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Recent work suggests that the brain can be conceptualized as a network comprised

of groups of sub-networks or modules. The extent of segregation between modules

can be quantified with a modularity metric, where networks with high modularity have

dense connections within modules and sparser connections between modules. Previous

work has shown that higher modularity predicts greater improvements after cognitive

training in patients with traumatic brain injury and in healthy older and young adults.

It is not known, however, whether modularity can also predict cognitive gains after a

physical exercise intervention. Here, we quantified modularity in older adults (N = 128,

mean age = 64.74) who underwent one of the following interventions for 6 months

(NCT01472744 on ClinicalTrials.gov): (1) aerobic exercise in the form of brisk walking

(Walk), (2) aerobic exercise in the form of brisk walking plus nutritional supplement

(Walk+), (3) stretching, strengthening and stability (SSS), or (4) dance instruction. After the

intervention, the Walk, Walk+ and SSS groups showed gains in cardiorespiratory fitness

(CRF), with larger effects in both walking groups compared to the SSS and Dance groups.

The Walk, Walk+ and SSS groups also improved in executive function (EF) as measured

by reasoning, working memory, and task-switching tests. In the Walk, Walk+, and SSS

groups that improved in EF, higher baseline modularity was positively related to EF

gains, even after controlling for age, in-scanner motion and baseline EF. No relationship

between modularity and EF gains was observed in the Dance group, which did not show

training-related gains in CRF or EF control. These results are consistent with previous

studies demonstrating that individuals with a more modular brain network organization

are more responsive to cognitive training. These findings suggest that the predictive

power of modularity may be generalizable across interventions aimed to enhance aspects

of cognition and that, especially in low-performing individuals, global network properties

can capture individual differences in neuroplasticity.
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INTRODUCTION

Aging is accompanied by changes in cognition and brain
function, yet there is individual variability in the extent to which
older adults experience such effects (Wilson et al., 2002; Raz
et al., 2005; Fabiani, 2012; Burzynska et al., 2015; Salthouse,
2016). Individual differences in age-related cognitive decline,
particularly in executive function processes, are related to
changes in structural and functional connectivity between brain
regions (Andrews-Hanna et al., 2007; Damoiseaux et al., 2008;
Kennedy and Raz, 2009; Madden et al., 2009, 2012). One method
to quantify these complex interactions is to conceptualize the
brain as a network comprised of sub-networks, or modules
(Newman and Girvan, 2004; Newman, 2006b; Chen et al., 2008;
Bullmore and Sporns, 2009; Meunier et al., 2010; Betzel et al.,
2014; Bertolero et al., 2015). The extent of a module’s segregation
from the rest of the network can be quantified with a modularity
metric (Newman and Girvan, 2004), where networks with high
modularity have many connections within modules and fewer
connections between modules. Computational models suggest
that a modular network organization allows for a system that
is more adaptable to new environments (Kashtan and Alon,
2005; Clune et al., 2013; Tosh and McNally, 2015), suggesting
a role for network modularity in supporting complex behaviors
like executive function. Compared to young adults, older adults
have less modular brain networks (Chen et al., 2011; Onoda
and Yamaguchi, 2013; Betzel et al., 2014; Geerligs et al., 2015)
with pronounced age-related differences in sub-networks that
support “associative” processes, such as executive function (Chan
et al., 2014). Taken together, these findings suggest that more
modular brain networks enable complex cognitive processes
and neuroplasticity and, further, may provide insight into the
mechanisms underlying the effectiveness of interventions geared
toward ameliorating age-related cognitive decline.

Recent work has demonstrated that individual differences
in brain network modularity can predict the extent to
which individuals improve after cognitive interventions aimed
to improve executive function. Specifically, higher baseline
modularity (i.e., measured prior to the intervention) quantified
during a task-free “resting state” predicted greater improvements
after cognitive training in patients with traumatic brain injury
(Arnemann et al., 2015) and more recently, in healthy older
(Gallen et al., 2016) and young adults (Baniqued et al.,
2015). Importantly, modularity predicted training gains even
after controlling for baseline cognitive performance. These
findings suggest that the informative nature of such individual
differences in brain network organization can be used to
maximize intervention effectiveness, such as by modifying
training intensity or duration, especially in populations where
behavioral measures may be difficult to collect (Gabrieli et al.,
2015). Previous studies have examined other neural metrics in
relation to learning and training responses (Erickson et al., 2010;
Basak et al., 2011; Vo et al., 2011; Mathewson et al., 2012), but
have often focused on specific brain regions related to specific
types of interventions. As modularity has been shown to be
reliable in individuals across sessions (Stevens et al., 2012; Cao
et al., 2014) and predictive of cognitive gains across a variety of

populations and training protocols, modularity may be a unifying
biomarker that indexes an individual’s potential for adaptive
reorganization with intervention.

In addition to cognitive training interventions, cost-effective
and easily accessible physical activity interventions involving
brisk walking have been shown to have rehabilitative and
protective effects on brain function in older adults (Kramer
et al., 2006; Voss et al., 2013c). Further, there are significant
individual differences in responsiveness to exercise training, with
factors such as initial levels of heart rate and blood pressure
determining gains in cardiorespiratory fitness (Bouchard and
Rankinen, 2001). Although we have previously found that
individual differences in brain network modularity can predict
training-related gains after cognitive training (Arnemann et al.,
2015; Baniqued et al., 2015; Gallen et al., 2016), it is not
yet known whether the relationship between modularity and
training gains is generalizable to interventions aimed to enhance
executive function in older adults. Although there are several
graph theoretical metrics, we were specifically interested if this
relationship between pre-intervention brain modularity and
training gains can also be found in a different, non-cognitive
training intervention, such as a physical exercise intervention.

Specifically, we hypothesize that modularity reflects an
individual’s readiness to engage in and benefit from training.
A recent study demonstrated that individuals with higher
general intelligence show smaller connectivity changes between
a resting state and task states, suggesting the existence of a more
“optimal” network organization that provides more efficient
reconfiguration during performance of various tasks (Schultz and
Cole, 2016). Similar to this idea, we hypothesize that a more
optimal—more modular network configuration is better able to
transition to task states demanded by the interventions; it is more
adaptable. In the context of the current study, a more modular
brain network may potentiate the rehabilitative and protective
effects of physical exercise on the aging brain, leading to greater
improvements in executive function.

Here, we examined brain network modularity in older
adults who underwent a 6-month exercise training intervention.
Specifically, we tested the hypothesis that higher baseline
modularity predicts larger exercise-related gains in cognition.
The current study employed a broad battery of cognitive tests to
assess intervention-related gains in executive function, episodic
memory, vocabulary and perceptual speed. Here, we focused on
the relationship between baseline modularity and improvements
in executive function, as these processes show pronounced age-
related decline and exercise-related changes (Hillman et al., 2008;
Voss et al., 2013c; Kawagoe et al., 2017).

MATERIALS AND METHODS

Participants
Healthy, low active, older adults (N = 247) aged 60–80
from the Urbana-Champaign community participated in a
randomized controlled exercise trial (https://clinicaltrials.gov/
ct2/show/NCT01472744; see Voss et al., 2016; Burzynska et al.,
2017; Ehlers et al., 2017a,b; Fanning et al., 2017, for data
published from this same cohort). All participants provided
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informed consent and the University of Illinois Institutional
Review Board approved all procedures used in the study.
Selection criteria consisted of the following, (1) >75% right-
handed on the EdinburghHandedness Questionnaire; (2) normal
or corrected-to-normal vision of at least 20/40; (3) no color-
blindness; (4) no history of stroke, transient ischemic attack, or
head trauma; (5) >23 score on Mini-Mental State Examination
(MMSE); (6) >21 score on Telephone Interview of Cognitive
Status (TICS); (7) <10 score on Geriatric Depression Scale
(GDS); (8) reported that they engaged in moderate intensity
exercise for 30+ min no more than twice a week in the last
6 months and 9) screened for safe participation in an MRI
environment (e.g., no claustrophobia or metallic implants). In
all analyses presented here, we further excluded participants
with MMSE scores less than 27 (N = 26), as a more stringent
criterion is recommended in highly educated samples such
as in the current study (O’Bryant et al., 2008). Summary
demographics for included participants are provided in Table 1.
Additional data were excluded on a case-by-case basis during
data quality procedures applied to each behavioral measure.
Specifically, cognitive measures greater than 3 SD from the
mean were excluded. After this step, to reduce the influence
of remaining extreme values, scores greater than 3 SD from
the recomputed mean were winsorized (Tukey, 1962; Wilcox,
2005) to the appropriate cut-off value (3 SD below or above the
mean). Analyses involving only fitness or behavioral scores were
performed on the larger sample (N = 188), prior to exclusion due
to MRI data quality, but effects were similar in the MRI sample
(N = 128).

For the MRI data, we excluded one participant with
incomplete resting state data, one participant with structural
abnormalities (see section MRI Acquisition and Processing
for more details), and 39 participants who reported taking
medications known to influence the central nervous system.
Thirty-five participants whose resting state scans contained more
than 10% of volumes withmovement greater than 0.50 framewise
displacement (FD) or any volume with a maximum absolute
displacement of 4.0mm were excluded. MRI data were not
collected for five subjects. Demographics for this reduced sample
are provided in Table 1.

Protocol Summary
All participants underwent MRI, behavioral, and fitness testing
sessions before and after a 6-month long physical exercise
intervention. Participants were paid for the pre- and post-testing
sessions at a rate of $10/h. Participants were randomly assigned
to one of four intervention groups, which met for an hour three
times a week. All group sessions were led by trained exercise
specialists. In the walking group (Walk), participants were
instructed to walk within their target heart rate (50–60% of their
maximal heart rate for first 6 weeks, 60–75% for last 18 weeks). A
second group was also instructed to walk within the same target
heart rate and was provided with a daily milk-based supplement
formula provided by Abbott Nutrition that contained beta-
alanine (Walk+). A third group was instructed in exercises
focusing on stretching, strengthening and stability (SSS). A
fourth group (Dance) was instructed in social dance sequences

(i.e., Contra and English country dancing) by experienced dance
instructors. Since the focus of this study is on the utility of
brain modularity in predicting intervention-related gains, we
limit our discussion of the intervention approach and choice of
training regimen (for detailed information, see Ehlers et al., 2016;
Burzynska et al., 2017).

Cardiorespiratory Fitness Testing
Participants underwent cardiorespiratory fitness (CRF) testing
before and after the intervention. CRF reflects the integrated
ability of the cardiovascular and respiratory systems to deliver
oxygen during sustained physical effort (Ross et al., 2016),
and regular physical exercise increases the efficiency of these
systems (Wenger and Bell, 1986). CRF testing involves gradually
increasing exercise intensity to tax the aerobic system and
measuring the corresponding increase in oxygen consumption.
Physician’s approval was solicited prior to testing. CRF,
operationally defined as peak oxygen consumption (VO2peak in
mL/kg/min, relative rate in milliliters of oxygen per kilogram of
body mass per minute), was measured with indirect calorimetry
during amodified Balke gradedmaximal exercise test on amotor-
driven treadmill (Balke and Ware, 1959; Froelicher et al., 1975).
Participants walked on a treadmill at a constant pace while the
incline was increased 2–3% every 2min. Expired air was sampled
at 30-s intervals until maximal VO2 was reached or the test
was terminated due to volitional exhaustion and/or symptom
limitation. Maximal VO2 was determined after two of three
criteria were met: (1) a plateau in VO2 after increase in workload;
(2) a respiratory exchange ratio (ratio of CO2 production and O2

consumption, reflecting limits of cardiovascular system) >1.10,
and (3) a maximal heart rate within 10 bpm of their age-predicted
maximum. VO2peak was the highest VO2 recorded during the
test. For the correlation analyses, we calculated a standardized
CRF gain score for each individual by taking the difference
between post-and pre-scores and dividing this by the standard
deviation of pre-test scores (SD collapsed across groups).

Behavioral Testing
Participants underwent cognitive testing before and after the
interventions. With the exception of the Switching Task and
the Spatial Working Memory Task, all tests were taken from
the Virginia Cognitive Aging Project (VCAP) (Salthouse and
Ferrer-Caja, 2003; Salthouse, 2004, 2005, 2010). The VCAP tests
were categorized into four categories: vocabulary, perceptual
speed, episodic memory, and fluid reasoning. In the analyses, we
grouped the Switching Task and Spatial Working Memory Task
together with the fluid reasoning tasks to create an “executive
function” component score, given previously demonstrated
relationships between cognitive control and fluid reasoning
abilities (Kane et al., 2005; Salthouse, 2005). We also performed a
principal components analysis (PCA) on all the pre-test measures
to confirm the VCAP construct groupings and to confirm that
the Switching and SpatialWorkingMemory Tasks were related to
performance on the fluid reasoning tests (Table 2, Supplementary
Table 1). For each pre-test and post-test measure, we calculated
standardized scores (z-scores) and averaged these z-scores
according to the task groupings specified above, resulting in
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TABLE 1 | Demographics.

Walk Walk+ Dance SSS Group effect

FULL SAMPLE*

Age 64.82 (4.55), 60–77 64.51 (4.47), 60–78 65.58 (4.57), 60–78 65.52 (4.43), 60–78 F (3, 217) = 0.75, p = 0.53

Education 16.13 (3.31), 12–26 15.60 (2.26), 12–20 15.54 (3.17), 12–25 16.44 (3.14), 12–26 F (3, 217) = 1.19, p = 0.31

MMSE 28.86 (1.02), 27–30 28.80 (0.94), 27–30 28.90 (0.94), 27–30 28.94 (1.08), 27–30 F (3, 217) = 0.20, p = 0.90

VO2peak 19.97 (5.11), 12–34 19.78 (4.15), 9–28 19.98 (4.69), 10–33 19.22 (4.73), 6–30 F (3, 215) = 0.35, p = 0.79

Female 34 33 42 40 χ
2
(3)

= 0.18, p = 0.98

N 49 49 59 64 221

BEH + CRF

Age 64.64 (4.06), 60–75 64.80 (4.49), 60–77 65.50 (4.50), 60–78 65.81 (4.43), 60–78 F (3, 184) = 0.78, p = 0.51

Education 16.43 (3.30), 12–26 15.74 (2.21), 12–20 15.52 (3.12), 12–25 16.70 (3.22), 12–26 F (3, 184) = 1.70, p = 0.17

MMSE 28.93 (1.02), 27–30 28.82 (0.95), 27–30 28.92 (0.94), 27–30 28.89 (1.11), 27–30 F (3, 184) = 0.11, p = 0.96

VO2peak 20.21 (5.04), 12–34 19.76 (4.06), 9–28 19.99 (4.07), 13–29 19.53 (4.69), 7–30 F (3, 182) = 0.20, p = 0.90

Female 28 29 34 36 χ
2
(3)

= 0.32, p = 0.96

N 42 44 48 54 188

MRI SAMPLE

Age 63.83 (3.96), 60–75 64.59 (4.27), 60–77 65.06 (4.00), 60–73 65.29 (4.18), 60–75 F (3, 124) = 0.78, p = 0.51

Education 16.59 (2.80), 12–24 15.66 (2.31), 12–20 15.78 (3.16), 12–26 17.22 (3.40), 12–26 F (3, 124) = 2.06, p = 0.11

MMSE 29.07 (0.92), 27–30 28.86 (0.92), 27–30 28.94 (0.98), 27–30 29.08 (1.08), 27–30 F (3, 124) = 0.36, p = 0.78

VO2peak 21.60 (5.39), 12–34 20.12 (4.14), 11–28 20.11 (4.00), 13–27 19.70 (4.60), 7–30 F (3, 122) = 1.02, p = 0.39

Female 18 19 23 27 χ
2
(3)

= 0.93, p = 0.82

N 29 29 32 38 128

Mean (SD) and range for age, education, MMSE and VO2peak.
*Full sample excludes participants with MMSE scores lower than 27. Two participants are missing VO2peak data.

four component scores representing baseline cognitive abilities
in vocabulary, perceptual speed, episodic memory and executive
function (fluid reasoning plus switching and working memory).
For each test, we also calculated standardized gain scores by
subtracting pre-test performance from post-test performance,
and dividing this value by the standard deviation of raw pre-test
scores (collapsed across groups). We averaged the standardized
gain scores accordingly to create composite gain scores in
vocabulary, perceptual speed, episodic memory, and executive
function. The following sections have brief descriptions of each
test and the specific measure used for analyses.

Task-Switching (Kramer et al., 1999; Voss et al.,

2010a,b, 2013b; Leckie et al., 2014)
On each trial, participants were shown a number between 1
and 9 (except 5) against a colored background: (1) on a pink
background, participants were instructed to determine whether
the number was odd or even, (2) on a blue background, they
were to determine if the number was higher or lower than
5. Participants completed a high/low practice block (40 trials)
an odd/even practice block (40 trials), a single high/low task
block (40 trials), a single odd/even task block (40 trials), a
mixed practice block (64 trials) and a mixed task block (160
trials). We analyzed performance on the mixed task block
and extracted (1) local switch cost (mixed switch reaction
time; RT—mixed non-switch RT) and (2) task switching bin
score (combination of accuracy and RT measures) (Draheim
et al., 2016). The task switching bin score was used in
the principal components and correlation analyses to better

TABLE 2 | PCA standardized loadings (pattern matrix) based upon correlation

matrix of baseline scores.

PC1 PC2 PC4 PC3

Digit symbol 0.19 0.85 0.07 0.17

Pattern comparison 0.19 0.79 0.07 0.05

Letter comparison 0.01 0.83 0.18 0.02

Word recall −0.01 0.23 0.34 0.75

Logical memory 0.23 0.16 0.34 0.69

Paired associates 0.18 0.04 0.12 0.83

Shipley abstraction 0.56 0.30 0.46 0.27

Form boards 0.69 0.28 0.21 0.00

Letter sets 0.50 0.40 0.38 0.25

Matrix reasoning 0.65 0.26 0.28 0.29

Paper folding 0.77 0.05 0.13 0.18

Spatial relations 0.85 0.20 0.15 0.04

Word vocabulary 0.13 0.13 0.85 0.25

Picture vocabulary 0.39 0.02 0.74 0.11

Synonym-antonym 0.22 0.04 0.82 0.24

Spatial working memory 0.29 0.53 0.03 0.12

Task switching bin score −0.23 −0.44 0.12 −0.33

Performed varimax rotation and extraction of 4 components, which accounted for 67% of

total variance. Italics denote component groupings.

examine the relationship between task switching performance
and performance on other tests (Draheim et al., 2016). Local
RT switch cost was used in the analyses of intervention effects,
consistent with previous studies (Voss et al., 2010a, 2013b). The
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two measures were correlated (Supplementary Table 1; baseline
measures: r(211) = 0.322, p < 0.001, two-tailed; standardized gain
scores: r(159) = 0.267, p< 0.001, two-tailed), and the intervention
effects were similar when using bin score instead of local RT
switch cost.

Spatial Working Memory (Erickson et al., 2011)
On each trial, an arrangement of two, three, or four black dots
was briefly presented on the screen. After a delay, a red dot
appeared and participants were instructed to determine if the
red dot matched the position of one of the black dots presented
earlier in that trial (match or non-match). Participants performed
a practice block of 12 trials, and a task block of 120 trials (40
trials per condition). We analyzed mean accuracy during the
task block for the more difficult three-dot and four-dot trial
conditions.

Shipley Abstraction (Zachary, 1986)
Participants were given a list of word, letter, or number sequences
on a piece of paper and were instructed to write the missing
item/s (word, letter or number) in each sequence. Participants
were given 5min to answer 20 items. We analyzed the total
number of correctly answered items.

Matrix Reasoning (Ravens, 1962)
On each trial, participants were shown a 3× 3 grid, with each cell
except for one containing an abstract pattern. Participants were
instructed to select which among eight options best completes the
matrix along both the rows and columns. Participants performed
two practice trials and were then given 10min to complete a
maximum of 18 items. We analyzed the total number of correctly
answered items.

Paper Folding (Ekstrom et al., 1976)
On each trial, participants were presented with images that show
a sheet of paper folded in a certain sequence and a hole punched
through the folded sheet. Participants were asked to select which
among five options matched the pattern of holes that would
result when the paper was unfolded. They were given 10min to
complete a maximum of 12 trials. We analyzed the total number
of correctly answered items.

Spatial Relations (Bennett et al., 1997)
On each trial, participants were presented with a 2-dimensional
object pattern and instructed to identify which among four three-
dimensional figures would match the 2-dimensional pattern
when folded. Participants were given 10min to complete a
maximum of 20 trials. We analyzed the total number of correctly
answered items.

Form Boards (Ekstrom et al., 1976)
On each trial, participants were presented with a specific shape
and instructed to choose which pieces (five total options) will
exactly fill the space inside the shape. They were given 8min to
complete a maximum of 24 trials. We analyzed the total number
of correctly answered items.

Letter Sets (Ekstrom et al., 1976)
On each trial, participants were presented with five sets of four-
letter strings and asked to determine which set was different
from the other four. Participants were given 10min to complete a
maximum of 15 trials. We analyzed the total number of correctly
answered items.

Digit-Symbol Coding (Wechsler, 1997a)
Participants were presented with a sheet of paper containing a
series of numbers between 1 and 9, were asked to fill in the
corresponding symbol based on a digit-symbol key provided.
Participants completed 7 practice items and were given 2min to
complete a maximum of 133 items. We analyzed the number of
correctly answered items.

Pattern Comparison (Salthouse and Babcock, 1991)
Participants were given a sheet of paper with a set of line patterns
and were tasked to determine whether a pair of line patterns was
the same or different. Participants completed three practice items,
followed by two task sets, each set with a maximum number of 30
items to be completed within 30 s. We analyzed the number of
correctly answered items, averaged across two sets of problems.

Letter Comparison (Salthouse and Babcock, 1991)
Participants were given a sheet of paper with a set of non-word
letter strings and were tasked to determine whether a pair of
letter strings was the same or different. Participants completed
three practice items, followed by two task sets, each set with a
maximum number of 30 items to be completed within 30 s. We
analyzed the number of correctly answered items, averaged across
two sets of problems.

Logical Memory (Wechsler, 1997b)
Participants listened to stories narrated by an experimenter and
after each reading, were asked to recall each story in detail. We
analyzed the number of correctly recalled story details, summed
across three story-tellings (first story, second story, re-reading of
second story).

Paired Associates (Salthouse et al., 1996)
Participants listened to a list of six word pairs read aloud by an
experimenter. The experimenter then read the first word of each
pair and asked participants to recall the paired second word. We
analyzed the number of correctly recalled items, averaged across
two sets of six pairs each.

Word Recall (Wechsler, 1997b)
Participants listened to a list of words and were given 90 s to recall
the words in any order. Participants listed to the same list three
more times and were asked to recall as many words as possible
after each reading. Participants were then read a new list of words,
asked to recall as many words as possible from the new list, and
then asked to recall words from the old list. We analyzed the total
number of correctly recalled items.

Word Vocabulary (Wechsler, 1997a)
Experimenters read aloud a list of 33 words and asked
participants to verbally give themeaning of each word. Responses
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are scored 0–2 points according to the quality of the definition
(based on provided word and phrase guidelines). The test is
discontinued after six consecutive scores of 0. We analyzed the
total number of points.

Picture Vocabulary (Woodcock and Johnson, 1989)
Experimenters present a maximum of 30 images and participants
are tasked to name the objects presented. The test is discontinued
after a participant fails to name six consecutive items. We
analyzed the total number of correctly named items.

Synonym-Antonym (Salthouse, 1993)
On each trial, participants are presented a target word and are
tasked to select which among five word options is most similar
(synonym) or opposite (antonym) in meaning to the target word.
Participants completed a synonym block followed by an antonym
block, each with a maximum of 10 items to be completed within
5min.We analyzed the total number of correctly identified words
across the synonym and antonym blocks.

MRI Acquisition and Processing
Participants underwent MRI scanning on a 3 Tesla Siemens
Trio Tim System with a 12-channel head coil before and
after the intervention; however, only the pre-intervention scans
were analyzed in this study given our hypotheses regarding
correlations between baseline brain modularity and cognitive
gains. The anatomical scan consisted of T1-weighted MPRAGE
images acquired with the following parameters: GRAPPA
acceleration factor 2, voxel size = 0.9 × 0.9 × 0.9mm,
TR = 1,900ms, TI = 900ms, TE = 2.32ms, flip angle = 9◦,
FoV = 230mm. To analyze network properties during a task-
free “resting state,” a 6-min functional scan was obtained using
a T2∗-weighted echoplanar imaging (EPI) pulse sequence with
the following parameters: GRAPPA acceleration factor 2, 180
volumes, in-plane resolution = 3.4 mm2, TR = 2,000ms,
TE = 25ms, flip angle = 80◦, 35 4mm ascending slices, no
slice gap. Participants were instructed to lie still with their eyes
closed.

Brain extraction from anatomical scans was performed with
Advanced Normalization Tools (ANTs; Avants et al., 2010,
2011) using the Kirby/MMRR template (Landman et al., 2011).
When this skull-stripping procedure failed, brain extraction
was instead performed using the IXI template (Heckemann
et al., 2003; Ericsson et al., 2008). The skull-stripped anatomical
images and raw functional images were preprocessed through
the Configurable Pipeline for Connectomes (CPAC; Giavasis
et al., 2015). Anatomical images were registered to the MNI152
template (Fonov et al., 2009) using ANTs and segmented
into gray matter (probability threshold = 0.7), white matter
(probability threshold = 0.98) and cerebrospinal fluid (CSF;
probability threshold = 0.98) using FSL/FAST (Zhang et al.,
2001). Functional images were slice-time corrected, motion-
corrected (Friston et al., 1996) and co-registered to the
anatomical images. Nuisance signal removal was performed by
regressing out the aforementioned motion parameters, signals
from the first five components from white matter and CSF voxels
(Compcor; Behzadi et al., 2007; Muschelli et al., 2014), and linear

and quadratic trends. Signals were bandpass filtered at 0.009–
0.08Hz. Participants whose resting state scan contained (1) more
than 10% of volumes with framewise displacement (FD) greater
than 0.5mm (N = 23) or (2) maximum absolute displacement
greater than 4.0mm were excluded from subsequent analyses
(additional N = 12). One participant was excluded because
structural abnormalities caused anatomical-to-MNI registration
to fail (spatial warping) during preprocessing, such that we could
not reliably extract ROIs.

Functional Connectivity and Modularity
Analyses
Functional scans were warped to the MNI template and
parcellated into 264 regions of interest (Power et al., 2011). Due to
uneven partial coverage of the cerebellum across subjects in the
functional data, we excluded the four cerebellum module ROIs
prior to analysis. Eight additional ROIs were excluded due to
lack of functional coverage in at least one participant, leaving
a total of 252 ROIs. For each individual, time series from all
voxels within each ROI were averaged together. Average ROI
time series were correlated between each pair of ROIs (Pearson’s
coefficient), and the resulting ROI-to-ROI correlation matrices
were Fisher z-transformed. Matrices were binarized over a range
of connection density thresholds (costs): 2–10% of all possible
connections, in 2% increments, following (Power et al., 2011;
Power and Petersen, 2013). These thresholded matrices were
used to create unweighted, undirected whole-brain graphs for
each participant, from which network metrics were derived using
the BrainX (https://github.com/nipy/brainx) and NetworkX
Python package (Hagberg et al., 2008). Network modularity was
quantified separately for each connection threshold to examine
the consistency of results across thresholds. We use the middle
6% threshold for all our primary analyses, but verified effects at
the other thresholds (Supplementary Material).

For our primary analysis, we quantified modularity, a network
measure that compares the number of connections within
modules to the number of connections across modules (Newman

and Girvan, 2004). Modularity is defined as
m∑

i = 1
(eii − a2i ), where

eii is the fraction of connections that connect two nodes within
module i, ai is the fraction of connections connecting a node
in module i to any other node, and m is the total number of
modules in the network (Newman and Girvan, 2004). There
are multiple methods for identifying network modules. Here,
we used a spectral algorithm (Newman, 2006a) to identify the
partition that maximizes modularity for each participant at each
threshold.

Further, to confirm that our effects were not driven by a
specific partitioning algorithm, we also computed modularity
using partitions identified in Power et al. (2011) using the
Infomap algorithm (Rosvall and Bergstrom, 2008; Fortunato,
2010). Here, every node was assigned to one of thirteen modules
(as identified in Power et al., 2011): default mode (DMN), fronto-
parietal (FP), cingulo-opercular (CO), salience (Sal), dorsal
attention (DAN), ventral attention (VAN), auditory (Aud), visual
(Vis), memory (Mem), sensory/somatomotor hand (SM-hand),
sensory/somatomotor mouth (SM-mouth), subcortical (Subcort)
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and a module containing unassigned nodes. The modularity
values derived from the Power partition were highly correlated
with the modularity values obtained using the spectral clustering
partition (all r > 0.761, all p > 0.001, two-tailed for all five cost
thresholds).

Potential Confounds
Before examining the relationship between brain modularity and
intervention-related gains, we examined relationships between
potential confounding variables and ourmeasures of interest (i.e.,
baseline modularity and intervention-related gains), including
age, in-scanner motion (i.e., frame-wise displacement or FD;
Power et al., 2012; Satterthwaite et al., 2012; Siegel et al.,
2016), and baseline cognitive performance. All the analyses
include only subjects with usable baseline MRI scans, baseline
EF scores, and EF gain scores (N = 128). If a significant
relationship between potential confounding variables and our
dependent measures was found, we then used these variables
as covariates in our primary analyses examining correlations
between modularity and intervention-related gains. For all
analyses, we also controlled for age and in-scanner motion (i.e.,
FD). For all correlation analyses, we computed bias-corrected
and accelerated (BCa) confidence intervals (CI) using 5,000
bootstrapped samples.

There is considerable variability in brain volume in older
adults (Salat et al., 2004; Raz et al., 2005; Raz and Rodrigue,
2006). Thus, for participants with structural volume data, we
also tested whether the pattern of brain-behavior relationships
from the network analyses could have been confounded by gross
individual differences in brain structure. We extracted measures
of brain volume using Freesurfer v5.3 (Dale et al., 1999); http://
surfer.nmr.mgh.harvard.edu), which performs segmentation of
cortical and subcortical matter using automated and probabilistic
algorithms (Fischl et al., 2002, 2004a,b; Desikan et al., 2006). AZB
inspected the segmentation output and performed appropriate
corrections. Using the anatomical scans obtained at baseline, we
obtained measures of total intracranial volume, white matter,
and total gray matter volume, described in more detail on the
Freesurfer website (https://surfer.nmr.mgh.harvard.edu/fswiki/
MorphometryStats). We included estimated intracranial volume
as a covariate in volumetric analyses to control for differences
in overall brain volume (Jack et al., 1989; Buckner et al., 2004).
Since not all participants had high-quality structural scans for
volumetric analysis (N = 15), we conducted this analysis as a
follow-up to the primary analyses of modularity vs. intervention-
related gains.

RESULTS

Exercise-Related Changes in
Cardiorespiratory Fitness (CRF)
We first verified that the groups demonstrated the expected
patterns of fitness improvements. At baseline, the groups did not
differ in CRF F(3, 182) = 0.199, p = 0.897, η2p = 0.003. A mixed
ANOVA with VO2peak scores over time (pre- and post-testing)
as a within-subjects factor and group as a between-subjects factor
revealed a main effect of time F(1, 182) = 21.737, p < 0.001,

FIGURE 1 | Notched box plots show the distribution of CRF values before and

after the intervention. The horizontal line marks the median. The notches

extend to ±1.58 IQR/sqrt(n). The upper and lower hinges correspond to the

first and third quartiles. The whiskers extend from the hinge to ±1.5*IQR of the

hinge. IQR, inter-quartile range.

η
2
p = 0.107, and an interaction of group and time F(3, 182) = 2.792,

p = 0.042, η
2
p = 0.044. Follow-up analyses showed that the

Walk and Walk+ groups showed greater improvements in CRF
compared to the SSS and Dance groups (Figure 1). Separate
comparisons of pre- and post-test scores within each group
showed significant gains in the Walk and Walk+ groups (both
p = 0.001, both d ≥ 0.539) and marginal gains in the SSS group
(p = 0.059, d = 0.225). There were no significant gains in the
Dance group (p= 0.345, d = 0.062).

Exercise-Related Changes in Cognitive
Function
To determine the effects of the exercise intervention on cognitive
function and to minimize measurement error and multiple
comparison issues in analyzing each test separately, we analyzed
cognitive effects at the construct level using composite scores.
The creation of composite scores was guided by previous
literature (Kane et al., 2005; Salthouse, 2005), correlations
(Supplementary Table 1), and a PCA on the baseline test scores
(Table 2), which confirmed the grouping of the cognitive tests
into categories of vocabulary, episodicmemory, perceptual speed,
and executive function.

At baseline, the groups did not differ in EF, F(3, 187) = 1.191,
p = 0.315, η

2
p = 0.019, perceptual speed F(3, 185) = 0.525,

p = 0.665, η
2
p = 0.008, episodic memory, F(3, 187) = 0.098,

p = 0.961, η
2
p = 0.002, and vocabulary, F(3, 184) = 0.619,

p = 0.604, η
2
p = 0.010. With the exception of a correlation

between vocabulary gain and perceptual speed gain
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FIGURE 2 | Notched box plots show the distribution of composite gain scores before and after the intervention. The horizontal line marks the median. The notches

extend to ±1.58 IQR/sqrt(n). The upper and lower hinges correspond to the first and third quartiles. The whiskers extend from the hinge to ±1.5*IQR of the hinge.

IQR, inter-quartile range.

[r(186) = 0.152, 95% CI [−0.002, 0.304], p = 0.039, two-tailed],
and between vocabulary gain and EF gain [r(188) = 0.147, 95%
CI [0.011, 0.275], p = 0.043, two-tailed], the composite scores
of cognitive change scores (i.e., gains) were not significantly
correlated with each other (all others p > 0.05, two-tailed).
Therefore, we conducted separate ANOVAs on the composite
gain scores to examine the differential effects of the intervention
on cognitive function (Huberty and Morris, 1989).

An ANOVA on the EF gain score with intervention group
as a between-subjects factor yielded a significant group effect
F(3,187) = 3.899, p = 0.010, η

2
p = 0.059. The Walk, Walk+ and

SSS groups showed greater EF gains compared to the Dance
group (all p < 0.05 for each group vs. Dance, Dance vs. Walk+
is p < 0.10 with Bonferroni correction; Figure 2). Tests for
significance of gain scores (i.e., test against a comparison value
of zero) separately in each group showed significant EF gains
in the Walk, Walk+ and SSS groups (all p < 0.001), but not in
the Dance group (p = 0.703). Since baseline EF was moderately
correlated with EF gain, r(189) = −0.140, 95% CI [−0.255,
−0.026] p = 0.053, two-tailed, we verified that the group effect
in EF gain remained significant after controlling for baseline
EF, F(3, 186) = 3.498, p = 0.017, η

2
p = 0.053. No group effects

were observed for gains in perceptual speed, F(3, 185) = 0.129,
p = 0.943, η

2
p = 0.002, episodic memory, F(3, 187) = 0.086,

p = 0.968, η
2
p = 0.001, and vocabulary, F(3, 184) = 1.376,

p= 0.251, η2p = 0.022 (Figure 2).

Relationship between Fitness and
Cognitive Effects
Given that the groups that improved in EF were also those that
showed larger CRF gains (i.e., Walk, Walk+, SSS groups), we
tested whether the degree of CRF improvement was related to
EF improvement. Across the whole sample with CRF data and
behavioral data, there was no significant relationship between

CRF gain and EF gain, r(184) = 0.104, 95% CI [−0.045, 0.251],
p = 0.157, two-tailed, even when excluding the Dance group
which did not show CRF and EF gains, r(138) = 0.080, 95% CI
[−0.045, 0.251], p= 0.352, two-tailed. The correlations were also
not significant within each group (all |r| <0.25, all p > 0.05,
two-tailed).

Examination of Potential Confounds
Across the whole sample with qualityMRI data, we first examined
relationships between group assignment (i.e., to confirm that
groups did not differ in baseline characteristics), potential
confounding variables (i.e., age, years of education, mean FD)
and our measures of interest (i.e., baseline modularity and EF
gain). In the case of a non-significant relationship between
variables when analyzing the whole MRI sample, we also verified
that the relationship was not significant when analyzing each
group separately, as the primary analyses of baseline modularity
and EF gain were conducted within group.

Age did not differ across groups (Table 1), but was
significantly correlated with baseline modularity, r(126) = 0.239,
95% CI [0.102, 0.370], p = 0.007, two-tailed, and was not
correlated with EF gain, r(126) =−0.008, 95% CI [−0.211, 0.197],
p = 0.932, two-tailed. We verified that there was no significant
relationship between age and EF gain within each group (all |r|
<0.314, all p > 0.097, two-tailed).

Years of education did not significantly differ across groups
(Table 1), even after accounting for age F(3,123) = 2.117,
p= 0.101, η2p = 0.049. Education was not significantly correlated
with baseline modularity, r(126) = −0.031, 95% CI [−0.183,
0.124], p = 0.730, or EF gain, r(126) = −0.041, 95% CI [−0.216,
0.137], p = 0.649, even after accounting for age, and when
examining within each group separately (all |r| < 0.295, all
p > 0.101, two-tailed).

Mean FD did not differ across groups, F(3, 124) = 0.938,
p = 0.425, η

2
p = 0.022, even after controlling for age,
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F(3, 123) = 0.935, p = 0.426, η
2
p = 0.022. Mean FD was

not correlated with baseline modularity, r(126) = −0.087, 95%
CI [−0.272, 0.092], p = 0.328, two-tailed or with EF gain,
r(126) = 0.039, 95% CI [−0.138, 0.197], p = 0.666, two-tailed,
even after controlling for age (all |r| <0.122, all p > 0.173, two-
tailed). When inspecting these relationships within each group
however, we found a trending relationship betweenmean FD and
modularity in the Walk group, r(27) = −0.359, 95% CI [−0.666,
0.005], p= 0.056, two-tailed.

Baseline modularity differed across groups, F(3, 124) = 4.628,
p = 0.004, η

2
p = 0.101, even after accounting for age,

F(3, 123) = 4.495, p = 0.005, η2p = 0.099, with the Walk+ group
showing significantly lower baseline modularity compared to the
SSS (p= 0.005) and Dance (p= 0.011) groups, but not compared
to the Walk group (p= 0.116).

Lastly, given previously documented relationships between
modularity and cognitive function (Kitzbichler et al., 2011;
Stevens et al., 2012; Stanley et al., 2014; Sadaghiani et al.,
2015), we examined whether baseline modularity was related
to baseline EF. Across the whole MRI sample, there was no
significant relationship between baseline modularity and baseline
EF, r(126) = 0.023, 95% CI [−0.167, 0.207], p = 0.798, two-tailed,
even after accounting for age and/or mean FD and examining
each group separately (all |r| < 0.319, all p > 0.098, two-tailed).
Thus, potential relationships between modularity and EF gains
cannot be attributed to correlations between modularity and EF
performance at baseline.

The above results were similar when using modularity values
derived from other thresholds and when using modularity values
derived from the Power partition (see Supplementary Material).
Thus, given these findings that age and mean FD showed some
relationship with modularity, and given that baseline EF was
moderately related to EF gain, we used age, mean FD and baseline
EF as covariates in the primary analyses of modularity and
exercise-related gains.

Relationship between Baseline Modularity
and Exercise-Related Gains
We next examined the relationship between baseline modularity
and intervention-related effects on EF, having confirmed EF
and CRF improvements in the Walk, Walk+ and SSS groups
(Figure 3). For each group, we first performed linear regression
analyses with EF gain as the dependent variable, age, mean
FD and baseline EF as covariates, and independent variables
of baseline EF, baseline modularity, and an interaction term of
baseline EF and baseline modularity. Importantly, the interaction
term was included to test whether the relationship between
baseline modularity and EF gain was moderated by baseline EF
(i.e., whether the modularity-gain relationship was stronger in
high or low performing individuals at baseline).

The model (Table 3) with all three terms and covariates was
significant in the Walk [R2 = 0.450, Adjusted R2 = 0.330,
F(5, 23) = 3.756, p = 0.012] and Walk+ groups [R2 = 0.375,
Adjusted R2 = 0.239, F(5, 23) = 2.762, p= 0.043].

In the Walk group, age, mean FD, modularity, and the
interaction term of modularity and baseline EF were significant

predictors of EF gain (Table 3). Critically, modularity positively
predicted EF gain, while the interaction showed that individuals
with lower baseline EF showed a stronger relationship between
modularity and EF gain.

In the Walk+ group, age and the interaction term of
modularity and baseline EFwere significant predictors of EF gain,
with baseline EF as a marginal predictor (Table 3). Similar to
the Walk group, individuals with lower baseline EF showed a
stronger relationship between modularity and EF gain.

In the SSS group, the full model was not significant [Table 3;
R2 = 0.094, Adjusted R2 = −0.048, F(5, 32) = 0.661, p = 0.656].
Modularity was not a significant predictor, although it explained
the most variance and was related to EF gain in a similar positive
direction. Given that there were no significant predictors in the
full model, we performed a reduced model with only baseline
modularity. This model was marginally significant [R2 = 0.083,
Adjusted R2 = 0.057, F(1, 36) = 3.246, p= 0.080], withmodularity
marginally related to EF gain (B= 1.218, p= 0.080, BCa 95% CI
[−0.439, 2.276]).

As expected, in the Dance group, the full model [Table 3;
R2 = 0.217, Adjusted R2 = 0.066, F(5, 26) = 1.437, p = 0.244],
and a reduced model with only baseline modularity [R2 = 0.002,
Adjusted R2 = −0.032, F(1, 30) = 0.045, p = 0.833] were not
significant, with no factor emerging as a significant predictor.

In summary, we find that baseline modularity was related
to EF gains in groups that showed training-related gains. For
illustrative purposes, Figure 3 shows the relationship between
baseline modularity and EF gain with and without controlling for
age, mean FD and baseline EF.

Controlling for Individual Differences in
Brain Volume
Age-related differences in white and gray matter volume loss
may influence brain function (Persson et al., 2006; Chadick
et al., 2014; Pudas et al., 2017), functional connectivity patterns
(Meunier et al., 2014), and in turn, the pattern of brain-behavioral
results we find here. On the sample of participants with high-
quality anatomical data, we ran partial correlation analyses
of baseline modularity and EF gain within each of the four
groups (one-tailed tests to confirm initial results), controlling
for estimated intra-cranial volume, gray matter volume, and
white matter volume in addition to age, mean FD and baseline
EF. Critically, the pattern of relationships remained the same,
Walk: rp(16) = 0.369, 95% CI [−0.339, 0.884], p = 0.066;
Walk+: rp(20) = 0.098, 95% CI [−0.519, 0.628], p = 0.331;
SSS: rp(25) = 0.408, 95% CI [−0.024, 0.709], p = 0.017, Dance:
rp(20) = −0.017, 95% CI [−0.496, 0.635], p = 0.469, suggesting
that individual differences in brain volume did not contribute to
the relationship between baseline modularity and EF gain.

Exploratory Analyses: Sub-network
Contribution to Relationship between
Baseline Modularity and Training-Related
Gains
Brain modules show distinct age-related connectivity changes
(Chan et al., 2014), and modularity in the association systems
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FIGURE 3 | Scatterplots show the relationship between baseline modularity (6% threshold) and executive function gain in each group, without controlling for any other

factors (top) and after controlling for age, mean FD and baseline EF (bottom). Shaded areas represent 95% confidence region of the regression line.

TABLE 3 | Multiple linear regression models.

Walk Walk+ Dance SSS

B 95% CI p B 95% CI p B 95% CI p B 95% CI p

Intercept 0.156

[0.090, 0.221]

<0.001*** 0.173

[0.067, 0.263]

0.001** 0.030

[−0.069, 0.143]

0.594 0.190

[0.103, 0.286]

<0.001***

Age −0.021

[−0.032, −0.003]

0.022* −0.041

[−0.073, −0.004]

0.022* −0.009

[−0.051, 0.033]

0.582 0.004

[−0.022, 0.023]

0.710

Mean FD 1.036

[−0.248, 2.226]

0.037* −0.560

[−1.686, 0.488]

0.277 0.778

[−0.403, 2.242]

0.196 0.166

[−1.015, 1.352]

0.747

Baseline EF −0.011

[−0.124, 0.082]

0.812 −0.190

[−0.434, −0.025]

0.067∼ −0.155

[−0.289, 0.101]

0.113 0.007

[−0.113, 0.146]

0.929

Modularity 1.823

[0.343, 3.309]

0.006** 0.445

[−1.127, 1.909]

0.553 −0.064

[−2.496, 1.454]

0.951 1.182

[−0.518, 2.624]

0.114

Baseline EF × Modularity −2.365

[−4.038, 0.197]

0.005** −5.007

[−8.738, −1.301]

0.003** 1.406

[−1.730, 5.369]

0.267 −0.261

[−2.612, 1.584]

0.802

***p < 0.001, **p < 0.01, *p < 0.05, ∼p < 0.10.

(DMN, FP, CO, Sal, DAN, VAN) has been found to drive the
correlation between global modularity and training-related gains
(Gallen et al., 2016). Given this, we examined whether specific
networks contribute to the modularity vs. gain relationship.
Similar to previous findings, sensory-motor modularity was
higher than association cortex modularity both when analyzing
the whole sample, t(127) = 24.954, p < 0.001, and each group

separately (all p < 0.001). We then examined the contribution
of each sub-network to the modularity vs. EF gain relationship.
For these analyses, we performed partial correlation analyses
with age, mean FD and baseline EF as covariates. To reduce
the number of analyses, we combined the three groups (Walk,
Walk+ and SSS) given the similarity in their intervention-related
effects.
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Across the three groups, EF gain was marginally correlated
with baseline association sub-network modularity r(91) = 0.159,
95% CI [−0.053, 0.346], p = 0.064, one-tailed, but not sensory-
motor cortex modularity r(91) = 0.003, 95% CI [−0.188, 0.209],
p = 0.488, one-tailed. Given the trending relationship between
EF gain and association modularity and previous findings
(Gallen et al., 2016), we examined the relationship between
EF gain and each association sub-network. After Bonferroni
correction however, none of the six modules showed a significant
relationship with EF Gain (Supplementary Material).

We also quantified module segregation (Chan et al., 2014),
defined as (Zw-Zb)/Zw, where Zw is the average Fisher-
transformed correlation between nodes in the same module
(within-module connectivity) and Zb is the average Fisher-
transformed correlation between nodes in a module to nodes in
any other module (between-module connectivity). Importantly,
this metric retains the weights of all connections (lower than 2–
10% of connections). Given previous findings, we focused our
analyses on the association cortex modules. When controlling
for age, mean FD, and baseline EF, whole-brain segregation and
association module segregation were not significantly related to
EF gain, although the results were in the same direction as the
modularity results (Supplementary Material).

DISCUSSION

We examined whether baseline brain network modularity
predicts cognitive improvements in older adults after an exercise
intervention. We found that in the groups that showed gains in
fitness and cognitive function (Walk, Walk+, and SSS), higher
baseline brain modularity predicted greater gains in executive
function, even after accounting for individual differences in
baseline performance, age, in-scanner motion, and individual
differences in brain volume. These results parallel findings in
TBI patients (Arnemann et al., 2015), older adults (Gallen et al.,
2016), and young adults who underwent cognitive training
(Baniqued et al., 2015). Given that we find a similar relationship
between modularity and cognitive gains after an exercise
intervention in older adults suggests that the predictive power
of brain modularity may be generalizable across populations and
interventions aimed to enhance executive function. Moreover,
these findings point to the potential of global network properties
to capture individual differences in neuroplasticity.

Modularity and Exercise-Related Gains in
Executive Function
Our findings demonstrating a relationship between baseline
brain network modularity and EF improvements with exercise
training add to a series of studies that find a similar relationship
with cognitive gains from cognitive training interventions
(Arnemann et al., 2015; Baniqued et al., 2015; Gallen et al.,
2016). Importantly, the current study shows that the pattern
of results holds after controlling for factors such as baseline
cognitive performance, age, and individual differences in brain
volume—the latter of which can present a confound, especially
when analyzing measures of brain function in older adults, who

show considerable variability in age-related atrophy and lesions
(Hedden et al., 2012; Grady, 2013). In the current study, the
modularity-gain correlations were found in two (Walk, SSS) out
of the three groups that showed some improvement in CRF
and EF. In the Walk and Walk+ groups, the modularity-gain
relationship was moderated by baseline EF, which together with
previous findings in older adults (Arnemann et al., 2015; Gallen
et al., 2016) underscores the utility of the network modularity
measure in lower-performing individuals. These results suggest
that the two measures of baseline performance and modularity
together may be a better predictor of training-related gains than
either alone.

The relevance of the modularity metric in neuroplasticity,
specifically, in predicting response to an intervention, can
be linked back to computational models showing that
modular networks more rapidly reconfigure in response to
new environments (Kashtan and Alon, 2005; Clune et al.,
2013; Tosh and McNally, 2015), such that reorganization is
more efficiently achieved by slight modifications within and
between relatively specialized modules than by a large-scale
overhaul of a highly interdependent network. Moreover,
individuals with disrupted modular brain organization (Fornito
et al., 2015), such as those with focal lesions to brain regions
important for between-module connectivity (Nomura et al.,
2010; Gratton et al., 2012; Warren et al., 2014) show widespread
cognitive dysfunction and thus underscore the role of a modular
structure in enabling brain processes that support a wide
range of behaviors. In a recent study, individuals who scored
higher on general intelligence tests tended to show smaller
functional connectivity changes between a “resting state” and
task performance states (Schultz and Cole, 2016), suggesting that
they adapt more efficiently to task demands. In this sense, the
architecture of brain networks at rest guides the connectivity
patterns that emerge during the performance of various tasks.
Indeed, modularity measured during “resting states” has been
found to predict working memory performance (Stevens et al.,
2012), and stimulus detection in a perceptual task (Sadaghiani
et al., 2015). Taken together, these findings suggest that an
“optimally” organized network requires less reorganization
to be receptive to new input encountered during learning or
training, or to capitalize from intervention-related changes
in brain function. In the context of the current study, a more
modular brain network may potentiate the rehabilitative and
protective effects of physical exercise on the aging brain. In fitness
interventions, for example, exercise-associated up-regulation in
neurotrophic factors has been related to greater exercise-related
changes in brain connectivity (Voss et al., 2013a). Given previous
findings and the results of the current study, an optimal network
for intervention-related cognitive gains is modularly organized
at rest, with a balance of within-module connections that support
local processing and across-module connections that support
global processing (Meunier et al., 2009, 2010). Indeed, recent
studies have shown that increased brain modularity post-therapy
correlated with greater speech improvement in aphasic patients
(Duncan and Small, 2016), and that greater structural modularity
prior to carotid artery intervention predicted reduced risk of
cognitive decline after carotid intervention (Soman et al., 2016).
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Additionally, connectivity measures obtained during preclinical
stages, when combined with biomarkers such as amyloid-beta,
have been shown to predict later cognitive decline (Buckley
et al., 2017), suggesting that these metrics have the potential to
provide actionable information when clinical symptoms have yet
to manifest.

We found that modularity predicted training gains, beyond
the baseline behavioral EF measure. This is a promising finding
given that behavioral or cognitive measures may be confounded
in certain populations (Gabrieli et al., 2015), such as in older
adults, where factors such as mobility or visual acuity interact
with task performance. While typical behavioral measures
may not reliably distinguish between individual differences in
cognitive ability, brain network measures provide a way to
gauge training responsiveness. Although this study involved a
fairly large sample, functional connectivity was assessed during
a relatively short resting-state scan. More reliable measures and
more information regarding network structure, particularly in
higher performing individuals, may be gleaned from a longer
scan period (Birn et al., 2013; Laumann et al., 2015; Gordon et al.,
2017). Nonetheless, the pattern of higher baseline modularity
predicting intervention-related cognitive gains is now consistent
across four studies (Arnemann et al., 2015; Baniqued et al.,
2015; Gallen et al., 2016). Using brain network measures in
combination with behavioral, demographic, lifestyle, and other
brain measures could also help customize intervention protocols
to maximize effectiveness, especially in the context of dose-
response relationships, for example by increasing the intensity,
frequency, or duration of exercises, or including pre-intervention
lifestyle or behavioral protocols geared to promote or maintain
optimal levels of brain modularity. Nonetheless, future work may
identify behavioral measures that are sensitive to the information
captured by network measures; the relationship between baseline
modularity and future behavior (i.e., training gains) suggests that
modularity may be reflected in baseline behavior to some extent,
a brain characteristic that the current study’s behavioral measures
are not designed to capture. In addition, more work is needed
to examine the mechanisms in which a modular architecture
interacts with changes in neural and vascular function to enable
benefits from cognitive and fitness interventions, and whether
such interventions lead to changes in brain modularity. In the
current study, we found a marginal correlation between EF gain
and baseline association cortex modularity, which suggests that
association sub-networks drive the relationship between baseline
modularity and EF gain, similar to our previous study (Gallen
et al., 2016). Relatedly, association sub-networks have also been
shown to increase in functional connectivity after a physical
exercise intervention (Voss et al., 2010b), concomitant with
improvements in EF.

In our dataset, we found a positive correlation between age
and baseline modularity, unlike previous studies that found
lower modularity in older adults compared to young adults
(Meunier et al., 2009; Betzel et al., 2014; Song et al., 2014;
Geerligs et al., 2015). Importantly, our study only included older
adults, whereas reductions in modularity are typically found
when comparing older and young populations. In addition,
some studies show no correlation between modularity and age

within older adults (Geerligs et al., 2015; Gallen et al., 2016), no
difference in modularity per se when comparing young and old
adults (Meunier et al., 2009) and observations that modularity
variability was higher in older adults (Song et al., 2014).
Moreover, our older adult sample may not be representative of
the general population, as participants were relatively healthy and
free of major health incidents despite being generally inactive or
sedentary prior to participating in the study. Notably however,
the relationship between baseline modularity and training gain
in the current study remained even after accounting for age.

Neurovascular coupling is an important issue to consider
when conducting fMRI studies in older adults, where age-related
vascular changes may lead to age-related BOLD differences
in the absence of “true” neural differences (D’Esposito et al.,
2003; Samanez-Larkin and D’Esposito, 2008). The current study
however, does not compare heterogeneous groups (e.g., young
vs. old, low-fit vs. high-fit)—all participants were low-fit but
relatively healthy older adults, and all analyses controlled
for age. Moreover, across the whole sample, baseline VO2

and baseline modularity were not significantly correlated (all
|r| <0.067, all p > 0.457, two-tailed), even after controlling
for mean FD. In addition, controlling for baseline VO2 in
the modularity vs. training gain analyses does not change the
results. Future studies can include taking into account indicators
of cerebrovascular health such as cerebral blood flow (Brown
et al., 2010; Zimmerman et al., 2014) to determine whether
and/or to what extent it relates to connectivity measures.
In the current study, we controlled for measures such as
age, medication, and structural brain measures to examine
the potential effects of confounds common to studying an
older population. Nonetheless, methodological considerations
such as the use of population-specific brain templates may
help increase the reliability of brain measures (Buckner et al.,
2004).

Fitness and Cognitive Gains after Exercise
Intervention
The cognitive improvements in the current study are similar to
previous studies that find the largest gains in executive function
after aerobic exercise training (Colcombe and Kramer, 2003;
Guiney and Machado, 2013; Voss et al., 2013c; Kelly et al.,
2014). Here, we used a composite score to analyze training effects
instead of assessing group by time interactions in each cognitive
task, which can be problematic given the multitude of tasks
which requires multiple statistical comparisons. Nonetheless, it
is possible that the cognitive effects of the current intervention
are driven by specific tasks. For example, the task-switching
and spatial working memory tasks in the current study are
similar to previous tasks that are sensitive to fitness-related
improvements (Hawkins et al., 1992; Kramer et al., 2001;
Colcombe and Kramer, 2003; Erickson et al., 2011). On the other
hand, improvements in reasoning tasks have been less studied
in fitness interventions, although aerobic-related gains in visuo-
spatial processes have been documented in younger populations
(Stroth et al., 2009; Monti et al., 2012), and improvement
in reasoning skills have been found after cognitive training
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interventions in older adults (Ball et al., 2002; Willis et al., 2006;
Lustig et al., 2009). Moreover, compared to previous studies
(Colcombe and Kramer, 2003; Voss et al., 2010b; Erickson
et al., 2011), the current intervention lasted only 6 months,
and it is likely that larger cognitive effects would result from a
longer intervention (Colcombe and Kramer, 2003; Kelly et al.,
2014). In addition, aerobic exercise has been shown to improve
hippocampal function in animal and human studies (Berchtold
et al., 2010; Voss et al., 2013c), increase hippocampal volume in
humans (Erickson et al., 2011) and to relate to hippocampal-
dependent functions such as spatial memory (Erickson et al.,
2011) and relational memory (Chaddock et al., 2010). Given
these previous findings, we would have expected exercise-
related effects not only in the spatial working memory task,
but also in the episodic memory tasks. The null findings of
the current study may in part reflect a lack of sensitivity in
these relatively brief memory tasks in measuring intervention-
related change, but may also stem from comparable effects across
the four groups, with similar improvements from the different
interventions.

In the current study, the SSS group performed exercises
that involved some form of resistance training, which has also
shown to be beneficial for executive functioning in older adults
when performed at a higher intensity (Liu-Ambrose et al., 2010,
2012). Although the strength portion of the SSS exercises in the
current study is not comparable to the intensive strength training
regimens of other studies, the similarity in exercise style may
present an issue for analyzing the effects of interventions such
as these, since strength training exercise and aerobic-walking
exercise may benefit cognitive function in both differential and
overlapping ways. Thus, “null effects” in terms of a lack of
differential improvement (i.e., group by time interaction) in
other cognitive domains may instead partly reflect comparable
gains from the different types of interventions (in addition
to gains attributable to test-retest effects) and contamination
effects from self-initiated exercise (Ehlers et al., 2016). The
Dance group, despite the cognitive demands thought to be
involved in the learning and execution of dance steps, showed
the smallest effects post-intervention; the group as a whole did
not improve in CRF and showed the smallest changes in cognitive
function. These findings may in part stem from the heterogeneity
and lack of intensity in the Dance sessions, which varied in
form (i.e., type of dance) across sessions, and may have thus
failed to consistently and intensively train specific physical and
cognitive skills. Indeed, Dance participants perceived their in-
class sessions as less intensive (Ehlers et al., 2016). Nonetheless,
the Dance intervention in the current study has been shown to
improve white matter microstructure in the fornix, with baseline
fornix fractional anisotropy correlating with baseline processing
speed (Burzynska et al., 2017). This paper focuses on EF and
connectivity in gray matter, and it is likely that different brain
measures reflect distinct aspects of cognitive function. Moreover,
the sixth month duration before pre- and post-testing may not
adequately reflect longer-term neural and behavioral effects of
each intervention.

EF improvements were not directly related to CRF
improvements. Combining the test scores into a composite
score may have diluted any relationship between CRF gain
and gains in a specific test, but no robust correlations were
found when examining the relationship between CRF gain
and gain on each test measure. In addition, it is possible that
intervention-related gains in CRF per se does not lead to
cognitive improvements, and that indirect effects of exercise
on stress, sleep and overall health lead to positive cognitive
outcomes (King et al., 1997; Etnier et al., 2006; Cotman et al.,
2007; Bherer et al., 2013; Awick et al., 2015). Furthermore, CRF
as measured using VO2peak in the current study, indexes an
array of bodily functions (Dustman et al., 1984; Etnier et al., 2006;
Jain et al., 2010) and may not adequately capture cerebrovascular
changes.
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