 1.

If a prediction lies below the confidence threshold, the classifier will default to

our DNN model. We decide the DNN to be the default predictor for our hy-

brid model due to the majority (around 65%) of datapoints classified through a

workflow as our DNN model as the better predictor. Our classifier was shown

to have an average around 82% accuracy when classifying across our CPU- and

memory-intensive workloads.
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Workload Accuracy

CPU 77%

MEMORY 87%

Table 4.1: Random Forest Classifier Performance on Compute- and Memory-

Intensive Workloads



Chapter 5

Container DNN Power Model

Recently, data-centers have been integrating containerized technology to

leverage increased privacy and security capabilities of virtualized technologies.

In the past, hypervisors, or virtual machines, were mainly used when privacy,

security, and isolation within applications was desired. However, hypervisor

technology requires extensive overhead to simulate a separate operating system

(OS), including their respective libraries. Containers deviate by designating pro-

cesses their own namespace, separate resources and shared memory within the

same Host OS. Because container applications are now a much more feasible

alternative to virtualization, there is a great transitioning of many datacenter

workloads to containerized technology. To account for this transition, existing

scheduling/load balancing algorithms must require per container power models

in order to choose the most optimal container to migrate. We specifically utilize

Docker containerized technology [2] in this study as it is the most widely used

containerized technology. This chapter demonstrates our approach to building

a DNN container power model.

41



42

Figure 5.1: Prediction Accuracy in MAE of Various DNN Architectures: Each

comma separated number presents the number of neurons per layer. The right

most DNN that has the lowest MAE is selected as the final design. The selected

DNN has six layers of 8, 16, 32, 16, and 8 neurons per layer and the last layer

with one neuron.

5.1 Container DNN Model

Because container applications execute on the same host OS, we evaluate

the Pearson correlation of similar parameters to our server-wide DNN power

model. However, because hardware- and software-interrupts are kernel wide

events, we excluded them from container parameters. Inclusion of these inter-

rupt parameters would confound the DNN model as multiple containers execut-

ing simultaneously would yield higher interrupts on the host OS, but would not

change individual container contributions to the system’s power consumption.

To collect datapoints for our container DNN, we first ran each of the training

containers separately and sampled 2000 total datapoints containing the listed

parameters in Figure 5.1 for every time step.

To ensure we only capture statistics related to a container, we use psutil

to first query the system for a process matching a container’s name. We then
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Container DNN Parameters

CPU Frequency, userTime, idleTime, CPU Utilization, context

switches, number of processes, Instructions, cache miss ratio

Table 5.1: Parameters selected for input in Container DNN

perform perf sampling on the relevant processes specific to a container. Note

that we collected system parameters through perf and psutil tools without giv-

ing specific process ids. By collecting system parameters of container-specific

process id, we can model per-container power model.

Again, to determine which parameters to include in our container DNN

Power Model, we collected stats via Docker API, perf, and psutil and selected

parameters that had greater than 70% correlation in Figure 5.2. Using Talos,

we trained/validated across this set to yield the optimal hyper parameters and

architecture according to MAE. Because the container DNN power model uses

fewer input parameters, it performs better with fewer layers and neurons than

the server-wide DNN power model. Figure 5.1 shows the MAE from trial archi-

tectures. We selected a model that uses five hidden layers with 8, 16, 32, 16,

and 8 neurons per layer. The last layer has one neuron for predicting one power

value. We used the standardized ground truth as described in Section 3.6 to

account for platform differences.

5.1.1 Model Performance

On the training/validation set containing datapoints from each distinct plat-

form, the model converges to a MAE of around 2.2% as seen in Figure 5.3. With

the standardized power consumption ground truth depicted in Equation 3.3, this

translates to a MAE error of 3 Watts for kraken and medusa and 2 Watts for
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Figure 5.3: Prediction Accuracy of Container DNN Model
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kimchi and gimbap.



Chapter 6

Evaluation

In order to evaluate the accuracy and effectiveness of both our hybrid and

container power models, we designed a realistic use case scenario that uses either

our hybrid power model, a conventional analytical power model, or a state-of-

the-art recursive autoencoder (RAE) [39] as a load migration trigger when a

server’s power consumption threshold is predicted to be breached. We then

profile all containers executing on the culprit server using a combination of

psutil and perf. We then input the resulting parameters into our container power

model to migrate the container with the lowest predicted power to the lowest

utilized server operating within its peak energy efficiency threshold by using

First-Fit Decreasing Scheduling (FFD). Balancing these containerized workloads

across all servers so that each operates within their peak energy efficiency saves

more power over time than consolidating most workloads to fewer servers [56].

We compare the energy savings between the most accurate analytical model,

our proposed hybrid model, and a state-of-the-art machine learning model [39],

which uses RAE.

For the test case, we run a combination of compute- and memory-intensive

workloads. The applications are categorized into compute and memory intensive

46
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Parameters in Original RAE Parameters in Revised RAE

CPU utilization, input/output

packets per second, number of

runnable tasks, memory usage,

number of disk read/write

operations, and file system usage

CPU frequency, user time, CPU

utilization, software interrupts,

number of processes, cache miss

ratio, virtual memory usage,

instructions, and shared memory

usage

Table 6.1: Parameters used in Original Six-parameter RAE and Revised 11-

parameter RAE

as listed in Table 3.6. As described earlier, memory-intensive workloads have

high MPKI as shown in Table 3.5.

6.1 State-of-the-Art Implementation

6.1.1 Recursive Autoencoder Power Model

Li et al. [39] implement both fine-grained and coarse-grained power models

by utilizing a RAE. Their fine-grained design outputs an instantaneous power

prediction for the current time step, t, while their coarse-grained implementa-

tion outputs an average power consumption over a time period, T = 1 hour.

With regards to fine-grained prediction, the RAE accounts for the fast power

fluctuation of workloads by encoding the system parameters starting at t − τ

for a prediction at time t for every sample where τ = amount of encoded time

steps for an training input Xt. Because our implemented scheduling algorithm

requires instantaneous power prediction, we compare against this fine-grained

design.
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Figure 6.1: RAE Architecture [39]: Single autoencoder node is depicted in frame.

Successive nodes encode the output from previous node and input at time i ∈
t− τ, t

The original authors utilized six parameters in their RAE power model: CPU

usage, input/output packets per second, number of runnable tasks, memory

usage, number of disk read/write operations, and file system usage. We revised

the RAE power model to use 11 parameters that are used in our hybrid power

model to conduct a fair comparison. This revision doesn’t impact prediction

accuracy because 1) the paper did not note their motivation behind their listed

parameters while we correlated our parameters with our training application’s

power consumption and 2) as can be seen in Table 6.1, most parameters in both

cases qualitatively encapsulate the events that the original RAE power model’s

parameters capture. We trained a RAE power model for fine-grained prediction

across 3500 samples from our training dataset for both MAE and energy savings

as a load migration trigger comparisons.
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6.1.2 Design Details of Recursive Autoencoder Power

Model

For the RAE implementation, we used sample autoencoder code from [6]

and the Tensorflow functional API to create three main submodels – an input

encoder (ie), merge encoder (m), and decoder (d). More information about the

functionality of these submodels are depicted in Table 6.2. We denote τ = 30,

batch size (L1) = 64, validation size (L2) = 16, and epochs = 100. We use the

same optimization objective as the original RAE power model (Equation 6.1)

εRAE as the loss function for our Adam optimizer.

εRAE = εPRD ∗ 0.95 + εAE ∗ 0.05 (6.1)

εPRD =

∑N |y(t)− y′(t)|2

N
+ .0001 · ||W ||2 (6.2)

εAE =

∑N Errrec(t)

N
(6.3)

Denote the length of the dataset as N , number of parameters as p, and

τ as the number of preceding time steps we want to encode within a single

training sample. We first convert our dataset into numpy arrays of size (τ, p) by

concatenating datapoints ∈ [τ,N ] with the previous τ datapoints. We use this

resulting collection of 2D training samples for our RAE. We start each epoch

with a randomly selected starting point, x ∈ [τ,N − (L1 + L2)]. Each training

sample has the size (τ , p), comprised of the parameters sampled at each previous

τ time steps. First, we encode each of the τ inputs of size p for use in our model

by using the ‘ie’ submodel and denote them as ‘leaves’ in our RAE tree. In

Figure 6.2, the leaf nodes are X1, X2, X3 and X4. The output size of these leaf

submodels are 5 (p//2) as in the previous RAE power model and other works [51]

show an encoder’s output neurons are half the number of input neurons. Then,
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Input Encoder

(ie)

Merge Encoder

(m)

Decoder (d)

Encodes the inital

input neurons

from 11→ 5 for

use within RAE

Concatenates

separate inputs of

5 neurons and

encodes into 5

neuron output.

Also evaluates the

reconstruction

error for εRAE

calculation

Inputs the last

RAE node’s 5

neuron output for

power prediction

Table 6.2: Details of RAE Submodels

Figure 6.2: RAE loss over 3500 training samples



51

denoting the 0th index leaf or input at time step at t−τ as current, we iteratively

combine using separate instances of the ’m’ submodel. Specifically, the current

node with its output are concatenated with the output of the leaf node at the

next time step until no more remain as seen in Figure 6.2. The output of the

last node is inputted/decoded into the ‘d’ submodel to yield the RAE power

prediction. Through Tensorflow’s gradient tape, we update the same ‘ie’, ‘d’,

and τ − 1 ‘m’ instances (there are τ − 1 merges with τ inputs for every training

sample) after determining the εRAE for every batch. To determine the εRAE, the

reconstruction error, Errrec is summed at every time step in a training sample

using the output from merge encoder at t, m(t). We only update the submodels

parameters if there is improvement upon the validation error, summed across

test samples from [x+ L1, L2]. This follows the inspiration of the original RAE

power model.

6.2 Analytical Power Models

To justify our analytical model selection both within our hybrid model and

as a comparative approach, we evaluate three widely-used conventional power

models on the prominent SPECpower dataset.

The MAE of the three conventional power models on the SPEC dataset

are not negligible as errors range from 16 to 46 W. As expected, conventional

power models do not perform well on workloads that utilize caches, memory

hierarchy, and the scalability of shared memory processors. In particular, with

respect to equation 2.2, its large error is most likely due to the assumption of

the idle consumption ratio. This value often varies from platform to platform,

and therefore introduces error when assumed.

When the analytical power models predict power consumption on the CPU

load micro benchmark dataset, the error rate decreases substantially. Equation
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Figure 6.3: Equation 4.1, 4.2, 2.2 MAE on selected SPEC Platforms from SPEC-

power2008 public dataset
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4.1 seems to maintain its current trend of effectiveness, with only a MAE of

5 on kraken platforms. We therefore utilize Equation 4.1 as the choice

Analytical Model for comparison and integration in our hybrid power

model.

6.3 Power Model Accuracy Evaluation

We evaluate the accuracy of the different power models on our CPU and

MEM datasets. We find that our hybrid power model outperforms the other

two models by up to 11%. However, we must preface these results as the orig-

inal RAE performed more optimally with a mean prediction error of .24. It

is important to note that 1) our PARSEC and SPLASH workloads are high

performance computing benchmarks, and as a result exhibit dynamic power

consumption. It is possible that the dynamic WC98 webtrace the original RAE

trained upon is less dynamic. And 2) the original RAE was tested on two homo-

geneous servers. Because we sample datapoints from 2 distinct platforms, the

RAE does not standardize to account for platform differences.

6.4 Hybrid Power Model Load Migration De-

cisions

We assess the effectiveness and reliability of model selection decisions of our

hybrid model. Figure 6.6 shows the datacenter total power consumption (power

consumption of all four worker servers in MoCA Lab) drawn in blue color and

the cache miss ratio at moments in time tracked with bar graphs. The purple

dots show moments that the analytical model is selected to trigger migration

and the red dots show those that the DNN power model is selected to trigger
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Figure 6.5: Power Model Performance on the CPU and MEM workloads

migration. Figure 6.6 shows that the classifier selects DNN model when cache

miss ratio is higher than 40%, as shown in between 60 to 75 time steps that

have tall miss ratio bar graphs. At the remaining time steps where cache miss

ratios are mostly less than 10%, analytical model was selected. This result shows

that the hybrid model correctly selects expected models (analytical model for

compute-intensive workloads and DNN model for memory-intensive workloads).

As far as the workloads show consistent computing pattern, the same model will

be reliably selected.

6.5 Power Model Load Migration Evaluation

In order to evaluate the power models in an adequate use case, we devise

an experimental workload where the GPU moderator first schedules a container

application from our memory-intensive workload in Table 3.6 and migrates the

lowest consuming containers whenever there is a power threshold violation. We
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Figure 6.6: Model Selection Results: When cache miss ratio is high, DNN model

is selected to trigger migration.

Figure 6.7: Data Center Power Consumption Comparison When Using Different

Power Models: Blue graph is state-of-the-art RAE, yellow graph is Analytical

model, and green graph is Hybrid Model
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controlled workload execution time and injection time by following long tail

distribution to mimic realistic data center execution [58]. We launched some

applications concurrently to simulate realistic data center execution where con-

tainer workloads generally contain up to tens of containers executing simulta-

neously [3, 15]. Migration points are denoted as plotted dots on the line graphs

in Figure 6.7. From Figure 6.7, the proposed hybrid power model yields up to

10% and 5% overall power savings compared to the analytical and RAE power

models, respectively.



Chapter 7

Conclusion

In this thesis, we propose a hybrid server power model to take advantage

of low latency analytical power models and accuracy of machine learning ap-

proaches. Our hybrid server power model first classifies a set of parameters ac-

cording to what it predicts will perform best: analytical model or DNN model.

If the prediction eclipses the confidence threshold of 0.6, The hybrid power

model outputs using the classified power model, defaulting to DNN power pre-

diction otherwise. Our work also presents a per-container DNN power model

that provides load balancing algorithms to make optimal decisions based on the

predicted power cost for a container. This study additionally contributes DNN

power model standardization to allow for DNN power models to better general-

ize across distinct platforms. Our results show a 50% increased accuracy after

applying this standardization to our dataset with two distinct platforms. To

evaluate our hybrid model performance, we compare against a state-of-the-art

recursive auto encoder (RAE) power model and analytical power model in terms

of accuracy, and as a load migration trigger. Our experiments show that our

hybrid power model outperforms the analytical power model by up to 10% and

the RAE power model up to 5% on a load migration use case.

57
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In future works, we will compare our hybrid power model against other state-

of-the-art techniques and workloads for continued evaluation, and determine if

our standardization applied on our DNN output yields similar improvements

when applied to other machine learning power models. Additionally, we will

test the capacity of our standardized inputs on a greater amount of distinct

platforms. We will also evaluate alternative load migration techniques for im-

proved runtime decision making. Some possible considerations are: designing

objectives to minimize that account for shared memory among containers, and

deeper analysis of how to evaluate per container power consumption on fully

saturated server loads.
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