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Soluble adenylyl cyclase (sAC) is poised to playmultiple physiological roles as an acid/base (A/B) sensor in aquat-
ic organisms. Many of these roles are probably similar to those inmammals; a striking example is the evolution-
ary conservation of amechanism involving sAC, carbonic anhydrase and vacuolar H+-ATPase that acts as a sensor
system and regulator of extracellular A/B in shark gills and mammalian epididymis and kidney. Additionally, the
aquatic environment presents unique A/B and physiological challenges; therefore, sACs from aquatic organisms
have likely evolved distinct kinetic properties aswell as distinct physiological roles. sACs from aquatic organisms
offer an excellent opportunity for studying the evolution of A/B sensing at both the molecular and whole organ-
ism levels.Moreover, this information could help understand and predict organismal responses to environmental
stress based on mechanistic models.This article is part of a Special Issue entitled “The Role of Soluble Adenylyl
Cyclase in Health and Disease,” guest edited by J. Buck and L. R. Levin.

© 2014 Elsevier B.V. All rights reserved.
Most aquatic organisms are regularly exposed to fluctuating levels of
CO2, pH and [HCO3

−], both in the environment and in physiological
fluids, as a result of various conditions such as the balance between pho-
tosynthesis and respiration on a day/night cycle, feeding, calcification,
upwelling and, in the case of aquatic mammals and birds, diving. More-
over, anthropogenic disturbances such as ocean acidification and pollu-
tion may induce further acid/base (A/B) disturbances. Because water-
breathing animals characteristically have a lower buffering capacity in
their internal fluids compared to air-breathing vertebrates, environ-
mental and metabolic disturbances may induce large variations in A/B
homeostasis that must be constantly sensed and regulated.

Soluble adenylyl cyclase (sAC), which has been identified in aquatic
species frommultiple phyla (see [1] for a recent compendium), is a good
candidate as a molecular CO2/pH/HCO3

− sensor of A/B stress in aquatic
organisms. sAC produces the ubiquitous secondmessenger cAMP in re-
sponse to elevated CO2/pH/HCO3

− and can potentially mediate multiple
physiological responses via PKA-dependent phosphorylation, ion chan-
nel gating and exchange protein activated by cAMP (EPAC) signaling
(reviewed in [1–5]). A recent paper has reviewed the established func-
tions of sAC in aquatic animals and identified some potential additional
physiological roles [1]. The current paper further discusses environmen-
tal and metabolic conditions that may be related to sAC function in
e of Soluble Adenylyl Cyclase in
n.
aquatic organisms. It will also discuss the apparent evolutionarily con-
servation of sAC-dependent mechanisms in analogous A/B regulatory
organs from diverse animals and extend the debate on potential func-
tions of sAC to phytoplankton.
1. “Aquatic” sAC as a model to study the molecular basis of
A/B sensing

Froman experimental andmethodological perspective, aquatic animals
may serve as good model systems to study A/B sensing for two main rea-
sons. First, they experience large A/B disturbances as part of their normal
physiology. This is a great experimental advantageas it is possible toexpose
cells and organisms to a wide suite of A/B conditions ranging from normal
([HCO3

−]=~5mM;pH~7.8) to alkaline ([HCO3
−]=~20mM;pH~8.2) and

to acidic (HCO3
−-free; pH ~7.5). The extreme differences between

conditions maximize the magnitude of the responses and readouts,
thus facilitating detection and quantification. Most importantly,
these extreme conditions are physiologically relevant (compared,
for example, to mammalian cells, which are often exposed to
non-physiological HCO3

−-free conditions to maximize responses).
Because A/B stress is universal and sAC is evolutionarily conserved,
many of these results may also be applicable to other organisms,
including humans.

The second reason why sACs from aquatic organisms are interesting
models is for comparative studies on structure and function. For sAC to
be an evolutionarily conserved A/B sensor as proposed [6,7], its kinetic
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characteristics should vary according to the distinct A/B challenges that
each organismhas regularly experienced throughout their evolutionari-
ly history. Because the kinetic differences should be due to key amino
acid residues, mutagenesis studies based on amino acids that differ
from species to species could inform about the molecular basis for
sAC's differential sensitivity to HCO3

− and other enzyme kinetic param-
eters. For example, the EC50 of dogfish sAC for HCO3

− is ~5 mM [7],
which is much lower than the ~20 mM reported for mammalian sAC
[6,8,9]. In human sAC, HCO3

− binds between lysine 95 and arginine
176, and mutagenesis of the lysine for an alanine completely abolished
the stimulatory effect of HCO3

− [10]. Alternatively, the sAC amino acid
sequences from coelacanth, gar, salmon, trout, chimera and dogfish
shark posses an asparagine in a position equivalent to human sAC's ly-
sine 95 (Fig. 1).Wouldmutating lysine 95 for asparagine increase the af-
finity of human sAC for HCO3

−? Conversely, would mutating the
asparagine to lysine reduce the affinity of shark sAC for HCO3

−?
Similarly, a comparison between sAC sequences from diverse organ-

isms inform us about potential regulatory mechanisms and interactions
with other proteins. The linker region between catalytic domains 1 and
2 in human sAC is 69 amino acids long, has a high proline content and
hydrophobicity and has been identified as a potential region for pro-
tein–protein interactions (including other sAC domains) [10]. The
length of the linker region is essentially the same in sAC from all other
vertebrates. However, the equivalent region is 148 amino acids long in
sea urchin sAC and 153 amino acids long in oyster sAC. Do sACs from
these two invertebrates have additional regulatory properties or
interacting partners? This hypothesis is preliminarily supported by
studies on sea urchin sAC showing co-immunoprecipitation with at
least 10 other proteins [11]. It should also be noted that sea urchin
sAC has several PKA phosphorylation sites [12] whereas human sAC
has none.
2. Variability of CO2, pH and HCO3
− in aquatic environments

Studies to elucidate potential physiological roles of sAC in aquatic or-
ganisms require first considering the biology of each organism in rela-
tion to its environment. Although the open ocean is chemically stable,
some aquatic environments experience pronounced daily or seasonal
fluctuations in A/B conditions as a result of biological activity, upwelling,
tides or CO2 vents [13]. For example, in coral reefs and kelp forests, the
balance between photosynthesis and respiration can result in daily
Fig. 1.Alignment of sACprotein sequences from diverse animals in the region correspond-
ing to amino acids 87–106 of human sAC. Residues in red are conserved across all se-
quences, residues in blue are typical of sACs from fish. Arrowheads indicate two key
amino of mammalian sAC: lysine 95 (K) directly binds HCO3

− and aspartate 99
(D) coordinates Mg2+ [10]. While D99 is conserved in all sACs, K95 is an asparagine in
sACs from all fish species. This substitution may help explain the lower EC50 of shark
sAC for HCO3

− (~5 mM [7]) compared to mammalian sAC (~20 mM [6,8,9]).
shifts of ~0.3 pH units [13,14]. In California kelp forests, even larger var-
iations can occur due to sporadic upwelling events of CO2- and nutrient-
richwaters that can last for several days [14]. Similar conditionsmay be
found in other environments with intense biological activity such as
mangroves, algal blooms or oxygen minimum zones. Since in most
cases the changes in pH are due to CO2 production, these are associated
with equivalent changes in CO2 and HCO3

− following the equilibrium
CO2⇔H+ +HCO3

−. Hypercapnia can affect the A/B status in the inter-
nal fluids of aquatic organisms by inducing an accumulation of CO2 in
internal fluids due to the reduced gradient for metabolic CO2 excretion
(reviewed in [15]), and, in extreme acidic cases, by directly impairing
H+ secretion by Na+/H+ exchangers.

While motile animals have the option of moving, they may prefer to
stay for food, protection, mating or socializing purposes. Sessile animals
and plants, on the other hand, have no option but to cope with the A/B
stressing conditions. Organisms that do not move must either regulate
the A/B status of their internal fluids or adjust their physiology tofluctu-
ating A/B conditions. Thus, the ability to sense A/B must be an adaptive
and widespread trait that undoubtedly regulates multiple physiological
functions in aquatic organisms.
3. Regulation of A/B in extracellular fluids in aquatic animals

An important distinction between the A/B physiologies of aerobic
water- and air-breathing large animals is that the former typically
have lower pCO2 and [HCO3

−] in their internal fluids. This is due to the
high ventilatory requirement for O2 uptake and the high capacitance
of water for CO2 relative to O2 [16]. Since the lower CO2/HCO3

− in inter-
nal fluids is associated with a lower buffering capacity, water-breathing
animals experience more pronounced A/B disturbances compared to
air-breathers. Furthermore, the changes are proportionally even larger
due the lower CO2, [H+] and [HCO3

−] baseline levels. An additional char-
acteristic of aquatic animals with high metabolic demands is that they
must ventilate their respiratory surfaces at a high rate even during rest-
ing conditions to be able to extract sufficient oxygen from the surround-
ing water. As a result, aquatic animals cannot regulate blood A/B status
by adjusting the ventilation rate (hyper- or hypo-ventilation) like air-
breathing animals do. Instead, they rely heavily on metabolic compen-
sation, typically by the gills, which act as an analogous organ to mam-
malian kidneys (reviewed in [17,18]).

As an example, the post-feeding period is associatedwith ametabol-
ic alkalosis both inmammals [19] and sharks [20] as a result of increased
H+ secretion into the stomach and HCO3

− absorption into the blood.
However, while in mammals the alkalosis is mild, localized and tran-
sient, in sharks it can more than double resting plasma [HCO3

−] (from
~ 4 mM to N10 mM, depending on the meal size), elevate pH by ~0.3
pHunits, and last ~24h [20–22]. Another example is exhaustive exercis-
ing, which in sharks induces severe metabolic acidosis that can almost
completely deplete plasma [HCO3

−], reduce blood pH by ~0.4 pH units
and take 4 h to be compensated [23]. A third and final example is the
compensatory A/B response to environmental hypercapnia, which in-
volves the accumulation of HCO3

− in plasma to levels that can triple or
quadruple baseline levels [15,24,25]. Shark sAC's EC50 for HCO3

− is
~5 mM, and its Vmax is ~15mM [7], viz. they respectively match normal
and upper plasma [HCO3

−] values found during biologically relevant
conditions. Thus, sAC is well suited to be a physiologically relevant AB
sensor in sharks ([7], reviewed in [1].

Of the conditions listed above, sAC has to date only been studied in
relation to sensing and counteracting blood alkalosis in shark, to
which it seems essential [7]. Additionally, sAC has been shown to regu-
late NaCl and water absorption across the intestine of marine bony fish
[26,27]. Promising avenues of future research include regulation of car-
diac physiology, vasodilation and vasoconstriction, regulation and coor-
dination of aerobic and anaerobic metabolism and regulation of gene
expression. Furthermore, sAC is present in shark red blood cells [1],
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where it may additionally regulate Cl−/HCO3
− and Na+/H+ transport in

relation to gas exchange.

4. sAC as a regulator of transepithelial transport

Specialized epithelia such as kidneys and choroid plexus in verte-
brates, and gills in fish andmany invertebrates, maintain A/B homeosta-
sis in their extra-cellular fluids by secreting and absorbing H+ and
HCO3

−: The first report of sAC acting as an epithelial A/B sensor and reg-
ulator of H+ transport was in rat epididymis [28] (Fig. 2). The luminal
fluid in the distal region of the epididymis is acidic (pH ~6.8) and has
low [HCO3

−] (~5–7 mM) [29], which keep the stored sperm quiescent
until ejaculation. In response to elevations in luminal pH and [HCO3

−],
sAC in “clear” cells becomes stimulated to produce cAMP, leading to
the insertion of more V-type H+-ATPase (VHA) into the apical mem-
brane of clear cells, upregulation of H+ secretion and restoration of an
acidic luminal fluid [28]. This mechanism also depends on functional
carbonic anhydrase [28]. Subsequent research established the involve-
ment of the actin cytoskeleton [30,31], Ca2+ [30] and PKA [32] in VHA
insertion into the apical membrane, and that the VHA A subunit be-
comes phosphorylated [33]. VHA insertion into the apical membrane
is negatively modulated by AMPK [33] (reviewed in [34,35]).

Themammalian epididymis is an excellentmodel to study renal acid
secretion because it is easier to isolate andmanipulate compared to kid-
ney nephrons, and because the epididymal “clear” cells resemble renal
A-intercalated cells (A-IC) both embryologically [36] andmechanistical-
ly [34,37]. Indeed, all the sAC-dependent events described above for
epididymis also apply to renal A-IC. Both sAC and VHA are abundantly
expressed in A-ICs [28,38]; VHA insertion into the apical membrane is
CA-, sAC-, cAMP- andPKA-dependent [39], and it is negativelymodulated
Fig. 2. Model for acid/base sensing and H+ secretion in mammalian epididymal clear cells a
cotransporters (NBC) and/or (2) blood CO2 entering via basolateral aquaporins (AQP) stimula
into H+ and HCO3

−. (4) sAC produces cAMP that activates protein kinase A (PKA), which prom
membrane for upregulation of acid secretion (5). Potential PKA targets include Ser-175 in the
absorb HCO3

− into the blood via basolateral NBCs and anion exchanger 1 (AE1).
by AMPK [39,40]. Studies on kidney have additionally revealed a physical
interaction between sAC and VHA (based on co-immunoprecipitation
and co-immunolocalization) [38], and that the A-subunit becomes phos-
phorylated at Ser-175 by PKA [41] and at Ser-384 by AMPK [40]. sAC-,
cAMP- and PKA-dependent VHA insertion to the apical membrane also
takes place in a human salivary gland cell line (HSG) [42]. While cAMP
and PKA have the same effect in proximal tubule cells [43], it is yet not
known if sAC is involved.

sAC is also present in renal B-ICs, where it exhibits a bipolar distribu-
tion: it colocalizes with VHA in the apical and basolateral region and
with the anion exchanger pendrin in the apical membrane [38]. Al-
though this localization suggests a role in regulating HCO3

− secretion
and H+ absorption, performing these types of studies is complicated
by the low abundance of B-ICs in relation to A-ICs and principal cells. Al-
ternatively, shark gills contain numerous base-secreting cells that are
analogous to renal B-ICs from mammals as they co-express VHA,
pendrin [44–46], carbonic anhydrase [47] and sAC [7] and are involved
in HCO3

− secretion and H+ absorption to compensate blood alkalosis [7,
47–49]. Furthermore, acid-secreting cells in shark gills do not express
noticeable amounts of VHA (see references above), and sharks regularly
experience a pronounced post-feeding alkalosis that is compensated
over several hours (“alkaline tide”) [20]. Furthermore, since sharks
only use H+ and HCO3

− movement to regulate blood pH (they cannot
efficiently use ventilatory adjustments, see Regulation of A/B in Ex-
tracellular Fluids in Aquatic Animals section), experiments with
live animals are more easily performed and the results more clearly
interpreted. These characteristics make shark an excellent model
for studies on the molecular and cellular mechanisms of blood A/B
sensing and regulation, especially those related to HCO3

− secretion
and H+ absorption.
nd renal A-intercalated cells (A-ICs). (1) Luminal HCO3
− entering via apical Na+/HCO3

−

te sAC (3), in the latter case after cytoplasmic carbonic anhydrase II (CAII) hydrates CO2

otes the insertion of vesicles containing V-type ATPases (VHA, blue icon) into the apical
VHA A subunit, and proteins of the actin cytoskeleton. (6) These acid-secreting cells also

image of Fig.�2
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The elucidation of the role of sAC in sensing and compensation for
blood alkalosis involved experiments with live sharks made alkalotic
by intravenous infusion of NaHCO3 combined with pharmacological in-
hibitors of CA, microtubule polymerization, and sAC [7,47–49], as well
as sharks in their naturally occurring post feeding period [46,47]. At dif-
ferent times after the onset of alkalosis, gill samples were taken and the
intracellular localization of VHA determined by immunohistochemistry
and, in some cases, byWestern blotting. The resulting cellular model for
A/B sensing and regulation (Fig. 3) is mostly amirror image of mamma-
lian A-ICs (Fig. 2). Interestingly, post-feeding blood alkalosis results in
sAC-dependent translocation of VHA from cytoplasmic vesicles to
basolateralmembranes [7], but also in the translocation of the anion ex-
changer pendrin to the apical membrane [46]. However, in the latter
case, it is not yet known if sAC is involved. To characterize this model
in more detail (for example, the potential roles of PKA, EPAC and
tmACs), it is essential to first develop primary cultures of shark gill
cells enriched for base-secreting cells.

Other epithelia also secrete H+ or HCO3
− but for physiological func-

tions other than systemic A/B regulation. As examples, the stomach se-
cretes H+ for food digestion, the pancreas secretes HCO3

− that activates
digestive enzymes and neutralizes the acid chyme entering the duode-
num, the ciliary body secretes HCO3

− that driveswater transport into the
aqueous humor in the eye and the coral calicoblastic epithelium and
the mollusk mantle secrete base to promote calcification. Furthermore,
CO2/pH/HCO3

− are known to modulate the transport of other molecules
such as NaCl andwater acrossmany epithelia. Inmany cases, the effects
of CO2/pH/HCO3

− on transepithelial transport may be explained by
the substrate-law of mass action, by allosteric modulation of ion
transporting proteins or by inducing changes in protein structure.
However, a detailed examination of the literature also reveals a re-
current link between epithelial ion transport and CO2/pH/HCO3

−,
carbonic anhydrase and cAMP, three variables intrinsic to sAC
Fig. 3.Model for acid/base sensing andHCO3
− secretion in shark gill base secreting cells. (1) Bloo

possibly via aquaporins (AQP). (2) Cytoplasmic carbonic anhydrase II (CAII) hydrates CO2 into
triggers the microtubule-dependent translocation of VHA (blue icon) containing cytoplasm
Basolateral VHA reabsorbs H+ into the blood to counteract the original alkalosis. (5) The anion
to seawater. sAC is presumed to trigger the translocation of pendrin; however, this has not bee
activity. Examples of mammalian epithelia where this link has
been described include intestine [50], colon [51], jejenum [52], cho-
roid plexus [53] and cornea [54], all of which express sAC [6,55–58].
Regulation of epithelial ion transport by CO2/pH/HCO3

− also occurs
in aquatic animals, for example in crab gills [59], frog stomach [60]
and fish intestine [27,61,62] (in the latter example, sAC has already
been shown to be involved [26,27]). Put together, it is likely that sAC
is a widespread mediator of the effects of CO2/pH/HCO3

− on epithelial
ion transport by sensing A/B parameters and regulating and coordinat-
ing activities of various transporter proteins via cAMP-dependent post-
translational modifications. Moreover, apical and basolateral epithelial
membranes may display differential permeabilities to CO2, H+ and
HCO3

−, depending on lipid composition and expression of aquaporins,
ion channels and transporters [63–65]. This implies that sAC can re-
spond to (and sense) the A/B status from one epithelial side and not
from the other (as shown in isolated dogfish gills in which dfsAC-
dependent VHA translocation occurs in response to alkalosis in the
basolateral side but not in the apical side [7]). Finally, sACmay also reg-
ulate cell physiology in response to A/B disturbances induced by cellular
respiration in the cytoplasm (e.g., [27,66] and inside mitochondria [67,
68].

5. sAC in photosynthesizing aquatic organisms

Marine phytoplankton is composed of many species of diverse
photosynthesizing microorganisms that generate half our planet's oxy-
gen [69] and are essential to marine foodwebs and the global carbon
cycle [70]. Some of these microorganisms additionally establish symbi-
otic associations with cnidarians, mollusks and other marine animals.
Prominent examples are the scleractinian corals, a symbiosis between
cnidarians and dinoflagellates that forms coral reefs, one of the most
biodiverse ecosystems in the world.
dHCO3
− is dehydrated by extracellular carbonic anhydrase IV (CAIV), and CO2 enters the cell

H+ and HCO3
−. The elevated intracellular HCO3

− stimulates sAC to generate cAMP, which
ic vesicles to the basolateral membrane (4). The targets of cAMP action are unknown.
exhanger pendrin (Pd) translocates to the apical membrane to secrete the excess HCO3

−

n experimentally confirmed.
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For photosynthetic organisms, CO2 (alongwith light andwater) rep-
resents their food. Photosynthetic activity involves the transport of CO2

and HCO3
− and its accumulation in intracellular compartments via car-

bon concentrating mechanisms (CCM). This is essential for photosyn-
thesis because the affinity of ribulose-1,5-bisphosphate carboxylase/
oxygenase (commonly known as RuBisCo) for CO2 is generally much
lower than environmental CO2 levels [71]. Photosynthetic activity is
also associated with substantial changes in pH in the cytoplasm of
aquatic cyanobacteria (~7.2 in the light and ~6.7 in the dark [72]), as
well as in the cytoplasm of coral gastrodermal cells hosting symbiotic
algae (~pH 7.4 in the light and ~7.1 in the dark in [73]). Thus, CO2/pH/
HCO3

− sensors potentially have several essential roles in coordinating
cell physiology in photosynthesizing organisms.

BLAST searches of genomic and transcriptomic databases reveal
genes encoding for putative sAC-like proteins in representatives of
the major marine phytoplanktonic groups: the diatoms Thalassiosira
pseudonana and Phaeodactylum tricornutum [74], cyanobacteria of
the genus Synechococcus, the foraminifer Emiliania huxleyi and the
dinoflagellate Karenia brevis, as well as in corals [75]. The physiological
roles of sAC in phytoplankton remain unknown; however, experiments
with the diatoms P. tricornutum suggest sAC is involved in regulating
gene expression as cAMP represses the expression of certain genes
under elevated environmental CO2 conditions [76]. Furthermore,
P. tricornutum has three adenylyl cyclases that show reasonable conser-
vation of amino acids that are key for HCO3

− stimulation in mammalian
sAC (e.g., K95), and P. tricornutum lysates demonstrate stimulation of
cAMP by HCO3

− [74]. Similarly, lysates of the diatom T. pseudonana
show HCO3

−-stimulated cAMP production that is sensitive to the sAC
inhibitor KH7 (Fig. 4).
6. Conclusions and perspectives

Themost fascinating aspects of sAC are that it provides amechanism
to sense and respond to a fundamental variable in biology such as A/B
conditions, that sAC and sAC-related enzymes are evolutionarily con-
served from cyanobacteria tomammals and that sAC produces the ubiq-
uitous signaling molecule cAMP, which can regulate virtually every
aspect of cell biology and physiology. However, for obvious funding rea-
sons, most of our understanding on sAC comes from biomedical studies,
which, although certainly important, usually lack an evolutionary focus.
Comparative studies onmarine organisms have the potential to provide
insights about the evolution of A/B sensingwhile also being relevant for
understanding and predicting responses to environmental stress.
Furthermore, some marine organisms may provide useful models to
Fig. 4. Evidence for sAC-like enzymes in the diatom Thalassiosira pseudonana. (A) RT-PCR of the
database annotation. B = blank. (B, C) Stimulation of cAMP production in T. pseudonana extra
aliquots were incubated in 100 mM Tris pH 7.5, 5 mM MnCl2, 2.5 mM ATP, 0.5 mM IBMX, 2
NaHCO3 = 40 mM. KH7 = 100 μM (control = DMSO) (N = 3).
biomedical problems related to A/B sensing and regulation (e.g., shark
base-secreting cells).

Although sAC ortholog genes are present in a large variety of aquatic
animals [1], it is still for the most part unknown in which cell types sAC
is expressed, if sAC protein is present inside organelles like shown for a
few mammalian cell lines and tissues and what physiological roles sAC
plays in addition to blood A/B regulation in shark gills [7], NaCl and
water absorption in fish intestines [26,27], and flagellar movement
and the acrosome reaction in sea urchin sperm [12,77]. The dual link
of sAC with A/B and cAMP makes the possibilities for additional func-
tions endless; however, characterizing sAC function in marine organ-
isms entails multiple challenges. To begin with, there is a lack of
experimental models suitable for reverse genetics, so experiments rely
on pharmacological inhibitors such as KH7 and derivatives of catechol
estrogens (dCE). Most of our current knowledge on physiology and
cell biology has been obtained using this approach, so it is certainly
very useful. However, this approach complicates studies on live animals
due to the potential inhibition of sAC in multiple parts of the body.
Additionally, the effectiveness of KH7 and dCEs on sAC from each organ-
ism, aswell as their specificity for sAC over tmACs, should be confirmed.

This illuminates a second challenge, which is to discern the cellular
functions regulated by sAC from those regulated by tmACs. The cAMP
signaling microdomain model proposes that cAMP is produced by sAC
and tmACs in discreet intracellular areas and that cAMP diffusion is re-
stricted by phosphodiesterases that degrade cAMP produced in each
microdomain, thus preventing (or regulating?) cross-talk and allowing
for signal specificity (reviewed in [2,3]). There is evidence for cAMP-
micordomains in marine fish intestine, as sAC stimulates NaCl and
water absorption but tmAC decreases it (and maybe stimulates NaCl
and water secretion) [26,27]. Furthermore, experiments using forskolin
to stimulate tmACs and study their function should be interpreted with
caution because forskolin stimulation of tmACs is so high that is non-
physiologically relevant and almost certainly disrupts cAMP micro-
domains. The bottom line is that elucidating the roles of sAC requires
multiple experimental approaches, and that previous results about
the roles of cAMP may require a fresh interpretation that considers
the cellular microdomain model.

While there is solid genetic and functional evidence for sAC in
elasmobranchs, an open question in fish physiology is if sAC is pres-
ent in any other fishes. Although studies on toadfish [27] and sea
bream [26] intestine suggest sAC is present, those studies relied on
Western blotting with heterologous antibodies against shark sAC,
and on pharmacological inhibition with KH7 and dCE. Thus, they
cannot be considered definitive evidence. The lack of sAC genes in
the available genomic and transcriptomic databases from zebrafish,
region encoding the catalytic domains of sACs. PID= protein id according to the THASP_3
cts by HCO3

−, and sensitivity to KH7, an inhibitor of eukaryote sACs. Diatoms supernatant
0 mM creatine phosphate and 100 U.ml−1 creatine phoshpkinase (30 min, 25°C). NaCl,

image of Fig.�4
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fugu, stickleback, pufferfish, killifish and Atlantic cod would seem to
suggest that sAC genes have been lost in some fish lineages. Howev-
er, sAC orthologs are definitely present in trout, salmon, gar and coe-
lacanth [1], and there is at least one sAC-like gene in catfish. This
raises technical questions of potential problems in the annotation
of some of the fish genomes, but also scientific questions about the
evolution of A/B sensing. Why would sAC be present in some fish
and in most land vertebrates, but absent in another subset of fish
species? If this is indeed the case, what genes (if any) have taken
over sAC's regulatory roles?

Another question is whether sAC genes from organisms other than
mammals undergo alterative splicing, and if, unlike human, the ge-
nomes of some speciesmay containmore than one sAC gene. For exam-
ple, there is evidence for more than one sAC gene in corals [75], which
could have implications for specialization of function of the potential
sAC isoforms based on differential kinetic properties, localizationwithin
the cell and interaction with other proteins.

Finally, it is still unknown whether sAC is present inside organelles
such as mitochondria and nucleus of any organism other than humans
and rodents. Unpublished results suggests that sAC is present in the
nucleus of cells from coral (Barott and Tresguerres) and shark (Roa
and Tresguerres), which could provide a mechanistic model for the reg-
ulation of gene expression in response to environmental and metabolic
A/B stress based on sAC-dependent phosphorylation of transcription x
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