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Abstract

A major challenge in genetic studies of complex diseases is to determine how the action of risk genes is restricted to a tissue or cell type.
Here, we investigate tissue specificity of gene action using CRISPR screens from 786 cancer cell lines originating from 24 tissues. We find
that the expression pattern of the gene across tissues explains only a minority of cases of tissue-specificity (9%), while gene amplification
and the expression levels of paralogs account for 39.5% and 15.5%, respectively. In addition, the transfer of small molecules to mutant cells
explains tissue-specific gene action in blood. The tissue-specific genes we found are not specific just for human cancer cell lines: we found
that the tissue-specific genes are intolerant to functional mutations in the human population and are associated with human diseases more
than genes that are essential across all cell types. Our findings offer important insights into genetic mechanisms for tissue specificity of hu-
man diseases.

Keywords: tissue specificity; CRISPR screens; essential genes; paralogs; genes intolerant to mutations

Introduction
This article examines why mutations present in every cell of the
body cause disease that appears to be specific to a tissue or cell
type. A major challenge facing the genetic analysis of complex
diseases is that the function of risk genes often appears to be
nonspecific, making it difficult to see how genetic variants could
give rise to the disorder. For example, many genes associated
with autism spectrum disorder (ASD) are transcription and chro-
matin regulators (Ben-David and Shifman 2013; De Rubeis et al.
2014) that have functions in every cell (such as cellular differenti-
ation), yet the social and cognitive deficits of ASD are attributed
to the dysfunction of neurons (Parikshak et al. 2013; Willsey et al.
2013), cells that are only found in the brain.

It is frequently assumed that the specificity of effect is due to
differences in the pattern of transcript abundance: disease genes
are either expressed only or at relatively higher levels in a subset
of cells so that a mutation’s consequences are limited to this sub-
set. However, while this may be true in some cases, there are
many disease genes expressed widely throughout the body, at
high levels, which do not show tissue-specific expression
(Hekselman and Yeger-Lotem 2020). In a comprehensive analysis
of the expression of rare disease genes, 64.5% of disease genes
were ubiquitously expressed (in 20 or more tissues), and only 52%
of the genes were upregulated in the affected tissues (Feiglin et al.
2017). In such cases, what might explain the apparent specificity
of genetic action?

Here, we report analyses to identify mechanisms responsible
for specificity. Our study takes advantage of genome-wide

screens for the effect of loss-of-function mutations across hun-
dreds of cancer cell lines. While we do not study cells in healthy
tissues, many of the basic functions and genetic interactions are
preserved in cell lines. The cancer cell lines are derived from
tumors that originated from different tissues (or cell lineages),
thus representing in our experiments a “tissue.” We define
“specificity” with a measure of how essential a gene is to a tissue.
In brief, an essential gene is one that the cell line cannot survive
without, so a mutation in a gene with specific effects will affect
cells from only a single or a few tissues.

By dividing the cell lines into different tissues of origin, we
identify 1,274 genes that are significantly more essential in spe-
cific tissues and term them tissue-specific genes. As predicted
from our hypothesis that our findings are relevant to healthy tis-
sues and human diseases, we found that tissue-specific genes are
intolerant to functional mutations in the human population and
are associated with human diseases more than genes that are es-
sential across all cell types (i.e. nonspecific). Our analysis shows
that in only a minority of cases, tissue specificity is accompanied
by preferential expression (PE) in the vulnerable cells. Instead, ge-
netic interactions with paralog genes and other mechanisms
were more common.

Materials and methods
Inferring tissue-specific genes
Differential dependency analysis was performed using the
Limma package in R (Smyth 2005). The dependency scores were
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obtained from the DepMap portal (https://depmap.org/portal/;
DepMap Public 20Q3, dataset doi:10.6084/m9.figshare.
12931238.v1). The dataset contains scores for 18,119 genes in 789
cancer cell lines originating from 27 different tissues
(Supplementary Table 1).

We excluded 3 tissues with 1 cell line. Each gene from the
dataset was fitted to 24 linear models corresponding to the 24 dif-
ferent tissues. Each model was tested for the tendency of a gene
to have higher or lower dependency scores in a specific type of
tissue. Moderated t-statistics, moderated F-statistic, log-odds of
the differential dependency, and P-values were computed using
the eBayes function from this package. The P-values were ad-
justed for multiple tests by a false discovery rate (FDR)
Benjamini–Hochberg procedure.

Tissue-specific genes were defined as genes with significantly
lower levels of dependency scores in a specific tissue compared
to all other tissues (t< 0, FDR < 0.05) and with an average depen-
dency score < �0.5. Using this threshold allowed us to exclude
genes that are nonessential and, at the same time, to include
genes that are not necessarily highly essential in all cell lines.
Pearson correlation test was used to test the association between
the number of cell lines and the number of tissue-specific genes
per tissue. The percentage of overlap between tissues was quanti-
fied by the Jaccard Index (metric of intersection over union).

Nonessential genes (NEGs) were obtained from Hart et al.
(2014). Common essential genes (CEGs) were obtained from 2 pre-
viously reported studies, Blomen et al. (2015) and Hart et al. (2015),
which identified essential genes for human cell lines.

Differential expression of genes in vulnerable and
nonvulnerable tissues
Differential expression analysis was performed using edgeR pack-
age in R to test whether tissue-specific genes or their paralogs are
upregulated or downregulated in vulnerable tissues relative to
the nonvulnerable tissues. Raw counts of RNA sequencing for 783
out of the 786 cell lines with dependency scores were obtained
from the Broad Institute Cancer Cell Line Encyclopedia (CCLE).
The P-values were adjusted for multiple tests by an FDR
Benjamini–Hochberg procedure and genes with FDR < 0.05 were
considered differentially expressed.

The number of human paralogs that are differentially
expressed between vulnerable and nonvulnerable tissues was
also tested similarly. Human paralogs were defined using the
TreeFam database (http://www.treefam.org/), classifying genes
from different organisms to families based on homology.
Paralogs were defined as any 2 human genes that belong to the
same family and therefore are homologous. In total, 1,443 out of
1,485 human paralogs were included in the differential expres-
sion analysis after the filtration of low expressed genes.

Average expression estimation in vulnerable and
nonvulnerable tissues
We performed a randomized permutation test to evaluate
whether the expression of tissue-specific genes in the vulnerable
tissues tended to have more extreme values both in the positive
and negative directions. Transcript per million expression data
for protein-coding genes in 783 out of the 786 cell lines with de-
pendency scores was obtained from the Broad Institute CCLE.

We calculated for all tissue-specific genes the mean of the ab-
solute values of t-statistics between the expression in cell lines
that belongs to the vulnerable tissues and other cell lines. This
value served as the test statistic and was compared to 10,000
simulations (n) in which the tissue identity of the tissue-specific

genes was randomized. We calculated the empirical P-value as
(rþ 1)/(nþ 1), where r is the number of times the statistic in the
simulations exceeded the true statistic (North et al. 2002).
Similarly, to check whether the expression of the paralogs tends
to have more extreme values (both in the positive and negative
directions), we calculated for all the paralogs the mean of the ab-
solute values of the t-statistics for the difference in expression
between cell lines that belongs to the vulnerable tissues and
other cell lines. This value served as a test statistic and was com-
pared to 10,000 simulations in which the tissue identity of tissue-
specific genes was randomized. The empirical P-value was
calculated as above.

Correlation tests between dependency scores,
gene expression, and copy number
Spearman’s rank correlation tests were used to study the rela-
tionship between the dependency scores of the tissue-specific
genes and the expression of 19,144 genes. The FDR procedure
was used to adjust the P-values for each tissue-specific gene and
across the 19,144 tests. The relationship between the copy num-
ber (obtained from the DepMap portal) and the dependency
scores was tested using Spearman’s rank correlation test with
FDR adjustment. Fisher’s exact test was used to test for the asso-
ciation between the number of tissue-specific genes significantly
associated with copy number and the direction (positive or nega-
tive) of the correlation between the expression of the tissue-
specific gene and the dependency scores. Functional redundancy
(FR) and functional codependency (FC) with paralogs were identi-
fied based on a significant (FDR < 0.05) positive or negative
Spearman’s rank correlation between the dependency scores of
the tissue-specific genes and the expression of existing paralogs.
Fisher’s exact test was used to test whether tissue-specific genes
implicated in FC tend to have a PE compared to tissue-specific
genes implicated in FR.

To examine if the change in copy number solely affects the
change in dependency scores or if the variation in expression also
has an effect, we ran ANOVA tests with 4 different rank regres-
sion models where the variation of dependency scores is
explained by either copy number alone, copy number when the
expression is controlled for, expression alone and expression
when the copy number is controlled.

Stepwise rank regression models
To find alternative explanations for tissue-specific genes, we cal-
culated the Spearman correlation between the dependency
scores of the unexplained tissue-specific genes and gene expres-
sion of all other genes. Then, for each of the tissue-specific genes,
we created a model which included only genes with a positive
spearman coefficient. We choose to focus on positive correlations
to identify general compensation mechanisms. Tissue-specific
genes that did not have any significant positive correlation were
removed from the analysis.

To identify multiple independent explanatory variables, we
used a forward stepwise rank regression procedure. The rank
regression model is a linear model between the ranks of the
tissue-specific genes dependency scores and the ranks of genes’
expression in the cell lines. The positively correlated genes were
sequentially entered into the model, starting from the gene with
the most significant positive Spearman correlation and ending
with the gene with the smallest correlation. The genes were con-
sidered as independent correlations only if their addition to the
model improved it significantly (P < 0.05). The procedure stopped
when there were no longer genes that could improve the model
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significantly. To identify a general mechanism that can explain a
large portion of the tissue-specific genes, we searched for genes
that have independent correlations with multiple tissue-specific
genes.

Intolerance to mutations and disease
involvement of tissue-specific genes
The overlap of tissue-specific genes with genes intolerant to dif-
ferent types of mutations (loss-of-function, missense, and synon-
ymous) was calculated using data obtained from the Genome
Aggregation Database (gnomAD; https://gnomad.broadinstitute.
org). For this purpose, Wilcoxon signed-rank tests were per-
formed to compare the observed and expected (O/E) rates in
tissue-specific genes and other genes.

To explore the tendency of tissue-specific genes to be associ-
ated with human disease, we checked the association between
genes and human diseases from the Human Protein Atlas (www.
proteinatlas.org). Data were available for 1,271 tissue-specific
genes, 753 NEGs, and 1,246 CEGs. The number of genes involved
in at least one disease was compared between different groups
using Fisher’s exact tests. In addition, the number of genes with
at least 1 paralog was also compared between tissue-specific
genes, CEGs, and NEGs using Fisher’s exact test.

Estimation of expression specificity in
noncancerous cell types
Genes were considered to have cell type-specific expression if
they were defined in the protein atlas dataset to be either cell
type enriched (mRNA levels in 1 cell type at least 5 times the
maximum levels of all other analyzed cell types) or cell type
enhanced (mRNA levels in a particular cell type at least 5 times
average levels in all cell types; Uhlén et al. 2015). To compare
tissue-specific genes implicated in PE, FR, and FC to NEGs, we iso-
lated genes with at least 1 paralog. In the case of genes with more
than 1 paralog, the paralog with the most significantly correlated
expression to the gene dependency scores was used.

Genes were excluded when either they or their paralogs did
not contain data on cell type-specificity, when there was no de-
pendency data for the gene or when there was no expression
data for the paralog. The analysis of cell type-specific expression
among the gene pairs (a gene and its paralog) was done using
Fisher’s exact tests.

Gene set enrichment analyses
The 4 functional enrichment analyses in the study were per-
formed using ToppGene Suite (Chen et al. 2009). Using this tool,
we tested tissue-specific genes enrichment in human phenotype
and tissue-specific genes implicated in FR, tissue-specific genes
implicated in FC, and tissue-specific genes correlated with the
GJA1 gene in gene ontology (GO) terms for GO biological pro-
cesses, molecular functions, and cellular components. Fisher’s
exact tests were used to test tissue-specific genes correlated with
GJA1 association to blood-related tissues.

Results
Inferring tissue-specific genes from large-scale
CRISPR screens
To study the extent of tissue specificity in the genome, we began
by dividing 786 cancer cell lines, subject to a loss-of-function
CRISPR screen, into 24 different groups based on their tissue of
origin. These groups correspond to tissues of origin, such as
blood, skin, and the eye. A previous study indicated that many

pathways, but not all, are preserved between cell lines and their
tissues of origin (Lopes-Ramos et al. 2017). In each tissue, there
were different numbers of cell lines (Supplementary Table 2),
which could affect the statistical power to identify tissue specific-
ity in different tissues. Some of the tissues are expected to be
more similar to each other, such as blood and lymphocytes or tis-
sues from the central and peripheral nervous systems.

We then used a measure called a dependency score of how es-
sential each gene is to a specific cell line. The dependency scores
are based on the changes in the abundance of guide RNAs during
the screen. A large reduction in the representation of guide RNAs
targeting a specific gene indicates that the gene is essential for
cell viability. The scores are adjusted such that a score of 0
means that the gene is not essential, and �1 is the median score
of highly essential, nonspecific genes. Thus, the more negative
the score, the more essential the gene is. We compared the levels
of gene essentiality between cell lines that belong to different tis-
sues. Essential genes (average dependency score < �0.5) that
were significantly more essential to a specific lineage of cells
(FDR < 0.05) were considered as “tissue-specific genes.”

Based on the dependency score criterion, we identified 1,274
tissue-specific genes (Supplementary Table 3). The number of
genes per tissue varied, with the highest numbers in plasma and
blood (Fig. 1a). For one tissue with a small sample size (Thyroid,
n¼ 6), there were no significant genes. However, in general, the
number of cell lines in each tissue was not a good predictor of the
number of tissue-specific genes (r¼�0.048, P ¼ 0.83; Fig. 1b). For
example, in lungs with 107 cell lines, only 9 tissue-specific genes
were identified, while in the plasma with 20 cell lines, 367 tissue-
specific genes were discovered. We calculated the average depen-
dency score across cell lines that belong to each tissue. For some
tissue-specific genes, the average dependency scores varied
quantitatively between tissues (Fig. 1c), while in other cases,
there was a clear distinction between tissues with low and high
average dependency scores (Fig. 1d). Our dependency score defi-
nition of tissue specificity does not require that a gene is more es-
sential in a single tissue. Indeed, we identified tissue-specific
genes shared between 2 or more tissues. We quantified the per-
centage overlap between tissues (Fig. 1e) and found that the high-
est was between related tissues: blood/plasma, plasma/
lymphocytes, blood/lymphocytes, ovary/uterus, and pancreas/
bile duct (Jaccard Index¼ 0.186, 0.095, 0.093, 0.091, 0.066, respec-
tively).

PE in specific tissues can explain only a minority
of tissue-specific genes
The simplest explanation for tissue specificity is that some genes
have increased or exclusive expression in defined tissues. The PE
of genes in specific tissues may indicate that those genes have
tissue-specific functions. We explored this hypothesis using the
expression data available for the same cell lines. We first tested
whether there is a general tendency for higher expression of the
tissue-specific genes in the tissues with low dependency scores
(hereafter the vulnerable tissues) relative to all other tissues
(hereafter the nonvulnerable tissues). We found that in 25% of
cases, the average expression of tissue-specific genes in the vul-
nerable tissues was higher than in the nonvulnerable tissues, as
expected (Fig. 2a, Supplementary Table 4). However, we also
found that in 23% of cases, expression was lower (Fig. 2a,
Supplementary Table 4). The tendency for more extreme expres-
sion values (lower or higher) in the vulnerable tissues was signifi-
cantly different than expected by chance based on a
randomization test (P¼ 9.9� 10�5; Fig. 2b).
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Next, we tested the association between gene expression and

dependency scores. In those tissue-specific genes that expression

is responsible for tissue-specific genes, we expect to see a higher

expression in cells where the gene is more essential (i.e. negative

correlation between gene expression and the dependency scores).

We found only 115 tissue-specific genes (out of 1,274) with a

significant correlation that is consistent with this potential mech-

anism (Spearman’s q< 0, FDR < 0.05; see examples in Fig. 2, c

and d). These analyses suggest that PE may account for only a

minority of tissue-specific genes (9%).

Gene amplification is important for determining
the tissue specificity
Our analysis showed that in some cases, the expression of the

tissue-specific genes was lower in the vulnerable tissues, con-

trary to the assumption that high levels of expression are an indi-

cation of tissue specificity. We identified 509 tissue-specific genes

that were less essential in cells with higher transcript abundance

(Spearman’s q> 0, FDR < 0.05; see example in Fig. 2e). A possible

explanation for this unexpected finding is an increase in the copy

number of those genes in specific tissues.
Gene amplification may alter the likelihood of complete gene

knockout. Indeed, we found that for 469 genes out of the 509 genes

(92.1%) with increased expression in the nonvulnerable tissues, the

copy number was a significant predictor of essentiality (FDR <

0.05; see examples in Fig. 2, e–g). In contrast, out of the 115 tissue-

specific genes with PE in the vulnerable tissues (identified above),

only 5 showed significant association with copy number (4.3%).
We divided the genes by the direction of the correlation be-

tween the dependency scores and the gene expression (positive

vs negative) and asked if they were significantly associated with

copy number. We found a highly significant association between

the 2 groups [odds ratio (OR) ¼ 250.7, P¼ 2.7� 10�80] (Fig. 2h).

Thus, the copy number can significantly predict gene essentiality,

specifically in tissue-specific genes that are expressed at lower

levels in the vulnerable tissues.

(a)

(c) (e)

(d)

(b)

Fig. 1. Identification and characterization of tissue-specific genes. a) The number of significant genes per tissue. b) Number of tissue-specific genes as a
function of sample size (number of cell lines in each tissue). c, d) Examples of distribution of dependency scores across tissues for 2 tissue-specific
genes. c) VRK1 is more essential in the central and peripheral nervous system, and (d) IRF4 is more essential in the plasma and lymphocytes. e) The
overlap of tissue-specific genes between tissues. The overlap was quantified by a metric of intersection over union, also known as the Jaccard index.
CNS, central nervous system; PNS, peripheral nervous system; UA, upper aerodigestive.
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We propose that differences in gene amplification lead to the
tissue-specific genes but not the increased expression accompa-
nying them. Since the levels of gene amplification are positively
correlated with gene expression, we used multiple regression
models to explore the causal relationship between copy number,
expression, and dependency scores for the 509 genes indicated
above. When testing only one of the parameters (expression or
copy number), we obtain correlated P-values between the effect
of expression and copy number (Supplementary Fig. 1a).
However, in the conditional models (Supplementary Fig. 1b), the
association with gene expression was dramatically reduced when
controlling for the copy number. In contrast, the copy number ef-
fect remained highly significant for most genes when controlling
for expression levels.

Taken together, our analysis suggests that gene amplification,
independently of gene expression, is responsible for 36.8% of the
tissue-specific genes.

The expression of paralogs may explain a large
proportion of tissue-specific genes
Since PE explains a minority of cases of tissue specificity, the
question is what explains the other cases. One option is that the
expressions of other genes are important. A loss of a gene that is
expressed in all tissues can still result in a tissue-specific effect if
there are other genes that can compensate for the loss of that

gene in a tissue-specific manner. This type of FR between pro-
teins with similar biochemical activities has been commonly ob-
served for paralogs (Barshir et al. 2018): a lower expression of a
paralog in a specific tissue can result in the vulnerability of that
tissue to the loss of other paralogs.

To study the expression of paralogs as a potential mechanism,
we first identified tissue-specific genes with paralogs
(Supplementary Table 5). We found 407 tissue-specific genes with
paralogs. Most had a small number of paralogs (mode¼ 1,
median¼ 2; Fig. 3a), leaving 867 tissue-specific genes without any
paralog. We next examined the overall expression patterns of the
paralogs in the vulnerable vs nonvulnerable tissues for 404 tissue-
specific genes with available data. We found that the average ex-
pression of the paralogs tends to be either higher or lower in the
vulnerable tissues relative to the nonvulnerable tissues (Fig. 3b,
Supplementary Table 4). We found a highly significant difference
in the expression of paralogs between the vulnerable and nonvul-
nerable tissues (randomization test, P¼ 9.9� 10�5; Fig. 3c).

If the paralogs are responsible for the tissue specificity be-
cause of their ability to compensate for the mutated gene only in
specific tissues, we expect to see that tissue-specific genes are
less essential in cells with higher expression of their paralog. We
tested the correlation between the expression of the paralogs and
the dependency scores across the cell lines. Of the 404 genes, 153
tissue-specific genes had a significant positive correlation in the

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. The expression of the tissue-specific genes in vulnerable tissues is consistent with a PE mechanism and the effect of copy number variations
(CNVs). a) The average standardized expression of tissue-specific genes in vulnerable and nonvulnerable tissues. b) The observed mean absolute t-
statistic (dashed red line) was calculated for differences in the expression of tissue-specific genes between the vulnerable and nonvulnerable tissues.
The histogram shows the distribution of the expected values under the null based on 10,000 permutations. c, d) Demonstration of PE. c) MYB, a tissue-
specific gene in blood and lymphocytes, is more essential (lower dependency) in cells with higher expression of MYB. d) SOX10, a tissue-specific gene in
the skin, is more essential in cells with higher expression of SOX10. e–g) Demonstration of a tissue-specific gene that is explained by the gene copy
number. e) BUD13, a tissue-specific gene in the skin and the upper aerodigestive tissue, is less essential in cells with higher expression of BUD13. f)
BUD13 expression is associated with the copy number of BUD13. g) BUD13 dependency scores are associated with the copy number of BUD13. h) Density
plots of Spearman’s correlation coefficients between the dependency scores and expression of tissue-specific genes. The plots are shown for 623 tissue-
specific genes with CNV information, divided into genes with significant correlation with the gene copy number (FDR < 0.05) (light red) or nonsignificant
(grey). All P-values presented in the figures are adjusted for multiple tests by the Benjamini and Hochberg FDR procedure. The yellow dots (C-G plots)
represent cell lines that belong to the vulnerable tissues, and the blue dots are for cell lines in the nonvulnerable tissues. In C-G, locally estimated
scatterplot smoothing (LOESS) curves and 95% confidence intervals are shown alongside Spearman’s q and the FDR value.
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predicted direction of reduced FR (Spearman’s q> 0, FDR < 0.05;
see example in Fig. 3, d–g). This result suggests that for these 153
tissue-specific genes, the decreased expression of the paralog in
the vulnerable tissues is the likely explanation. We then tested
the possibility that both paralogs in the pair could compensate
for the loss of each other (symmetric compensation) and found
that only 25 out of 147 paralogs with available data showed sym-
metric compensation (FDR < 0.05; Supplementary Table 5).

Although we expected paralogs to compensate for gene loss,
surprisingly, 45 tissue-specific genes had a significant negative cor-
relation between the dependency scores and the expression of
their paralogs (Spearman’s q< 0, FDR < 0.05; see example in
Fig. 3h. Contrary to the 153 tissue-specific genes implicated in FR,
the 45 tissue-specific genes tend to be expressed at higher levels in
the vulnerable tissues (OR¼ 3.2, P ¼ 0.001). This observation sug-
gests that the 2 paralogs function together, and both are needed in
some cells (termed codependency). We also checked whether de-
pendency between the paralogs is symmetric (the phenotypic ef-
fect of the loss of the paralog is dependent on the expression of the
tissue-specific gene) and found that out of the 44 paralogs with
available dependency scores, only 8 showed such symmetric de-
pendency (FDR < 0.05; Supplementary Table 5).

Next, we explored how the presence of multiple paralogs might
account for tissue specificity. We found that in 92% of cases (141/
153), when the most significant paralog was expressed in a way that
is consistent with an FR between the paralogs (a significant

tendency for higher essentiality in cells with lower expression of the
paralog), the direction of correlation with all other paralogs was in
the same direction. Similarly, when the most significant correlation
indicated that the function of paralogs depended on each other,
most other significant correlations were in the same direction (37/
45). These results suggest that the distinction between redundancy
and codependency in most cases is a property of the tissue-specific
genes. In agreement, the 2 groups of tissue-specific genes include
genes with different biological functions (Supplementary Table 6).
GO enrichment analysis showed that tissue-specific genes impli-
cated in FC were enriched for transcription regulation (e.g. DNA-
binding transcription activator activity, FDR¼ 3� 10�7). In contrast,
tissue-specific genes involved in FR were enriched for essential pro-
cesses like cell division (FDR¼ 2� 10�10).

Collectively, our analyses suggest that the variable expression
of paralogs in different tissues may explain 15.5% of tissue-
specific genes, the majority through lineage-specific FR (12%). We
also find that some paralogs do something other than compen-
sating for one another: in those cases where the paralog is more
expressed, its pair is more essential, a phenomenon we call FC
(as also seen by Diss et al. 2017).

Intercellular communication may explain
tissue-specific genes in blood cells
The expression analysis of tissue-specific genes and their
paralogs revealed that the tissue specificity of 54.8% of the

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Analysis of paralogs expression suggests FR and codependency mechanisms for tissue-specific genes. a) Histogram showing the number of
paralogs per each tissue-specific gene. b) The average standardized expression of tissue-specific genes paralogs in vulnerable and nonvulnerable
tissues. c) The observed mean absolute t-statistic (dashed red line) was calculated for differences in paralog expression between the vulnerable and
nonvulnerable tissues. The histogram shows the distribution of the expected values under the null based on 10,000 permutations. d–g) Demonstration
of FR. d, e) The dependency of VRK1, a tissue-specific gene in the central and peripheral nervous systems, is correlated mainly with (E) the expression of
its paralog, VRK2, (d) relative to the expression of VRK1 itself. f, g) The dependency of RPP25L, an tissue-specific gene in the central nervous systems, soft
tissues, and lymphocytes, is significantly correlated (g) with the expression of its paralog, RPP26, but not (F) with the expression of RPP25L itself. h)
Demonstration of FC. ITGB1 is a tissue-specific gene in the upper aerodigestive that is more essential in cells with high expression of its paralog, ITGB4.
All P-values presented in the figures are adjusted for multiple tests by the Benjamini and Hochberg FDR procedure. The yellow dots (d–h plots)
represent cell lines that belong to the vulnerable tissues, and the blue dots are for cell lines in the nonvulnerable tissues. In d–h, LOESS curves and 95%
confidence intervals are shown alongside Spearman’s q and the FDR value.
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tissue-specific genes (n¼ 698) could be attributed to multiple
mechanisms, some of which are overlapping (Fig. 4a). We next
examined what could be responsible for the remaining tissue-
specific genes (n¼ 576).

To identify additional potential compensation mechanisms
that could account for the tissue specificity, we calculated the
correlation between the dependency scores of the 576 tissue-
specific genes and the gene expression of all other genes and
identified ones with positive correlations (Spearman’s q> 0, FDR
< 0.05). We identified 5,822 genes with a positive independent
correlation (not highly correlated with other more significant
genes) to at least one of 548 tissue-specific genes.

One particular gene, GJA1 (also known as connexin 43), stood
out because it was positively correlated with 45 tissue-specific
genes (other genes were correlated with only a few tissue-specific
genes; median¼ 1, mean¼ 1.68, SD¼ 1.47; Fig. 4b). GJA1 is a com-
ponent of gap junctions that allow the exchange of low molecular
weight molecules between adjacent cells (Goodenough et al.
1996). Other genes that were positively correlated with multiple
tissue-specific genes are also involved in cell communication,
such as SYTL3 (independently correlated with 19 genes), which
belong to a family of proteins involved in vesicular trafficking
(Tsuboi and Fukuda 2006) and LRP1 (independently correlated
with 13 genes), which is a receptor involved in endocytosis (Van
Gool et al. 2015).

This finding suggested a mechanism: mutant cells that ex-
press proteins that allow uptake through gap junctions from sur-
rounding cells will be less dependent on their ability to generate
small essential molecules. Consistent with this hypothesis, GO
enrichment analysis for the 45 tissue-specific genes correlated
with GJA1 showed that these genes are involved in the metabo-
lism of small molecules, including nucleobase-containing small
molecule metabolic process (FDR¼ 4.7� 10�24), organophosphate
metabolic process (FDR¼ 1.4� 10�20), carbohydrate derivative
metabolic process (FDR¼ 1.3� 10�19), and nucleotide

biosynthetic process (FDR¼ 1.4� 10�19) (Fig. 4e). It is important to

note that the enrichment in these biological processes was highly

significant compared to the level of enrichment for cellular com-

ponents or molecular functions (Fig. 4c).
Since gap junctions are absent in circulating blood cells, we

expected the tissue-specific genes correlated with GJA1 to be es-

sential mostly in blood cells. Indeed, we found that 36 out of 45

tissue-specific genes were essential in at least 1 blood-related lin-

eage (blood, lymphocytes, and plasma cells), significantly more

than expected by chance (OR¼ 4.3, P¼ 3.8� 10�5).
We also suspected that such a mechanism might explain why

we had more tissue-specific genes in tissues that lack cell–cell

junctions, such as blood or plasma cells. We identified 287 tissue-

specific genes with a significant positive correlation with GJA1 ex-

pression (Spearman’s q> 0, FDR < 0.05). The 287 tissue-specific

genes were significantly enriched in blood-related tissues

(OR¼ 9.4, P¼ 1.6� 10�46; Fig. 4d).

Tissue-specific genes are associated with human
diseases
Our findings are derived from analyses of cancer cell lines, raising

a question as to the relevance of the mechanism we have identi-

fied for noncancerous cells. It is possible that the tissue-specific

genes are only specific for human cancers rather than other hu-

man diseases. We explored this concern by testing whether the

genes we found were relevant to all human diseases or to only a

subset of them.
We studied the overlap of tissue-specific genes with genes in-

tolerant to mutations. In such genes, functional variants are kept

at very low frequencies because purifying selection removes such

variants from the population (Karczewski et al. 2020). We found

that tissue-specific genes were significantly more intolerant to

loss-of-function (P¼ 7.2� 10�95) and missense variants

(P¼ 2.3� 10�93) compared to other genes in the genome (Fig. 5, a

(a)

(b)

(c) (d)

Fig. 4. Cell-to-cell communication is a possible mechanism for tissue-specific genes. a) Euler diagram presenting the number of tissue-specific genes
that could be explained by PE (orange), CNV (blue), FR (red), and FC (green). b) Distribution of the number of unexplained tissue-specific genes that were
significantly positively correlated with the expression of a specific gene. The names of 2 highly ranked genes are shown. c) The 10 most significant
biological functions, cellular components, and molecular functions associated with unexplained tissue-specific genes positively correlated with GJA1.
The Y-axis represents the number of genes that overlap a specific term. The red color intensity signifies the -log (10) of the FDR q-value. d) Comparison
between the number of tissue-specific genes in each tissue that are positively correlated with GJA1 (red) or not (grey). CNS, central nervous system;
PNS, peripheral nervous system; UA, upper aerodigestive.
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and b). As a control, we also tested synonymous variants, which
were not significantly different (P ¼ 0.99; Fig. 5c).

Given that tissue-specific genes are intolerant to functional
mutations, we next studied the association of tissue-specific
genes with human phenotypes. Gene set enrichment analysis of
tissue-specific genes revealed that these genes are enriched for

developmental phenotypes, mainly of the central nervous system
(Fig. 5d), such as “Microcephaly” (FDR¼ 2.2� 10�13) and
“Decreased head circumference” (FDR¼ 2.2� 10�13).

To further explore the association between tissue-specific
genes and human diseases, we compared the percentage of genes
associated with at least one known human disease for 3

(a)

(e)

(g) (h)

(i)

(f)

(b) (c) (d)

Fig. 5. Involvement of tissue-specific genes in human diseases and expression specificity across diverse human cell types. a–c) Degree of intolerance to
(a) loss-of-function mutations, (b) missense mutations, and (c) synonymous mutations. Values are the Log2 of the ratio between the observed and
expected number of mutations for tissue-specific genes and all other genes. P-values were calculated using Wilcoxon signed-rank tests. (d) Ten most
significant human phenotypes that are associated with tissue-specific genes. The X-axis represents the number of genes that overlap a specific term.
Color intensity signifies the -log (10) of the FDR q-value. e–g) Percentage of genes associated with human diseases. e) Comparing tissue-specific genes,
CEGs, and NEGs. f) Comparing disease involvement between tissue-specific genes implicated in 3 universal mechanisms with other tissue-specific
genes and CEG. The 3 universal mechanisms, PE, FR, and FC, were treated as 1 group. g) Comparing disease involvement between PE, FR, and FC. h)
Proportions of genes with paralogs for tissue-specific genes, CEG, and NEG. i) Association between cell type-specific expression of the tissue-specific
gene itself (Gene) or the paralog (Paralog) with genes implicated in PE, FR, FC relative to NEG. Values are ORs 6 95% confidence interval. NS, P > 0.05; *, P
< 0.05; **, P < 0.005; ***, P < 0.001.
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categories of genes: tissue-specific genes, CEGs that are not spe-
cific to a tissue, and NEGs. We found that tissue-specific genes
are significantly more associated with human diseases compared
to both common essential (OR¼ 1.2, P ¼ 0.003; Fig. 5e), and NEGs
(OR¼ 2.4, P¼ 7.6� 10�18; Fig. 5e).

As we have shown above, a number of different mechanisms
operate to confer tissue specificity on genes. While CNVs and
intercellular communication are mechanisms expected to be spe-
cific to cancer cell lines or similar systems, PE, FR, and FC should
be important in many different cell types and states. Consistent
with these expectations, tissue-specific genes, best explained by
PE, FR, and FC, were significantly more associated with human
diseases than CEGs (OR¼ 2.3, P¼ 5.03� 10�9; Fig. 5f; with no sig-
nificant difference between the 3 groups; P ¼ 0.13; Fig. 5g).
However, other tissue-specific genes not belonging to the 3
groups were similar to CEGs in their association with human dis-
eases (OR¼ 1.1, P ¼ 0.25; Fig. 5f). These results suggest that
tissue-specific genes are more important for human diseases
than CEGs.

Cell type-specific expression supports the
generality of the genetic mechanisms of tissue-
specific genes
Although our analysis focused on mechanisms explaining
lineage-specificity in cancer cell lines, the involvement of tissue-
specific genes with human diseases suggests that the 3 general
mechanisms we identified may be conserved in other cellular
contexts. Two of the mechanisms are dependent on the expres-
sion of paralogs. When comparing the number of genes with at
least 1 paralog, we found that 73.0% of NEGs have paralogs, sig-
nificantly more than CEGs (17.3%; OR¼ 12.8, P¼ 1.0� 10�139;
Fig. 5h). The percentage of tissue-specific genes with paralogs
(31.7%) was smaller than NEGs (OR¼ 0.17, P¼ 1.6� 10�73; Fig. 5h)
but significantly more than CEGs (OR¼ 2.2, P¼ 1.3� 10�17;
Fig. 5h).

The interpretation of these findings is that genes with paralogs
are nonessential because of FR, whereas genes without paralogs
tend to be common essentials. But our analysis suggests that the
genes that are essential in specific cell types are preferentially
expressed in those cells or have paralogs with cell type-specific
expression.

To test the generality of these predictions, we examined how
many of the tissue-specific genes and their paralogs are
expressed in specific cell types. We studied genes with at least 1
paralog whose tissue specificity is best explained by PE (n¼ 65),
FR (n¼ 124), or FC (n¼ 22). We compared these to NEGs with at
least 1 paralog (n¼ 522).

The gene pairs (a gene and its paralog) can be classified into 4
different groups: (1) none have a cell type-specific expression, (2)
both the gene and the paralog have a specific expression, (3) only
the paralog has a specific expression, and (4) only the gene has a
specific expression. The distribution of genes in these 4 groups
was significantly different between NEGs and 2 out of the 3 types
of tissue-specific genes (PE P¼ 1.5� 10�6, redundancy
P¼ 3.8� 10�4, and codependency P ¼ 0.5).

We directly tested the differences in frequency of cell type-
specific expression for the genes or their paralogs between the
groups (Fig. 5i) and found that for tissue-specific genes with PE,
there was a significant increase in cell type-specific expression
for the gene itself compared with NEGs (OR¼ 2.8, FDR¼ 0.03). For
tissue-specific genes with FR, there was a significant increase in
the frequency of cell type-specific expression for the paralog

(OR¼ 2.3, FDR¼ 0.005). All other tests were not significant (FDR >

0.05).
Taken together, these results indicate that the expression pat-

terns across tissues of the gene or its paralogs depend on the
mechanisms found in the cancer tissues and suggest that those
mechanisms are relevant to other tissues.

Discussion
The analyses described in this article identify mechanisms un-
derlying tissue-specificity of gene action, using loss-of-function
mutations across hundreds of cancer cell lines as a tool to deter-
mine which genes are essential for a tissue. Surprisingly, we
found that the most obvious mechanism that a gene is more es-
sential in cells where it is more highly expressed (PE) applies in
only 9% of the tissue-specific genes we examined.

We identified 3 compensation mechanisms that explain how
the consequences of gene loss may be tissue-specific. (1)
Compensation originates from increased gene copies, which may
lower the probability that mutations disrupt gene function. Gene
amplification explained 37% of tissue-specific genes. CNVs are
relevant to different human phenotypes (Zhang et al. 2009), in-
cluding neurodevelopmental disorders (Gilman et al. 2011) and
many cancer types (Beroukhim et al. 2010). In cancer, gene ampli-
fication may reinforce beneficial gene expression changes (Ben-
David et al. 2014). Moreover, somatic mosaicisms for CNVs are
widespread in specific human tissues (Piotrowski et al. 2008;
Abyzov et al. 2012). (2) Compensation by paralogs, resulting in re-
duced FR in specific tissues. This compensation was detected in
12% of the tissue-specific genes. It is likely to be more widespread
since redundancy exists through other mechanisms. Our findings
are consistent with a study of 112 heritable diseases that found
that in 20% there was a lower expression of paralogs in the
disease-related tissue (Barshir et al. 2018). Notably, symmetric
compensation between paralogs (when both genes in the pair
compensate for each other) was found only in a minority of cases
(17%). One possible explanation for why many paralog pairs were
not both identified as tissue-specific genes is that the primary
genes we identified are ubiquitously expressed (as shown in
Fig. 5i). (3) Compensation between cells. Tissue specificity may
arise because intercellular communication allows the transfer of
small molecules to mutant cells, rescuing the phenotype of the
mutation in those tissues where such transfer is possible.
Metabolic cooperation through intercellular communications
(such as gap junctions) was previously shown to explain the lack
of phenotypes in females with X-linked diseases (Biesecker and
Spinner 2013; Forsberg et al. 2017; Migeon 2020). For example,
women with a heterozygous mutation in the gene coding for hy-
poxanthine phosphoribosyl transferase (HPRT) are not affected
because inosinic acid, the product of HPRT, is transferred from
normal to mutant cells through gap junctions. However, in blood
cells, compensation by this mechanism is not possible, and mu-
tant cells are under negative selection (Migeon 2020).

In contrast to the compensation mechanisms, we found that
3.5% of tissue-specific genes are more essential in cells where the
paralog has elevated expression, suggesting functional depen-
dency between the paralogs. Previous work proposed that FC
stems from a direct interaction between proteins that work to-
gether as heterodimers (Diss et al. 2017). The assumption is that
cells with higher expression of the 2 paralogs are more dependent
on the complex and, therefore, more vulnerable to the mutation.
We found that the tissue-specific genes implicated in FC are
mainly involved in transcription regulation. The codependency of
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those transcription factors may stem from being in the same
complex or having common target genes. There is already evi-
dence of codependency for some of the genes we identified. For
example, MDM2 and MDM4 form a heterodimer required for the
polyubiquitination of p53 (Wang and Jiang 2012). Other examples
of pairs of paralogs known to work together are CDC42/RHOJ
(Sundararaman and Mellor 2021) and EGFR/ERBB3 (Frolov et al.
2007).

An obvious limitation of our study is that cancer cell lines and
their tissues of origin do not represent healthy tissues. The tis-
sues are a way to assemble related cell lines into a group that
resembles a tissue. Thus, genes we find to be specific to a tissue
are not necessarily specific to the original tissue, as some pro-
cesses are cancer-specific. This is also evident in the large propor-
tion of tissue-specific genes that are associated with changes in
copy number alterations, a process that is prevalent in cancers
(Beroukhim et al. 2010). Another limitation of our study is that it
relies on associations between essentiality and gene expression
without directly testing for causality.

We address the concern that our results based on cancer cell
lines are relevant to healthy tissues and human diseases by
showing that tissue-specific genes are intolerant to functional
mutations in the human population and are associated with hu-
man diseases more than genes that are essential across all cell
types. It is possible that CEGs are less associated with human dis-
eases because they are lethal. In addition, we found that these
genes are enriched for developmental phenotypes, possibly be-
cause those are stages with high-cell proliferation (Shohat and
Shifman 2019). The analysis of cell type-specific expression sug-
gests that the mechanisms observed in the cancer cell lines are
general and relevant to other cells and could explain their high
involvement in human disease.

Tissue specificity so far has been studied mainly in the context
of heritable diseases, work that has shown that a large proportion
of disease genes affect specific tissues. Multiple mechanisms
were suggested to account for the tissue specificity of diseases,
including PE, compensation by paralogs in specific tissues, and
other tissue-specific processes or regulatory networks. Studies of
tissue-specificity of disease genes are obviously restricted to
those genes that are known to cause diseases. The affected tis-
sues are based on the symptoms presented by patients, and thus,
the connection between the disease gene and the tissue is not al-
ways clear. Despite the limitations, our study is unique in the
ability to identify in an unbiased way tissue-specific genes and
systematically study the mechanisms responsible.

Our findings have important implications for studies of geno-
type–phenotype relationships. Studies of human diseases and po-
tential genetic therapies for cancer are frequently based on the
assumption that the cell types most affected by a mutation are
those with higher gene expression. Among others, this assump-
tion is used to connect newly identified variants to diseases or as
a way to determine which tissues and developmental stages are
associated with a disease. However, our findings indicate the
need for ways to integrate the expression of the causal genes and
other interacting genes to determine which tissues or cell types
are likely to be involved in the disease. Thus, our results could be
used to predict and explain why specific cell types are affected by
a loss of a particular gene. Our work also may have specific impli-
cations for understanding the origin of lineage specificity in re-
sponse to oncogenic driver mutations.

An additional and more general output of our study is that
genes essential in a specific type of cells, like other forms of bio-
logical variation, can offer important insights into genetic

mechanisms of genetic interactions. The mechanisms that ex-
plain the variance between cell lineages can also be relevant for
the differences between human individuals with the same ge-
netic condition and can be the basis for incomplete penetrance
and variable expressivity.
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Tissue-based map of the human proteome. Science. 2015;

347(6220):1260419. doi:10.1126/science.1260419.

Van Gool B, Dedieu S, Emonard H, Roebroek AJM. The matricellular

receptor lrp1 forms an interface for signaling and endocytosis in

modulation of the extracellular tumor environment. Front

Pharmacol. 2015;6:271. doi:10.3389/fphar.2015.00271.

Wang X, Jiang X. Mdm2 and MdmX partner to regulate p53. FEBS

Lett. 2012;586(10):1390–1396.

Willsey AJ, Sanders SJ, Li M, Dong S, Tebbenkamp AT, Muhle RA,

Reilly SK, Lin L, Fertuzinhos S, Miller JA, et al. Coexpression net-

works implicate human midfetal deep cortical projection neu-

rons in the pathogenesis of autism. Cell. 2013;155(5):997–1007.

doi:10.1016/j.cell.2013.10.020.

Zhang F, Gu W, Hurles ME, Lupski JR. Copy number variation in hu-

man health, disease, and evolution. Annu Rev Genomics Hum

Genet. 2009;10:451–481.

Communicating editor: A. Long

E. Dvir et al. | 11

http://doi:10.1126/science.aai7685
http://doi:10.1016/j.cels.2017.06.016
http://doi:10.4161/cbt.6.4.3849
http://doi:10.1016/j.neuron.2011.05.021
http://doi:10.1016/j.neuron.2011.05.021
http://doi:10.15252/msb.20145216
http://doi:10.15252/msb.20145216
http://doi:10.1016/j.cell.2015.11.015
http://doi:10.1038/s41586-020&hx0026;ndash;2308-7
http://doi:10.1186/s12864-017&hx0026;ndash;4111-x
http://doi:10.1186/s12864-017&hx0026;ndash;4111-x
http://doi:10.1016/j.cell.2013.10.031
http://doi:10.1002/humu.20815
http://doi:10.1002/humu.20815
http://doi:10.1101/gr.250019.119
http://doi:10.1091/mbc.E05-11&hx0026;ndash;1047
http://doi:10.1126/science.1260419
http://doi:10.3389/fphar.2015.00271
http://doi:10.1016/j.cell.2013.10.020



