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This paper presents a quantitative framework to support policy decision-making around equitable energy
interventions. By combining sociodemographic and techno-economic models in the energy space, we propose
a linear programming model to calculate the optimal portfolio of energy investments that explicitly minimizes
the energy burden of a given population of energy insecure households. The model is formulated as a multi-
objective optimization suitable to support the decisions on weatherization and deployment of distributed

energy resources. We illustrate our methodology with a case study involving a population of 14,043 energy
insecure households in Wayne County, Detroit, United States.

1. Introduction
1.1. Motivation

A growing body of literature recognizes the close tie between so-
cioeconomic status and disparities in energy insecurity. For example,
studies focusing on the U.S. have highlighted that low-income families
and communities of color are more likely to live in energy inefficient
homes — with poor building envelope insulation and inefficient appli-
ances — that require more energy consumption to achieve minimum
levels of comfort [1,2]. The result of lower quality housing stock is
that one in three American households experience challenges in paying
energy bills [3] and millions are at risk of being disconnected from
the utility for nonpayment reasons [4]. Energy insecurity can also be
observed through energy limiting behaviors, in which energy insecure
households and communities refrain to use energy services even to
satisfy basic needs [5].

One measure of energy insecurity is energy burden, or the percent-
age of gross household income spent on energy costs. According the US
Department of Energy’s Low-Income Energy Affordability Data (LEAD)
Tool [6], the national average energy burden is 3%. An affordable
energy burden is defined as 6% or less. However, energy burdens vary
across sociodemographic characteristics such as income, housing type
and age, tenure, race and ethnicity, and occupant age. Low-income
households experience an average energy burden three-times the na-
tional average, 8.6% (LEAD). Black, Hispanic, and Native American,
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and older adult households also experience higher energy burdens than
the average households [7].

Energy resource plans and policies should be designed to not only
mitigate these disproportionate burdens, but enable a just transition
that benefits marginalized communities through cleaner sources of
energy, reduced emissions from the removal of fossil fuels, employment
and economic opportunities [8].

Due to their decentralized nature, renewable Distributed Energy
Resources (DERs), together with weatherization and energy efficiency
investments, are important decarbonization instruments suitable for
place-based implementation of a just energy transition. Behind the me-
ter or community-owned photovoltaics (PV) and storage technologies
can reduce consumers’ energy bills, by increasing self-sufficiency [9],
decreasing peak demand charges [10], and improving the ability to
respond to different time-varying electricity prices [11] and solar com-
pensation mechanisms [12]. Similarly, from the perspective of building-
level interventions, weatherization and energy efficiency measures can
provide significant improvements to thermal comfort, enhanced health
and safety, while reducing energy costs [13].

Thus, the economic and social benefits of DER deployment as well
as weatherization and energy efficiency investments are evident. From
an energy equity perspective, the main challenge is to integrate these
technology investments into place-based just transition pathways at the
policy level. To achieve that, first we need to recognize the limitations
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Nomenclature

Sets

T Set of tracts, indexed by =

P Set of policy interventions. indexed generically by

p and referring to the following interventions {w:
weatherization, rts: rooftop solar, cs: community
solar, cw: community wind}.

F Set of fuel types, indexed by f and referring in the
model to the following fuel types {el: electricity,
gs: gas, of: other fuels}.

K Set of household archetypes eligible for policy

intervention p in tract z, indexed by k.

Set of household archetypes eligible for weather-

ization policies with f as heating fuel type.

H Set of home construction types in this study we
use small multi-family, large multi-family, single
family homes, mobile homes.

C Set of climate zones.

Parameters

Nb, Number of households of archetype k.

¢, Solar productivity factor for tract 7.

Ny Wind productivity factor for tract z.

IC, Investment costs associated with policy interven-
tion p.

L, Lifetime of the investments associated with policy
intervention p.

Pel Price of electricity.

WS, Percentage of weatherization savings in building
k.

E,{ Baseline expenditure of building k associated

with the consumption of fuel f.

Maximum rooftop solar allowed in archetype
building k.

Maximum community solar in tract .

X

Maximum of community wind in tract 7.

Social cost of energy insecurity.

Maximum budget available.

Decision marker predisposition to allocate budget
to the mitigation of energy insecurity.

S W | A

Decision Variables

dy Fraction of households of archetype k to receive
weatherization interventions.

s Amount of rooftop PV installed in archetype
building k.

dss Amount of community PV installed in tract .

dge Amount of community wind installed in tract ¢.

g Amount of electricity generated from rooftop PV
by an household archetype .

g’ Portion of electricity generated from community
PV attributed to building k.

g Portion of electricity generated from community

wind attributed to building k.

of existing DER policies, such as solar financing and credit score re-
quirements, in addressing equity problems [14,15]. Second, we need
concrete decisions and plans to deploy these DER technologies in the
field in the form of just energy interventions. These decisions have

e Annualized costs of rooftop PV installations
assigned to the archetype household k.

s Annualized cost of community PV installation in
tract 7.

e Annualized cost of community wind installation
in tract f.

eld, Electricity demand of an household archetype k.

ecy Total energy consumption of an household
archetype k.

egy Total energy generation associated with the
household archetype k.

eb, Energy burden of an household archetype k.

to be supported by quantitative research that explicitly addresses the
disproportionate burden of underserved communities. In other words,
we need a new generation of quantitative models capable to support
equitable energy policy interventions decisions from national and local
governments, energy providers, and communities.

1.2. Literature review

Such quantitative decision-support policy models are still to be
developed. So far, quantitative analysis in the energy equity space
relies on statistically-based models to identify disproportionate burdens
and disparities in access to energy resources. These quantitative frame-
works are not conceived to design specific forward-looking energy
interventions, but to quantify and reveal causes of injustice and to
help us understand the potential of technologies or policies to mitigate
them. Examples of these quantitative analyses in solar energy include
the work of O’Shaughnessy et al. [16] that examined the adoption
impacts of solar rooftop policies and business models on energy in-
justices. The study finds that, historically, incentives targeted at LMI
participants, PV leasing, and property-assessed financing options have
driven more equitable rooftop solar adoption. Similarly, in [15], the
authors simulated future rooftop and multifamily PV adoption in LMI
households and found that covering the cost of a solar system for these
consumers would result in deployment parity between LMI and non-
LMI in 2025. These simulations used the Distributed Generation Market
Demand (dGen) tool, based a national customer adoption model that
quantifies future market demand for distributed solar, wind, storage,
geothermal, and other DERs at multiple geographic levels through a
bottoms-up agent-based approach [17]. Still in the solar equity space,
some quantitative studies have focused on understanding disparities
between LMI and non-LMI solar adoption [18-20], using energy and
sociodemographic data and statistical analysis. These disparity analyses
are extended in [21] to evaluate access to energy services, such as
having a washing machine or experiencing cold homes, in the context
of energy racial injustice. Regarding weatherization, similar empirical
and linear regression models have been applied to assess the poten-
tial or to evaluate the impact of weatherization [1,22] and energy
efficiency [23] policies on LMI consumers. Alternative quantitative
models provide equivalent weatherization impact analysis via energy
simulations of prototypical buildings, generated by a combination of
build stock, weather and sociodemographic data [24,25].

By reviewing these models and quantitative analyses in the energy
equity space, we can conclude that they are helpful to capture asym-
metries of DER and weatherization interventions in LMI communities,
to measure the social and techno-economic potential of technologies, to
understand behaviors and evaluate policy impacts. They have the bene-
fit of analyzing energy resources from a sociodemographic perspective,
which allows identifying energy burden and injustices. However, due
to their statistical nature, and their focus on the present, they are inade-
quate to produce forward-looking energy resource plans nor suggest an
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optimal mix of energy interventions to support equitable deployment
policies.

To find models built for on-the-ground energy intervention deploy-
ment, it is necessary to look into the optimal policy design and energy
planning literature. Here we find an extensive list of techno-economic
models that optimize the portfolio of investments in energy resources
for a given city or neighborhood, considering a variety of geographic,
economic and energy factors. However, these models are strictly fo-
cused on intervention cost and environmental objectives, discarding
how energy technology deployment affects different segments of the
population. For example, Zhang et al. [26] present and optimization
model for the city-level design of hydro and photovoltaic systems, mini-
mizing the net-present value of the investments. With similar economic
objectives, van Beuzekom et al. [27] propose an optimization frame-
work for long-term investment planning in urban integrated energy
systems, including explicit carbon dioxide (CO2) emission constraints.
At a smaller scale, Orehounig et al. [28] introduce a model to size
decentralized energy technologies at the neighborhood level, consider-
ing energy autonomy as well as economic and ecological performance.
The model explicitly includes life-cycle CO2 emissions in the objective
function, but no sociodemographic dimension is introduced. In the field
of weatherization interventions, Rogeau et al. [29] present a model to
determine the optimal building envelope and heating system retrofits
at the utility territory scale. Again, the model exclusively considers cost
objectives.

Only a few models in the energy analysis literature attempt to
include equity as part of the optimization objective. Still, these models
fail to include a sociodemographic layer in their definition of equity.
For example, in [30] a community energy resource model, using the
Hybrid Optimization of Multiple Energy Resources (HOMER) tool [31],
is proposed to simultaneously optimize over three objectives: energy
security, environmental sustainability and energy equity. However,
equity is defined exclusively by energy affordability and evaluated
through two general cost metrics, life cycle costs (LCC) and levelized
cost of energy (LCOE). This generic definition does not allow the
model to capture the impacts on specific sociodemographic groups.
Alternatively, in the energy resource space, it is also important to
mention models that optimize equity in the allocation of renewable
distributed generation across utility territories [32,33]. These mod-
els examine equity exclusively from the geographical distribution of
resources, without considering particular sociodemographic benefits,
such as burden reduction.

1.3. Contribution

This lack of equity concerns in quantitative policy design models
is an important gap in the literature. In 2014, a review of the key
challenges of energy systems modeling for the 20th century concluded
that energy system models lack integration of human behavior and
social risks and opportunities [34]. Still in 2021, an extensive literature
review of co-optimization approaches in energy planning [35] could
not identify a single model that explicitly includes equity or energy
burden among the objectives.

This paper addresses this gap by proposing a new quantitative
policy design model to support decisions around energy interventions
with equity and justice objectives. We intend to provide a scientific
contribution at the intersection of energy justice and quantitative policy
modeling: to the energy justice space, we provide a concrete techno-
economic framework that puts equity in the center of the deployment
of energy resources and interventions; to the modeling literature in
the area of energy policy and energy system analysis, we introduce
a sociodemographic lens to the optimal energy resource planning and
decision-support methodologies.

From a technical point of view, this paper presents an optimization
model that explicitly minimizes energy insecurity in the process of
defining energy investments in a particular sociodemographic context.
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Among these investments, we consider a combination of household-
level interventions, specifically rooftop solar and weatherization, with
the deployment of community-owned renewable generation. The model
is formulated as a multi-objective optimization suitable to support
energy equity investment decisions. We illustrate our methodology
with a case study involving a population of 14,043 energy insecure
households in Wayne County, Detroit, U.S.

1.4. Organization of the paper

The rest of paper is divided as follows: Section 2 presents the
methodology, including the optimization model and the main datasets
required as an input; Section 3 illustrates the main contributions of
our model through a case study that plans energy interventions in a
sociodemographic context of energy insecurity; Section 4 summarizes
the key findings of this work and points out future directions.

2. Equitable energy policy model
2.1. Methodology overview

This section provides a quantitative framework to support policy
decision-making around equitable energy interventions. The goal is to
offer to decision-makers an optimal portfolio of energy investments
that explicitly mitigate energy insecurity for a target population under
different scenarios and policy considerations. To produce a place-based
design of interventions, the model assumes a spatial census tract-level
resolution and distinguishes different sociodemographic groups within
the tracts.

Policy implementation is assumed to cover a set of tracts (7), in
which target population groups and their energy-related characteristics
are organized in a set of household archetypes (K). Each archetype aims
at representing a specific reality of the household groups, combining
socioeconomic data (e.g. income level), building characteristics (e.g.
type of home) and energy information (e.g. energy expenditure).

The optimization model takes these household archetypes as an
input together with other location specific data, such as DER generation
potential and energy prices. Then, the model calculates the optimal
portfolio of energy interventions that explicitly minimizes the energy
insecurity of the target population of household archetypes. In partic-
ular, the portfolio includes two types of building-level interventions
— weatherization and rooftop solar — for each household archetype
(k) and two types of community-level interventions — deployment of
community solar and community wind generation — for each tract (r).
Besides the optimal portfolio of interventions, the model also provides
the resulting energy burden after the interventions.

Fig. 1 provides an illustration of the methodology overview.

2.2. Model formulation

In this section, we present the optimization model formulation. We
start by modeling the constraints associated with the interventions:
weatherization and DER deployment of rooftop solar, community solar
and community wind. Then, we model the household energy costs, the
energy burden associated to it, and we present a definition for energy
insecurity based on a threshold for energy burden (Eb) above which
an household is considered insecure. Finally, we formulate an objective
function to explicitly minimize that insecurity and frame it into a policy
decision model to explore the trade-offs with policy intervention costs.
Formally, this problem can be model as a linear programming (LP)
optimization, which can be solved efficiently by different mathematical
LP solvers.
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Energy burden target
Eligible population
Intervention costs

Interventions:
Weatherization
Rooftop Solar
Community Solar
Community Wind

Optimization
Model
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Building archetypes

Energy costs

National
Tract-level
Data

Technology potential

Fig. 1. Methodology overview.

2.2.1. Weatherization interventions

In the proposed model, the impact of weatherization interventions
on residential buildings is primarily described in terms of household
energy savings and total intervention costs. These impacts vary with the
climate conditions of the region in which the weatherization program is
implemented as well as with the building-specific characteristics, such
as the home type (e.g. single family, small multi-family, etc.) and the
main heating fuel.

Thus, for each household archetype k, we consider the reference
savings S, associated with the corresponding home type h. Also, we
assume that savings are impacted by two coefficients: one associated
with the heating fuel ay, , and the other associated with the climate
conditions f,_j, . Both coefficients describe the building environment
and determine the weatherization savings. The Eq. (1) shows the aver-
age weatherization savings for an household of the archetype k with a
combination of the following characteristics: a home type 4; a heating
fuel type f; and located in a climate zone c.

WS =Sy ap . Ben, Vk€EK, €}

Similarly, the weatherization investment costs associated with the
house type h, C,, also depend on the heating fuel and the climate zone.
Therefore, we assume analogous cost coefficients, representing the im-
pact of fuel, 4 Fohe and climate, He, > O1 weatherization investments.
Eq. (2) presents the weatherization intervention costs dedicated to a
household archetype k, that combines the following characteristics: a
house type h, a heating fuel type f and it is located in a climate zone
C.

ICY =Cy - Agp, ~ Hen, VkEK, 2

Later in this section, we show how the savings and cost coefficients
associated with fuel and climate conditions (ay, 4., Bcp, 47,5, and
Hen,) can be derived from past weatherization interventions, using
data from the evaluation of the U.S Weatherization Assistance Program
(WAP). For now, let us take these two parameters, WS, and I C}:’, as
a reference for weatherization savings and costs per household of the
archetype k.

From the optimization perspective, the actual costs of weather-
ization interventions depend on the decisions regarding the number
of buildings to weatherize. As described in Eq. (3), this decision is
expressed by d, which represents the fraction of household k homes
to be weatherized. The equation also annualizes these investment costs,
considering a discount rate, r, and an average lifetime L, for the
weatherization measures.
r

W =IC¥.q".
k R TS

Vk e K, 3

2.2.2. DER deployment interventions

The installation of renewable-based distributed generation in LMI
neighborhoods aims to reduce the energy costs through the impact on
the net electricity demand. In this work, we consider three types of
distributed generation to be deployed: rooftop solar PV (rts), commu-
nity solar PV (c¢s) and community wind (cw) generation. Egs. (4) and
(5) present the generation associated with the solar energy technol-
ogy deployment (rooftop and community-owned, respectively), while
Eq. (6) represents the generation from the community wind. These
annual renewable generations depend on the quantity of technology
deployed, d, and on the annual productivity of solar and wind resources
in each tract (z), given by the parameters ¢, and #, respectively.

It is important to note that electricity generation is expressed per
household of archetype k. This means that generation from the renew-
able capacity deployed at the tract level (z) has to be divided by the
number of households in the tract (Nb,) eligible for community-owned
technology interventions, as shown in Egs. (5) and (6).

gl =d" -l VkEK,, Q)
de g,
g = =—"—— VkeK VreT (5)
, ZkeKZJ Nb, “
cw
= vkekr, VieT ©®)
ek, Nbi

cw

Considering the deployment of each technology d and the corre-
sponding reference costs IC, it is possible to write the annualized
investment costs for each DER intervention policy, as shown in (7)-
(9). Similarly to the weatherization interventions, the annualized costs
take into account a discount rate, r, and an average lifetime L of
each technology. The annualization of costs based on lifetime follows
equivalent annual cost model, used in other energy planning models,
such as [36,37].

r

C,:ts =IC,,- dl:m . m Vk € K, )
S =1C, - d* —L — vreT 8
T cs T 1_(1 +r)_Lcs ( )
W =C,,dY . —— T yrerT )
: R B R

2.2.3. Household energy demand costs

The household energy demand costs are modeled considering the
baseline energy bill, which represents annual energy expenditure prior
to the weatherization interventions. The baseline expenditure is disag-
gregated by fuel type, assuming three main energy vectors for space
heating: electricity (e/), gas (gs) and other fuels (of). Thus, three
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baseline energy parameters per household archetype are represented
in the model: Ef, Ef* and Ezf .

Weatherization interventions help reduce annual household energy
expenditures. As discussed above, for each household archetype k, this
reduction depends on the fraction of buildings weatherized, d,’, as well
as the heating fuel type associated with k. Eqs. (10) and (11) describe
the energy demand costs after the weatherization interventions for
buildings where space heating is provided by either gas (10) or other
fuels (11). As shown in the equations, only the cost of the primary
heating fuel is affected by the weatherization savings. Additionally, it
is important to note that the electricity expenditure is expressed by the
multiplication of the electricity demand eld, and the electricity price
Pel.

ec, = eldy - Pel + E —(E¥ -d - WS+ E VkeKS 10)

ecy = eldy - Pel + E + Y/ —(E)) -a* - WS,) VkeK] an

The approach to model electricity expenditure is slightly different,
because there is a need to capture the actual electricity energy de-
mand (eld,). As discussed next, we need this information to determine
the overall electricity bill per building, including the effect of the
distributed generation.

When electricity is not the primary heating fuel, the total annual
electricity demand is a baseline parameter, given by the ratio between
the total electricity expenditure and the average electricity price (12).
In contrast, when the electricity is the primary heating fuel, the electric
demand is affected by the weatherization interventions, as described
in (13), and the total energy expenditure after the intervention can be
simply obtain as in (14).

el

k
eldy = 57 k€K, \ K 12)
Ee[ Eel
k w k el
ldy = =% —d¥ - WS, =~ VkeK 13
= et T k" Pel w a3
ec, = eldy - Pel + EX + E) Yk € K¢ a4

2.2.4. Energy burden and energy insecurity

Besides the energy expenditure presented above, it is necessary
to compute the total distributed electricity generation per household
(15). Then, considering the total energy costs, revenues from renewable
generation, and the annual income (I,), it is possible to calculate
the energy burden per household of archetype k (16). As shown in
the equation, we consider a widely used definition of energy burden,
i.e. the percentage of annual household income spent on annual energy
bills [7].

egp =g +g’+g" VkeK (15)

ec, —egy - Pel

eby = Vk € K (16)

k

Assuming that the policy interventions have an energy burden target
Eb, above which an household is considered energy insecure, Eq. (18)
expresses the positive and negative deviations in relation to that target.
Thus, deb; captures the energy insecurity (i.e. the energy burden gap in
relation to a threshold Eb). Ideally, an equitable deployment of energy
interventions should bring this gap to O for all k£ households. In the
opposite direction, deb; represents a policy overtarget, ie. the amount
of burden reduction beyond Eb.

eb, — Eb= Aebz —4deb, VkeK a7)

Aebz, deb, 20 VkeK (18)

It is important to note that this definition of energy insecurity, i.e. as
a function household energy burden, is just one form of measuring
vulnerability in the planning horizon. Other forms of energy insecurity
experienced by consumers at the operational level, such as utility dis-
connections [4] or limiting energy behaviors [5] are not fully included
in this definition.

Applied Energy 325 (2022) 119771

2.2.5. Intervention limits

We also consider physical and regulatory constraints on the deploy-
ment of different interventions. For example, the number of buildings
weatherized cannot exceed the number of buildings represented by
the corresponding archetype (19); there are physical and regulatory
limits to capacity of solar and wind technologies per building and per
tract, as in (20)-(22). Finally, in order to comply with net-metering
policy rules, we require the annual electricity balance, ie. electricity
household demand minus distributed generation, to be positive (23).

d <Nb, VkeK, 19
d < RTS, VkeK,, (20)
d* < CS, VieT 21
A <CW, VreT (22)
eld, —eg, >0 VkeK (23)

2.2.6. Objective function and policy decision model

The objective function minimizes a combination of (i) the sum of
the intervention costs and (ii) energy insecurity, or the burden gap
eb}, of each archetype. This combination is weighted by the parameter
0, which expresses the relative importance (between 0 and 1) of the
energy burden target in the overall policy deployment. In other words,
a 0 closer to 1 means that the policy decision-maker gives a high
priority to the energy burden reduction, regardless the cost of the
interventions. On the other hand, a 6 closer to O reflects a low interest
in allocating budget to the energy insecurity problem. It is important
to note that this approach of weighting different objectives is widely
used multi-objective optimization models, as explained in [38].

min (1=0)-( Y ¢ Nby+ Y ¢ Nbp+ Y ¢ +c)
keK,, keK, teT
+0- ) W Aebt - Nby @24
kekK

As shown in (24), to model the relative preference between inter-
vention costs and energy burden reduction, it is necessary to assign a
cost penalty to the excess of energy burden, given by ¥. In reality, this
parameter can correspond to a social cost of having segments of the
population living in energy insecure conditions.

It is important to note that, in some applications, this social cost,
¥, might be difficult to determine. Also, instead of selecting a single
0, some decision-makers might prefer to explore the whole space of
potential trade-offs between intervention costs and energy insecurity
before committing to a decision. To address these cases, the multi-
objective function (24) can be written in its equivalent form, using (25)
and (26).

min Y Aebf - Nb, (25)
keK

> Nbg+ Y C - Nb+ Y e +c —0B <0 (26)

kekK,, keK, ¢ teT

Under this alternative form of seeing the same decision problem,
instead of a social cost, ¥, the decision-maker selects a maximum
budget admissible for these policy interventions B. On the other hand,
0 plays a similar role in modeling the relative importance between
budget and energy insecurity mitigation. However, with a different
formal meaning: as presented in (26), § captures the predisposition of
the decision maker to allocate budget to the energy insecurity problem.
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Table 1
Average national cost of weatherization interventions per house type (WAP).

Applied Energy 325 (2022) 119771

Table 4
Average national energy savings per home type (WAP).

Home type Cost per home ($) [2008 values] Home type Savings per home (%)
Small Multi-family buildings 2645 Small Multi-family buildings 13.9
Large Multi-family buildings 2159 Large Multi-family buildings 12.3
Single Family Homes 2846 Single Family Homes 12.4
Mobile Homes 2721 Mobile Homes 8.2
Table 2 Table 5

Fuel cost factors per type of home (4, ).

Fuel type savings factors per type of home (a; ).

Home type Natural gas Electricity Fuel oil Propane Other Home type Natural gas Electricity Fuel oil Propane Other

Small Multi-family buildings 1.09 0.92 0.80 0.82 0.93 Small Multi-family buildings 1.01 1.01 0.96 0.81 0.92

Large Multi-family buildings 0.88 1.00 1.15 1.00 1.00 Large Multi-family buildings 1.02 1.02 1.95 0.81 0.92

Single Family Homes 0.97 0.98 1.21 1.03 0.96 Single Family Homes 0.99 0.84 1.06 1.12 0.92

Mobile Homes 0.92 1.18 0.93 0.95 1.06 Mobile Homes 0.96 0.82 1.07 1.21 0.87
Table 3 Table 6

Climate cost factors per type of home (y,,).

Climate savings factors per home type (f, ).

Home type Very cold Cold Moderate Hot-Humid Hot-Dry Home type Very cold Cold Moderate Hot-Humid Hot-Dry
Small Multi-family buildings 1.31 0.73 0.91 0.91 0.91 Small Multi-family buildings 1.07 1.05 0.60 0.60 0.60
Large Multi-family buildings 1.31 0.73 0.91 0.91 0.91 Large Multi-family buildings 1.07 0.57 0.60 0.60 0.60
Single Family Homes 1.42 0.79 0.88 1.15 0.89 Single Family Homes 1.10 1.12 0.82 0.86 0.42
Mobile Homes 1.24 0.82 0.86 0.86 0.86 Mobile Homes 1.14 1.18 0.72 0.72 0.72
2.3. Datasets The method to estimate the savings factors is analogous to the

2.3.1. Weatherization costs and savings

In this paper, we assume weatherization cost and savings per home
that resulted from a retrospective evaluation of the U.S. Weatherization
Assistance Program (WAP). This evaluation was gathered in a series of
reports from Oak Ridge National Laboratory [39]. The report accounts
for a set of four types of homes (H). The average weatherization costs
of each type is shown in 1.

These costs were also reported by heating fuel, considering a set of
common fuel categories (F): Natural Gas, Electricity, Fuel Oil, Propane
and Others. using the average costs per home, C;,, and the cost per fuel
type, C; , itis possible to calculate the fuel cost coefficients, 4 7 b that
express the relation between the weatherization intervention costs and
the fuel type, as shown in Eq. (27). Table 2 presents the results for these
coefficients.

c
o
A = —
S

h

VfEF VheH 27)

Additionally, the report gathers the weatherization measure costs
per geographical location, taking into account a set of five climate
zones (C) described as: Very Cold, Cold, Moderate, Hot-Humid, Hot—
Dry.

Thus, similarly to the fuel cost, it is possible to express the climate
impact coefficients, u,. ,, associated with the weatherization costs per
building type, as in Eq. (28). The results of these coefficients are
presented in Table 3.

yc,hzcé’“ VeeC VheH (28)

h

It is important to stress that C, represents the national average
weatherization costs for each house type across all climate zones and
for all fuel types. In other words, these costs are not equivalent to the
averages of the individual dimensions, as shown in (29). In fact, this
is why the costs per fuel type and climate cannot be obtained directly
from the results reported and the coefficients 4, ,, u. , are needed. Such
coefficients can translate these impacts separately, assuming that house
types (h) across climate zones and heating fuels categories follow a
national distribution.

Ch # ZfEF C/.vh # ZcEC Cc,h

7| ICI

Vhe H (29)

process described above. We take as a reference the reported average
national energy savings per home type (S},) in percentage, presented
in Table 4. It is important to note these are assumed to be the actual
savings and not the projected ones. Errors in savings forecasts, very
typical in weatherization programs (due to rebound effects), are out of
the scope of the methodology presented.

Using this reference savings, and considering the national average
of savings per fuel and per climate zone, we calculate the respective
saving coefficients, a, , and f, ,, as show in Egs. (30) and (31).

S
app=—= VfEF VheH (30)

Sh

Cc,h
pop=—— VceC VheH (31)

. c,

The results of these coefficients are presented in Tables 5 and 6,
respectively. As shown, for example, in Table 6, the savings tend to
be higher in cold and very cold climate areas in comparison with
hot-humid and hot-dry zones.

Thus, for each archetype household, k, with a house type h;, with
fuel type f;, located in tract r in the climate zone c,, the weather-
ization savings (in percentage) can be calculated according to Eq. (1)
reported above. Similarly, the costs of the weatherization interventions
associated with each household archetype k can be obtained by Eq. (2).

2.3.2. Household archetypes and sociodemographic data

The household archetypes were constructed based on information
extracted from the Low-Income Energy Affordability Data (LEAD)
tool [6], which provides data on housing unity counts, average monthly
housing electricity, gas, and other fuel expenditures, and average
energy burden by census tract, household income level, and housing
unit type.

The set of parameters of our model extracted from the LEAD dataset,
at the tract level (r), were the following: house type (h), heating
fuel type (f), number of household per archetype (Nb,), baseline
household annual energy expenditure (E;;’l, Ef“ and Ezf ), household
annual income (7).
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Table 8
Interventions deployed: base case (6 = 1).

Table 7

Cost of interventions considered in the analysis.
Intervention Cost (/MW or /building) Lifetime
Rooftop solar $2.369M 20
Community solar $1.554M 20
Community wind $2.494M 15
Weatherization Table 1 costs converted to 2021 35

2.3.3. Energy prices and renewable generation

Solar generation data were obtained from the Rooftop Energy Po-
tential of Low Income Communities in America (REPLICA) Dataset,
which is a tract-level dataset (vintage = 2015) that provides estimates
of LMI rooftop solar characteristics [40]. For our model, we extracted
the solar productivity parameter (¢,) from the available average annual
solar capacity factor (kWh/kW) in AC terms for a south-facing system,
located in tract (r) centroid, with a panel tilt equal to the latitude. Sim-
ilarly, the rooftop technical limits per building (RTS)) were obtained
from the rooftop solar technical potential (kW) for buildings suitable
for solar deployment. The community solar technical limits were left
unconstrained (i.e. CS; = o)

For the community wind technologies, we used data from a study
that examines the onshore wind resource potential for the conterminous
US [41]. We obtained the wind productivity coefficient (#,) from the
average annual wind capacity factor (kWh/kW) for a 1.5 MW turbine at
80 m hub height in tract centroid. From the same source, we obtained
the community wind technical potential (CW,) for sites suitable for
wind deployment.

The average price of electricity (Pe/) was gathered from the
REPLICA Dataset. According to the documentation [42], the average
price was obtained per utility territory from the Annual Electric Power
Industry Report from the 2018 U.S. Energy Information Administra-
tion [43]. These prices were later tagged to tracts using geospatial
information of the utility territories.

3. Case study
3.1. Case study description

This section presents a case study to illustrate the equitable energy
resource model proposed herein. We use the model to analyze weath-
erization and DER deployment policy interventions in Wayne County,
Michigan, which includes most of Detroit. The tracts considered in
the intervention are those that correspond to the US Department of
Energy (DOE) Communities Local Energy Action Planning (LEAP) pro-
gram [44]. To qualify for Communities LEAP, a tract must have a
low-income population >30% and median household energy burden
>6%. Furthermore, the tract must meet at least one of the following
criteria: (1) the community has an historical economic dependence
on fossil fuel industrial facilities including extraction, processing, or
refining; or (2) the tract is classified as experiencing moderate or
high susceptibility on the U.S. Environmental Protection Agency’s En-
vironmental Justice Screening (EJSCREEN) tool [45]. The datasets to
determine eligibility are available from the DOE [46].

We model a mock policy that provides weatherization and DERs to
households living the eligible tracks in Wayne County with an annual
income of 80%-100% of the Area Median Income (AMI). We use
an energy burden target (Eb) of 6%, used as a reference for energy
affordability [47]. By applying this energy burden criterion, we obtain
an eligible population of 14,043 buildings, located in 560 census tracts
(7) and represented by 2920 household archetypes (K).

The model parameters were derived from the national dataset de-
scribed in the previous section. The rest of the data specific to the
analysis includes the cost of interventions, the lifetime and the discount
rate used to annualize the investments. The weatherization costs were
taken directly from the WAP evaluation (Table 1) and converted to

Intervention Quantity (MW or Annualized investments
# buildings) ($M/year)
Rooftop solar 8.36 1.36
Community solar 81.13 8.48
Community wind 1.73 0.36
Weatherization 2374 1.01
Total 91.23 MW + 2374 11.22
buildings
Table 9
Intervention performance (6 = 1).
Performance Value
Average energy burden 5.04%
Average energy burden reduction 2.49%
Average energy insecurity remaining (4eb;) 0.1 pp
Number of energy insecure households remaining 631

2021 values, considering a factor of 1.29. A discount rate (r) of 3% was
assumed in the analysis. The costs of interventions and corresponding
lifetimes are summarized in Table 7. These values were assumed to
represent typical costs and lifetimes of the different technologies for
the purpose of this case study. In reality, these costs can vary with the
location, the technologies, and the policy mechanisms used to deploy
the technologies on the ground.

3.2. Results

3.2.1. Base case results

Table 8 presents the resulting optimal set interventions to be de-
ployed in Wayne County, assuming that a high priority is given to
the mitigation of energy insecurity (¢ = 1). As shown in the table,
the interventions result in 91.23 MW of renewable distributed gen-
eration deployed (a significant portion of which is community solar
installations) and 2374 buildings weatherized. The total cost of these
interventions is $11.22M per year.

These investments were able to bring the average energy burden
of the eligible population (14,043 households) below the threshold
target of 6%, as presented in Table 9. Given the average burden of 5%
that resulted from the investments, we can conclude that a significant
portion of the energy insecure households saw their burden decrease
beyond the threshold level. However, as shown in the table, these
interventions were insufficient to fully correct the problem of 631
households and an average energy insecurity of deb} = 0.1% remained
to be solved.

Fig. 2 helps illustrate the impact of the investments on energy
insecurity, by presenting a histogram of the energy burden of the
eligible population (14,043 households) before and after the inter-
ventions. As shown in the figure, optimal investments were made to
alleviate households energy burden, according to the 6% threshold
assumed as a criterion for energy insecurity. It is interesting to note
that, for most households, the resulting energy burden was exactly
6%, as the objective function (Eq. (25)) only minimizes the upper
deviations of energy burden (4eb}).On the other hand, panel b shows
that some households were left above the energy burden threshold.
It is important to note that, although the interventions are optimal
and minimize energy insecurity, they cannot guarantee a Aeb',: =0
for all households. This happens for three main reasons: first, the DER
deployment can only offset the electricity costs (i.e. it cannot decrease
gas and other fuel expenditures); second, DER policies are limited
by the net-metering constraint (23) and by the technical potential of
each technology; third, in some cases, the energy burden baseline is
so extreme that all interventions combined can only solve part of the
problem. This is visible in the baseline panel of Fig. 2, where a sig-
nificant number of households appear with energy burden levels above
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Fig. 2. Impact of the interventions on the energy burden of the eligible population. Panel a shows the distribution of household energy burden before the interventions(0 = baseline).
Panel b shows the energy burden for the same households with the maximum weight placed on energy insecurity, 6 = 1.

10% before the interventions. When compared to the intervention panel
(right-hand side), we can conclude that, even not solving the problem
completely, the investments were able to address these extreme cases
and substantially reduce the tail of this distribution.

Another relevant aspect to analyze in Fig. 2 is the amount of
households whose energy burden was reduced to levels significantly
below the threshold limit. In other words, they show values of deb,
> 0. Since the optimization objective is strictly focused on minimiz-
ing insecurity (AebZ), an overtarget reduction of this goal may look
sub-optimal from an economic perspective. An explanation for this
fact relies on the community-based investments (community solar and
wind), which benefit the entire eligible population of the tract. In many
cases, community investments are a cost-effective way of reducing
electricity bills: for example, as seen in Table 7, community solar is the
most competitive technology. When using these community resources
to solve extreme energy insecurity cases in a given tract, it becomes
economically rational to reduce the energy cost of other (less extreme)
cases beyond the insecurity threshold.

3.2.2. Exploring equity policy priorities

In this subsection, we run the optimization model for different
values of 6, exploring the entire space of the solutions available to
the decision-maker, as defined by Egs. (25) and (26). This solution
space is summarized in Fig. 3, which presents the Pareto front of the
energy insecurity (dark blue line) for different options of . As expected,
when energy equity becomes a priority, the annualized investments
increase and significantly reduce the energy insecurity and the burden.
For values of 6 ~ 0.25, corresponding to annualized costs of around
$3M/year, there is a point of intersection. This means that investments
higher than this value will reduce more energy burden than the energy
insecurity remaining in the population. After values of  ~ 0.5 (and
annualized investments around $6M/year), energy insecurity reaches a
saturation point and the marginal impact of investments is limited.

Despite this saturation effect on energy insecurity, the same does not
occur to the energy burden reduction curve in Fig. 3. In fact, for values
of 8 > 0.5, energy interventions continue to have significant impact on
the average burden of the targeted population. The main explanation
for this phenomenon is related to the effect of the community-owned
renewable investments discussed above. Indeed, when used to address
extreme insecure household cases, community wind and solar inter-
ventions end up reducing the overall energy burden of the households
that benefit from these assets. This effect can be observed in Fig. 4
that presents the density function of the energy burden distribution for
different values of 6. As energy security becomes a priority, the distri-
bution shifts to the left, leading to a large concentration of household

251 -e- Average Energy Insecurity (pp) ‘_——".
-®- Average Energe Burden Reduction (pp) //’
/‘.,
2.0 L
/./
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Fig. 3. Pareto front of energy insecurity as a function of the intervention costs.
Comparison with the energy burden reduction for the same values of 6.
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Fig. 4. Intervention total investments, considering different levels of 6.

energy burden around the 6% threshold for # = 0.5. The increase of 6 to
1 results in the mitigation of the severe energy insecurity cases (placed
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Fig. 5. Intervention total investments, considering different levels of 6.

on the right tail of the distribution), but it creates an overtarget energy
burden on the left side of the distribution.

It is important to note that this overtarget also depends on the
policy mechanisms used to share the community generation benefits
amongst the energy insecure population. For the sake of simplicity,
and to keep the focus on the modeling contributions of this paper, we
assumed a community solar and wind policy that apportions credits
equally amongst insecure households living in the same tract, as seen
in Egs. (5) and (6). Future studies could use our model to study this
overtarget from a policy perspective and discuss the impact of different
community generation sharing mechanisms.

Comparing the nature of the interventions, Fig. 5 shows the total
investments considering different policy prioritization levels regarding
energy insecurity. It is clear that community solar is the main driver
of energy burden reduction, regardless of the prioritization, due to
its lower costs (see Table 7). On the other hand, it interesting to
observe that the share of technologies slightly changes with the priority
given to the energy insecurity problem. For low levels of 0, only
community investments (solar and wind) become competitive. When
the predisposition to invest in energy security increases, household
level interventions start to appear, with rooftop solar being more
significant than weatherization measures. For § = 1, weatherization
interventions increase, becoming an effective solution when the policy
priority is reducing energy insecurity, regardless the intervention costs.
In other words, the only possibility of addressing higher levels of energy
insecurity is via structural interventions at the building level, which
reduces the energy needs and, consequently, the energy bill. Addition-
ally, it is interesting to observe that these weatherization interventions
also reduce the need for the installation of distributed generation, in
cases where the primary heating fuel is electricity. As shown in the
figure, when the weatherization interventions increase there is a slight
decrease of community wind and rooftop solar investments.

The way these investments are distributed per tract is illustrated in
Fig. 6, which compares tract-level interventions for two different policy
priority levels: (9 = 0.5) and (0 = 1). To allow a better comparison
among tracts with different population, renewable investments are
presented per building and weatherization is shown in percentage of
buildings weatherized. When ¢ = 0.5, tract-level solutions to reduce
energy burden are based on multiple combinations of community-
owned renewable and rooftop solar investments, while the share of
weatherized buildings is insignificant. This situation changes when a
high priority is given to the energy insecurity problem, with more tracts
being weatherized.

Nonetheless, the most relevant aspect of Fig. 6 is the heterogeneity
of the energy interventions across tracts. This clearly demonstrates
that optimal interventions to address energy insecurity can assume
multiple combinations, depending on the specific sociodemographic
characteristics of the tract. Unlike other areas of energy resource plan-
ning, interventions in equity space cannot be standardized and require
place-based approaches to deploy these interventions on the field.

4. Conclusion

This paper introduces a new contribution at the intersection of
energy justice and quantitative policy modeling, by presenting a frame-
work to support policy decision-making around equitable energy inter-
ventions. The results show that the linear programming model proposed
is able to derive an optimal mix of interventions that minimizes energy
insecurity, considering budget preferences and constraints. From the
policy decision making perspective, this allows to explore the different
trade-offs between intervention costs and energy burden reduction and
to make quantitative informed decisions on equitable deployment of
energy generation and efficiency technologies.

The optimal portfolio of energy interventions depends on the
techno-economic characteristics of each technology (efficiencies, capac-
ity potential, costs), but also on a combination of energy, climate and
household living conditions particular to each place. The results show
that, when capturing these different sociodemographic dimensions,
equitable policy interventions become heterogeneous, specific to each
community, which indicates a need for holistic (place-based) imple-
mentations. Thus, rather than prescriptive, the techno-economic analy-
sis in the energy equity space should be presented to the communities
as a set of (efficient and technically feasible) solutions that informs the
decision-process. Our model is the first step in that direction.

Some limitations of our model should be addressed in future works
to improve the accuracy and to expand the scope of the results pre-
sented. Modeling limitations to be addressed include the expansion of
the portfolio of interventions (such as energy efficiency measures and
storage technologies) as well as a time-resolution model for energy
balance and costs. On the other hand, our work should be expanded
to include information on community capacity and help identify non-
technical needs, at the community level, to support the implementation
of equitable energy interventions. Additionally, this model can be
used to understand equity impacts of different renewable generation
policies, for example technology incentives, apportion mechanisms for
community assets, or solar compensation mechanisms.



M. Heleno et al.

Rooftop Solar (kW/bdg)

Applied Energy 325 (2022) 119771

Wth Bdgs (%)
e 0
e 20
e 40
e 60
e 80

100
ABurden (%)
o2

4
6
8

0 2 4 6 8 10 12 14 0 2
Community-owned Renewables (kW/bdg)

4 6 8 10 12 14
Community-owned Renewables (kW/bdg)

Fig. 6. Number of rooftop solar interventions per tract under different policy weights. Panel a displays the optimal number of interventions when energy insecurity is weighted
equally with cost (0 =.5). Panel b displays the optimal number of interventions when energy insecurity is fully prioritized (0 = 1).
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