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Professor Peipei Ping, Chair 

 

 

The cardiac mitochondrial proteome contains ~1,500 distinct proteins that carry out necessary 

metabolic and energetic processes in the heart. To sustain cardiac function, the mitochondrial 

proteome must be maintained in constant renewal, or turnover, especially under stress condi-

tions. Disruptions of protein turnover can lead to protein damage and proteotoxicity, a hallmark 

of many heart disease etiologies. Current quantitative proteomics experiments largely focus on 

the measurement of the steady-state abundance, or changes therein, of proteins that are 

present in a system, and give little insights into the underlying regulations of protein synthesis, 

degradation, and homeostasis. Protein turnover rates provide this missing temporal dimension 

of information, and can inform on the potential mechanism through which protein abundance 

may permute during the development of disease (e.g., via increased synthesis or decreased 

degradation). Currently, such investigations are hampered by the fact that the technology to 

measure protein turnover in animals on a large scale has not been well developed. This disser-

tation outlines a new method to measure protein turnover half-life in the cardiac mitochondrion. 

Basic features of the regulation of protein turnover in the mitochondrion are discussed, and 

how protein dynamics permutes in early-stage heart failure after hypertrophic stimuli is de-

scribed. In total, we measured the turnover rates of 2,986 proteins in the mouse heart under 

basal conditions, isoproterenol stimulus, and post-stimulus recovery, including 1,078 proteins 
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from isolated mitochondria. The data revealed widespread, bidirectional changes in protein 

turnover in 35 functional categories, and further identified a number of novel candidate disease 

proteins with significantly up-regulated turnover rates in disease, including HK1, ALDH1B1, 

and PHB, which have been obscured from previous investigations due to their inconspicuous 

changes in steady-state abundance. Combinatorial analysis of protein expression and protein 

turnover data indicates that the remodeling heart is characterized by decreased turnover but 

increased expression of a cohort of mitochondrial proteins including FXN, LETM1, and CYC1, 

suggesting a potential class of candidate disease proteins whose impaired degradation is 

associated with remodeling. I further discuss the implications of the data to the cardiac remod-

eling process at large and how such investigations may be translated to human studies in the 

future. Taken together, the results suggest that comparisons of protein turnover rates can be a 

powerful new tool to understand the temporal dynamics of disease progression in the heart. 



 iv 

 
The dissertation of Edward Lau is approved 

 
by 

 
James N. Weiss 

 
Enrico Stefani 

 
Robert J. Beynon 

 
Aldons J. Lusis 

 
Peipei Ping, Committee Chair 

 
 
 
 
 
 
 

University of California, Los Angeles 
 

2014 



 v 

TABLE OF CONTENTS 

 
Abstract ................................................................................................................  ii 
Table of contents ..................................................................................................  v 
List of figures ........................................................................................................  vi 
List of tables .........................................................................................................  viii 
Recurring notations and abbreviations .................................................................  ix 
Preface ..................................................................................................................  x 
Biographical sketch ..............................................................................................  xiii 
 
I. Turnover of mitochondrial proteins in the heart 
  
 Methods to measure in vivo mitochondrial protein turnover .......................  1 
 Distributions of turnover rates in heart and liver mitochondria ....................  29 
 Heterogeneity and regulations of protein turnover ......................................  43 
  Materials and methods ................................................................................  55 
 
II. Mitochondrial protein dynamics during cardiac remodeling 
  
 Mitochondrial dysfunctions in cardiac remodeling ......................................  62 
 Protein kinetic signatures of remodeling hearts ...........................................  74 
 Orthogonality of protein expression and dynamics .....................................  96 
 Materials and methods ................................................................................ 104 
 
III. Mechanisms of proteolysis in cardiac mitochondria 
  
 Impaired degradation of mitochondrial proteins in remodeling hearts ........ 113 
 Substrates and activities of intra-mitochondrial proteases ......................... 125 
 Can proteasomes degrade mitochondrial proteins? ................................... 141 
 Materials and methods ................................................................................ 148 
 
IV. Translational potential and future perspectives 
   
 Approaches for further applications and data validation ............................. 155 
 Protein turnover in non-linear enrichment systems ..................................... 163 
 Proteome in the fourth dimension ................................................................ 187 
  Material and methods .................................................................................. 194 
 
Appendix A. Original proposed aims .................................................................... 201 
References ............................................................................................................ 202 
 
 
 



 vi 

LIST OF FIGURES 

 
FIGURE 1.1 Elements of the mitochondrial proteome .......................................  3 
FIGURE 1.2 Protein turnover cycle .....................................................................  6 
FIGURE 1.3 Degeneracy of the protein turnover cycle .......................................  7 
FIGURE 1.4 Principle of stable isotope labeling .................................................  15 
FIGURE 1.5 Appearance of heavy isotopes in mass spectra .............................  18 
FIGURE 1.6  Mechanism of amino acid labeling by 2H2O ....................................  20 
FIGURE 1.7 Peptide isotopomer shift .................................................................  21 
FIGURE 1.8 Peptide isotopomer patterns following labeling .............................  25 
FIGURE 1.9 Fitting of data to kinetic curve ........................................................  26 
FIGURE 1.10 Deduction of turnover rate from peptide isotopomers ...................  27 
FIGURE 1.11 2H2O labeling scheme to measure protein turnover ........................  30 
FIGURE 1.12 Sample processing scheme (heart and liver mitochondria) ............  31 
FIGURE 1.13 Turnover rates of cardiac and hepatic mitochondrial proteins .......  33 
FIGURE 1.14 Tissue-specific differences in turnover rates ..................................  34 
FIGURE 1.15 Experimental and theoretical isotopomer abundances ..................  37 
FIGURE 1.16 Heterogeneity of protein turnover in different tissues ....................  44 
FIGURE 1.17 Correlation between protein turnover and biophysical properties .  46 
FIGURE 1.18 Correlation between protein turnover and sequence features .......  48 
FIGURE 1.19 Correlation between turnover and sub-organelle localization ........  50 
FIGURE 1.20 Turnover rates of intact protein complexes ....................................  53 
 
FIGURE 2.1 Typical mitochondrial derangements in cardiac remodeling ..........  63 
FIGURE 2.2 Mouse model of cardiac remodeling and reverse remodeling .......  69 
FIGURE 2.3 Isoproterenol challenge model of cardiac remodeling ...................  70 
FIGURE 2.4 Metabolic changes during cardiac remodeling ..............................  71 
FIGURE 2.5 Proteostatic changes during cardiac remodeling ...........................  72 
FIGURE 2.6 Strategy to compare turnover rates in health and disease .............  73 
FIGURE 2.7 Sample processing scheme (normal and remodeling hearts) ........  74 
FIGURE 2.8 Peptide kinetic curve fitting quality (r value) ...................................  75 
FIGURE 2.9 Peptide kinetic curve fitting quality (standard error) .......................  76 
FIGURE 2.10 Number of proteins identified and quantified .................................  77 
FIGURE 2.11 Venn diagrams of quantified proteins .............................................  78 
FIGURE 2.12 Range of turnover rates in cardiac cytosol and mitochondria ........  78 
FIGURE 2.13 Turnover dynamics of protein categories .......................................  84 
FIGURE 2.14 Mitochondrial protein turnover in mitochondria vs. cytosol ...........  84 
FIGURE 2.15 Protein dynamics of respiratory subunits .......................................  87 
FIGURE 2.16 Protein dynamics in cardiac metabolic pathways ..........................  88 
FIGURE 2.17 Protein dynamics in reverse remodeling ........................................  93 
FIGURE 2.18 Protein dynamics in reverse remodeling (continued) ......................  94 
FIGURE 2.19 Non-correlation between protein abundance and dynamics .........  100 
FIGURE 2.20 Immunoblot validations of abundance changes .............................  102 
 
FIGURE 3.1 RNA, protein abundance, and protein dynamics ............................  116 
FIGURE 3.2 Hierarchical clustering of RNA, protein, and turnover data ............  120 
FIGURE 3.3 Cluster of mitochondrial proteins with impaired proteolysis ..........  122 
FIGURE 3.4 Mitochondrial proteins with impaired proteolysis (continued) ........  123 
FIGURE 3.5 Mitochondrial proteins with impaired proteolysis (continued) ........  123 
FIGURE 3.6 Overview of mitochondrial protein degradation mechanisms ........  127 
FIGURE 3.7 Enzymatic activities of intra-mitochondrial proteases ....................  129 
FIGURE 3.8 Proteolytic activities under oxidative insult ....................................  130 



 vii 

FIGURE 3.9 2D-DIGE strategy to identify mitochondrial protease targets .........  132 
FIGURE 3.10 In vitro proteolytic maps of mitochondrial proteases .....................  133 
FIGURE 3.11 Isoform preference of mitochondrial proteases ..............................  135 
FIGURE 3.12 2DE patterns of protein phosphorylation and acetylation ..............  138 
FIGURE 3.13 2DE patterns of oxidative post-translational modifications ............  140 
FIGURE 3.14 Charge isoform patterns following in vitro oxidation ......................  141 
FIGURE 3.15 Experimental design to identify 20S degradation targets ...............  143 
FIGURE 3.16 In vitro 20S-mediated degradation of mitochondrial proteins ........  144 
FIGURE 3.17 Substrate preferences of 20S proteasomes and proteases ...........  145 
FIGURE 3.18 Effect of in vivo epoxomicin stimulus on protein turnover ..............  146 
FIGURE 3.19 Epoxomicin-sensitive turnover rates in functional clusters ............  147 

 
FIGURE 4.1 Spectrum of cardiac phenotypes in mice .......................................  156 
FIGURE 4.2 Experimental design of mouse strain study ....................................  158 
FIGURE 4.3 Hypertrophic responses of resistant and susceptible strains ........  158 
FIGURE 4.4 Strain differences in protein turnover rates ....................................  160 
FIGURE 4.5 Complications for 2H2O labeling in human ......................................  165 
FIGURE 4.6 Principles of kinetic model for non-linear label intake. ...................  168 
FIGURE 4.7 Simplified flowchart of ProTurn ......................................................  172 
FIGURE 4.8 The graphical user interface of ProTurn .........................................  172 
FIGURE 4.9  Labeling protocol and sample processing workflow ......................  175 
FIGURE 4.10 Enrichment and turnover kinetics in human ...................................  176 
FIGURE 4.11 Kinetic curve fitting in labeled human plasma samples ..................  177 
FIGURE 4.12 Number of quantified proteins and technical reproducibility ..........  178 
FIGURE 4.13 Range of protein turnover rates in the human subjects .................  179 
FIGURE 4.14 Biological variability of turnover in human ......................................  180 
FIGURE 4.15 Label clearance after labeling course finishes ................................  182 
FIGURE 4.16 Vital signs of human subjects during and after labeling .................  183 
FIGURE 4.17 Correlation between enrichment and data quality ..........................  185 
FIGURE 4.18 Measuring protein turnover from a single time point ......................  190 
FIGURE 4.19 Accuracy of turnover rate measurements from one time point ......  191 
FIGURE 4.20 Hypothetical workflow for human heart sample measurements ....  192



 viii 

 

LIST OF TABLES 

 
TABLE 2.1 Biological processes with altered turnover in remodeling ..............  82 
TABLE 2.2 Example proteins with conspicuous turnover changes ..................  91 
 
TABLE 3.1 Possible scenarios of protein dynamic changes in disease ...........  117 
TABLE 3.2 Endogenous protease complexes in cardiac mitochondria ...........  127 
 
TABLE 4.1 Expected phenotypes of examined mouse strains ........................  157 
TABLE 4.2 Summary and statistics of examined mouse strains ......................  159 
TABLE 4.3 Demographics of human subjects ..................................................  175 
TABLE 4.4 Summary of enrichment of turnover data .......................................  184 
TABLE 4.5 Comparison of human turnover data with literature values ............  187 

 



 ix 

RECURRING NOTATIONS AND ABBREVIATIONS 

 
2DE   Two-dimensional electrophoresis 
A0    Fractional abundance of the 0th isotopomer 
ATP   Adenosine triphosphate 
DIGE   Differential gel electrophoresis 
GC    Gas chromatography 
2H2O   Deuterium oxide (“heavy water”) 
IEF    Isoelectric focusing 
i.p.    Intraperitoneal 
k    Protein turnover rate constant 
kp    Precursor turnover rate constant 
LC    Liquid chromatography 
LVAD   Left-ventricular assist device 
MIDA   Mass isotopomer distribution analysis 
MS    Mass spectrometry 
MS/MS  Tandem mass spectrometry 
PAGE   Polyacrylamide gel electrophoresis 
Ppm   Parts per million 
pss    Precursor steady-state enrichment level 
PTM   Post-translational modifications 
RIA    Relative isotope abundance 
ROS   Reactive oxygen species 
SDS   Sodium dodecyl sulfate 
SILAC   Stable isotope labeling by amino acid in cell culture 
UPS   Ubiquitin-proteasome system 
 



 x 

PREFACE 

 

This dissertation details the progress I made between 2011 and 2014 in collaboration with my 

colleagues in the Ping laboratory at UCLA to examine the turnover and proteolysis of mito-

chondrial proteins in normal and diseased hearts. The majority of the work has been published 

in peer-reviewed journals: Chapter I contains in part an updated version of the work in our 

publications (Chan et al., 2014; Kim et al., 2012; Lam et al., 2014). Chapter II contains in part 

an updated version of our publication (Lam et al., 2014). Chapter III contains in part an updated 

version of our publication (Lau et al., 2012). Chapter IV contains in part an updated version of 

our publications (Lam et al., 2014; Wang et al., 2014). The reader is encouraged to refer to 

these publications for a concise summary of the studies. As the medium of this dissertation 

presents an opportunity for additional material not permissible by the strict word limits of jour-

nals, additional analyses have been included for the purpose of discussion and for providing a 

more coherent narrative of the rationales behind the studies. For the sake of organization, 

methods are summarized at the end of each chapter, and insofar as reasonable discussions on 

the technical aspects of experiments are separated from those on the biological implications of 

the results.  

 

The co-authors of the publications contributed to study design, data collection, and data anal-

ysis to various extents. For the work in our publication (Kim et al., 2012), Tae-Young Kim, Ding 

Wang and Allen Kim in particular contributed to study design, animal models, data generation 

and data analysis. For the work in our publication (Lam et al., 2014), Maggie Lam in particular 

contributed to study design, data collection, data analysis, and software production. David 

Liem in particular contributed to animal models. Allen Kim and Xiangbo Liang in particular 

participated in the mathematical model and software production. For the work published in 

Reference (Lau et al., 2012), Ding Wang in particular contributed to data collection and analy-

sis. For the work published in our publication (Wang et al., 2014), David Liem in particular 
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contributed to clinical study design. Jason Tabaraki in particular contributed to sample collec-

tion. Maggie Lam and Dominic Ng in particular participated in data collection and analysis. In 

all of the aforementioned published studies and in unpublished studies included in this disser-

tation, I played major roles in any or all of study design, planning, data collection, data interpre-

tation, data presentation, manuscript preparation, and revision. I declare that this dissertation 

in its entirety represents my original work except where due acknowledgment is made, and 

that it has not been previously included in a thesis at any institution. As biomedical research is 

an increasingly collaborative endeavor, on the occasions where it has become infeasible to 

clearly separate contributions from close collaborative efforts in the aforementioned published 

projects, particular elements in the published works may be construed as necessary back-

grounds and introduction to the subject instead of experimental results of this dissertation 

work. 

 

Reuse rights for our publication (Lau et al., 2012) was acquired from the publisher (Wolters 

Kluwer Health) through the RightsLink system (http://s100.copyright.com), and was granted 

free of charge without the need for permission letter. Reuse rights for authors in our publication 

(Lam et al., 2014) is governed under Fair Use as listed on the journal website 

(http://www.jci.org). Reuse rights for our publication (Kim et al., 2012) was automatically grant-

ed to the authors, as has been specified on the journal’s website 

(http://www.mcponline.org/site/misc/Copyright_Permission.xhtml). Reuse rights for our publi-

cation (Chan et al., 2014) was automatically granted to the author under the definition of per-

mitted scholarly use by Elsevier. Reuse rights for our publication (Wang et al., 2014) for 

dissertation purpose was acquired from Wiley (license number 3495440114326). Other materi-

als overlapping with the published work are adapted for this dissertation under Fair Use. 

 

This work was supported in part by the American Heart Association pre-doctoral fellowship 

12PRE11610024 awarded to me. Other materials in the published works in the Ping laboratory 
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were supported in part by the American Heart Association postdoctoral fellowship 

13POST14700031 awarded to Maggie Lam; and the National Institutes of Health awards HL-

R37-63091 and HHSN268201000035C, and the Theodore C. Laubisch endowment at UCLA 

awarded to Peipei Ping. 
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I. Turnover of mitochondrial proteins in the heart 
 

 

This chapter describes the development a 2H2O labeling strategy with which protein dynamics 

within cardiac mitochondria may be discerned. We developed a novel mass spectrometry and 

data analysis method to measure the half-life in vivo of proteins in mouse models. The data 

revealed over 500 mitochondrial proteins were measured from the mouse heart, mouse liver, 

and mouse kidney. The median half-life of mitochondrial proteins in the heart was 15.4 [3.5 – 

33.0] days, and in the liver 4.7 [1.2 – 7.3] days, the kidney 4.8 [1.5 – 7.5] days. Mitochondrial 

proteins display diverse individual turnover rates both within and across multiple tissues, 

whereas proteins belonging to complexes tend to have closer half-life. We further consider 

some of the properties of in-vivo protein half-life and their implications on the regulation of the 

mitochondrial proteome. These method developments serve as a foundation for comparisons 

between normal and diseased hearts in the subsequent chapters. The material presented in 

this chapter was published and can be found in our publications (Chan et al., 2014; Kim et al., 

2012; Lam et al., 2014). 

 

 
Methods to measure in vivo mitochondrial protein turnover 

 

Mitochondria are the site of numerous essential cellular processes, ranging from energy me-

tabolism to calcium handling, redox balance, and cell death (Balaban, 1990; Zhang et al., 

2012). In the mammalian heart, cardiac mitochondria can make up to ~35% of cardiac volume 

(Schaper et al., 1985), and produces 95% of the ATP that sustains the enormous energetic 

needs of cardiac functions (Neely and Morgan, 1974). Recent discoveries in cardiac research 
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have converged upon the importance of mitochondrial physiology in the development of multi-

ple human heart diseases, spurring hope that a new generation of therapies can be discovered 

that target molecules within these organelles.  

 

To support mitochondrial structure and functions, cardiac mitochondria contain a distinct 

repertoire of proteins that localize specifically to the organelle. These mitochondrial proteins 

may originate from both the nuclear genome or the mitochondrial genome, and may reside in 

mitochondria obligatorily or transiently – translocating into the mitochondria after particular 

stimuli. Mitochondrial proteins can be found localized to four sub-organellar compartments: the 

outer membrane, which has been estimated to contain approximately 10% of all mitochondrial 

proteins, the intermembrane space (~10%), the inner membrane (~20%), and the matrix 

(~60%), as reviewed in (Zhang et al., 2012). As proteins are biomolecules that carry out the 

bulk of biological functions, the global protein pool (proteome) represents a critical intermedi-

ate phenotype between gene expression and functional outcome. They also offer a robust 

reflection of the cell state (with the half-life of a protein pool on the order of days) relative to its 

mRNA counterpart (with half-life on the order of hours) (Vogel and Marcotte, 2012). As such, 

tremendous interests have been shown toward characterizing the anatomy and physiology of 

cardiac mitochondrial proteins to interrogate their alterations in disease mechanisms. 

 

With advances in mass spectrometry and bioinformatics techniques in the last decade, the 

entire set of proteins from a system (the proteome) may now be interrogated to identify protein 

molecular signatures in disease and to the regulation of protein expression, localization, modi-

fication, and interaction at a global level. Such large-scale studies of proteins have been widely 

applied to identify the complement of mitochondrial proteins in multiple organisms and tissues, 

including in mouse, human, and Drosophila, as reviewed in (Zhang et al., 2012) and their in-

volvement in disease mechanisms. In the Ping laboratory in particular, there has been a 

longstanding interest in defining the role of the cardiac mitochondrial proteome in cardiac and 
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injury. To identify bona fide mitochondrial proteins, our laboratory has developed rigorous 

protocols to isolate mitochondrial fractions from tissue lysates via differential centrifugation, 

followed by purification with a stepwise Percoll density gradient, then followed by shotgun 

proteomics using high-resolution mass spectrometry and stringent bioinformatics filters. Re-

cent surveys in the laboratory of cardiac mitochondrial proteome, which we define as the 

complement of proteins reproducibly identifiable by proteomics techniques from mitochondrial 

purifications, revealed approximately 1,300 distinct proteins that span over five orders of mag-

nitude in concentration (Lotz et al., 2013), representing one of the most comprehensive atlas of 

mitochondrial proteins to-date.  

 

 

 

FIGURE 1.1 depicts components of the identified cardiac mitochondrial proteome. Collectively 

the identified mitochondrial proteins belonged to diverse functional categories, from which at 

least eight major overlapping sub-proteomes might be identified: the respiratory chain compo-
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nents, TCA cycle and anaplerotic enzymes, fatty acid oxidation enzymes, protein import ma-

chineries, ion homeostasis and inner membrane channel proteins, proteolytic and chaperone 

systems, redox proteins, and apoptotic proteins (Zhang et al., 2012). Furthermore, to investi-

gate how alterations of proteins in various functional categories are reflected in disease devel-

opment, members in the Ping group delineated the complements of core vs. facultative 

mitochondrial proteins in the heart (Zhang et al., 2008a). More recently, we conducted quanti-

tative mass spectrometry comparisons of the relative abundance of mitochondrial proteins 

amongst different organs and organisms. Mitochondria from different tissues have vastly dis-

tinct proteome composition to support specialized functions. The results suggest that cardiac 

mitochondria are especially rich in ATP synthesis proteins, whereas liver mitochondria contain 

higher abundance of proteins in amino acid metabolism (Lotz et al., 2013). To examine the 

agents of cardioprotective signaling in the mitochondrion, we further developed highly sensi-

tive, targeted multiple-reaction monitoring (MRM) methods to quantify mitochondrial protein 

post-translational modifications in site-specific manners (Lam et al., 2012, 2013). 

  

Given the importance of mitochondrial protein functions, damage to mitochondrial proteins 

such as by reactive oxygen species (ROS) is expected to disrupt critical cellular processes and 

accordingly has been associated with numerous disease phenotypes. To preserve metabolic 

and energetic functions, the proteome that composes functional mitochondria must be con-

stantly maintained in homeostasis. This is normally achieved in part by the degradation of 

existing proteins into free amino acids, and the subsequent synthesis of new proteins to re-

plenish the protein pool. Alterations of this protein dynamic equilibrium often lead to changes 

in static protein abundance, though as we shall see this is not always the case, and changes in 

protein synthesis may be balanced by changes in degradation and lead to no overt changes in 

steady-state level. Until recently, most investigations of the mitochondrial proteome have 

focused on the steady-state quantities of mitochondrial proteins in health or disease, but the 

measurement of the static abundance of a protein alone lacks temporality and gives little in-
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sight into the underlying temporal processes such as its homeostasis renewal, or the window 

of impact of a new protein. This barrier leads to an incomplete description of the proteome, 

and may contribute to the inability to detect some important features of biological and patho-

logical processes when the crucial disease correlation is masked from the method of investiga-

tion. Protein turnover is thought to provide this “missing dimension” of protein function and 

allows one to draw inference into the homeostasis and windows of impact of a particular pro-

tein (Pratt et al., 2002). 

 

Protein turnover and homeostasis have also taken on particular significance in the study of 

mitochondrial biology due to the profound implications of mitochondrial quality control and 

mitochondrial dynamics in multiple human diseases. Cardiac mitochondria exhibit a remarka-

ble degree of dynamism in that they continually adjust their functions, morphology, and molec-

ular compositions according to the changing energetic demands of the heart. At the molecular 

level, this dynamism involves the simultaneous shifting of the dynamic equilibria of biomole-

cules towards new cellular states according to cellular needs. Meanwhile, increased ROS is a 

hallmark in the diseased heart that can exacerbate protein damage, misfolding, aggregation, 

malfunction, and creates severe protein quality control stress (Giordano, 2005). As the respira-

tory chain within the mitochondrion is a major source of ROS production in the heart (Balaban 

et al., 2005), the proximity of mitochondrial proteins to reactive oxygen species renders them 

highly susceptible to protein damage. Maintenance of mitochondrial quality and integrity in-

volves coordinated turnover of compromised components to preserve cellular functions, and 

the accumulation of damaged proteins in mitochondria is thought to contribute to disease 

pathology (Hammerling and Gustafsson, 2014; Rosca and Hoppel, 2010). Disrupted protein 

homeostasis could further elevate cellular ROS and protein degradation stress, such as by 

producing further ROS through signaling and respiratory uncoupling (Divald et al., 2010; 

Gomes et al., 2006; Papa et al., 2007), leading to a vicious cycle of protein damage and dys-

functions, suggesting protein degradation insufficiency could act directly as a molecular trigger 
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of pathogenesis and presents an interesting aspect through which to measure the effect of 

gene and environment factors. Hence, understanding how mitochondrial proteins are main-

tained in homeostasis is an essential step towards a more complete understanding in the role 

of the proteome in cardiac disease mechanisms. 

 

 

FIGURE 1.2 is a graphical representation of the protein turnover cycle. Proteins are not static 

entities, but instead exist in a dynamic equilibrium of continual synthesis and degradation, 

which orchestrate the steady-state abundance of the protein species. The dynamic equilibrium 

of a protein can be controlled by either the rate of protein synthesis or protein degradation, or 

both. Protein synthesis and degradation are regulated by different cellular processes, e.g., how 

much of a protein is being synthesized is regulated in part by the abundance of the cognate 

transcripts and other post-transcriptional regulations, whereas how much of a protein is de-

graded is influenced by the existence of protein damage and the activity of protein degradation 

machineries.  

 

In the normal heart, protein translation and import constantly supplement the mitochondrial 

proteome, while mitochondrial fusion and fission may redistribute proteins, and proteolysis, 

returns protein-bound amino acid into the free pool. Mitochondrial proteins may be degraded 

via multiple means. Autophagy can engulf and degrade entire organelles, whereas the turnover 

FIGURE 1.2 Protein turnover cycle
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rates of individual proteins can be individually regulated by intra-mitochondrial proteases, 

proteasomes, by export via mitochondrial-derived vesicles, or by escaping autophagy via 

fusing with the ER (Saita et al., 2013). Under normal circumstances, the totality of continual 

synthesis and degradation of proteins make up the protein turnover cycle and maintain protein 

abundance in homeostasis (Claydon and Beynon, 2012; Hinkson and Elias, 2011).  

 

 

FIGURE 1.3 illustrates protein abundance as an emergent property of the permutation of syn-

thesis and degradation. Because either the rate of protein synthesis or degradation must devi-

ate from normal values in order for the protein pool size to adjust to a new level, any 

permutation of proteome states leaves behind a kinetic signature, in the form of the fraction of 

newly synthesized proteins in the protein pool (Claydon and Beynon, 2012; Doherty and 

Beynon, 2006). This kinetic signature can be measured through the incorporation of isotopes 

into protein over time, and can be exploited to identify unexpected disease proteins and their 

pathological implications independently of abundance measurements. On the other hand, a 

particular profile of static abundance may be the outcome of multiple combinations of synthe-

sis and degradation scenario. As the final protein level is degenerate with regard to the quanti-

tative permutation of synthesis rate or degradation rate, measurement of steady-state 

abundance alone can conflate disparate scenarios – a protein of increased abundance could 

FIGURE 1.3 Degeneracy of the protein turnover cycle
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owe it to increased synthesis or decreased degradation, whereas a protein with shortened half-

life may show no abundance change. These kinetic scenarios represent different biological 

realities, e.g., a protein under irreversible ROS damage will require increased turnover in order 

to stay above the threshold of functionality. For example, a drastic increase or decrease in 

protein half-life in early hypertrophy is highly indicative of a switch in functional manifestation, 

and thus reveals a probable causal relationship to pathological remodeling. On the other hand, 

prolonged half-life amid elevated ROS in the decompensated heart is symptomatic of protein 

damage or impaired proteolysis – because the previously existing protein pool accumulates. 

Yet alternatively, cellular signaling may accelerate synthesis and degradation to shorten protein 

half-life without altering protein abundance, which has been hypothesized to facilitate the 

generation of spatial gradients (Varshavsky, 2011). These and other pathologic scenarios pre-

sent only in the time dimension, and are obscured from steady-state protein abundance meas-

urements. Taken together, protein dynamics is significant because it provides an important 

view into the remodeling heart that cannot be otherwise obtained. 

 

To understand how normal mitochondrial proteins are maintained in homeostasis to preserve 

cardiac metabolic and energetic functions and how the process fails in the diseased heart, at 

minimum one must know how, which and how fast mitochondrial proteins are being replaced, 

i.e., their turnover rates. The synthesis rate of a protein is conventionally explored via microar-

ray studies, which implicitly utilize the abundance of mRNA transcripts as surrogates (albeit 

very poor ones) for protein abundance. On the other hand, the degradation and turnover of 

proteins are relatively underexplored due to technical difficulty in its measurement, but their 

importance is paramount, as impairments can drive pathologic remodeling in the heart (Chen 

et al., 2005; Wang and Robbins, 2006) , and abnormal protein accumulation within cardiac 

cells is a general observation in many etiologies of human heart failure (Day, 2013; Nojiri et al., 

2006).   
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The measurement of protein turnover dynamics has long captured the attention of biomedical 

research. Early experiments were pioneered by Rudolf Schoenheimer and David Rittenberg at 

Columbia University in New York (Kennedy, 2001; Kresge et al., 2005; Shemin and Bentley, 

2001; Simoni et al., 2002), who became interested to study cellular metabolism at a time when 

the physical sciences were beginning to be applied to biology (Kohler  Jr., 1977). In 1939 

Schoenheimer used isotope labeling to establish that proteins in the body, and thus life itself, 

are in a dynamic state of interactions with the environment even in the absence of obvious 

growth (Schoenheimer et al., 1939). These tenets ran contrary to popular beliefs of the day, 

which posited that organic molecules acquired through diet were solely combusted for fuel, but 

they soon gained wide acceptance and are now held as self-evident. Studies from the 1950’s 

onward coincided with biochemists’ interest in measuring the flux and dynamics of biochemi-

cal pathways, and led to the elucidation of the bulk protein synthesis rate in the human body 

(Rittenberg and San Pietro, 1953) and of the rate constant of turnover (k) of specific cellular 

compartments, and a few easily isolatable proteins (Glass and Doyle, 1972). 

 

In cardiac biology, Murray Rabinowitz at the University of Chicago was one of the early investi-

gators to realize the important metabolic links between mitochondrial dynamics and cardiac 

hypertrophy (Getz, 2013; Rabinowitz and Zak, 1975). Rabinowitz was in particular interested in 

the synthesis and turnover of mitochondrial proteins, and in 1973 he was the first to compare 

protein turnover in heart failure when he made the discovery that following aortic banding, rat 

heart cytochrome c abundance increased on the first day then subsequently decreased, 

whereas its degradation decreased consistently throughout (as measured by pulse-chase of a 

radioactive heme precursor tracer, δ-amino-laevulinate) (Albin et al., 1973; Rabinowitz, 1973). 

He concluded that the decreased destruction of cytochrome c was responsible for its early 

increase in hypertrophy, and that a dissociation in the myofibrillar and mitochondrial growth 

responses ultimately led to energetic decline. In subsequent years, his group also compared 

the turnover rates of myofibrillar proteins, and from the data made critical inference on the 
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assembly sequences of the myofibril subunits (Zak et al., 1977). Meanwhile, a number of con-

temporary studies began to establish the turnover of mitochondrial sub-compartments (outer 

membrane vs. inner membrane) or few individual mitochondrial proteins such as cytochrome c 

(Brunner and Neupert, 1968; Glass and Doyle, 1972; Lipsky and Pedersen, 1981). Two obser-

vations from these early studies were of interest. First, they showcased the idea that protein 

turnover is a regulated cellular parameter that responds to disease stimuli. Second, it was 

realized that individual mitochondrial compartments and proteins exhibit different turnover 

rates. These studies however largely lacked the technical prowess to discern individual protein 

turnover on a large scale, and the ponderous experimental design and large variability of the 

results both hindered the studies of disease models until modern proteomics techniques be-

came available. 

 

In the intervening years, the focus of research has remained fixated on the turnover of structur-

al proteins that are easy to isolate, in particular the highly abundant myofibril proteins (Martin, 

1981; Simpson et al., 1996), with a general consensual concept arising from these studies to 

suggest that differential regulations of synthesis and degradation often accompany stress, 

hypertrophy, or remodeling in myocytes both in vitro and in vivo. In another study, the gap 

junction protein connexin 43 was found to have very short half-life in perfused hearts 

(Beardslee et al., 1998), which may have implications on rapid dynamic remodeling of gap 

junctions in the heart. Increased synthesis of collagen III and degradation of collagen I are 

found to be markers of hypertrophy and fibrosis in hypertrophic cardiomyopathy patients 

(Lombardi et al., 2003).  

 

More recent studies on mitochondrial turnover shifted focus to whole-organelle level turnover 

and dynamics, which describes the regulatory behaviors at the organizational level of the entire 

mitochondria. A number of studies of mitochondrial protein turnover in models of caloric re-

strictions and aging simply assume mitochondria as turning over as a unit (Miller et al., 2012; 
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Miwa et al., 2008), from which conclusions were drawn without considerations of the individual 

turnover rates of proteins.  

 

Since abundance measurements conflate disparate kinetic scenarios, investigations restricted 

to steady-state measurements have limited power to discern particular time-dimensional fea-

tures of disease progression. This limitation has perhaps led to failures in identifying causal 

events during hypertrophic responses, and the obscuration of potential drug target proteins for 

which abundance is not the correlating parameter in its disease association. Assessing global 

protein turnover kinetics in the remodeling heart therefore provides new opportunities to un-

derstand cardiac remodeling and identify molecular changes that presage functional debilita-

tions. The aforementioned knowledge gap obstructs our understanding of heart diseases, and 

arises in part because the dynamic process of cardiac remodeling is inadequately captured by 

our static conceptualization of the cardiac proteome: current techniques produce fragmented 

snapshots of protein expression in the myocardium that are difficult to interpret in the context 

of other key cellular processes. 

 

Several terms are used interchangeably in the following chapters to describe various aspects 

of the synthesis and degradation of proteins. The protein turnover rate constant (k) is the pre-

ferred parameter to describe how fast the protein pool is replaced and is irreplaceable in cer-

tain technical description. On many occasions the logarithm of this parameter is presented 

(log10 k), because k typically spans several orders of magnitude in a proteome. Some find half-

life more intuitive to visualize, but its use in graphs is minimized because the reciprocal trans-

formation from k to half-life has the tendency of distorting sample distributions. In general, I 

use the term protein temporal dynamics where it concerns the biological state of the cell, 

protein kinetics where it reflects the behavior of isotope incorporation and speed of protein 

pool replacement, and protein turnover where it denotes the combined synthesis and degrada-

tion of protein pools. 



 12 

 

A number of techniques exist for measuring protein turnover or stability in cultured cells in 

vitro, including simple immunobiological approaches to measure the decrease in protein abun-

dance following synthesis inhibition by cyclohexamide, or the use of the decay of protein fluo-

rescence signals from fluorescent protein timers (Khmelinskii et al., 2012; Yen et al., 2008), or 

stable isotope labeling by amino acids in cell culture (SILAC) (Andersen et al., 2005; Pratt et al., 

2002; Schwanhausser et al., 2011). However, the proteome dynamics of exponentially dividing 

cells in vitro does not recapitulate the full range of physiological regulations that occur in multi-

cellular organisms. More importantly, proteins in cultured cells may turn over both via degrada-

tion or dilution into daughter cells, which confounds the inference of physiological turnover 

rates. Cyclohexamide experiments in vitro typically report protein half-life of hours as the mini-

mum turnover rates of proteins are set by the doubling time of cells, as opposed to the half-life 

in the range of days to weeks measured from mammalian systems in vivo. 

 

To measure the physiological protein turnover rates in mammals, i.e., the rate at which existing 

proteins are replaced in vivo, it follows that a method is needed to differentiate a newly synthe-

sized protein from pre-existing proteins after the protein sample is drawn from the living organ-

isms. This is typically accomplished using isotope analogs of protein precursors that are 

ingested by the animal through food or water supply. Since 1935, a number of isotope-labeling 

methods have been developed to label cellular proteins and trace their bulk turnover. Deuteri-

um was among the earliest of isotope labels to be used as an analog for biomolecules, when 

Schoenheimer explored protein metabolism using molecules tagged with the stable isotopes 

2H and 15N. However, the laborious analytical methods to discern 2H content of amino acids 

from protein hydrolysate using combustion and interferometry, or 15N with the Kjeldahl method, 

led to the gradual displacement of stable isotopes by the advent of radioisotopes in the 1940s. 

The specific activity of radioisotope analogs such as 3H or 14C- labeled amino acids were easy 

to detect from various samples directly using scintillation counters. Since late 1990s, however, 
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there has been a marked return to the use of stable isotopes driven by advances in biological 

mass spectrometry techniques with which stable isotopes can be separated by mass. Labeling 

with stable isotopes followed by mass spectrometry thus enables one to differentiate between 

pre-existing and newly-synthesized proteins via the relative isotope abundance of the target 

proteins, and thus to trace the continual turnover of the proteome in living systems (Beynon 

and Pratt, 2005). The advantages of using stable isotope and mass spectrometry methods over 

radioisotope scintillation counters include the ability to detect and differentiate multiple labeled 

proteins at once, and detecting a peptide with multiple numbers of label, which allows easy 

turnover determination through precursor-product relationship.   

 

A challenge of deducing turnover in higher organism is that the isotopes need to be effectively 

delivered into the organisms via injection or oral intake. Under most scenarios the protein 

precursor cannot be enriched fully due to dilution with existing precursors, compartmentaliza-

tion, and potential toxicity. Converting the amount of label present to the fraction of new pro-

teins was a challenging problem where true precursor enrichment is difficult to ascertain, since 

it creates an uncertainty in how the labeled molecule appears in terms of relative isotope 

abundance (analogous to specific activity in radioisotope labeling), which creates an uncertain-

ty in deducing the fraction of newly-synthesized products. 

 

A general solution to deduce protein synthesis from isotope labels is to assume a combinatori-

al probability model, which dictates that a biological polymer of more than one monomer will 

exhibit statistical distribution of labels following polynomial expansion of the proportion of 

labeled and unlabeled precursors. This was exploited in 1986 by Kalderon and colleagues to 

measure glycogen synthesis from 13C-labeled glucose (Kalderon et al., 1986), and by Marc 

Hellerstein and colleagues in 1991, who put forth an application of the technique to mass 

spectrometry data, named Mass Isotopomer Distribution Analysis (MIDA) as reviewed in 

(Hellerstein and Neese, 1999). Mass isotopomers are isomers containing different isotopes that 



 14 

become resolved by a mass analyzer. Thus as a protein is synthesized by a population of 

monomers (protein precursor) containing a fixed proportion of heavy isotopes, the resulting 

statistical distribution of protein isotopomers containing zero, one, two, or more heavier iso-

topes will follow a mathematically deducible polynomial distributions determined by three 

MIDA parameters: n, the number of monomer units in the protein, p, the proportion of labels in 

the precursor, and f, the fraction of newly made polymers (whose amounts of labels are diluted 

by the presence of unlabeled polymers in the pool). The feasibility of this method for calculat-

ing protein turnover was first demonstrated on serum albumin in [2H3]-leucine labeled rats 

(Papageorgopoulos et al., 1999). 

 

Variations of the combinatorial probability model have since been widely used to analyze MS 

data in protein turnover experiments. For instance, Robert Beynon at the University of Liver-

pool devised a method to identify the precursor relative isotope abundance in single amino 

acid labels (e.g., [2H8]-valine) that uses the combinatorial probability model to compare the 

isotopomer distributions of peptide clusters containing two instances of the labeled amino 

acid, in order to deduce the true precursor enrichment, which is then used to calculate the 

fraction of newly synthesized peptides for all peptides containing at least one instance of the 

labeled amino acid. In combination with high-throughput proteomics techniques, this led to the 

first large-scale measurements of individual protein half-life in vivo in higher organisms 

(Doherty et al., 2005). 



 15 

 

FIGURE 1.4 illustrates the principle of isotope labeling to deduce protein turnover, whether by 

stable isotopes or radioisotopes. In metabolic labeling experiments, the protein precursors are 

subjected to an artificial enrichment of the stable isotope through the intake or injection. The 

isotope tags serve as homologs to protein precursors that allow the isotope label to be incor-

porated into newly synthesized proteins, which can then be differentiated by physical methods 

that differentiate isotopes. The protein synthesis process could therefore be detected by mass 

spectrometry and described as the gradual incorporation of isotopes into the protein popula-

tion. With additional cycles of protein synthesis and degradation, the cellular proteins increase 

in the labeled fraction until the overall isotope enrichment reaches equilibrium with the relative 

isotope abundance of precursors in the organism. Since a protein is a polymer of protein pre-

cursors, the amount of label incorporated into a newly made protein follows a combinatorial 

probability model. The accumulation rate of isotopes into cellular proteins over time is then 

used to estimate the turnover of the protein pool in a systematic manner from the perspective 

of the substrate pool.  

 

Since 2005, multiple studies have demonstrated the use of stable isotope labeling and mass 

spectrometry to study protein turnover (Busch et al., 2006; Claydon et al., 2012; Kasumov et 

al., 2011; Price et al., 2010, 2012a; De Riva et al., 2010), making use of several types of stable 

isotope tags that were introduced into cellular proteins, either in the form of essential amino 

FIGURE 1.4 Principle of stable isotope labeling
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acids in diet or the precursors of non-essential amino acids. Currently, three major types of 

isotope labels are available for large-scale studies: 

 

(i) Stable isotope-labeling of essential amino acids: A popular method is the introduction of 

amino acids labeled with heavy isotopes (13C, 2H, or 15N),  such as [2H3]-leucine, into the animal, 

either through injection or through an enriched synthetic diet. A major advantage of labeled 

amino acids is the simplicity in data analysis workflow. Since these heavy amino acids have 

fixed number of labeled atom centers, no intermediates in the amount of labeling per newly 

synthesized protein exist. Secondly, precursors with +6 or +8 Da (e.g., [13C6]-arginine [2H8]-

valine) are available, which are sufficiently different in mass from the light variant such that 

isotope clusters do not overlap. A drawback is the requirement for a synthetic diet supple-

mented with the labeled amino acid, which may unbalance metabolism or spur protein synthe-

sis. Analytical complications may also arise through the loss of ɑ-carbon deuteron through 

enzymatic transamination, which can result in the experimental mass shift of labeled peptides 

being less than expected (Beynon and Pratt, 2005). Labeled amino acids were first exploited by 

Beynon and colleagues to deduce the first proteome-wide protein turnover study in higher 

organisms (Doherty et al., 2005), and have been employed in a number of studies in diverse 

animals including mouse (Claydon et al., 2012; Hsieh et al., 2012), chicken (Doherty et al., 

2005), zebrafish (Westman-Brinkmalm et al., 2011), and carp (Doherty et al., 2012). Using [2H3]-

leucine, the Rabinovitch group recently determined the in vivo turnover rates of ~400 mouse 

liver and heart mitochondrial proteins (Hsieh et al., 2012). 

 

(ii) Metabolic 15N or 13C labeling via diet: Alternatively, proteins can be enriched via metabolic 

precursors. Enrichment of 15N atoms in an animal has been achieved for SILAC mice (SILAM), a 

method for creating >95% 15N-labeled mice to be used as internal standards for protein quanti-

tation, where the isotopically pure foodstuff for animals labels all mouse amino acids metaboli-

cally. Similar to dynamic SILAC experiments, a non-saturated labeling curve can be used to 
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measure protein turnover in live animals. This method is compatible with proteome-wide turno-

ver inquiry (Price et al., 2010; Zhang et al., 2011), and has recently been demonstrated for the 

measurement of turnover rates of over 1,700 proteins in the brain, liver, and blood of mice fed 

with the 15N-enriched Spirulina algae for up to 32 days (Price et al., 2010). Besides 15N, meta-

bolic 13C labeling has also been demonstrated by enriching mouse diets with 13C-labeled glu-

cose, which is metabolized into amino acid precursors (Vogt et al., 2005). 

 

One potential drawback of metabolic 15N or 13C labeling is the complex isotope patterns gener-

ated as compared to SILAC approaches. As the mice gradually acquire excess heavy atoms, 

the labeled peptide peaks will shift gradually both in relative abundance of heavy isotopes (due 

to protein turnover) and in the amount of horizontal mass shifts exhibited by the heavy labeled 

peptides (due to increasing numbers of heavy atoms in newly synthesized proteins), creating a 

complex pattern of isotopic shifts (Guan et al., 2011; Lyon et al., 2014) which demands more 

complicated data processing to deconvolute the spectra into component peptide ions with 

different numbers of incorporated heavy atoms. 

  

(iii) Metabolic labeling with heavy water: 2H2O is gaining in popularity as a protein label for 

animal studies (Lam et al., 2014; Price et al., 2012a; Rosca et al., 2008). One primary ad-

vantage of 2H2O is that can be straightforwardly introduced into the animal by free drinking in 

the drinking water supply, which avoids potential physiological impacts of dietary modifications 

or amino acid infusion. The ingested 2H2O molecules quickly equilibrate with body water, and 

thus precursor isotope enrichment can be measured accurately from any biofluid. Deuterium 

atoms from body water is conferred to the carbon-hydrogen bonds of free non-essential amino 

acids during their enzymatic biosynthesis (Busch et al., 2006), which has been measured to 

complete within 30 minutes (Kasumov et al., 2011). Unlike in deuterium exchange experiments, 

the enzymatically labeled C-H bonds are chemically stable and do not back-exchange during 

sample processing. Essential amino acids are labeled by transaminases. 2H2O labeling does 
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not create separate peptide clusters (which essentially doubles the complexity of the prote-

omics sample), and thus is very amenable to large-scale analysis. Recently 2H2O labeling has 

been demonstrated for proteome-wide turnover measurements in multiple organisms including 

the mouse, rat, and human (Kasumov et al., 2013; Price et al., 2012a, 2012b; Shekar et al., 

2014). A potential drawback is that deuterated peptides elute slightly earlier in liquid chroma-

tography, which may introduce errors in peak area quantification. Secondly, the number of 2H 

accessible labeling sites may be uncertain in some systems with different biochemistry of 

amino acid utilization than mammals. 

 

 

FIGURE 1.5 shows the use of two kinds of isotope tracers for measuring protein turnover in 

animals. The optimal isotope label for an experiment depends greatly on the available analyti-

cal instrumentation and computational workflows. Economy, physiological impacts, and ease 

of data analysis are all valid concerns that may influence decision as has been reviewed else-

where (Claydon and Beynon, 2012). In the above stable labeling experiments, the incorporated 

labels may be detected by mass spectrometry. Most modern proteomics platforms have been 

successfully employed for protein turnover studies including Orbitrap (Shekar et al., 2014), Q-

ToF (Price et al., 2012a), MALDI-ToF (Doherty et al., 2005), and LTQ-FT (Hsieh et al., 2012; 

Price et al., 2010) instruments. On the top graph is shown the changes in peptide isotope 

FIGURE 1.5 Appearance of heavy isotopes in mass spectra
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patterns following enrichment with a stable isotope labeled amino acid (e.g., [2H6]-leucine). The 

spectrum on the left shows the old (pre-existing) proteins, which only contain light isotopes. 

The introduction of heavy isotopes and the production of new proteins create a new isotope 

envelope that contains a fixed amount of heavy isotopes. Some new proteins also contain light 

isotopes due to incomplete relative isotope abundance (RIA). On the bottom is shown the 

changes in peptide isotope patterns following enrichment with 2H2O. Instead of forming a new 

isotope envelope, new proteins shift the isotopic distribution of the pre-existing envelope. 

 

In the following studies, we have chosen to develop analytical methods for 2H2O labeling, 

which acts as a heavy-labeled precursor to cellular amino acids. 2H2O quickly confers 2H atoms 

from cellular water to the carbon-hydrogen bonds of free nonessential amino acids during their 

enzymatic biosynthesis (Busch et al., 2006) within 30 minutes (Kasumov et al., 2011). Unlike 

labile N-H or O-H bonds, these C-H bonds are stable and the incorporated 2H atoms in non-

essential amino acids do not back-exchange during sample processing. Additionally, H in the 

α-carbon of essential amino acids is reversibly accessible to 2H by transamination. The 2H-

labeled amino acids are integrated into newly synthesized protein via amino acyl-tRNAs, and 

with each cycle of turnover, into proteins until their 2H content reaches steady-state equilibrium 

with surrounding 2H2O. The rate of protein turnover is determined by tracking the time evolution 

of mass isotopomer distributions. 
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FIGURE 1.6 shows one mechanism whereby orally ingested 2H2O can confer 2H atoms onto 

protein precursors. As 2H2O permeates body water, the 2H atoms (red) are quickly transferred 

from the surrounding onto the carbon-hydrogen bonds of nonessential amino acids during 

their biosynthesis (Busch et al., 2006), which are in turn integrated into newly synthesized 

proteins. Alanine, for example, is labeled via its synthesis from the tricarboxylic acid (TCA) 

cycle intermediates succinate and oxaloacetate, and contains a characteristic four 2H-

accessible labeling sites per amino acid.  

 

Several properties of 2H2O make it in our opinion an attractive choice as a tracer for protein 

turnover measurements in vivo. Compared to 15N-labeled essential amino acids, 2H2O has the 

technical advantage that precursor enrichment can be measured by GC-MS, either in place of 

or in conjunction with MIDA analysis. Since water is assumed to equilibrate with all body and 

cellular compartments, 2H2O content can be measured in accessible tissues or fluids such as 

plasma or saliva to reflect the enrichment level in the tissue of interest, which also avoids com-

partmentalization effects where the dietary precursor does not equilibrate with the precursor 

pool in the target tissue. As an isotope analog of water, 2H2O is generally considered bio-

orthogonal at low concentration, and does not have physiological impacts that may result from 

dietary modifications. Lastly, labeling with low percentages of 2H2O also doesn't create a new 

isotope clusters, which introduces minimal additional complexity to the mass spectra.  

 

 

FIGURE 1.6 Mechanism of amino acid labeling by 2H2O
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FIGURE 1.7 illustrates the expected shifts in protein/peptide mass spectra during a metabolic 

2H2O labeling experiment. As the protein precursors are subjected to an artificial enrichment of 

stable isotopes, the protein synthesis process is detected by mass spectrometry as the gradu-

al incorporation of isotopes into the protein population. With additional cycles of protein syn-

thesis and degradation, the cellular proteins increase in the labeled fraction until the overall 

isotope enrichment reaches equilibrium with respect to the relative isotope abundance of 

precursors in the organism. The stable isotopes being used can be introduced to proteins 

through the essential amino acids in diet (e.g., 15N-labeled amino acids (Price et al., 2010)) or 

the precursors of nonessential amino acids, such as in 2H labeling through 2H2O.  

 

Thus, 2H2O has the potential for measuring protein turnover on a very large scale. Currently, the 

major hindrances to the adoption of 2H2O to trace cellular protein turnover are data analytical 

constraints. One challenge arises because the mass shift induced by low percentages of 2H2O 

overlaps with the natural isotope envelope. Secondly, the number of labeling site on peptides 

which dictates the resulting statistical distribution of isotopomers after enrichment is not com-

pletely known. A number of prior works have shown the feasibility of using 2H2O labeling to 

measure protein half-life, as reviewed previously, but in general, analytical methods for large 

scale 2H2O labeling data remain under-developed. 

 

To illustrate the analytical challenges of interpreting 2H2O labeling data, we consider here the 

general workflow of kinetic curve-fitting. For the sake of simple calculation, protein turnover is 

often assumed to be a first-order kinetic process, which comprises of protein synthesis as a 

FIGURE 1.7 Peptide isotopomer shift
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zero-order process, i.e., independent of protein concentration, and protein degradation as a 

first-order process, i.e., proportional to protein concentration to the first power. In a labeling 

experiment, 2H accumulation in protein causes the addition of mass to the parental peptide ion 

peaks, thus shifting the relative abundance of the natural isotope distribution of peptide due to 

13C, 15N, 18O, ad 35S atoms. As the heavy labels are integrated into the newly synthesized pro-

teins, with eventual turnover of the protein pool the amount of label will reach steady-state 

equilibrium with the surrounding free amino acids. The mass isotopomer distribution changes 

at multiple time points of measurements can be effectively resolved by high-resolution mass 

spectrometry. Hence by experimentally deducing the isotope abundance of a given peptide in 

its approach to the steady state, and by assuming its rise-to-plateau follows first-order kinet-

ics, the rate constant of protein turnover may be deduced. The challenge, then, is that the 

steady-state enrichment level of each peptide differs by the number of 2H label sites, which is 

determined by the peptide amino acid sequence, and thus must be measured or modeled 

individually. Moreover, proteins with relatively slow turnover takes a long time to reach plateau 

enrichment, which would either significantly lengthen the labeling time or significantly reduce 

the portion of the proteome that can be covered.  

 

An effective 2H2O data analysis strategy must therefore deduce the relative isotope abundance 

of peptide ions at different time points and calculating the turnover rates based on a kinetic 

model that corresponds to the protein turnover process. In practice, after the fraction of newly 

synthesized proteins are experimentally measured at one or more time points, the data must 

be extracted and arranged into a time series, then fitted to a kinetic model. Multiple models 

have been proposed. In most cases, simple rise-to-pleateau kinetics is assumed, and the 

isotope distribution before labeling and at steady-state can be calculated to determine the 

remaining unknown, i.e., the protein turnover rate (Claydon and Beynon, 2012). In a variation to 

this method, Kasumov and colleagues have used the quasi-linear region of the first-order 

kinetic curve to calculate k for long-half-life proteins (Li et al., 2012). More complex multi-



 23 

compartment modeling has also been formulated that are thought to more closely resemble 

true turnover kinetics (Guan et al., 2012).  

 

Several current limitations accompany the existing 2H2O studies that constrain their overall 

proteome coverage and thus utility in uncovering biological insights. Although the isotope 

labeled spectra can be manually analyzed to yield turnover rates, high-throughput studies 

demand the aid of computational software automation. Many existing tools can integrate the 

peak areas of native or isotope-labeled peptide ions for protein quantification process. Since 

these software applications must add together the relative peak areas of each isotope, they 

may be co-opted for protein turnover studies when a custom kinetic model is supplied to 

handle the integration data. Hence there is a general need for automated software solutions to 

deconvolute complex isotope relationship. 

 

In order to enable the analysis stable isotope labeling data on a truly proteome scale, my col-

leagues and I developed a computation-assisted method based on multivariate optimization 

where all relevant parameters describing the kinetic curve can be found using multi-parameter 

fitting.  

 

The method can be divided into two functional modules. (i) The first module automates the 

quantification of peptide ion mass isotopomer distribution of mass spectra. To quantify the 

fractional abundance of each isotopomer within the isotope envelope, the software creates the 

extracted ion chromatogram for each identified peptide ion. To determine whether a peak is a 

genuine peptide signal or noise, the software using a mass isolation window (set to ± 100 

ppm), retention time information from protein identification file, as well as peak-width (≥ 0.1 

minute at half-height) and intensity (median of all signals multiplied by a user-definable factor) 

filters. Note that the utilized mass window filter is considerably wider than the delta mass iden-

tification because in order to capture all the signal intensity of the ion it has to cover the whole 
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peak along the m/z axis, and not only the apex of the peak to deduce median mass. Once the 

true isotopomer peak is selected from the chromatogram, integrating for the area under the 

peak gives the abundance of the isotopomer ion. The abundances of mass isotopomers thus 

determined are normalized by the total abundances in the particular peptide. The end result is 

that the acquired mass spectrum sets are automatically deconvoluted into the isotopomer 

distributions for every identified peptide, which constitutes the quantity that will determine the 

fractional stable isotope enrichment. 

 

(ii) The second module takes the data series and determine the rate constants of protein turno-

ver. We implemented a computationally efficient solution to aggregate all isotopomer distribu-

tions and perform multivariate fitting to model the isotopomer distribution to first-order kinetics 

by fitting all three parameters of the kinetic equation: initial abundance (Ai(0)), steady-state 

abundance (Ai(∞)), and the rate constant of synthetic replacement (k). The final computation of 

protein turnover aggregates the isotope incorporation data from multiple mass isotopomers of 

each peptide, and from all eligible peptides from each protein, and does a second fitting to 

solve for least squares. Uncertainty in the rate constant is determined by propagating the 

variance of the dataset in respect to the predicted model to the rate constant using a first-

order series expansion. This simplified method takes advantage of the ability to acquire multi-

ple sampling time point and the power of computerized multivariate fitting, and has the ad-

vantage that it does not require overt use of the MIDA parameters (p, n, f) and can deduce the 

parameter of interest (k) in a single step. The ability to forego asymptotic enrichment, at least in 

principle, also facilitates the analysis of long-lifetime proteins without prolonged labeling, which 

also gives greater agility to detect temporal changes in turnover rate in disease. 
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FIGURE 1.8 illustrates the concept of parameterizing the fractional abundance of mass isoto-

pomers in a peptide isotopomer cluster as a means to calculate protein turnover. At any given 

time point during the enrichment process, t, the normalized peak area for the first mass isoto-

pomer (I0), A0(t), can be determined by dividing the peak area of the first mass isotopomer (m0), 

I0(t), over the summation of peak areas from all mass isotopomers (m0, m1, m2, m3…) in the 

same spectrum (I0(t), I1(t), I2(t), I3(t)…). A0(t) reflects the mass isotopomer shift and decreases in 

value over time in a manner that follows the turnover of the peptide. This is illustrated in the 

figure at day 0, day 12, and day 90 of a labeling experiment for an example tryptic peptide 

LVESLPQEIK, [M + 2H]2+ = 578.33 m/z, from the mitochondrial 39S ribosomal protein L12 

(MRPL12). Prior to the start of 2H2O labeling (day 0), the first mass isotopomer (m0) represented 

the most intense peak (Ao(0) = 0.52) in the envelope. At 12 days of labeling, the peak intensity 

of m0 became comparable to that of m1, and one new feature corresponding to m4 was ob-

served (A0(12) = 0.32). After 90 days of labeling, m0 became the third most intense mass isoto-

pomer and the high-mass isotopomer peak m5 became observable (A0(90) = 0.18). 
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FIGURE 1.8 Peptide isotopomer patterns following labeling
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Figure 1.9 illustrates the general concept of kinetic curve fitting. Because we assume protein 

turnover to follow simple first-order kinetics, the introduction of 2H results in an anticipated 

evolution of A0(t) in an enrichment experiment that can be modeled using a first-order exponen-

tial decay equation, where the rate constant of the equation, k, is the rate at which proteins are 

newly synthesized to replace the existing protein pool in the cell. If we assume equilibrium in 

the protein pool, k also equates the rate at which proteins are degraded and thus the protein 

turnover rate. Computer optimization algorithms can therefore be employed that iterate differ-

ent values of k in order to minimize the residual between the equation and empirical data 

points, and determine the most probable value of k, as shown in the four different curves on 

the graph that correspond to k = 0.5, 0.25, 0.1, and 0.05 d-1 respectively. 
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FIGURE 1.10 visualizes the experimental deduction of the turnover rate constant via three-

parameter fitting for the example tryptic peptide above. On the left, the fractional abundance 

values of the first isotopomer (A0(t) at each experimental time points as they were measured by 

the mass spectrometer were plotted (points). We then performed a three-parameter non-linear 

fitting on the time-series data via the Nelder-Mead simplex method (Nelder and Mead, 1965). 

The fractional abundance at the initiation of labeling (t = 0), A0(0); at full plateau enrichment, A-

0(∞); and the protein turnover rate constant, k; are defined from the time-series data of each 

mass isotopomer by the best-fitted first-order kinetics equation (red dashed line). Note that this 

time-series and the derived values occur at the peptide level and originates from only a single 

peptide from the protein. We next rescaled this equation into a simple first-order kinetics equa-

tion on the right by transforming the time-series data of fractional abundance of m0
 into the 

fractional synthesis of the protein, f(t), which represents the proportion of total proteins that are 

newly synthesized through turnover since labeling begins. This rearrangement essentially 

describes how far the measured data point is between A0(0) and A0(∞) alone the exponential 

decay equation.  

 

The rearranged equation is agnostic to the values of A0(0) and A0(t), which are dependent upon 

the peptide sequence since the fraction of unlabeled peptides depends upon the atom compo-
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sition and deuterium-accessible labeling sites of the peptide. This allows the rescaled peptide-

level fractional synthesis data from multiple peptides corresponding to the same proteins to be 

combined, and a second, protein-level, optimization process to deduce the best-fitted value of 

k to all data points. This improves statistics and error estimation. Note that in addition to A0(t), 

in principle other isotopomers (A1(t) and A2(t) (the time evolution of the fractional abundance of 

the m2 isotopomer) also follows the exponential rise/decay curve and in principle can also be 

used for turnover rate calculation (A1(t) are not always suitable because its time evolution may 

be isosbestic for some peptides. These are automatically filtered because they don’t fit to 

curve). However, in reality and in our experimental setup, m2 time-series with which the kinetic 

curve can be confidently quantified and modeled are rare presumably because of the lower 

relative abundance of m2. Thus m2 based quantification will not be considered in details in the 

results to follow. 

 

A major advantage of the three-parameter fitting method is that the calculation of turnover rate 

constant no longer depends overtly on the precursor-product relationship, and the MIDA pa-

rameters p (precursor level) and n (isotope numbers on the peptides). Thus can be used in a 

large variety of systems including in organisms where the amino acid metabolism and thus 

deuterium accessible sites are not known (e.g., drosophila, or cultured cells). It also lends itself 

to simple implementation of computer optimization programs. 

 

Several filtering heuristics are in place to ensure data quality and limit error propagation. For 

example, peptide time-series are excluded from the calculation of the protein fractional synthe-

sis data if it shows a curve-fitting R2 value of less than an arbitrary 0.7 at the peptide level, as 

well as peptide series containing data from less than 5 out of 13 time points. The chosen R2 

value of 0.7 was adjudged empirically to balance high accuracy and precision in the measure-

ment of the kinetic data. As A0 and A∞ are theoretically bound between 0 and 1, only experi-

mental values between −0.1 and 1.1, were included in fractional synthesis calculation. For m0 
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at some early time points, experimentally measured A0(t) could be larger than the computation-

ally determined A0(0) due to measurement error and/or fitting error, which may lead to an erro-

neous negative fractional synthesis value. We found that filtering the data by their peptide-level 

R2 value at this point was effective in excluding the majority of unquantifiable isotopomers and 

greatly improved the accuracy of turnover rate calculation without significantly impacting the 

number of analyzed proteins. In future work, a weighting algorithm may also be considered that 

allows peptides with good fitting (higher R2 values) or high intensity (thus presumably more 

accurate isotope fractional abundant measurements) to contribute more to the overall evidence 

for turnover rate calculation.  

 

To reiterate, we have applied here two distinct criteria for peptide selections. The first concerns 

with the protein identification, where Scaffold was used to validate and filter peptides based on 

their confidence levels. The second addresses the precision of curve fitting by using a R2 

threshold filter. Mass isotopomers that met these two criteria were accepted for protein turno-

ver rate calculations. 

 

 
Distributions of turnover rates in heart and liver mitochondria 

 

To validate the analytical approach described above and measure how fast proteins turn over 

in cardiac mitochondria in vivo, we labeled male Hsd:ICR (CD-1) mice (9 – 12 weeks old) with 

2H2O over a period of 90 days. Outbred Hsd:ICR (CD-1) mice were chosen for their vigor and 

robustness to surgical procedures, as well as their direct comparability to many Hsd:ICR mu-

rine cardiac proteomics and physiology data collected in the Ping laboratory in the past dec-

ade. 
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FIGURE 1.11 presents an overview of the 2H2O labeling scheme in mice. Label enrichment was 

initiated on outbred Hsd:ICR (CD-1) mice (male, 9 – 12 weeks of age) through two successive 

500-µL intraperitoneal injections of saline dissolved in 99.9% 2H2O spaced 4 hours apart (t = 0 

hr and 4 hr). The animals were then given access to 8% 2H2O in their drinking water supply ad 

libitum. We euthanized three biological replicate groups of animals, each containing three mice 

at 13 time points: 0, 0.5, 1, 2, 4, 7, 12, 17, 22, 27, 32, 37, and 90 days after the first 2H2O injec-

tion (t = 0 hr).  From each time point, we harvested heart, liver, and blood samples from the 

euthanized animals. All three biological replicate groups of animals from each time point were 

used to determine the extent of 2H labeling in body water using gas chromatography-mass 

spectrometry (GC-MS). One of the three groups of mice at each time point was selected in 

random to be processed for the determination of protein turnover rates with high-resolution 

mass-spectrometry. During the labeling period, we maintained a record of the overall body 

weight of the animals, and observed no significant change due to 2H2O labeling (~40 g) (data 

not shown). 

FIGURE 1.11 2H2O labeling scheme to study protein turnover
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FIGURE 1.12 illustrates the experimental workflow for processing the collected mouse sam-

ples. On the left, the steps for processing cardiac and hepatic samples for protein analysis is 

shown. At each of 13 time points, we removed the heart and the liver from the animals and 

extracted mitochondrial proteins. The proteins were separated by SDS-PAGE, digested, then 

analyzed by mass spectrometry to measure turnover rates. On the right is shown the workflow 

for measuring the 2H2O enrichment level in the plasma water pool of the animals. To quantify 

the level of precursor (2H) incorporation during labeling, the serum of the animals was sampled 

at all experimental time points for GC-MS analysis following acetone exchange. In the experi-

ments in this chapter, the 2H2O enrichment levels were not used for turnover rate calculation 

but only to determine that label enrichment was fast and steady as expected. Kidney mito-

chondrial preparations were procured in according manner (not depicted). 

 

Because water molecules quickly equilibrate throughout the body and permeate all cellular 

compartments, the body water content from the serum serves as a close surrogate for the level 

of 2H incorporation in all cell and organ types. Results from the GC-MS experiments confirm 

that the protocol achieved a fast enrichment of 2H2O in the body water. The GC-MS measure-

ments quantify the molar ratio of 2H/1H in the serum water pool, which reached 3.5% within 12 

hours following the priming injections. Throughout the labeling period, ad libitum feeding of 8% 

FIGURE 1.12 Sample processing scheme (heart and liver mitochondria)
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2H2O maintained at a steady-state labeling level at ~4.3% in body water in Hsd:ICR mice. The 

speed and stability of 2H incorporation provide the basis for calculating the fractional synthesis 

of proteins while assuming constant precursor enrichment. The lower actual body water en-

richment than the enrichment provided in drinking water is likely attributable to other sources 

of water including metabolic water. 

 

We next measured the isotope abundance of peptides in the samples by high-resolution mass 

spectrometry on an Orbitrap XL instrument, and calculated fractional protein synthesis at each 

time point based on the three-parameter fitting method. The intensities of mass isotopomers 

were quantified by an in-house computational software program as described above. The 

software integrates the areas under peak in the extracted ion chromatograms, then normalized 

by the intensity of all isotopomers in a particular peptide ion to determine its relative abun-

dance. For every mass isotopomer with quantification data at five or more time points, the 

relative abundances from all time points were fitted to an exponential decay equation as de-

scribed above.  For a particular mass isotopomer, multiple normalized peak intensities may 

exist due to detection of the identical peptides in multiple gel bands, different charge states, or 

the oxidized forms. Identical isotopomers from multiple gel bands were combined, but other-

wise were fitted independently. The fitting was extrapolated to yield the normalized abundance 

of the mass isotopomer at its initial, A0(0), and steady, A0(∞), states. 
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FIGURE 1.13 is a circularized bar chart that demonstrates the turnover rates of 242 mitochon-

drial proteins commonly quantified in the heart and in the liver. The circumferential axis lists 

each protein species whereas the radial axis denotes their respective protein turnover rate 

constant in cardiac mitochondria (red) and hepatic mitochondria (blue). A large difference in 

turnover rates was apparent between identical mitochondrial proteins in the two tissue types. 

The median turnover rate was more than three times higher in the liver than in the heart (0.150 

d-1 and 0.045 d-1, respectively). With the exception of only three proteins (MRPS24, RAB1A, 

and SYNJ2BP), all 242 commonly analyzed proteins shown here exhibited slower turnover (i.e. 

longer half-life) in cardiac mitochondria than in the hepatic mitochondria. This observation 

corroborates other recent studies on the in-vivo turnover rates of proteins amongst multiple 

mouse tissues (Claydon et al., 2012; Price et al., 2010) and illustrates that the large range of 

FIGURE 1.13 Turnover rates of cardiac and hepatic mitochondrial proteins
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turnover rates are determined at least in part by physiological regulation and cellular environ-

ments rather than protein sequence. 

 

 

FIGURE 1.14 further demonstrates the significant differences in turnover rates that an identical 

mitochondrial protein in the heart and the liver may exhibit. The graph reflects the time-

evolution of the fractional of the MRPL12 protein, which was encountered in previous figures. 

The fractional synthesis data from individual time-points were fitted to an exponential rise 

curve to yield the protein turnover rate, k. In the heart, MRPL12 turns over at the rate of 0.065 

± 0.004 d-1 (R2 = 0.98) corresponding to a half-life of 10.7 days; whereas in the liver, the 

MRPL12 protein pool turns over almost three times faster, at 0.205 ± 0.028 d-1 (R2 = 0.95), 

corresponding to a half-life of 3.4 days. 

 

In total, this pilot study captured the turnover of 314 proteins in cardiac mitochondria and 386 

in hepatic mitochondria, among which 458 are distinct. Mitochondrial proteins in all major 

functional categories including respiratory chain, tricarboxylic acid cycle, and fatty acid oxida-

tion proteins are represented in the dataset. Detailed kinetic data and the fractional synthesis 

FIGURE 1.14 Tissue-specific differences in turnover rates
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curves of all quantified proteins are listed in Supplemental Table S1 and Supplemental Figures 

S1 and S2 of our publication (Kim et al., 2012) and are not reproduced herein. 

 

Some considerations in evaluating the performance of the presented method and workflow are 

given here. Firstly, the sensitivity and dynamic range of concentration of the quantification 

method could be informally inferred by two means. We evaluated the range of protein concen-

tration for which we could deduce confident turnover rates by comparing our results to the 

label-free quantification data from very exhaustive experimentation my colleagues and I previ-

ously conducted on cardiac and hepatic mitochondria (Lotz et al., 2013). The data suggest that 

protein turnover rates were determined for proteins spanning approximately five orders of 

magnitude in concentration, ranging from ATP5B at the highest abundance (NSAF: 3.9 x 10-2) 

to RAB2A (NSAF: 5.6 x 10-7). This limit is likely due to mass spectrometry method in detecting 

quantifiable peaks.  

 

The minimal dynamic range of turnover rates in the system was estimated similarly by consid-

ering the distribution of values that were confidently quantified. In the dataset presented above, 

reliably quantified turnover rates spanned approximately three orders of magnitude, in line with 

a few recent 2H2O labeling studies in the literature. The observed turnover rates ranged from 

hours (ATP1A1, half-life: 19.3 hours) to months (UQCRC2; half-life: 61.8 days), but the majority 

of proteins fall within a more narrow range (interquartile range: 10.9 to 22.7 days). The range of 

sampling time points possibly places a limit to the dynamic range of turnover rates that can be 

measured. For instance, the earliest sampling time point must occur before the protein with the 

fastest turnover approaches its enrichment plateau where there is no information on turnover 

rate; likewise, a slow-turnover protein must accumulate sufficient label by the last sampling 

time points for its turnover to be measured. Some proteins that were shown to have extremely 

long half-life may have thus escaped detection. These proteins may be enumerated and classi-
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fied by examining manually the raw data from amongst the proteins that were not fitted confi-

dently to the kinetic curves.  

 

The precision of measurements can be estimated by considering the errors of fitting at the 

protein level, based on the assumptions that: (i) individual peptides from an identical protein 

ought to have identical in-vivo turnover rates; and that (ii) each individual peptide isotope clus-

ter represents an independent observation of the true turnover rate of the protein. We used the 

Monte Carlo method to estimate the fitting error, which, briefly, deduces the average and 

standard deviations of the measurements of A(t), then generate random values over 10,000 

iterations according to the distribution and feed the values into the multivariate optimization 

algorithm to calculate the average and standard deviations of the values of k. Under our meth-

od and filtering criteria, the median of the relative standard error values of k at the protein level 

was 14.9% in the heart, and 21.1% in the liver. These values suggest that in general, our 

method deduced very similar turnover rates from independent peptides of the same proteins 

and thus were reasonably precise. In actuality, as in protein quantification experiments, some 

systematic bias in turnover rates exist from different peptide sequences: certain peptide se-

quences consistently and reproducibly reported lower turnover rates than other peptides 

matched to the same proteins. This may be due to unknown splicing isoforms and/or post-

translational modifications.  Since dk/dA is solvable in the kinetic equation, one could addition-

ally estimate the standard errors of the calculated values of k directly through the non-linear 

curve fitting equation. In general, the Monte Carlo method appears to be more conservative 

and returns slightly larger standard errors. A comparison of the two methods was included in 

our publication (Kim et al., 2012) and is not reproduced here. Note that these analyses addi-

tionally assumes that in kinetic fitting each group of animals from each time point constitutes 

an individual biological replicate, since these individual animals contribute independently to the 

final fitted curve. In actuality, some time points will fall near the inflection point of the kinetic 

curve and contribute more to the error, i.e., dk/dA is a function of time. When the whole set of 
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labeling experiments were repeated over the course of a year, a root-mean-square error of 

~25% was observed and is not discussed in details here. 

 

The accuracy of quantification is more challenging to estimate in light of the paucity of existing 

gold standards of in vivo protein turnover against which one could judge the data. The use of 

standard curves has been demonstrated in early MIDA experiments and in more recent 2H2O 

investigations, where normal and deuterated peptides were synthesized and mixed in specific 

ratios, which is informative on the performance of the mass spectrometer in measuring protein 

isotope fractional abundance but not how well the determined turnover rates matches the true 

rates inside the cell. Alternatively, the measurement accuracy of mass isotopomer could be 

estimated using MIDA, by comparing the empirically measured unenriched mass isotopomer 

abundance at day 0 to theoretical values based on the natural occurrence of heavier isotopes. 

 

 

FIGURE 1.15 compares the experimental values of mass isotopomer distributions to theoreti-

cal values acquired via MIDA before 2H2O enrichment (left) and after 90 days of 2H2O enrich-

ment (right) for the MRPL12 peptide LVESLPQEIK. On the left, the MIDA theoretical distribution 

is based on the combinatorial probability of isotopes due to the natural occurrence of heavier 

isotopes (e.g., 2H 13C, 15N, 18O). It can be seen that the experimental distribution closely match-
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es that of the theoretical values, indicating that in the experiments spectra with accurate rela-

tive isotope abundance were acquired. On the right, a slight discrepancy is seen between the 

experimental value of the peptide and the MIDA value, which may be due to incomplete plat-

eau of the peptide at day 90, or an underestimation for the MIDA parameters p (precursor 

enrichment) and n (labeling sites). The present example notwithstanding, over the whole da-

taset such discrepancy is minor and uncommon, as will be seen in the next chapter where a 

new analytical method that makes overt uses of the MIDA parameter to derive the peptide 

enrichment plateau isotope abundance is shown to correctly predict labeling plateau. 

 

Another method to indirectly gauge the accuracy of the dataset is to compare with common 

proteins in other labeling methods (2H2O or other labels). In addition, some values on the turno-

ver of particular human plasma proteins, such as serum albumin and serotransferrin, have been 

validated over larger ranges of subjects and in different methods in single-protein investiga-

tions, to which we will attempt to compare our human data in Chapter IV.  

 

Here we discuss the potential sources of errors in the derived turnover rate values. Unlike 

protein expression quantification, metabolic labeling experiments are not affected by incom-

plete sample recovery, but several other sources of error are possible, ranging from variations 

of the experimental sources to more systematic errors, which will be considered below. 

 

Firstly, several experimental parameters contribute to measurement errors, which can include 

the accuracy of peak area measurement by the Orbitrap instrument, the effective separation of 

overlapping chromatographic peaks, isobaric peptides with overlapping isotope clusters, 

spectral accuracy, and absolute peak intensities. Prior to data acquisition, we anticipated these 

experimental errors and attempted to keep them under control by heuristically altering several 

experimental parameters and filtering criteria. Upon several trials and errors, it was decided 

that a resolution of 7,000 on the Orbitral XL instrument afforded the most favorable trade-off in 
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protein identification performance and acquiring accurate mass isotope fractional abundance, 

where the majority of unenriched mass isotope clusters fall within 5% of the theoretical value, 

as discussed above. It was also discovered that the use a stringency filter of R2 = 0.7 or above 

at the peptide fitting level minimized the propagation of many poorly fitted peptide data to the 

protein level. These filtering parameters are by necessity empirical and arbitrary, but are inter-

nally consistent and do not make use of population averages to remove outliers. 

 

Secondly, some systematic errors exist in the assumptions of the analytical model that cannot 

be easily removed. For example, the data analysis method assumes first-order kinetics of 

protein turnover in the curve-fitting model. Under scenarios where the molecular turnover 

kinetic is forced to conform to this assumption, a larger error will result. It is possible that the 

first-order kinetics model used in the study does not hold true to a homogenous degree for all 

experimental errors, and all proteins whose turnover deviates from first-order kinetics would be 

fitted with larger errors. 

 

Thirdly, the protein turnover measurements are contingent upon accurate protein identification. 

In scenarios where peptide identification is incorrect, larger inter-peptide variations for a pro-

tein will result. To minimize this source of error, we adopted conservative protein identification 

criteria in protein database search parameters (see Materials and Methods) and further re-

quired a peptide isotopomer to be explicitly identified and independently quantified in about 

half of all time points in order to remove false positives. Peptide sequences that are common 

to more than one protein would for obvious reasons not yield reliable kinetics information for 

either, and thus we filtered out all redundant peptides from known protein isoforms and used a 

highly curated database to ensure only unique peptides were selected for individual proteins 

and to avoid ambiguity in protein kinetics information. However, some peptides shared by 

undocumented or undiscovered protein isoforms or splice isoforms are likely to remain and 

consequently constitute a potential source of error. 
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Fourthly, questions have been raised by reviewers on whether partially synthesized or hydro-

lyzed proteins may interfere with the normalization of peptide values, in other words, whether a 

partial peptide fragment will contain more label than pre-existing proteins and skew the aver-

age label incorporation of the overall population. In theory, one can imagine a scenario where 

protein synthesis success rate is very low in the heart, such that the N-terminal half of the 

protein is repeatedly synthesized and aborted independently of the intact protein pool, contrib-

uting to higher isotope incorporation rates of some peptides. However, these defective ribo-

some products should not come into contact with the general protein pool and adulterate the 

overall isotope ratio, since they are readily degraded by the proteasomes (Schubert et al., 

2000). Thus far, we have not observed evidence to suggest this to skew turnover measure-

ments, as the turnover rates of multiple peptides belonging to the same proteins are largely in 

agreement with one another, especially when fitting criteria are sufficiently stringent, suggest-

ing most of the intra-protein variability comes from low-quality data that do not conform well to 

standard kinetic behaviors. Secondly, turnover measurements from LC-fractionated samples 

(see Chapter II) are indistinguishable from the gel-fractionated samples presented in this Chap-

ter, which would remove partial peptide fragments <10 to 15 kDa in size.  

 

Lastly, precursor recycling is a major intrinsic problem for most isotope tracer strategies, in-

cluding 2H2O labeled amino acids. Briefly, if non-labeled amino acids that result from the pro-

teolysis of a pre-existing unlabeled protein are returned into the protein precursor pool and 

become incorporated into a newly synthesized protein, the new protein will not contain the 

signature of isotope labels and will be indistinguishable from a pre-existing protein. This may 

effectively cause the measurable turnover rate to be an underestimation of the true turnover 

rate inside the cell. Admittedly, this may be particularly problematic for cross-systems compar-

ison such as the one conducted in this chapter, as the liver and the heart may recycle proteo-

lytic amino acids to different extents and gives a false impression of systematic differences in 
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protein turnover behaviors – this is known to be true at least where the urea cycle is con-

cerned. There are relatively few studies in the literature that address this problem directly, most 

of which attempting to deduce the “true” turnover rates by using a protein precursor that is 

presumably non-reutilizable. These specialized labels include sodium bicarbonate, which labels 

arginine and is presumably non-reutilizable as synthesis into protein competes with breakdown 

from the urea cycle precursor (Miwa et al., 2008)), whereas other non-reusable precursors can 

be used for particular proteins, e.g., delta-aminolevulinic acid for heme-containing proteins. 

But in general, these strategies are not suitable for measuring the turnover of the mitochondrial 

proteome in the heart, which does not exhibit urea acid cycle activities. 

 

Notwithstanding the above, several observations suggest that the experimental errors from 

protein precursor reutilization are limited in magnitude. First of all, as discussed earlier how fast 

amino acids become labeled can be measured using GC-MS and will inform on how dynami-

cally the amino acid pool equilibrates with 2H2O. If the incorporation of labels into amino acids 

is fast, the proteolytic amino acids would be easily labeled or replaced by other metabolic 

intermediates. On the other hand, if label incorporation is slow, the proteolytic amino acids will 

have plenty of chance to be incorporated into nascent proteins without labels. Thus far, evi-

dence exists for the quick equilibration of cellular amino acids with ingested 2H2O, which 

reaches plateau isotope incorporation within 30 minutes (Kasumov et al., 2011), a timeframe 

that is significantly shorter than the protein half-life being measured (in the order of days). This 

includes essential amino acid such as leucine, which gains labeling through enzymatic trans-

amination reactions. This is in contrast with the introduction of pre-labeled amino acids via 

diet, which are not expected to back-exchange significantly with unlabeled amino acids. In the 

current workflow, both the transamination process and the empirical labeling sites of amino 

acids used in kinetic curve-fitting (e.g., leucine has 0.6 effective label-able hydrogen atom 

(Commerford et al., 1983)) help rectify the dilution of labels from reutilization. A background 

level of reutilization of proteolytic amino acids continually exists in the cell, but such dilution 



 42 

can be empirically accounted for in the effective labeling sites, the result of which may be 

verified considering that the theoretical plateau values of isotope incorporation, deduced from 

the labeling site counts, match closely to experimentally acquired distributions.   

 

One method to distinguish the effect of label reutilization of 2H2O strategies is to compare the 

turnover rates acquired from deuterium oxide heavy water 2H2O and oxygen-18 heavy water 

(H2
18O). H2

18O labeling is similar to 2H2O in labeling and bioavailability, but instead labels the 

carboxyl oxygen atoms of a free amino acid (Rachdaoui et al., 2009). Although it labels fewer 

numbers of atoms than 2H2O and so may be less amenable to large-scale analysis due to the 

lower label incorporation, it has the advantage of incorporating labeled oxygen atoms into 

amino acids upon their cleavage from a peptide bond or a t-RNA (Borek et al., 1958). Thus 

H2
18O labeling is believed to be able to circumvent the potentially confounding recycling of 

amino acids, since any proteolytic amino acids will subsequently become labeled with 18O 

when they are re-incorporated into peptide bonds. Steven Previs and colleagues have com-

pared the protein turnover rates of albumin in mice using both 2H2O and H2
18O methods, and 

found that although H2
18O appeared to yield higher measured turnover, the difference between 

the two methods did not reach statistical significance (0.325 ± 0.046 d-1 for 2H2O labeling ver-

sus 0.301 ± 0.039 d-1 for H2
18O labeling, P = 0.17). 

 

Hence from the above, there is no conclusive evidence to suggest that the measured protein 

half-life in our experiment would misrepresent in-vivo protein turnover behavior. Furthermore, it 

may be argued that the differences in protein turnover behaviors among proteins (z scores 

from the mean) are more important than the absolute values of turnover rates for the objective 

of inferring candidate protein targets from the statistical extremes. This consideration is com-

mon practice in protein expression experiments, where the relative abundance change (up- or 

down- regulation) is more often the direct experimental goal than the absolute abundance of 

the protein species (number of copies of protein molecules per cell). 
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Heterogeneity and regulations of protein turnover 

 

Our data therefore suggest that protein half-life is a highly varied cellular parameter and corre-

lates to some biological parameters including subcellular localization. Proteome quality control 

may be of particular regulatory significance in the mitochondria as their bi-genomic nature is 

thought to introduce additional phenotypic buffering in protein interaction stoichiometry (Rep 

and Grivell, 1996). The multifarious tissue-specific adaptations of mitochondria, in spite of the 

dearth of known master mitochondrial transcriptional regulators, also suggest hitherto un-

known modulatory mechanisms of mitochondrial physiology. We therefore considered whether 

further biological insights may be discerned from the variations of turnover rates at the basal 

level. It is thought that the precise regulation of protein turnover rates is under severe selective 

pressure due to the cost of protein production and replacement. A substantial amount (up to 

~25%) of dietary energy intake is used to replace degraded muscle protein during normal 

metabolic turnover (Hawkins, 1991; Millward et al., 1975; Young et al., 1975). Any sustainable 

deceleration of protein turnover would therefore result in a substantial increase in the efficiency 

of energy usage and opportunities to divert extra energy to processes critical for survival and 

reproduction. This selective pressure may have led to the observation that many housekeeping 

proteins such as serum albumin have high abundance but slow turnover. The high copy num-

bers of these housekeeping proteins means that a large amount of energy is nevertheless used 

to maintain the bulk protein flux, and the required energy expenditure would become prohibi-

tive if their turnover were also fast.   

 

On the other hand, more recently it has been theorized that a high turnover rate may be select-

ed for amongst proteins that need to quickly alter in abundance in response to some physio-

logical stimuli (Varshavsky, 2011). High turnover is energetically expensive. A protein with a 
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short half-life and fast continual synthesis and degradation would be able to alter in abundance 

if either synthesis or degradation changes. At least in bacterial systems, it has been observed 

that stress response elements such as heat shock proteins have preferentially faster turnover 

(Maier et al., 2011). 

 

As stated above, turnover rates of mitochondrial proteins varied greatly between the heart and 

the liver. To further explore the biology of mitochondrial protein turnover in different tissues, we 

compared data from Hsd:ICR mouse heart, liver, and kidney in an independent dataset using 

identical methods as above (raw data not shown). 

 

 

FIGURE 1.16 shows three scatter plots of standardized log turnover rates (Z score) of 444 

mitochondrial proteins commonly measured in the mouse heart, liver, and kidney. Compari-

sons between (Left) heart and liver; (Right) liver and kidney; and (Bottom) kidney and heart are 

shown in each plot. Each data point represents a distinct protein, and the red diagonal line 

FIGURE 1.16 Heterogeneity of protein turnover in different tissues
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represents 1:1 in standardized turnover rates in two respective tissues, whereas the dashed 

lines represent the positions of data points where a protein turns over markedly faster or slow-

er in one tissue (+1.5 or -1.5 standard deviations from the mean); ρ: Spearman’s correlation 

coefficient. Proteins that differ markedly in turnover rates between two tissues are labeled, for 

example, a number of mitochondrial ribosome subunits can be seen that turn over relatively 

faster in the heart than in the liver or the kidney. The highlight of mitochondrial ribosomal subu-

nits is of interest because they are thought to control respiratory rate and the stoichiometric 

balance between mitochondrial and nuclear encoded proteins (Houtkooper et al., 2013); their 

differential turnover between the heart and liver may therefore have implications on the prote-

ome organization of the cardiac mitochondrion with its predominantly energetics functions vs. 

that of liver mitochondria. In contrast, several inner membrane carriers, e.g., for arginine and 

amino acid precursors (SLC25A29) turn over relatively faster in the liver (in Z score) than would 

be expected in the kidney. Taken together, these differences suggest that the heterogeneity in 

the regulation of protein turnover rates may reflect differences in mitochondrial biology in dif-

ferent tissues or system. 

 

The diverse turnover rates of individual mitochondrial proteins hint at regulatory mechanisms 

that are capable of fine-tuning individual protein turnover rates. Hence, we considered whether 

there are discernible rules that may govern the turnover rates of particular proteins from the 

dataset, and conversely whether one may discern biological significance from the measured 

distribution of protein turnover rates. There have been numerous literature reports that link the 

in vivo half-life of mammalian proteins to simple biophysical parameters. Hence we decided to 

first analyze whether the acquired turnover rate distributions replicate these findings, i.e., 

whether a protein may have longer half-life simply because it is more hydrophobic, as opposed 

to its being under more complex physiological regulations.  
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FIGURE 1.17 displays four scatterplots that correlate individual mitochondrial protein turnover 

rates to four biophysical or biochemical parameters: the abundance (upper left), molecular 

weight (upper right), isoelectric point (lower left), and hydrophobicity (lower right) of a protein. A 

modest inverse correlation was observed between protein turnover rate and the relative abun-

dance of the protein (heart: Spearman’s correlation coefficient ρ = −0.46, P < 2.2 × 10−16 and 

liver: ρ = −0.19, P = 7.95 × 10−3), corroborating that abundant proteins turn over more slowly in 

general. This trend has also been observed from limited data in other systems such as the 

human plasma, where the most abundant protein, serum albumin, has one of the slowest 

turnover rates among plasma proteins. As discussed above, this may reflect a possible adapta-

tion given the prohibitive energy expenditure that would result from constantly replacing such a 

massive protein pool. By contrast, we observed no significant correlations in either the heart or 

the liver between protein turnover rates and their molecular weights. It was reported in the 
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1970’s from small-scale studies of few proteins (33 or less) that larger polypeptide subunits 

may turnover faster (Dehlinger and Schimke, 1970; Dice and Goldberg, 1975a), but our large-

scale investigation failed to replicate this observation, at least within cardiac mitochondria. It 

was further reported in 1975 from a study of 22 proteins that proteins with lower isoelectric 

points tended to also exhibit shorter half-life in rats (Dice and Goldberg, 1975b), which was 

interpreted to suggest a potential degradation mechanism. However, when it was examined 

whether any systematic relationship existed between isoelectric points and turnover rate in our 

sample, no significant correlation was shown in the mitochondria. Likewise, no significant 

correlation was observed between protein turnover and hydrophobicity, as estimated using the 

GRAVY index (Grand Average of Hydropathicity) (Kyte and Doolittle, 1982) with the ProtParam 

programon ExPASy (Artimo et al., 2012), which is a function of the empirical hydropathicity of 

the constituent amino acid residue of the protein. 

 

The data further presented an opportunity to examine the effect of the primary structure of the 

proteins on their turnover rates. In vivo protein half-life has been proposed to be governed in 

part by specific sequences on the protein that may target them for proteasomal or lysosomal 

degradation. A number of these sequences have been discovered that include the N-end rule 

sequences and the PEST motif. The N-end rule has since been worked out extensively and is 

attributable to N-terminal degrons recognized by E3 ubiquitin ligases. The PEST motifs are 

sequences rich in proline (P), glutamic acid (E), serine (S), and threonine (T) that are thought to 

be signals for proteasomal and calpain degradation and have been associated with short pro-

tein half-life (Rogers et al., 1986). In at least some important cardiac proteins including an-

nexins, PEST motifs have been shown to be proteolytic signals for calpain-mediated 

degradation that govern protein stability (Barnes and Gomes, 2002). Likewise, the intrinsic 

instability of the protein sequence has also been proposed to confer short protein half-life, in 

part because the proteasome is thought to require an unstructured region on the substrate to 

initiate degradation (Prakash et al., 2004). Relatively few studies have examined whether PEST 
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sequences or protein sequence disorders act as a global predictor of overall protein half-life in 

unbiased manners, although a recent large-scale study in vitro suggest that fast-turnover 

proteins in HeLa cells tend to have higher frequency of PEST motifs (Boisvert et al., 2012). 

Hence we examined whether the observation is recapitulated in our in vivo dataset. 

 

 
 
 

FIGURE 1.18 compares the turnover rates of proteins with or without PEST motifs (left) and 

with or without intrinsically disordered structures based. Each data point represents one pro-

teins. Solid line represents median; dashed lines represent the interquartile range. The pres-

ence of PEST motifs on the mitochondrial proteins was queried using the ePESTfind algorithm 

(Rogers et al., 1986; Schuster and Grabner, 1986) hosted on ExPASy (Artimo et al., 2012), 

which analyzes protein sequence we submitted in batch through Taverna (Wolstencroft et al., 

2013) and categorizes protein and scores for potential PEST motifs and whether a protein 

contains a potential, poor, or none predicted PEST sequence. We found that at least within the 

mitochondria, proteins that contain at least one potential PEST motif did not appear to have a 

prominent difference on in vivo protein half-life than those without (Mann-Whitney U test, P > 

0.10). Our result corroborates a recent observation which found no evidence that they affect 

protein age/ isotope incorporation in vivo (Doherty et al., 2009). However, these data should be 
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FIGURE 1.18 Correlation between protein turnover and sequence features
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interpreted with caution because the lack of correlation in this particular experiment does not 

necessarily suggest that the PEST motif does not influence protein half-life in any way. It is 

possible that the degradation signal may not exist inside mitochondria, or may be cell type and 

stimulus dependent. The result also depends heavily upon how the PEST motifs are defined, 

and it may be that very many number of degradation mediators would recognize variations of 

PEST motif to promote or suppress degradation, such that the overall effect is hard to discern 

on the global scale. Nevertheless, for the time being the data conclude that there is no system-

atic bias introduced by the presence of PEST motifs to the turnover rates of mitochondrial 

proteins. When we queried the presence of potential unfoldability in the protein list using the 

FoldIndex algorithm (Prilusky et al., 2005), which analyzes the linear protein sequence and look 

for local unfoldability and the number of potential disordered region, again no global difference 

in turnover rates was apparent between proteins that contain disordered regions vs. no disor-

dered regions (Mann-Whitney U test, P > 0.10).  

 

Lastly, mitochondria are suggested to have inherited Arg/N-end rule and Leu/N-end rule path-

ways (Varshavsky, 2011; Vögtle et al., 2009), although major components of the degron recog-

nition system are pooly understood. A recent study by William Stanley and colleagues found a 

significant difference between proteins with stabilizing or destabilizing N-terminal amino acids 

among the 47 proteins considered (Shekar et al., 2014). However, we found no significant 

correlation between our turnover rate data and the proteins’ predicted in vitro half-life from 

ProtParam (Artimo et al., 2012), which is based on the N-end rule (Varshavsky, 1996, 2011). A 

possible explanation for this discrepancy may be differences in the scales of the study, or the 

accuracy of the N-terminal amino acid in the mature protein chain after specific cleavage of N-

terminal pre-sequences. 

 

Taken together, these analyses suggest that primary structure is a poor predictor of in-vivo 

protein half-life, at least insofar as cardiac mitochondrial proteins are considered.  
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FIGURE 1.19 compares the turnover rates of proteins assigned to different sub-organellar 

compartments according to Swissprot/ Protein Information Resource (SP/PIR). Each data point 

represents a distinct protein. The solid horizontal line represents the sample median; dashed 

lines represent the interquartile range. Inner membrane proteins have similar median half-life as 

matrix proteins, whereas the outer membrane proteins have significantly shorter half-life than 

those on the inner membrane (Mann-Whitney U test, Heart: P = 5.55 × 10-3, Liver: P = 5.21 × 

10-4). This observation corroborates previous observations in bulk tissue components that 

measured total protein turnover in inner membrane extracts vs. outer membrane extracts 

(Brunner and Neupert, 1968; Lipsky and Pedersen, 1981). Although the data also revealed 

additional variability within each component, we interpret the data as suggesting the two sub-

organellar compartments to be under influence from different protein degradation mechanisms, 

with the cytosolic-facing outer membrane having additional access to proteasomal, and other, 

degradation. 

 

We next considered some of the implications that may be drawn from the data on mitochon-

drial biology, such as whether protein turnover informs on the sequence of protein complex 

assembly. This is a relevant question because whether protein complexes turn over synchro-

nously, i.e., most constituent subunits are produced and degraded in coordinated fashion, 

remains an open question under debate. In a large-scale study by Price et al., subunits of 

multiprotein complexes have been suggested to have coordinated turnover (Cambridge et al., 

FIGURE 1.19 Correlation between turnover and sub-organelle localization
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2011; Price et al., 2010), whereas other studies have reported notable exceptions of asynchro-

nous turnover (Doherty et al., 2009; Savas et al., 2012). In our datasets presented earlier in this 

chapter and in the next chapter, we found a general observation where the subunits of well-

defined, stable protein complexes are indeed more clustered in terms of protein turnover over 

the whole proteome. Nevertheless, considerable variability in turnover exists within each clus-

ter, and indeed particular members of intermediate subcomplexes may turn over more tightly 

synchronously than the other subunits at large. This observation was most apparent in the 

case of the respiratory chain complex I, in which the transiently associated assembly factors 

turned over considerably faster than the median of the entire protein complex. In cardiac mito-

chondria, the assembly factors NDUAFAF2 and NDUAFAF3 had turnover rates of k = 0.053 d-1 

and 0.078 d-1 respectively, as compared to the complex median value of 0.036 +/- 0.007 d-1. 

The assembly factors are integral to complex I topogenesis but dissociate from the mature 

protein complex; in contrast, the core subunits of the Q subcomplex, NDUFS2, NDUFS3, 

NDUFS7, and NDUFS8 turned over almost synchronously (heart: k = 0.039 d-1, 0.036 d-1, 0.042 

d-1, 0.039 d-1, respectively). A possible explanation is that the subunits with higher turnover 

rates may owe it to their more frequent exposure to proteolytic mechanisms, or may exist more 

frequently as dissociated monomers owing to the complex assembly sequence and/or topolo-

gy. 

 

This hypothesis suggests that turnover rates are influenced by the stability with which a protein 

subunit associates with the final assemblage. This is in opposition to the synchronized com-

plex turnover model, wherein all constitutive subunits would have synchronized turnover kinet-

ics. In attempt to differentiate between the two models, we further exampled the data on the 

subunit NDUFA9, which has a relatively high turnover compared to other complex I subunits in 

the liver (k = 0.27 d-1) but not the heart (k = 0.035 d-1). During the biogenesis of complex I, the Q 

subunit is the first to assemble before the NDUFA9 protein associates with the mitochondria-

encoded MT-ND1 subunit to initiate the next intermediate step in the assembly sequence 
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(Janssen et al., 2006). Incidentally, MT-ND1 has a considerably lower abundance in the liver 

than in the heart relative to other subunits, which would be consistent with an increased sur-

plus of NDUFA9 free subunits and may explain why NDUFA9 has a faster turnover. In a second 

example, the NDUFA4 and NDUFS7 subunits have above-median turnover rates in both the 

liver and the heart (NDUFA4: k = 0.047 d-1 in the heart, k = 0.30 d-1 in the liver; NDHFS7: k = 

0.042 d-1 in the heart; k = 0.028 d-1 in the liver). Both subunits are incorporated into complex I 

relatively late in the assembly sequence and only after other stable intermediates are formed 

(Janssen et al., 2006), which is consistent with their increased exposure to proteolytic mecha-

nisms.  

 

To determine whether the measured turnover rates from the subunits in whole-mitochondrial 

lysate may differ from the native complexes, we conducted blue native (BN)-PAGE separation 

of mitochondria followed by in-gel digestion of large supramolecular complexes and analyzed 

protein turnover rates by mass spectrometry. 
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FIGURE 1.20 shows the measurements of turnover rates in native complexes.  (Left) Mouse 

liver mitochondrial proteins from day 1, 2, 3, 5, 7, and 14 of 2H2O labeling were resolved with 

BN-PAGE under gentle conditions to isolate large supramolecular complexes. Gel bands that 

correspond to complexes I, III, IV, and V, as well as supercomplexes (SC) based on previous 

experience were excised for in-gel digestion and MS analysis. L: size ladder. (Right) Scatterplot 

showing the comparison of the turnover rates of 62 respiratory complex subunits measured 

from BN-PAGE excisions and whole mitochondrial lysate. Overall, we observed no systematic 

bias in turnover rates, with the median ratios of BN-PAGE over whole-mitochondrial lysate of 

1.04 [0.92 – 1.18]. Only two respiratory complex subunits exhibited significant differences in 

turnover rates. Both showed modestly faster turnover in the BN-PAGE-resolved samples –  

ATP5D: ratio: 1.13, Mann-Whitney U test P: 3.6 x 10-2; and ATP5B: 1.1, Mann-Whitney U test 

P: 2.8 x 10-3. Thus although some variability exists between the turnover of free subunits and 

complex-associated subunits, overall we did not observe compelling evidence to suggest that 

the assembled complexes are in disequilibrium from the whole-mitochondrial lysates, or that 

the subunits isolated from assembled complexes exhibited more tightly clustered turnover. 

 

Although further investigations are necessary to determine whether protein turnover rates can 

be used to derive mechanistic insights on protein assembly, the presented observations are 

consistent with finer regulations of protein turnover within a stable protein complex. It is entire-
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ly possible that a combination of abundance and turnover may in fact be one regulatory mech-

anism on the level of functional protein complexes in the cell. In fact, it may be reasonably 

expected that respiratory complex I subunits ought not to turn over completely synchronously 

given the vast differences in the relative abundance of the subunits themselves. This is as 

opposed to the 20S proteasome, where data we acquired show that the core subunits have 

relatively uniform abundance as well as turnover rates. 

 

The variable turnover dynamics of the mitochondrial proteome also hint at the types of proteo-

lytic mechanisms that may govern protein degradation in cardiac mitochondria. When induced, 

macroautophagy of the mitochondria, whether through PINK1/Parkin-mediated canonical 

mitophagy or otherwise, is known to engulf and remove entire mitochondria simultaneously 

(Kubli and Gustafsson, 2012). In theory, the assumption of steady-state protein abundance in 

inferring turnover from synthesis may be transiently offset by bouts of occasional mitophagy on 

selected organelle units and still remain valid over the labeling period. By removing all mito-

chondrial proteins from the cell at a fixed rate, this process would act as a synchronizing 

mechanism for protein dynamics inside the organelle. Indeed, the overall range of mitochondri-

al protein turnover rates that was observed in the experiment is a much narrower than that for 

the entire heart, both in literature reports and in our experiments as reported in the next chap-

ter, indicating that mitochondrial proteins do share similar turnover rates insofar as the entire 

cardiac proteome is concerned.  

 

Nevertheless, the diverse turnover rates of mitochondrial proteins dispute the indispensability 

of indiscriminate mitophagy in individual protein homeostasis. In other words, the mitochondri-

al proteome does not only turn over as a single unit. Since the synthesis rates of mitochondrial 

proteins span over an order of magnitude in the heart, at any moment each mitochondrion 

must contain certain proteins that on average have been synthesized more recently than oth-

ers. If mitophagy were indeed the predominant process of mitochondrial protein removal in the 
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heart, then it would follow that many mitochondria would be missing critical components. To 

resolve this paradox, a mechanism is necessary that would allow mitochondria with new and 

old proteins to preserve homeostasis under mitophagy. For example, mitochondrial proteins 

may be synthesized in excess in the cytosol at variable rates before simultaneous import. 

Alternatively, a sorting mechanism prior to autophagy must exist such that some protein spe-

cies would be preferentially recycled during fusion-fission cycle. At present, evidence is scarce 

to support the existence of either scenario in the heart, although recent evidences suggest that 

some outer membrane proteins may escape mitophagy by translocation to the ER (Saita et al., 

2013), and that mitochondria may derive mitochondria-derived vesicles to the lysosome 

(McLelland et al., 2014; Soubannier et al., 2012). Such vesicles may contain a specific subset 

of the mitochondrial proteome. Notwithstanding, the data are consistent with substrate-level 

proteolysis playing significant roles in mitochondrial dynamics, as would be consistent with the 

various intra-mitochondrial protease complexes expressed by cardiac cells. The data highlight 

the potential of a proteome dynamics map at individual protein resolution for uncovering signa-

tures of protein quality control dysfunctions, such as in aging and metabolic perturbation stud-

ies, where measuring bulk organellar protein synthesis as a proxy for mitochondrial 

homeostasis would be an inadequate means of capturing the details of mitochondrial protein 

turnover.  

 

 
Materials and methods 

 

Method Summary: The data shown in this chapter were acquired by performing 2H2O labeling 

on healthy adult Hsd:ICR mice and analyzing protein isotope incorporation with mass spec-

trometry and bioinformatics tools. Experimental details are given below: 
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Reagents: 2H2O (70% and 99.9% molar ratio) was purchased from Cambridge Isotope Labora-

tories and filtered through 0.1-µm polyethersulfone membranes (VWR). Other chemical rea-

gents were from Sigma-Aldrich unless specified. Milli-Q (Millipore) filtered water (18.2 MΩ) was 

used.  

 

Study approval: Mouse experiments were conducted in accordance with the Guide for the 

Care and Use of Laboratory Animals by the National Research Council and approved by Uni-

versity of California, Los Angeles. 

 

Introduction of stable isotope labels: Male Hsd:ICR (CD-1) outbred mice (Harlan laborato-

ries, 8 – 10 weeks of age) were used in the study. The animals were housed upon arrival in a 

12-hour/12-hour light-dark cycle with controlled temperature and humidity, free access to 

standard chow and water. To initiate labeling, we gave each animal two intraperitoneal (i.p.) 

injections of 500-µL 99.9% molar ratio 2H2O-saline 4 hours apart. The mice were then allowed 

access to 8% (v/v; 7.25% molar ratio) 2H2O in the drinking water supply ad libitum. We eu-

thanized the animals at up to 13 time points (0, 0.5, 1, 2, 4, 7, 12, 17, 22, 27, 32, 37, 90 days 

following the second 2H2O injection for sample collection) to collect heart, liver, and blood 

samples to determine 2H2O enrichment in body water and protein turnover rates. We did not 

observe significant change in body weights of mice (≈ 40 g) during the labeling period. 

 

Measurement of body water label enrichment: To measure the amount of 2H2O that is incor-

porated into the animal’s body water throughput the labeling period, mouse and human plas-

ma samples were used directly for gas chromatography MS analyses. For each sample, 20 µL 

of plasma was mixed with 2 µL of 10 N NaOH and 4 µL of 5% (v/v) acetone in acetonitrile. The 

standard curves were created by adding 0% to 20% molar ratio of 2H2O at 11 regular intervals 

in 1× PBS in place of the plasma sample to the acetone. The sample mixtures were incubated 

at ambient temperature overnight. Acetone was extracted by adding 500 µL of chloroform and 
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0.5 g of anhydrous sodium sulfate. One µL of the extracted solution was analyzed on a GC-

mass spectrometer (Agilent 6890/5975) with a J&W DB17-MS capillary column (Agilent, 30 m × 

0.25 mm × 0.25 µm) at the UCLA Molecular Instrumentation Center. The column temperature 

gradient was as follows: 60 °C initial, 20 °C·min-1 increase to 100 °C, 50 °C·min-1 increase to 

220 °C, 1 min hold. The mass spectrometer operated in the electron impact mode (70 eV) and 

selective ion monitoring at m/z 58 and 59 with 10 ms dwell time. 

 

Isolation of cardiac and hepatic mitochondria: To isolate mitochondria, we excised the heart 

and liver from each mouse, and homogenized the tissues using a 7-mL Dounce homogenizer 

(Pyrex) (20 strokes) in an extraction buffer (250 mmol·L-1 sucrose, 10 mmol·L-1 HEPES, 10 

mmol·L-1 Tris, 1 mmol·L-1 EGTA, 10 mmol·L-1 dithiothreitol, protease and phosphatase inhibitors 

(Pierce Halt), pH 7.4) at 4 °C. The homogenate was then centrifuged (800 rcf, 4 °C, 7 min). The 

supernatant from the first spin was taken and further centrifuged (4,000 rcf, 4 °C, 30 min) to 

collect as the organelle-depleted cytosolic fraction. The pellet from the second spin was 

washed once with 1 mL of the extraction buffer, centrifuged again (4,000 rcf, 4 °C, 30 min), 

then overlaid on a 19%/30%/60% discrete Percoll gradient. The mitochondria were then sedi-

mented by ultracentrifugation (12,000 rcf, 4 °C, 10 min). Purified mitochondria were collected 

from the 30%/60% interface layer and washed twice with 1 mL of the extraction buffer fol-

lowed with centrifugation (4,000 rcf, 4 °C, 15 min). We then lysed the purified mitochondria by 

sonication in 10 mmol·L-1 Tris-HCl. Protein concentrations were measured by bicinchoninic 

acid assays (Smith et al., 1985) using pure bovine serum albumins as standards (Thermo 

Pierce). 

 

Fractionation and digestion of mitochondrial proteins: To prepare the isolated mitochondri-

al proteins for MS analysis, we fractionated the total protein using polyacrylamide gel electro-

phoresis and performed in-gel trypsin digestion. Two hundred µg of proteins were denatured at 

70 °C in Laemmli sample buffer for 5 minutes and then separated on a 12% Tris-glycine 
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acrylamide gel with 6% stacking gel, at 80 V, at ambient temperature for 19 hours. The gel was 

Coomassie-stained and cut into 21 fractions. Each fraction was minced into ~1 mm3 cubes and 

destained with 300 µL of 50 mmol·L-1 NH4HCO3 and 25% acetonitrile. The gel cubes were 

dehydrated with 300 µL of acetonitrile, then rehydrated in 300 µL of 10 mM dithiothreitol, 

washed and dehydrated, then alkylated in 100 mM of iodoacetamide, and digested with 30:1 

(w/w) sequencing-grade trypsin (Promega) at 37°C overnight. 

 

Measurement of protein isotope incorporation: To acquire information on protein identity 

and the amount of incorporated heavy isotope at each time point, we analyzed the proteolytic 

peptides using a LTQ Orbitrap XL mass spectrometer (Thermo Fisher Scientific), coupled to a 

nanoACQUITY UPLC system (Waters). The trapping (30 mm in length) and analytical (200 mm 

in length) columns for peptide separation were packed in-house in an IntegraFrit columns (New 

Objective) (360-µm outer diameter, 75-µm inner diameter) with Jupiter Proteo C12 resin (Phe-

nomenex) (90-Å pore, 4-µm particle) using a NanoBaume pressure bomb (Western Analytical 

Products). To fractionate the peptide species on the LC column, we used a binary buffer sys-

tem consisting of 0.1% (v/v) formic acid in 2% (v/v) acetonitrile (buffer A) and 0.1% formic acid 

in 80% acetonitrile (buffer B). The separation gradient was made by changing buffer B as 

follows: 0 minute, 2% B; 0.1 minute, 5% B; 70 minute, 40% B; 90 minute, 98% B; 100 minute, 

98% B; and 105 minute, 2% B, with subsequent equilibrium at 2% B for 5 minutes. Mass 

spectra were obtained in profile mode for MS survey scan in the Orbitrap at a resolution of 

7,500 and in centroid mode for MS/MS scan in the LTQ ion trap. The top five intense peaks in 

the MS scan were subjected to CID with an isolation window of 3 m/z and a dynamic exclusion 

of 25 seconds. 

 

Database search for protein identification from mass spectra: To identify the protein spe-

cies present in the sample, we matched the acquired spectra against a protein database using 

a search engine. The raw spectral data were processed by BioWorks (ThermoFisher Scientific, 
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version 3.3.1 SP1) into a searchable format, then matched using SEQUEST (ThermoFisher 

Scientific, version 3.3.1) against the UniProt mouse database (2011-07-27; 55,744 entries). The 

SEQUEST search parameters included fixed cysteine carbamidomethylation and variable 

methionine oxidation, with enzymatic specificity set to trypsin, and two missed cleavages. The 

mass tolerances for the precursor and the product ions were 100 ppm and 1 Th, respectively. 

The minimum redundancy set of proteins was filtered with Scaffold (Proteome Software, ver-

sion 3.3.3), requiring at least two peptides and 99.0% protein confidence for affirmation. The 

global false discovery rate was set to 0.1% in Scaffold. Because they may be shared by pro-

teins with different turnover rates, all peptides shared by multiple proteins or protein isoforms 

were excluded from downstream turnover rate calculations.  

 

Analysis of protein isotope incorporation patterns: To input into the in-house analysis pro-

gram, [.raw] mass spectra were first converted into [.mzML] format using ProteoWizard (version 

2.2.2913). The relative abundance of a protein was determined by the summation of total 

chromatographic areas of the constituent peptide ion peaks divided by the areas of all identi-

fied peptide ions in the experimental dataset using Progenesis LC-MS (Ver. 4.0.4441.29989, 

Nonlinear Dynamics). 

 

Statistical analyses: Uncertainties in rate constants were estimated using the Monte Carlo 

method. The distribution of the relative abundance was approximated using the absolute value 

of the residues. At each measured time point, a single point was synthetically generated using 

random numbers from a Gaussian distribution with the same width as the distribution of the 

absolute values of the residuals and a mean of the model value. New rate constants were 

determined for the 10,000 synthetic datasets, and the distribution of rates was observed to 

converge approximately to a Gaussian distribution. The width of this distribution (1σ) was 

reported as the standard error of the rate constant. Quantile-quantile plots suggest that the 

turnover rates of proteins within a tissue homogenate are not normally distributed. Significanc-
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es of difference between groups were thus assessed by rank-based, non-parametric Mann-

Whitney U tests using R (v.3.0.3). Correlations between variables were denoted by Spearman’s 

rank-correlation coefficient (ρ). 
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II. Proteome dynamics of cardiac remodeling 
 

 

Following the development of a large-scale method to study protein half-life in vivo, our next 

objective was to measure how protein expression and turnover may alter during the develop-

ment of heart diseases. Using 2H2O labeling and an isoproterenol-challenge model of cardiac 

remodeling in mice, we measured the turnover rates of approximately 3,000 cardiac proteins, 

and observed widespread and specific changes in turnover during cardiac remodeling and 

reverse remodeling. The data suggest that proteins with highly elevated protein turnover rates 

during disease may represent a new class of candidate disease drives that elude detection by 

experiments that measure only steady-state protein abundance, which include mitochondrial 

proteins such as HK1, ALDH1B1, and PHB, as well as a number of cytosolic proteins. We 

further describe some features of protein dynamics changes in relation to expected physiologi-

cal and proteomic changes. The material composing this chapter was published and can be 

found in our publication (Lam et al., 2014). 
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Mitochondrial dysfunctions in cardiac remodeling 

 

Heart failure afflicts oppressive societal and human loss, affecting 5.1 million Americans and 

contributing to one in nine deaths per year (Go et al., 2013). During the development of heart 

failure, the myocardium undergoes massive and progressive remodeling, characterized at the 

cellular level by changes to multiple subsystems including calcium signaling, adrenergic signal-

ing, metabolic changes, cell death signaling, and redox balance. At the molecular level, the 

dynamic equilibria of multiple biomolecules are simultaneously shifting towards pathological 

steady states during disease development. Despite decades of research, important knowledge 

gaps persist on the cardiac remodeling process, which can in part be attributed to an incom-

plete description on how molecular events interact to orchestrate complex, multifactorial etiol-

ogies. Identifying the participants and sequences of the remodeling process is thus an 

important of cardiac research that could lead to general principles that explain the pathogenic 

mechanism and time-evolution of heart diseases. 

 

Mitochondrial dysfunction is a hallmark of the failing heart. (Abel and Doenst, 2011; Marin-

Garcia et al., 2001; Neubauer, 2007; Rabinowitz and Zak, 1975; Rosca and Hoppel, 2010; 

Tokoro et al., 1995). Functional abnormalities of the mitochondrion typically present during the 

onset of pathological remodeling, and may develop progressively parallel to left ventricular 

dysfunctions (Abel and Doenst, 2011; Marin-Garcia et al., 2001; Neubauer, 2007; Rosca and 

Hoppel, 2010). Whilst these changes can in part be attributed to a general decrease in mito-

chondrial biogenesis, different mitochondrial components often present different injuries, sug-

gesting that alterations of distinct sub-proteomes or individual proteins are crucial to overall 

disease development. 
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FIGURE 2.1 summarizes some mitochondrial alterations that occur during cardiac remodeling. 

Common mitochondrial ultrastructural abnormalities may be observed under the microscope  

and include disarrayed organelle arrangements along myofibrils and disrupted cristae. Physio-

logical perturbations include diminished adenosine triphosphate (ATP) production, phospho-

creatine levels, and fatty acid utilization (Abel and Doenst, 2011; Lin et al., 2003; Marin-Garcia 

et al., 2001; Tokoro et al., 1995). Changes in gross phenotypes are paralleled by a remodeling 

of the mitochondrial proteome into a pathological state that reflects a decrease in substrate 

metabolism and energy conversion (Neubauer, 2007; Rabinowitz and Zak, 1975; Rosca and 

Hoppel, 2010). Known components of proteome remodeling include the decrease of fatty acid 

oxidation (FAO) enzymes including CPT1B, MCAD, and ACADVL (Bugger et al., 2010); re-

pressed expression of electron transport chain (ETC) subunits including NDUFA9, SDHB, and 

COX5B (Bugger et al., 2010); the disassembly of respiratory chain supercomplexes (Rosca et 

al., 2008); and widespread alterations of other metabolic protein expression (Dai et al., 2013; 

Kato et al., 2010; Meng et al., 2009). The proteome changes are thought to be harbingers of 

higher metabolic and energetic disorders including decreased ATP production and respiratory 

capacity. Hence an objective of understanding cardiac hypertrophy is to establish how mito-

chondrial remodeling is initiated, i.e., to define the sequence of alterations in proteome anato-

my, and to ascertain whether certain events consistently lead to irreversible mitochondrial 

FIGURE 2.1 Typical mitochondrial derangements in cardiac remodeling
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damage. Proteome changes coincide with the elevated ROS (Tsutsui et al., 2009), and it is 

thought that the promotion of protein damage may underlie some pathological phenotypes. 

Because of the proximity of mitochondria with ROS and the general decrease of protein quality 

control in the failing heart, increased ROS encountered by mitochondrial proteins in the dis-

eased heart in particular (Giordano, 2005) would render proteins more susceptible to misfold-

ing, aggregation, and chemical modifications.  

 

In parallel, malfunctions of protein turnover are increasingly recognized in numerous human 

disorders, including cystic fibrosis, neurodegenerative diseases, and heart diseases (Balch et 

al., 2008; Hinkson and Elias, 2011). In the normal heart, protein turnover helps maintain the 

protein pool in homeostasis through continual synthesis and degradation. The turnover cycle 

becomes perturbed during cardiac injury and heart failure, by factors including hypertrophic 

signaling calcium regulation and proteolytic stress (Giordano, 2005; Goonasekera et al., 2012; 

Katz, 2010; Tsutsui et al., 2009). Hypertrophy is associated with increased overall protein 

synthesis, which at the same time creates increased protein misfolding which stresses cellular 

protein quality control system to maintain homeostasis (Doroudgar and Glembotski, 2013). 

Altogether, changes to protein degradation and synthesis instigate a remodeling of the cardiac 

proteome that parallel, at the molecular level, the progressive deterioration of cardiac structure 

and functions (Abel and Doenst, 2011; Dai et al., 2012; Drews et al., 2010; Katz, 2010). Multiple 

pharmacological interventions that target protein kinetics are also known to modulate the 

outcome of isoproterenol-induced cardiac remodeling markedly. Rapamycin, which inhibits 

mTOR-mediated protein synthesis and promotes autophagy, is known to ameliorate heart 

failure. On the other hand, proteasome inhibition, which decreases the amount of proteins 

being degraded, has complex and sometimes dichotomous outcomes on cardiac disease 

phenotypes (Glembotski, 2012; Hedhli and Depre, 2010; Stansfield et al., 2008). In at least one 

study, inhibition of proteasomes has been found to exacerbate and even been sufficient to 

reproduce the phenotypes of isoproterenol stimulation (Tang et al., 2010).  
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Because either the rate of protein synthesis or degradation (i.e., protein turnover) must deviate 

from normal values in order for the protein pool size to adjust to a new level, any permutation 

of proteome states leaves behind a kinetic signature, in the form of the fraction of newly syn-

thesized proteins in the protein pool (Claydon et al., 2012; Doherty and Beynon, 2006). This 

kinetic signature can be measured through the incorporation of isotopes into protein over time, 

and may be exploited to identify unexpected disease proteins and their pathological implica-

tions independently of abundance measurements. For instance, the increased abundance of a 

protein may originate from elevated protein synthesis or decreased proteolysis, two scenarios 

which can be distinguished by the replacement kinetics of the protein pool, i.e., protein half-

life. Alternatively, cellular signaling may accelerate synthesis and degradation to shorten pro-

tein half-life without altering protein abundance, which has been hypothesized to facilitate the 

generation of spatial gradients (Varshavsky, 2011). Since abundance measurement per se 

conflates disparate kinetic scenarios, investigations restricted to steady-state measurements 

have limited power to discern certain time-dimensional features of disease progression. The 

overall protein pool abundance conflates a number of disparate biological realities – a protein 

of increased abundance could owe it to increased synthesis or decreased degradation; a 

protein with shortened half-life may show no abundance change. These kinetic scenarios 

would be indicative of relevant pathologies, e.g., a drastic increase in turnover in early hyper-

trophy would signify functional activation in relation to remodeling, whereas prolonged half-life 

amid elevated ROS in the decompensated heart would be symptomatic of impaired proteoly-

sis, because the previously existing protein pool accumulates. These and further pathologic 

scenarios present only in the time dimension and are obscured from instantaneous protein 

abundance measurements. 

 

This limitation has perhaps hindered the identification of causal events during hypertrophic 

responses, because potential drug target proteins for which abundance is not the correlating 
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parameter in its disease association may be obscured. The dynamic process of cardiac re-

modeling is inadequately captured by our static conceptualization of proteins: current tech-

niques produce fragmented snapshots of protein expression that are difficult to connect in a 

coherent sequence or relate to other cellular processes. Assessing global protein turnover 

kinetics in the remodeling heart therefore provides new opportunities to understand cardiac 

remodeling and identify molecular changes that presage functional debilitations.  

 

Although disrupted protein homeostasis, or proteostasis, is a hallmark of the remodeling heart, 

the technologies to quantify its effects on protein turnover have been under-developed. It 

remains to be established how the disruption of protein quality control may lead to the ob-

served molecular dysfunctions in cardiac diseases, and the disruption of which proteins may 

constitute important disease drivers. Hence, to understand the remodeling process at the 

molecular level, we wish to explore proteostasis in the heart through the measurement protein 

turnover – the continual replacement of protein pools by protein synthesis and degradation – 

and how it is disrupted during disease progression. We ask two specific questions – first, what 

the nature of cardiac mitochondrial dynamics at the individual protein level is in disease, and 

second, how might the regulatory mechanisms of protein homeostasis permute to contribute 

to cardiac remodeling. 

 

As described in Chapter I, measuring protein turnover in vivo entails additional technical chal-

lenges including label delivery and tolerance, determination of precursor enrichment, and data 

interpretation. Stable isotope labeling using deuterium oxide (2H2O) tracers has shown great 

potential for tracing protein turnover in mammals (Fanara et al., 2012; Kasumov et al., 2013; 

Rachdaoui et al., 2009). Widespread applications to studying diseases have been hindered by 

the lack of necessary computational workflow for large-dataset analysis and translatable meth-

ods for human clinical studies.  
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To address these challenges, we combine animal disease models, 2H2O labeling, mass spec-

trometry analysis to interrogate large-scale temporal dynamics in a mouse β-adrenergic stimu-

lation model of cardiac remodeling. We first implemented a mouse model of cardiac 

remodeling through chronic isoproterenol challenge. Many aspects of adverse cardiac remod-

eling can be recapitulated in the laboratory using a number of animal models (Balakumar et al., 

2007; Houser et al., 2012). The induction of chronic β-adrenergic stimulation through isopro-

terenol, a high-affinity β1/β2-adrenergic receptor agonist (Drews et al., 2010; Rockman et al., 

1998), was chosen based on the considerations that the model is well established in the litera-

ture, considered to be relatively simple to perform and reproduce, and consistently produces 

well-defined pathological stimuli in our hands. As with most animal models of complex diseas-

es, isoproterenol challenge does not necessarily recapitulate every aspect of human disease 

etiology, but for our purpose it mimics the pathological traits of interest, namely, the gradual 

reorganization of the mammalian heart from a healthy makeup, through initially compensatory 

enlargement or hypertrophy, to a decompensated state and dilated cardiomyopathy and re-

duction of contractility. 

 

Isoproterenol stimulation causes positive inotropic and chronotropic responses in the mouse 

heart. Prolonged stimulation over a period of 7 to 21 days induces cardiac dysfunctions and 

decreases in cardiac outputs. Cardiac remodeling and failure in this model is thought to occur 

through multiple, incompletely defined pathways including direct G protein-coupled receptor 

(GPCR)-mediated signaling, G protein-independent signaling, or complex interactions thereof. 

GPCR-dependent effects of β-adrenergic stimulation include Gαs-cAMP-PKA stimulation and 

MAPK activation, leading to induction of transcriptional changes (Noor et al., 2011; Salazar et 

al., 2007), whereas G-protein-independent signaling include the increased calcium entry that 

can impinge upon Ca2+/calmodulin-dependent kinase (CamKII), calcineurin, and nuclear factor 

of activated T-cell (NFAT) signaling (Anderson et al., 2011; Molkentin, 2004). Chronic β-

adrenergic stimulation also causes an increase in ROS production, increased apoptotic signal-
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ing, and proteasomal alterations (Drews et al., 2010; Salazar et al., 2007; Zhang et al., 2005) 

that coincide with and may be causally linked to functional deteriorations of the mitochondrion. 

Collectively, prolonged signals in both GPCR-dependent and G protein-independent arms are 

thought to elicit hypertrophy as well as a switch to the fetal gene expression profile (ANP, β-

MHC, Glut-1, etc.) (Gaussin et al., 2003; Razeghi et al., 2001), which is thought to be initially 

stress-protective in compensatory hypertrophy but ultimately detrimental toward adverse 

cardiac remodeling. 

 

As introduced in Chapter I, the turnover rates of proteins can be measured by stable isotope 

labeling techniques that distinguish new and pre-existing proteins at a given time, but a current 

hindrance in their usage is the lack of analytical methods that are compatible with large-scale 

studies in animal models. The development of the described 2H2O labeling method and an in-

house software program created a unique opportunity to assay time-dimension features of 

protein remodeling and measure how mitochondrial proteins are replaced over the course of 

time. 
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FIGURE 2.2 shows the experimental scheme to measure protein turnover dynamics in normal 

and diseased mouse hearts through metabolic labeling. Sixty-three male Hsd:ICR (CD-1) mice, 

nine to 12 weeks of age, were randomized into three separate experimental groups. The first 

group of mice (Normal) received subcutaneous implantation of micro-osmotic pumps (Aztec) 

calibrated to deliver PBS over the course of 14 days and acted as baseline control. 2H2O label-

ing was initiated as described in Chapter I at the same time as the implantation surgery for 14 

days. A second group of mice (Remodeling) were implanted with micro-osmotic pumps cali-

brated to deliver 15 mg·kg·d-1 of isoproterenol for 14 days to effect gradual cardiac remodeling. 

A third group of mice received 15 mg·kg·d-1 of isoproterenol via micro-osmotic pumps for 14 

days prior to the initiation of 2H2O labeling (day -14 to day 0) to model the reverse remodeling 

process following isoproterenol withdrawal. 2H2O labeling then proceeded for 14 days in identi-

cal manners with the other group. 

FIGURE 2.2 Mouse model of cardiac remodeling and reverse remodeling
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FIGURE 2.3 depicts the changes in normalized heart weight (left) and in cardiac ejection frac-

tion (right) during 14 days of 15 mg·kg-1·d-1 isoproterenol stimulation in Hsd:ICR (CD-1) mice. 

Each data point represents one individual mouse and/or measurement. The line and shading 

represents local regression and 95% confidence intervals of the trend over time. We performed 

2H2O-labeling on 24 additional mice that were simultaneously administered isoproterenol to 

induce pathological hypertrophy and remodeling (Drews et al., 2010; Rockman et al., 1998). It 

can be seen that during the isoproterenol delivery (red), heart weight over body weight ratio 

increased, signifying hypertrophy. Following the withdrawal of isoproterenol, a reverse remod-

eling phase occurred as the ratio of cardiac and total body mass reverted to the normal pre-

isoproterenol values of approximately 4 mg·g-1. Hence our isoproterenol stimulation model 

causes cardiac hypertrophy and alterations in contractility as expected. 
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FIGURE 2.4 illustrates some examples of energetic changes in the mouse model. The graphs  

illustrate the in-vitro enzymatic activities of respiratory chain complex I (NADH:ubiquinone 

oxidoreductase) (upper left) , complex III (ubiquinol:cytochrome c oxidoreductase) (upper right) 

and complex V (ATP synthase) (lower left); and hexokinase (lower right), normalized to mito-

chondrial protein amount input and represented as ratio of the activity in the normal heart (%). 

Vertical box and whiskers denote interquartile range and 1.5× interquartile range of readings at 

a particular time point. Horizontal lines and grey area denote local regression fitting and 95% 

confidence interval. It could be seen that the in vitro respiratory complex activities gradually 

decreased over the course of cardiac remodeling, due to lowering amount of assembled en-

zyme complexes and/or allosteric control, whereas glycolytic activities surged. Taken together, 

the data indicate that following isoproterenol, myocardium remodeling is also evident in terms 

of energetics, and the individual mitochondrial complexes exhibit differential regulations.  
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FIGURE 2.5 illustrates some example markers of ER stress in the remodeling hearts at day 7 

and day 14 following isoproterenol challenges. During hypertrophy, the increased burden of 

protein production and folding exceeds the capacity of the cardiac ER/SR. The resulting ER 

stress is a hallmark of multiple cardiac etiologies and is indicative of increased protein produc-

tion and protein folding stress after isoproterenol challenge. Immunoblots for the increased 

expression of two ER stress markers, IRE1α and PDI, are shown, along with densitometry 

quantification of immunoreactivity. 

 

 

 

 

 

 

 

 

 

 

FIGURE 2.5 Proteostatic changes in cardiac remodeling
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FIGURE 2.6 illustrates the overall strategy to investigate the protein dynamics of cardiac re-

modeling by comparing the turnover rates of proteins measured from normal mice and mice 

undergoing adverse cardiac remodeling or reverse remodeling. (Step 1) At eight separate time 

points, we serially harvested mouse heart and blood from three mice of each group. The cardi-

ac lysate was fractionated mitochondrial and cytosolic fractions, and the extracted protein 

samples were analyzed with high-resolution Orbitrap MS. (Step 2) GC-MS data demonstrating 

that the labeling protocol resulted in fast and steady 2H2O enrichment of ≈4.4% of total body 

water in the mice. Each data point represents one individual animal in each group (Step 3). The 

incorporation of 2H2O labels into newly-synthesized proteins increases the proportion of pro-

teins with heavier isotope compositions as described in Chapter I. The gradual shifts in peptide 

isotopomer patterns could then be distinguished by MS, and the rate of shift can be modeled 

to deduce the rate of turnover of the protein pool given the appropriate analytical software. 
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(Step 4) The turnover rates of a protein in normal and diseased states are compared to identify 

proteins with significant differences in turnover during disease development. 

 

 

FIGURE 2.7 illustrates the sample processing workflow to measure protein turnover in normal 

and remodeling hearts. From each time point, plasma samples were collected for GC-MS 

analysis of body water 2H2O enrichment, whereas cardiac proteins were separated into cyto-

solic and mitochondrial fractions and analyzed by mass spectrometry. 

 

 
Protein kinetic signatures of remodeling hearts 

 

From the normal, remodeling, and reverse-remodeling mouse hearts, the MS experiments 

discovered the in vivo half-life of approximately 3,000 distinct cardiac proteins from over 

10,000 distinct peptides. 

 

 

 

 

FIGURE 2.7 Sample processing scheme (normal and remodeling hearts)
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FIGURE 2.8 demonstrates the quality of fitting of peptide data from the normal and remodeling 

mouse hearts using the described workflow, as estimated by the goodness-of-fit (r) of the 

nonlinear kinetic model to the acquired data points. Data from both mitochondrial proteins (top) 

and cytosolic proteins (bottom) are shown. A goodness-of-fit of 0.9 is considered acceptable 

(see Materials and Methods). Approximately 10,000 peptides passed the quality filter in both 

normal and remodeling hearts, with the precision of the model in predicting protein data points 

suggesting that most proteins changed in gradual manners during cardiac remodeling. In 

contrast, a decrease in the proportion of fitted peptides was apparently during reverse remod-

eling following isoproterenol withdrawal. In each histogram, the dark gray shading represents 

the proteins which also exhibited low standard errors of estimate (Std. Err.) of the fitting of the 

peptide time series as an alternative means of estimating fitting fidelity. In general, peptides 

with good goodness-of-fit generally also exhibited low standard errors of fitting.  
 
 
 
 
 

FIGURE 2.8 Peptide kinetic curve fitting quality (r value)
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FIGURE 2.9 shows the quality of fitting seen from standard error of estimate. The second 

quality filter was introduced because peptides with slow turnover will invariably exhibit poor r 

values even if they were fitted to the kinetic model reasonably well, since the variance of the 

data point approaches the variance of the residuals. The inclusion of this alternative criterion 

boosted the number of confidently quantified peptides by ~5%, as can be seen in the graphs. 

In each histogram, the dark grey shading represents the corresponding goodness-of-fit of the 

peptide.  

FIGURE 2.9 Peptide kinetic curve fitting quality (standard error)
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FIGURE 2.10 enumerates the total counts of cardiac proteins in the mitochondria and the 

cytosol for which confident identification and quantification information was acquired. In total, 

we identified over 5,000 proteins from all three samples, or ~62.5% of the total estimated 

cardiac proteome (gray tone 1). This number was calculated based on previous detection of 

approximately 8,000 cardiac transcript with significant expression levels in the mouse heart. 

Approximately 4,200 total proteins were reproducibly identified independently in at least four 

time points, which is a prerequisite for kinetic curve-fitting under our quality control filter (gray 

tone 2). The majority of these proteins were quantified with isotopomer fractional abundance 

time-series from at least four time points (gray tone 3). The 2H2O-labeling MS experiments 

discovered the in vivo half-life of approximately 3,000 distinct cardiac proteins, including at 

least 1,078 proteins in the mitochondrial samples, which passed the quality control filters (gray 

tone 4). This dataset represents the largest collection of protein turnover information in a 

mammalian organ at the time of writing.  

FIGURE 2.10 Number of proteins identified and quantified
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FIGURE 2.11 depicts two proportional Venn diagrams of proteins with quantified turnover rates 

in the cytosol (Left) and the mitochondria (Right). In each Venn diagram, in the middle interac-

tion lies the subset of proteins that were quantified across normal (gray), remodeling (red), and 

reverse remodeling (blue) heart samples. In total, 1,532 proteins were commonly quantified in 

all three mouse heart samples in the cytosol, and 664 proteins were commonly quantified in 

the mitochondrial samples. A number of confirmed mitochondrial proteins were also quantified 

in the mitochondria-depleted cytosol sample. 

 

 

FIGURE 2.12 portrays the range of measured protein turnover rates in cytosolic and mitochon-

drial proteins in the normal heart (Left) and in remodeling and reverse-remodeling hearts 

(Right). (Left) The observed turnover rates were highly diverse and spanned a range >100-fold, 

FIGURE 2.11 Venn diagrams of quantified proteins
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with half-life ranging from less than one day to more than three weeks. Cardiac mitochondria 

appear to be correlated with additional protein stability. In the normal heart, the average mito-

chondrial protein pool turned over ≈5% per day (k = 0.045 [0.021 – 0.230] d-1), translating into 

half-life of ~15 days, in contrast to the average cytosolic protein species, which turned over 

~10% per day (turnover rate, k = 0.107 [0.028–0.553] d-1, or half-life of ~6.5 days). (Right) It can 

be seen that isoproterenol stimulation increases overall protein turnover in the heart. Among 

the 2,034 protein-pairs we compared between normal and remodeling (isoproterenol-

stimulated) hearts, turnover rates during remodeling were on average +1.23-fold of that in the 

normal heart (5th – 95th percentile: −1.5-fold to +2.9-fold, Mann-Whitney U test P < 2.2 × 10-16), 

reflecting an increased synthesis and replacement of protein pools during remodeling. Isopro-

terenol led to increased turnover of 972 proteins (> +1.25-fold), as compared to the decreased 

turnover of only 216 proteins. Thus isoproterenol treatment largely led to widespread accelera-

tion of protein turnover in the heart. This is in contrast to protein turnover in response to iso-

proterenol withdrawal, where turnover rates decreased by 1.3-fold compared to normal (5th – 

95th percentile: −2.3-fold to +1.3-fold, Mann-Whitney U test P < 2.2 × 10-16). 

 

Although the quartiles of turnover rates in each sample were conclusively measured, it should 

be noted that the absolute range of protein turnover detected in the organelles depends to a 

certain extent on the range of sampling time points, for example, if the first designed time point 

is at 3 days following the start of labeling, then it follows that any protein with a half-life of 15 

hours or below would have already plateaued in labels by the time the first sample is collected, 

and no information regarding its turnover may be discerned other than the minimal limit of its 

turnover rate. Conversely, if a protein has a half-life in the order of months, then it follows that 

by 14 days of labeling, the protein pool may not have acquired sufficient label for the MS ex-

periments to differentiate the differences between labeled and unlabeled, or between control 

and disease. In order to balance the coverage of proteins with the time-scale of the cardiac 

remodeling model in a 14-day period, preferentially one would wish to complete sample collec-
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tion within a particular period of remodeling such that the system has not changed such drasti-

cally during labeling to complicate anyalysis. 

 

Nevertheless, the quantitation data provided much expanded coverage of major protein path-

ways in the cardiac cytosol and the mitochondria. For instance, we discovered the turnover 

rate of 80 out of 95 respiratory chain subunits, 63 out of 79 eukaryotic ribosome subunits, and 

all core 20S proteasome subunits in at least one experimental condition. Heterogeneous tem-

poral kinetics could be observed across molecular weight, isoelectric points, and other bio-

physical parameters, consistent with previous results presented in Chapter II. 

 

As was described in Chapter II, we observed that turnover rates clustered with protein localiza-

tions and complex associations, which further underscores the regulation of protein turnover 

cellular parameter.  
 
 

 
 
 

FIGURE 2.13 is a box-and-whisker graph of the distribution of protein turnover rates of a num-

ber of established protein complexes both in the mitochondria (ATP synthase, cytochrome b-

c1 complex, NADH dehydrogenase, 39S ribosome) and in the cytosol (COP9 signalosome, 

20S/19S proteasome, 40S/60S ribosomes, chaperonin T complex). It can be seen that proteins 

forming a single complex tend to have clustered turnover rates, and, also react to isoproterenol 
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challenge in characteristic manners. Mitochondrial ribosomes exhibited particularly elevated 

turnover during remodeling (red boxes) over normal hearts (gray boxes). All protein complexes 

exhibited decreased turnover during reverse remodeling following isoproterenol withdrawal 

(blue boxes). Box: interquartile; whiskers: 1.5× interquartiles. 

 

The proteins with significant changes after isoproterenol treatment belong to at least 35 over-

lapping biological processes that present promising targets for further studies. 
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TABLE 2.1 lists 35 biological processes (Gene Ontology Biological Processes level 3) that are 

enriched with proteins exhibiting significant changes in protein turnover during cardiac remod-

eling. The number of proteins with each category and the significance of the enrichment (Fish-

er’s exact test P and Benjamini-Hochberg adjustment P) are shown. Among the enriched 

biological processes are many that are associated with cardiac mitochondria including protein 

metabolic processes and organelle organization, including protein metabolic process, co-factor 

metabolic process, and organelle organization. The broad range of processes involved indi-

cates that the remodeling heart is associated with widespread changes in protein kinetics. 

 

GO Biological Process

Monosaccharide metabolic process

Generation of precursor metabolites and energy

Regulation of cellular component organization

Protein metabolic process

Cellular carbohydrate metabolic process

Alcohol catabolic process

Carbohydrate catabolic process

Intracellular transport

Regulation of organelle organization

Negative regulation of cellular component organization

Regulation of protein complex assembly

Carbohydrate metabolic process

Regulation of protein complex disassembly

Cofactor metabolic process

Regulation of actin filament-based process

Complement activation

Negative regulation of protein complex assembly

Protein localization

Regulation of cellular component biogenesis

Heterocycle metabolic process

Transport

Negative regulation of protein complex disassembly

Establishment of localization in cell

Protein transport

Humoral immune response

Establishment of protein localization

Cellular macromolecule localization

Regulation of cellular component size

Negative regulation of organelle organization

Cytoskeleton organization

Positive regulation of organelle organization

Regulation of localization

Homeostatic process

Positive regulation of immune response

Positive regulation of response to stimulus

Protein
count

23

27

28

108

27

12

13

30

17

13

11

30

9

17

10

8

7

39

11

20

88

7

32

33

8

33

19

13

8

19

7

22

28

11

13

% of 
proteome

5.2

6.1

6.3

24.3

6.1

2.7

2.9

6.7

3.8

2.9

2.5

6.7

2

3.8

2.2

1.8

1.6

8.8

2.5

4.5

19.8

1.6

7.2

7.4

1.8

7.4

4.3

2.9

1.8

4.3

1.6

4.9

6.3

2.5

2.9

Fisher’s Exact
test P

9.2E-10

9.8E-10

3.9E-8

1.6E-7

1.2E-7

9.3E-8

1.5E-7

9.6E-7

5.3E-7

8.0E-7

8.1E-7

2.8E-6

1.3E-6

5.4E-6

3.5E-6

3.1E-6

4.3E-6

3.1E-5

1.9E-5

6.3E-5

1.4E-4

2.7E-5

1.3E-4

1.9E-4

7.1E-5

2.3E-4

3.4E-4

3.0E-4

1.9E-4

9.1E-4

3.7E-4

9.7E-4

1.4E-3

8.5E-4

1.2E-3

Benjamini-
Hochberg P

1.1E-6

1.9E-6

2.1E-5

3.0E-5

3.7E-5

6.0E-5

7.1E-5

1.4E-4

1.4E-4

2.2E-4

2.5E-4

2.8E-4

4.4E-4

6.9E-4

7.7E-4

9.3E-4

1.5E-3

1.6E-3

2.4E-3

4.1E-3

4.6E-3

5.2E-3

5.3E-3

7.5E-3

8.1E-3

8.4E-3

1.5E-2

1.6E-2

1.7E-2

3.1E-2

3.2E-2

3.2E-2

3.7E-2

3.8E-2

4.3E-2

TABLE 2.1 Biological processes with altered turnover in remodeling
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Altogether, these results widen the existing catalog of in vivo protein kinetics information con-

siderably. Despite that the cardiac proteome does not remain constant during remodeling, the 

nonlinear kinetic model employed here to calculate turnover rates precisely represented the 

majority of protein turnover behaviors, suggesting the changes in protein pools occurred grad-

ually and was amenable to longitudinal modeling. The global increases in turnover were specif-

ic and could not be explained by sample bias, because global plasma protein turnover from the 

same animals did not elevate after adrenergic stimulation, and there were also proteins that 

exhibited retarded turnover in the remodeling heart (< −1.25-fold). 

 

We then analyzed the turnover data to determine what implications they may have for overall 

mitochondrial dynamics in the remodeling heart. Notably, the ratio of changes in mitochondrial 

protein turnover in remodeling vs. normal hearts were overall quite similar in magnitude and 

distribution to changes in cytosolic proteins. Continuing on the discussion in Chapter I regard-

ing the observations that the mitochondrial proteome do not turn over only as a unit, autopha-

gy can remove whole mitochondria and synchronize turnover, and alterations in the rate of 

autophagy could have a drastic effect on the turnover rates of all mitochondrial proteins. Cer-

tain specific impairments of proteolysis could also lead to such global effects, e.g., if pro-

teasomal removal of mitofusin is inhibited. Nevertheless, the data appear to continue to 

support the idea that regulatory mechanisms of individual protein turnover predominate. If 

protein dynamics were purely driven by increased mitophagy and/or mitochondrial biogenesis, 

one may expect that all mitochondrial proteins would simply shift linearly, elevating in their 

turnover rates by the same ratio. In reality, the impact of remodeling on individual-protein 

turnover can be distinguished as individual deviations from the population average. 

 

One important consideration is whether the measured mitochondrial protein turnover rates 

reflect any “bottleneck” effect due to slow import of proteins into the mitochondria or incom-

plete equilibrium between cellular compartments. Previous investigations in HeLa cells in vitro 
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suggest that variations may exist between the turnover rates of identical protein species in 

different subcompartments, which may be due to non-exchanging subpopulations. For exam-

ple, in HeLa cells certain ribosomal subunits have half-life of ~6 hours in the nucleolus but >30 

hours in the cytosol (Boisvert et al., 2012). Hence to evaluate whether the rates of protein 

import into cardiac mitochondria may present a bottleneck for isotope incorporation and lead 

to inaccurate measurements of protein replacement inside mitochondria, I first compared the 

turnover rates of mitochondria-targeted proteins measured in the mitochondria and their cyto-

solic milieu. Such analysis is predicated on the precise isolation of compartment. Our differen-

tial centrifugation protocol has been well validated in the Ping lab over the last decade and the 

purity of isolated mitochondria have been verified using protein compartment markers and 

electron microscopy, as reviewed in (Zhang et al., 2012).  

 

 

FIGURE 2.14 plots the turnover rates of mitochondrial-targeted proteins measured in purified 

mitochondrial samples, against the turnover rates of the same proteins measured in mitochon-

dria-depleted cytosolic samples. Data from normal hearts (left), remodeling hearts (middle), and 

reverse remodeling hearts (right) are shown. Each data point represents a distinct protein. 

Abscissae represent turnover rates in the mitochondrial samples; ordinates represent turnover 

rates measured in cytosolic samples. ρ: Spearman’s correlation coefficient. In most cases, the 

proteins shared similar turnover rates when detected from either localization. Although isopro-

FIGURE 2.14 Mitochondrial protein turnover in mitochondria vs. cytosol
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terenol stimulus exerted differential effects on the turnover rates of a small number of proteins 

in the cytosol versus the mitochondria (Kolmogorov-Smirnov test P ≤ 7.3 × 10-4), as a whole 

there is limited evidence to suggest a disequilibrium between the mitochondrial-targeted pro-

tein populations inside and outside of mitochondria, or that lapses in import would constrain 

mitochondrial protein pool replacement within the measured time period. 

 

In contrast to proteins that are conventionally assumed to be primarily mitochondrial in target 

localization (e.g., most respiratory complexes), some proteins that are known to reside in mul-

tiple compartments do in fact show differential turnover rates from the cytosolic and mitochon-

drial preparations, which may reflect their compartment-specific turnover. For instance, in 

addition to forming the gap junctions at the intercalated disks between two adjacent cardiomy-

ocytes, connexin 43 (Cx43/GJA1) also localizes to cardiac mitochondria where the protein 

forms hemichannels on the mitochondrial inner membrane and potentially contributes to mito-

chondriak K+ influx (Miro-Casas et al., 2009). From our dataset, we observed that the cytosolic 

population of Cx43 turns over significantly faster (k: 0.127 +/- 0.025 d-1) than the mitochondrial 

population (k: 0.069 +/- 0.013 d-1). The mitochondrial and cytosolic populations also respond to 

isoproterenol differently, being up-regulated at 1.22-fold in the cytosol (Mann-Whitney U test P: 

0.03) but 1.60-fold in the mitochondria (Mann-Whitney U test P: 7.0 × 10-6), respectively. A 

similar observation was made for fatty acid transport protein 1 (FATP1/SLC27A1), a long-chain 

fatty acid transporter with potentially multiple subcellular localizations (Guitart et al., 2014), 

from which we measured cytosolic k: 0.130 +/- 0.062 d-1, and mitochondrial k: 0.068 +/- 0.021 

d-1.  

 

Interestingly, the data also suggest that the cytosolic and mitochondrial populations of Cx43 

are not in equilibrium with one another (and likewise cytosolic and mitochondrial FATP1). To 

illustrate, contrast the differences in measured turnover rates with the cases of hexokinase I 

(HK1) and hexokinase II (HK2). HK1 is thought to be stably located on the mitochondrial outer 
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membrane surface, and has turnover rates that are typical of a mitochondrial protein when 

measured from either mitochondrial or cytosolic preparations (k: 0.032 +/- 0.006 d-1 and 0.042 

+/- 0.006 d-1, respectively). HK2, on the other hand, translocates dynamically between the 

mitochondrial surface and cytosol according to glucose metabolic status (John et al., 2011). 

Consistently, we observed that HK2 has turnover rates that are typical of a cytosolic protein 

when measured from either mitochondrial or cytosolic preparations (k: 0.137 +/- 0.037 d-1 and 

0.120 +/- 0.018 d-1, respectively). 

 

Mitochondrial dynamics, including biogenesis, fusion-fission cycles, and autophagy play criti-

cal roles in cardiac functions (Dorn  2nd, 2013; Gottlieb and Gustafsson, 2011). We previously 

observed diverse and asynchronous mitochondrial protein turnover in the normal mouse heart 

that led us to conclude that the turnover of individual proteins can influence the homeostasis 

and dynamics of mitochondria (Kim et al., 2012; Lau et al., 2012). Consistent with this notion, 

we found complex and bidirectional kinetic responses among individual mitochondrial proteins 

in the remodeling heart. Whereas some proteins related to mitochondrial dynamics exhibited 

accelerated turnover (MIRO1/2, LONP1, PHB), others remained unchanged (MFN1/2, FIS1). 

The case of MIRO1 and MIRO2 are particularly noteworthy; both are atypical rho GTPases best 

known to be involved in anterograde mitochondrial transport along microtubules in neurons via 

their association through Milton/TRAK1 to kinesin. Transcript profiling experiments suggest 

that MIRO1/2 are highly expressed in the heart, but their functions are unclear. Our data show 

that they are prominently and significantly altered in protein turnover after isoproterenol, sug-

gesting they may function in orchestrating cardiac remodeling through unknown mechanisms. 

 

In general, we observed differential response amongst distinct proteins to cardiac remodeling. 

This heterogeneity is apparent on individual protein level, and applies to the subunits of su-

pramolecular complexes. Although most respiratory chain components exhibited modestly 
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elevated turnover, we observed heterogeneity in turnover rates among subunits and sub-

complexes. 

 

 

FIGURE 2.15 demonstrates how particular subunits of mitochondrial proteins respond prefer-

entially to cardiac remodeling. (Left) In complex I, the membrane-embedded β sub-complex 

was independently influenced by remodeling than the rest, whereas the F0 subunits of the 

complex V were similarly enriched for elevated turnover. The color of the box each subunit 

corresponds to heat map representations of turnover ratios in remodeling hearts over normal 

he arts. The structure of each subunit was colored identically when applicable; some subunits 

were not quantified or were not present in the crystal structure. In ETC complex I, the mem-

brane-embedded beta sub-complex was particularly elevated in turnover when compared to 

the other sub-complexes, whereas in ATP synthase, the F0
 subunit was similarly enriched for 

elevated turnover.  The results further demonstrate that mitochondrial proteins are under inde-

pendent control of different regulatory elements during proteome remodeling, highlighting the 

added insights to organelle dynamics from the analysis of protein kinetics at individual-protein 

resolution. 

FIGURE 2.15 Protein dynamics of respiratory subunits 
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The heterogeneity of turnover response to cardiac remodeling was also evident on pathway 

levels, in particular among metabolic and proteostatic proteins. I examined the alterations in 

turnover rates among three metabolic pathways in and out of mitochondria (fatty oxidation, 

branched-chain amino acid metabolism, and glycolysis).  

 

 

 

FIGURE 2.16 shows parallel plots of protein dynamics behaviors of a number proteins belong-

ing to three metabolic pathways (fatty acid oxidation, branched-chain amino acid (BCAA) 

metabolism, and glycolysis) both within and without cardiac mitochondria. Each data series 

(line) represents the behavior of a distinct protein in normal, remodeling, and reverse remodel-

ing hearts; ordinates represent the ratio of turnover rates when compared with the normal 

heart. It can be seen that unlike proteins belonging to fatty acid oxidation and branched-chain 

amino acid metabolism, glycolytic enzymes were highly and significantly elevated in turnover 

dynamics in adverse cardiac remodeling. The accelerated turnover reverted to normal in re-

verse remodeling following isoproterenol withdrawal. 

 

FIGURE 2.16 Protein dynamics in cardiac metabolic pathways
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To some extent, changes in turnover of these pathways paralleled the molecular phenotypes of 

the remodeling heart, which increases in glycolytic usage. It has long been known that the rate 

of glycolysis is accelerated early in cardiac remodeling (Allard et al., 1994; Kolwicz  Jr. and 

Tian, 2011) as the heart shifts its fuel consumption from primarily fatty acid to primarily carbo-

hydrates. However, a large number of protein and transcript expression studies have failed to 

convincingly show that there is a concomitant increase in protein abundance of glycolytic 

enzymes in the remodeling heart (van Bilsen et al., 2004; Dai et al., 2013; Kolwicz  Jr. and Tian, 

2011; Petrak et al., 2011), which has led to speculations that additional regulations than ex-

pression level may be responsible for the increased glycolysis (e.g., glucose import, allosteric 

regulation, post-translational modification). Our data demonstrate a highly and significantly 

accelerated turnover in glycolytic enzymes in the isoproterenol-challenge model, indicating 

accelerated replacement of glycolytic enzymes may constitute one level of regulation. The 

observed kinetic changes were not confined to a few rate-limiting enzymes but were virtually 

ubiquitous along the glycolytic pathway, e.g., the half-life of hexokinase 1 (HK1) decreased 

from 16.7 to 9.8 days in the remodeling heart (measured in the cytosolic sample), that of 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) decreased from 10.8 to 6.7 days, and 

that of phosphoglycerate mutase 1 (PGAM1) decreased from 12.2 days to 6.9 days. Mass 

spectrometry quantitation and immunoblotting data suggest that the abundances of these 

proteins are relatively unchanged (vide infra). Assuming increased turnover but unchanged 

abundance, it could be deduced that proteome remodeling increased both synthesis and 

degradation of glycolytic enzymes, replacing the protein pools at a higher rate.  

 

The data indicate that concomitant with increased glycolysis, the remodeling heart exhibits 

higher turnover of glycolytic enzymes. We postulate that may explain the higher turnover rate is 

that faster protein pool replacement is necessary to remove damaged proteins and maintain 

enzyme pool efficiency. It is known that certain glycolysis enzymes including triosephosphate 

isomerase (TPI) are irreversibly damaged during catalysis through arginine deamidation and 
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possible racemization of the reaction center (Hipkiss, 2011). The turnover rates of the enzyme 

pools could therefore place an indirect limit on fuel consumption in the diseased heart by 

regulating the proportion of functional glycolytic enzymes in the protein pool. Faster replace-

ment of enzymes may constitute a new type of cardiac response to metabolic demands. Future 

experiments may test this hypothesis by examining in vitro enzyme function and modifications; 

for example, it will predict higher in-vitro glycolytic rates in systems where the enzymes are 

artificially replaced periodically, and that higher arginine deamidation may be observable in 

other systems with high glycolytic rates if turnover is not accelerated in compensation. Several 

potential reasons may be conjectured as to why the remodeling cardiac cell may prefer to 

increase protein turnover over simply producing a larger enzyme pool. Maintaining a moderate 

total enzyme pools may allow higher speed and finesse in controlling maximal reaction rates. 

How this system may exert its effect alongside the well characterized allosteric control of gly-

colytic enzymes will be an interesting topic, given that metabolite binding may in turn also 

modulate the rate of protein degradation and turnover, as has been witnessed in the cases of 

ferritin and tryptophan oxygenases.  

 

In contrast to glycolytic enzymes, mitochondrial metabolic pathways behaved quite differently. 

Fatty acid oxidation proteins had much more subdued changes following isoproterenol. In 

conjunction with the commonly observed decrease in their abundance in the remodeling heart, 

the protein dynamics data are consistent with a scenario where decreased synthesis of the 

fatty acid enzyme drove the decrease in fatty acid oxidation capacity. A notable exception is 

that of the fatty acid importer CD36, where increased turnover (+1.5-fold) in the remodeling 

heart instead suggests it may be regulated primarily by proteolysis. Branched-chain amino acid 

metabolism proteins exhibited lower turnover relative to the proteome, again illustrating that 

isoproterenol stimulus exerts differential kinetic regulations on multiple metabolic pathways. 
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Overall, widespread alterations to individual protein turnover can be observed in both the 

cytosol and the mitochondria. One possible treatment of these data is that one can embark on 

a search of proteins that show exceptional changes in protein turnover, which may be inferred 

to be particularly associated with disease progression because their behaviors are specifically 

modified during remodeling. This is the same interpretation that underlies many experiments 

aimed at the measurements of transcript and protein abundance (most up-regulated or down-

regulated proteins within a system may be associated with disease). We found that in particular 

protein species indeed displayed much more elevated turnover rates than the population aver-

age. Some proteins were turned over up to 3 times as fast as in the normal heart, whereas 

other proteins turned over as much as 50% slower.   

 

 

 

TABLE 2.2 lists a number of representative proteins with conspicuous turnover behaviors that 

may be identified as candidate markers of disease association in the cytosol and in the mito-

chondria. Selected proteins and their turnover rates (k), fold-change in turnover during remod-

eling vs. in the normal heart (FC), Mann-Whitney U test significance between turnover in normal 

TABLE 2.2 Example proteins with conspicuous turnover changes

Cytosolic proteins

FBN1
FHL1
ANXA2
VIM
DES
TGM2
COL15A1
TPM4
ANXA5
ATP1A1
XIRP1

Mitochondrial proteins

HK1
ALDH1B1
PHB
MRPL40

Fibrillin-1
Four-and-a-half LIM domains 1
Annexin II
Vimentin
Desmin
Transglutaminase 2
Collagen XV/ endostatin
Tropomyosin 4
Annexin V
Na+/K+ ATPase alpha-1
Xin actin-binding repeat 1

Hexokinase-1
Aldehyde dehydrogenase X
Prohibitin
39S ribosomal protein L40

k

0.009
0.078
0.042
0.091
0.100
0.066
0.047
0.143
0.065
0.052
0.252

0.032
0.038
0.024
0.049

FC

6.89
3.56
3.01
2.50
2.50
2.06
2.00
1.94
1.89
1.82
1.69

2.08
1.83
1.79
1.57

P

5.0E-3
1.0E-3
4.0E-5
1.8E-2
1.0E-2
4.0E-3
4.0E-3
2.0E-3
1.0E-3
1.0E-4
4.0E-2

1.0E-6
6.0E-3
6.0E-3
1.0E-2

Pct

99
99
98
97
97
94
93
92
91
90
85

96
93
92
87

Function/ disease association

Mut. in Marfan syndrome
Mut. in heart failure
Membrane remodeling
Stabilization of intracellular architecture
Mut. in familial ventricular myopathy 
Apoptosis; overexpressed in heart failure
Extracellular matrix remodeling
Contractility
Membrane remodeling
Contractility; Mut. in hypertension
Cardiac myogenesis

Glycolysis 
Aldehyde catabolism
Mitochondrial remodeling
Mut. in Velo-Cardiao-Facial Syndrome
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and remodeling hearts (P), rank percentile amongst all turnover changes within a sample (Pct), 

and known disease associations are shown. In the mitochondria, change in hexokinase-1 

turnover was particularly pronounced as discussed, as was that of the mitochondrial 39S 

ribosome subunit MRPL40. Outside the mitochondria, the turnover elevations were notably 

pronounced in the calcium-dependent membrane-binding proteins in the annexin family. 

Among the eight annexins quantified, all but two displayed significantly accelerated replace-

ment in the protein pool. ANXA2/3/4/5 changed most prominently in the remodeling heart 

cytosol (+1.7 to +3.0 fold, 86th – 98th percentile rank), translating for example into a decrease of 

ANXA2 half-life from 16.7 to 5.5 days, whereas ANXA6 and ANXA7 were also significantly 

elevated (+1.4-fold). ANXA2 and ANXA5 are widely known to have elevated transcript and 

protein levels in heart failure patients (Benevolensky et al., 2000; Song et al., 1998), but con-

sensus is lacking on the other isoforms. The broadly increased kinetics among six isoforms 

provides new evidence that annexins may be generally associated with cardiac remodeling and 

hypertrophy. Importantly, the data also revealed proteins with significantly elevated turnover 

that were not previously associated with cardiac remodeling, both within mitochondria and in 

the cytosol. These putative remodeling proteins belong to diverse functional processes, includ-

ing extracellular matrix remodeling (e.g., VIM1, COL15A1), mitochondrial remodeling (PHB), 

and excitation-contraction coupling (e.g., TNNC1, ATP1A1, RYR2). Several proteins (e.g. FHL1, 

XIRP1, MRPL40) are known to be mutated or deleted in congenital heart diseases, and thus 

may be promising candidate hypertrophy drivers (Gaussin et al., 2003; Sheikh et al., 2008).  

 

With validation experiments that will be proposed in Chapter IV, it will be of interest to deter-

mine whether these proteins are novel disease drivers discovered via their temporal behavior. 

Prior to that, however, we first determined whether some of the proteins revert in turnover 

changes during isoproterenol-withdrawal, as a differential to shortlist our list of potential dis-

ease proteins, i.e., a bona fide disease driver with elevated turnover during remodeling is more 

likely to show decreased protein turnover following the withdrawal of isoproterenol stimulus, 
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when the mouse hearts undergo recuperative reverse remodeling accompanied by reversed 

changes in cardiac functions and reduced hypertrophy. The biomolecular changes of reverse 

remodeling per se are also of broad interest to cardiac research, as they are considered more 

clinically relevant targets for interventions that are aimed at halting or reversing human heart 

failure. Understanding how molecular dynamics changes in reverse remodeling such as during 

LVAD-mediated mechanical unloading in human patient is also being investigated for its poten-

tial to identify a new generation of therapeutic targets, understand the recuperative mechanism 

of mechanical unloading, and justify the use of LVAD as a destination therapy.  We therefore 

examined whether the reverse remodeling process is indeed a passive reversal of the remodel-

ing process, i.e., whether elevated protein turnover during remodeling exhibited the a com-

mensurate but opposite change in turnover rates during reverse remodeling.  

 

 

FIGURE 2.17 plots the changes in protein turnover during remodeling and reverse remodeling 

over all compared protein-pairs. Data from cytosolic (Left) and mitochondrial (Right) proteins 

are shown. The color of each bin represents the density of individual protein data points in a 

particular area in the Cartesian coordinate, with the abscissae being the ratios of turnover rates 

of proteins in reverse remodeling when compared to their turnover in the normal heart, and the 

ordinate comparing remodeling and normal hearts. It can be seen that not all changes in pro-
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FIGURE 2.17 Protein dynamics in reverse remodeling
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tein dynamics simply reverted towards that of the normal heart. Based on the directions of 

kinetic changes following chronic β-adrenergic stimulation and its subsequent withdrawal, the 

kinetic behaviors of proteins can be categorized into four quadrants. For the most part, pro-

teins with elevated turnover during remodeling exhibited lower turnover during reverse remod-

eling (upper left quadrant). However, proteins which showed decreased turnover during 

remodeling for the most part did not exhibit any compensatory increase in turnover during 

revere remodeling (lower left quadrant). Some proteins appeared to have increased turnover in 

both remodeling and reverse remodeling (upper right quadrant). This trend was observed in 

both mitochondrial and cytosolic proteins, which may be interpreted to suggest that total 

mitochondrial protein dynamics did not deviate from the whole-heart average significantly 

during reverse remodeling, as might have been expected if reverse remodeling were associat-

ed with massive alterations in mitochondrial biogenesis or mitophagy. (Right) Mitochondrial 

proteins likewise showed the diverse changes during in remodeling and reverse remodeling, 

and did not cluster to any single quadrants. 
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FIGURE 2.18 shows the functional enrichment of proteins with different behaviors in remodel-

ing and reverse remodeling. (Top) The quantified proteins were separated into three groups 

corresponding to the shown quadrants. (Bottle left) In the first group, reverse cardiac remodel-

ing largely overturned the elevated kinetics of proteins observed during remodeling, in syn-

chrony with the increase and subsequent decrease in heart weight. This group encompasses 

most proteins including the glycolytic enzymes, but was most prominently enriched for ribo-

some subunits (Fisher’s exact test, P ≤ 8.6 × 10-7; Benjamini-Hochberg adjustment P ≤ 6.9 × 

10-4). (Bottom center) The second group of proteins displayed elevated kinetics in β-adrenergic 

stimulation that were sustained in reverse remodeling. This group can be functionally distin-

guished from the first by its significant enrichment of MAPK signaling proteins (Fisher’s exact 

test P ≤ 6.3 × 10-5; Benhamini-Hochberg adjustment P ≤ 0.039), including RAC1, MAPK1, 

MAP2K2, MAP2K3, and STAT1. (Bottom right) Relatively few proteins showed decreased 

turnover throughout both remodeling and reverse remodeling, a group suggestively enriched 

for proteolysis pathway proteins (P ≤ 9.2 × 10-4, Fisher’s exact test). Other notable proteins in 

this uncommon category include the nicotinamide nucleotide metabolism enzymes NNT and 

NAMPT, which participate in mitochondrial NAD+-mediated protein acetylation and metabolic 

regulations. Only nine proteins had decreased turnover in isoproterenol treatment but in-

creased turnover in reverse remodeling, including some likely plasma contaminants but also 

thioredoxin-interacting protein (TXNIP) (remodeling: −3.03-fold, reverse remodeling: +2.08-

fold), a protein involved in regulating glucose mechanism and not quantified in the plasma 

sample. The statistical enrichments underline that imbalance between protein synthesis and 

degradation is a prominent feature of cardiac remodeling, and that recovery may involve the 

sustained elevation of particular branches of MAPK signaling. Altogether, these results demon-

strate the insights that may be acquired from turnover studies to support new hypotheses and 

investigations regarding recovery from adverse remodeling. 
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A relevant question is what may cause changes in turnover rate of a particular protein in dis-

ease. During disease development, where cellular components change from one state to an-

other that is defined by different compositions, many substrate-level mechanisms can 

modulate the commitment step of protein degradation for a particular proteins; e.g., enzyme-

substrate interactions, post-translational modification of degron sequences, and other modula-

tions of E3 ligase binding, etc.; and many more mechanisms for protein synthesis. At the mini-

mum, however, it would be of interest to determine whether alterations of protein turnover are 

driven primarily by alterations in synthesis or degradation.  

 

 
Orthogonality of protein expression and dynamics 

 

Protein synthesis is commonly explored via microarray studies, which makes the assumption 

that transcript abundance indirectly represents protein synthesis. However, data interpretation 

is often made ambiguous by the imperfect correlation between mRNA and protein abundance 

(Ideker et al., 2001; Maier et al., 2009; Taniguchi et al., 2010). As it is thought that such dis-

crepancy could in part be reconciled by supplying the altered rates of proteolysis (Vogel and 

Marcotte, 2012), we first examined whether protein abundance and protein expression are 

themselves inter-correlated parameters. As discussed, a measurable change in protein turno-

ver may be indicative of a number of possible pathophysiological scenarios. In the most 

straightforward scenario, one may expect the particular protein to have changed in abundance 

correspondingly, such that the increase in isotope incorporation simply reflects the outcome of 

increased protein expression and synthesis. Ample scenarios also exist, however, where the 

turnover cycle can permute without conspicuous net differences in protein abundance, such as 

when increased degradation counterpoises increased synthesis, as is likely for a number of 

glycolytic enzymes as presented earlier in this chapter. This point is also consistent with the 

poor overlap between the list of kinetically regulated proteins discovered here and the differen-
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tially expressed proteins from large-scale protein abundance profiles of the failing heart in the 

literature, e.g., in References (Lindsey et al., 2006; Petrak et al., 2011). 

 

In theory, a disease sample in which both abundance and dynamics alters violates the as-

sumption of the steady state protein pool for inferring protein turnover rates from isotope in-

corporation. To circumvent this problem, one may opt to forego the parametrization of the 

turnover rate constant, and simply look for proteins that differ significantly in their isotope 

incorporation at different time points. This approach was employed by Marc Hellerstein and 

colleagues to examine axonal transport kinetics in the cerebrospinal fluid of neurodegenerative 

disease patients (Fanara et al., 2012). An obvious advantage of this method is that one may 

identify proteins whose turnover conforms to first-order kinetics in the normal sample but no 

longer does so in disease. The lack of turnover rate constant results, however, makes quantita-

tive comparisons across datasets problematic.  

 

Alternatively, analytical methods that take into account changes in both protein abundance and 

protein turnover may be employed to differentiate changes in protein synthesis from the total 

turnover changes. For example, Jayapal et al. made use of an additional chemical labeling step 

with isobaric tags for more accurate quantification of overall protein abundance at different 

time points of development (Jayapal et al., 2010). The true fractional synthesis of the protein 

pool could thus be calculated by considering both the raw amount of label that has been in-

corporated into the protein pool with the final proportion of labeled proteins at a time point. 

However, the use of isobaric tags tends to lower the coverage protein identification and quanti-

fication and thus was not considered here. 

 

Our solution is to simply search for proteins that exhibit altered protein turnover rate constants 

when considering only proteins to which a kinetic curve continues to fit well even during dis-

ease development, whilst acknowledging that some inaccuracies may result. This is the prima-
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ry approach we have taken here. A potential drawback of this approach is that some proteins 

of interest will be excluded from the filtered dataset that may exhibit abrupt changes in isotope 

incorporation during disease development that no longer conforms to the expected first-order 

kinetic curve. It may be possible to re-analyze the data to search for such proteins that do not 

conform to the first-order kinetics curve in specific manners when more sophisticated analyti-

cal workflows become available. 

 

To compare the protein dynamics data with the changes in protein expression over the course 

of isoproterenol challenge, we acquired of both protein expression and protein dynamics in-

formation from the same mass spectrometry data without additional experimentation. Changes 

in protein abundance were acquired by comparing relative abundance level between day 14 of 

isoproterenol treatment and the day 0 (normal) sample using two common label-free quantita-

tive MS methods: spectral counting (Huttlin et al., 2010; Xu et al., 2006) as implemented in 

ProLuCID and DTASelect, and iBAQ-normalized peptide area-under-peak intensity quantifica-

tion (Nagaraj et al., 2011; Schwanhausser et al., 2011) as implemented in ProTurn. Spectral 

counting quantification assumes that a protein species with higher natural abundance in a 

protein mixture will result in more identifiable peptides in an MS experiment after normalizing 

for the protein sequence length, assuming the observability differences between peptides of 

different proteins cancel each other on a large scale. The iBAQ-based peak area intensity 

comparison method calculates protein abundance based on the sum of integrated peak areas 

of all the peptides identified to the protein species, after normalizing for the theoretical number 

of observable tryptic peptide sequences (with lengths between six and twenty-five amino 

acids) of each protein. Although dual labeling experiments using 2H2O and SILAC mice, three-

label SILAC amino acids, or post-extraction chemical labeling have been demonstrated 

(Jayapal et al., 2010; Kristensen et al., 2013; Price et al., 2012b), after careful considerations 

we have decided upon label-free quantification to balance accuracy with coverage and 

throughput. Although an isotope-labeled approach may have improved the accuracy of label-
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ing, isotope tags could create separate isotope clusters and thus essentially double the com-

plexity of the sample and reduce protein identification coverage. In some cases such as using 

isobaric tags or H2
18O labels, the resulting isotope signatures would alter or overlap with the 

first isotope cluster after 2H2O labeling and is incompatible with the objective of measuring 

fractional synthesis from isotope abundance, necessitating two individual sets of mass spec-

trometry analysis and thus doubling the amount of time required for experimentation. The 

ability to quantify a tagged peptide is also stochastic to some degree, leaving only the overlap-

ping set of proteins with quantified abundance and turnover as useful results. Lastly, it is un-

clear if an isotope tagging approach does outperform label-free quantification in detecting 

subtle changes in quantity, as it is unusual for proteins with subtle changes in abundance to 

reach statistical significance without high numbers of replicates in most protein quantification 

studies. 

 

The results showed that data spectral counting and area-under-peak intensity quantification 

generally correlated with one another, though not without significant variability between the 

two methods. Here only comparisons against area-under-peak quantification datasets are 

shown, with the consideration that the quantification data are based on the identical integration 

results used by ProTurn to calculate protein isotope incorporation and turnover, and so the two 

ought to be more directly comparable. 
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FIGURE 2.19 is a hexagonal bin plot that describes the relationship between the changes in 

expression and temporal dynamics of cardiac proteins following isoproterenol challenge. On 

the left panel, results from 1,771 quantified cardiac proteins are shown, whereas the right panel 

shows the results from only 232 of the proteins with the most significant differences in protein 

dynamics between isoproterenol-challenged and control mice. Data points that appear in 

proximity to each other on Cartesian coordinates are binned together into a hexagonal region, 

the data density of which are represented by the fill saturation scale (darker equals more data 

points). It can be seen that in both panels, significant, comparable data point densities are 

scatted in both the upper right and lower right quadrants, demonstrating that proteins with 

increased turnover dynamics after isoproterenol challenge could either show increased or 

decreased overall abundance. To illustrate, we observed higher turnover coincided with con-

gruent abundance increases in some proteins (e.g., ANXA5 and FHL1) but not others (e.g. DES 

and HK1). Overall, only a very modest correlation existed between abundance and half-life 

changes (Spearman’s correlation coefficient ρ < 0.2), indicating a large number of proteins with 

increased turnover did not in fact increase in steady-state abundance, and vice versa. This 

result held true even when considering only the proteins with the greatest and most significant 
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changes in turnover (Right). Similar results were observed when we compared the data with 

the cardiac transcript profile following isoproterenol stimulation in mice (NCBI Gene Expression 

Omnibus GSE48670), which we will consider in further details below. 

 

As an orthogonal technique to validate the mass spectrometry abundance measurements, we 

performed immunoblotting experiments on 14 proteins of particular interest in our dataset to 

compare their expression in normal and remodeling hearts. 
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FIGURE 2.20 displays the immunoblot results that compared the abundance of 14 selected 

proteins (both mitochondrial and cytosolic) in normal hearts and hearts stimulated by isopro-

terenol for 7 or 14 days. It can be seen from the figure that whilst some proteins with elevated 

turnover (shortened half-life) also demonstrated concomitant increase in abundance, many 

more were not changed in expression level after isoproterenol treatment. For example, annexin 

II (ANXA2) and annexin V (ANXA5) both exhibited an increase in protein abundance in the 

remodeling heart, consistent with previous reports (Benevolensky et al., 2000; Song et al., 

1998). However, immunoblots failed to detect evidence for increased expression among the 

tested glycolysis or glycolysis-related enzymes, including fructose-bisphosphate aldolase A 

(ALDOA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hexokinase I (HK1), hexoki-

nase II (HK2), pyruvate dehydrogenase E1 subunit α (PDHA) and pyruvate kinase (PKM1); with 

the exception of L-lactate dehydrogenase A chain (LDHA).  

 

Taken together, the immunoblotting data support that changes in protein turnover and protein 

abundance in a system are largely independent parameters, an observation that is further 

consistent with a recent study in 2H2O and SILAC doubly-labeled mice (Price et al., 2012b). The 

FIGURE 2.20 Immunoblot validations of abundance changes
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study further suggested that the changes in total protein synthesis flux are correlated with the 

changes in protein concentration, but such relationship may have been largely explainable by 

the transformation of the data by a common factor. 

 

The discordance between increases in synthesis and increases in expression may seem coun-

terintuitive if one considers that cardiac hypertrophy is strongly associated with global increase 

in both protein synthesis and abundance. However, even under global increases in protein 

synthesis, individual proteins may expand or contract to different degrees. Because both pro-

tein synthesis and protein degradation contribute to the protein pool size, a protein may in-

crease in abundance either through increased synthesis or decreased degradation. The former 

would result in a higher increase of turnover than the latter, which may in fact exhibit lower 

apparent turnover because the protein pool consists primarily of unlabeled species. In other 

words, a protein may exhibit a prominent five-fold increase in abundance but only a modest 

20% increase in turnover, whereas another protein may have a five-fold increase in both abun-

dance and turnover. A poor overall correlation between abundance and turnover changes 

would result when all protein species are considered. Indeed, the data suggest that these and 

numerous other scenarios exist and collectively contribute to the overall hypertrophic re-

sponse.  

 

Furthermore, it is possible that a protein may also show increased turnover without apparent 

abundance change if the elevation of abundance was transient and the protein level had al-

ready returned to normal at the time point it was measured. I observed subtle examples of this 

scenario in the immunoblotting data; for example, the abundance of vimentin (VIM) was elevat-

ed seven days following the onset of isoproterenol challenge, but had reverted to the baseline 

by day 14. In contrast, even transient increases in synthesis during labeling will permanently 

increase the proportion of labeled vs. unlabeled proteins. The resulting isotope pattern is a 



 104 

signature of protein turnover that remains imprinted in a mixed protein pool, even if some of 

the proteins later become exported or aggregated.  

 

Lastly, the contribution of the different sources of experimental variation between abundance 

measurements and turnover measurements cannot be completely ruled out, although we do 

not believe it to be a major source of the non-correlation. This variability may arise because 

whereas turnover errors may come from kinetic curve-fitting and data variance at the informa-

tive parts of the kinetic curve, intrinsic variations in protein abundance measurements could 

come from other sources including sample adulteration and loss during handling. In addition, 

protein abundance measurements quantify the amount of proteins present in a sample, and are 

thus sensitive to fluctuations in sample loading and MS signal intensity. Complex proteome-

wide changes especially impose formidable challenges on data normalization in quantitative 

experiments. On the other hand, the kinetic signature of protein pool replacement following 

labeling, i.e., the proportion of protein light and heavy isotopes, is self-normalized within an 

individual sample and not subjected to adulteration during sample preparation.  

 

Several interpretations can be drawn from the effective independence between the pool size of 

the protein population, the average life-span of its individual members, and transcript abun-

dance. Firstly, the data lend credence to the idea that proteome dynamics may better reflect 

the changes in some aspects of the diseased heart, again due to the degeneracy of protein 

abundance with regard to the protein turnover cycle. To risk belaboring this point, in order for 

the protein abundance level to alter, the turnover cycle (i.e. proportion of new vs. old proteins) 

must change. Since label incorporation is history-dependent, even transient increases in pro-

tein synthesis will be recorded in a fingerprint of increased proportion of labeled vs. unlabeled 

proteins. In contrast, ample scenarios exist where the turnover cycle permutes without con-

spicuous net differences in protein abundance, such as when increased degradation counter-

acts increased synthesis, as is likely for a number of glycolytic enzymes in this study. 
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Irrespective of their abundance change, our data provide concrete evidence that protein kinet-

ics per se constitutes a sensitive and specific discriminator of stress-induced responses in a 

disease model in a number of instances. Although future experiments are needed to fully inte-

grate all relevant protein properties, these endeavors will be facilitated by the technique and 

quantitative kinetic data first reported here. 

 

To summarize, it may be surmised from the data that alterations in protein dynamics are largely 

independent from alterations in protein abundance at least in the specific scenario of cardiac 

remodeling. Importantly, we demonstrated that changes in protein dynamics are effectively 

orthogonal to changes in protein expression or RNA expression with each parameter reflecting 

specific aspects of cardiac physiology and indicating distinct disease protein candidates. The 

next chapter will further integrate mRNA abundance, protein abundance, and turnover parame-

ters with transcript data to draw systems-level inference of proteostasis. 

 

 
Materials and Methods 

 

Method summary: Adverse cardiac remodeling in mice was induced by implantation of micro-

osmotic pumps delivering isoproterenol over 14 days. The animals were labeled with 2H2O 

concurrently. Protein isotope incorporation was analyzed with mass spectrometry and the 

ProTurn data analysis workflow to determine protein turnover dynamics in the remodeling 

heart. Experimental details are given below: 

 

Reagents: 2H2O (70% and 99.9% molar ratio) was purchased from Cambridge Isotope Labora-

tories and filtered through 0.1-µm polyethersulfone membranes (VWR). Other chemical rea-

gents were from Sigma-Aldrich unless specified. Milli-Q (Millipore) filtered water (18.2 MΩ) was 

used.  
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Study approval: Mouse experiments were performed in accordance with the Guide of the Care 

and Use of Laboratory Animals by the National Research Council and approved by UCLA. 

 

Animal models and 2H2O labeling: Male Hsd:ICR (CD-1) mice (Harlan Laboratories) 9–12 

weeks of age were housed in a 12 hour/12 hour light-dark cycle with controlled temperature, 

humidity, and free access to standard chow and water. Labeling was initiated by two intraperi-

toneal injections of 500-µL 99.9% molar ratio 2H2O-saline 4 hours apart. Mice were then given 

free access to 8% (v/v; 7.25% molar ratio) 2H2O in the drinking water supply. Groups of 3 mice 

each were euthanized at 0, 1, 2, 3, 5, 7, 10, 14 days following the first 2H2O injection at 12:00 

noon for sample collection. Remodeling and reverse remodeling mice were surgically implant-

ed with subcutaneous micro-osmotic pumps (Alzet) delivering 15 mg·kg-1·d-1 isoproterenol over 

14 days. 2H2O labeling was initiated as above, either immediately or 14 days after pump im-

plantation. 

 

Measurement of the physiological and molecular impacts of isoproterenol: Heart weights 

and body weights were measured at the time of euthanasia of each animal to record hypertro-

phy of the myocardium. Echocardiography were conducted by David Liem and our collaborator 

Yibin Wang on a Velvo 700 system equipped with a 45MHz transducer (Visualsonics, Toronto) 

and cardiac function analysis suite. Detailed cardiac function and chamber morphology was 

studied by ECG gated recording (EKV). M-mode of short-axis cross-section and Doppler at 

mitral valve can be recorded. Parameters, including wall thickness, chamber size and blood flow 

velocity were measured and calculated from stored images using the Visualsonic software 

package. The enzymatic activities of respiratory chain complexes I to V were measured from 10 

µg of isolated mitochondrial proteins by spectrophotometric methods. Briefly, complex I activi-

ty was measured by the rate of electron transfer onto nitro blue tetrazolium when given the 

complex I substrate NADH and when the other complexes are inhibited with specific inhibitors. 
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The specific activity of complex I was deduced by comparing the rate with or without the spe-

cific complex I inhibitor diphenyleneiodonium. Activities for other complexes were measured 

similarly and compared to their respective specific inhibitors, as previously described (Lotz et 

al., 2013). 

 

Measurement of body water label enrichment: To measure the amount of 2H2O that is incor-

porated into the animal’s body water throughput the labeling period, mouse plasma samples 

were used directly for gas chromatography MS analyses. For each sample, 20 µL of plasma 

was mixed with 2 µL of 10 N NaOH and 4 µL of 5% (v/v) acetone in acetonitrile. The standard 

curves were created by adding 0% to 20% molar ratio of 2H2O at 11 regular intervals in 1× PBS 

in place of the plasma sample to the acetone. The sample mixtures were incubated at ambient 

temperature overnight. Acetone was extracted by adding 500 µL of chloroform and 0.5 g of 

anhydrous sodium sulfate. One µL of the extracted solution was analyzed on a GC-mass spec-

trometer (Agilent 6890/5975) with a J&W DB17-MS capillary column (Agilent, 30 m × 0.25 mm 

× 0.25 µm) at the UCLA Molecular Instrumentation Center. The column temperature gradient 

was as follows: 60 °C initial, 20 °C·min-1 increase to 100 °C, 50 °C·min-1 increase to 220 °C, 1 

min hold. The mass spectrometer operated in the electron impact mode (70 eV) and selective 

ion monitoring at m/z 58 and 59 with 10 ms dwell time. 

 

Protein sample preparation: Mouse hearts were excised and homogenized by a 7-mL 

Dounce homogenizer (Pyrex) (20 strokes) in an extraction buffer (250 mmol·L-1 sucrose, 10 

mmol·L-1 HEPES, 10 mmol·L-1 Tris, 1 mmol·L-1 EGTA, 10 mmol·L-1 dithiothreitol, protease and 

phosphatase inhibitors, pH 7.4) at 4 °C, then centrifuged (800 g, 4 °C, 7 min). The pellet was 

collected as the total debris fraction. The supernatant was centrifuged (4,000 g, 4 °C, 30 min) 

and collected as the organelle-depleted cytosolic fraction. The pellet was washed, then over-

laid on a 19%/30%/60% discrete Percoll gradient pellet, and sedimented by ultracentrifugation 

(12,000 g, 4 °C, 10 min). Purified mitochondria were collected from the 30%/60% interface 
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layer and washed twice. Protein concentrations were measured by bicinchoninic acid assays 

using pure bovine serum albumins as standards (Thermo Pierce). 

 

Mouse plasma, heart, and human erythrocyte protein samples were separately digested in-

solution; 200 µg proteins were heated at 80 °C with 0.2% (w/v) Rapigest (Waters) for 5 min, 

then heated at 70 °C with 3 mmol·L-1 dithiothreitol for 5 min, followed by alkylation with 9 

mmol·L-1 iodoacetamide in the dark at ambient temperature. Proteins were digested with 50:1 

sequencing grade trypsin (Promega) for 16 h at 37 °C, then acidified with 1% trifluoroacetic 

acid (Thermo Pierce). Depleted human plasma samples were digested on-filter using 10,000 Da 

filters (Pall Life Sciences). Sample buffer was exchanged on-filter with 100 mmol·L-1 ammonium 

bicarbonate. The samples were then heated on-filter at 70 °C with 3 mmol·L-1 dithiothreitol for 5 

min, followed by alkylation with 9 mmol·L-1 iodoacetamide in the dark at ambient temperature. 

Proteins were digested with 50:1 sequencing grade trypsin (Promega) for 16 h at 37 °C.  
 

Separation of peptides by two-dimensional liquid chromatography. To reduce sample 

complexity and improve sample coverage, we separated the digested peptide with two-

dimensional reversed-phase/reversed-phase LC prior to MS analysis (Lam et al., 2011; Lau et 

al., 2011). First-dimension (high-pH) separation for mouse (heart cytosol and mitochondria, 

nucleus, plasma) and human (subject 4 and 6) samples was conducted on a Phenomenex C12 

reversed-phase column (Jupiter Proteo C12, 4 µm particle, 90 Å pore, 100 mm length × 1 mm 

inner diameter) at high pH using a Finnigan Surveyor LC system. The solvent gradient was as 

follows: 0th  – 2nd minute, 0 – 5% B; 3rd – 32nd minute, 5 – 35% B; 32nd – 37th minute, 80% B; 50 

µL·min-1; A: 20 mM ammonium formate, pH 10; B: 20 mM ammonium formate, 90% (v/v) ace-

tonitrile, pH 10. We then injected 50 µg of proteolytic peptides with a syringe into a manual 6-

port/2-position switch valve. Twelve fractions from 16 – 40 minute were collected, lyophilized 

and re-dissolved in 20 µL of 0.5% (v/v) formic acid with 2% (v/v) acetonitrile prior to low-pH 

reversed-phase separation.  
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We then performed second-dimension (low-pH) reversed-phase chromatography using an 

Easy-nLC 1000 nano-UPLC system (Thermo Scientific) on an EasySpray C18 reversed-phase 

column (PepMap, 3-µm particle, 100-Å pore; 150 mm length × 75 µm dimension; Thermo 

Scientific) held at 50 °C. The solvent gradient was 0–110 minute: 0–40% B; 110–117 minute: 

40–80% B; 117–120 minute: 80% B; 300 nL·min-1; A: 0.1% (v/v) formic acid, 2% (v/v) acetoni-

trile; B: 0.1% (v/v) formic acid, 80% (v/v) acetonitrile. The autosampler on the Easy-nLC 1000 

nano-UPLC system then injected 10 µL of each high-pH fraction into the solvent flow path. 

High-performance liquid chromatography-grade water (J.T.Baker) was used for all analytical 

solvent preparations. 

 

Protein identification and quantification using mass spectrometry. Mass spectrometry was 

performed on an LTQ Orbitrap Elite mass spectrometer (Thermo Fisher Scientific) controlled by 

XCalibur (v.2.1.0) coupled to the Easy-nLC 1000 nano-UPLC system through a Thermo 

EasySpray interface. Each survey scan was analyzed inside the Orbitrap at 60,000 resolving 

power in profile mode, followed by data-dependent collision-induced dissociation MS2 scans 

on the top 15 ions inside the ion trap. MS1 and MS2 target ion accumulations were 1 × 104 and 

1 × 106, respectively. We set dynamic exclusion to 90 seconds to avoid acquisition of redun-

dant spectra. We further used an MS1 scan lock mass of m/z 425.120025 for internal mass 

calibration. Protein identification was performed with ProLuCID (Xu et al., 2006) against a 

reverse-decoyed database (Uniprot mouse Reference Proteome Reviewed, February 19th, 

2013, 16,590 entries). The search allowed for static cysteine carbamidomethylation (+57.02146 

Da) modification and up to 3 variable modifications, including methionine oxidation (+15.9949 

Da), lysine acetylation (+42.0106 Da), serine/threonine/tyrosine phosphorylation (+79.9663 Da), 

or lysine ubiquitylation (+114.0403 Da). Tryptic, semi-tryptic, and non-tryptic peptides within a 

20-ppm mass window surrounding the candidate precursor mass were searched under sepa-

rate confidence calculation. Protein identifications were filtered by DTASelect (Tabb et al., 
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2002), requiring ≤ 1% global peptide false discovery rate and two unique peptides per protein. 

ProLuCID performs multiple iterations of database search for every spectrum, first to identify 

only unmodified peptides and then to assume variable mass shifts of unmodified peptides 

(Wong et al., 2007). DTASelect, with the –modstat parameter specified, then applies separate 

statistical filters to the modified and unmodified peptides to identify variable modifications 

using separate protein identification confidence calculations (Tabb et al., 2002), which would 

explain why searching with variable modifications in our typical workflow did not negatively 

impact protein identification performance. Note that modified peptides (other than methionine 

oxidation) were not considered for comparative analyses as we await rigorous validations of 

the number of label-accessible atoms on the modification moieties. However, scenarios exist 

where performing database search with modifications would nevertheless improve coverage – 

because a protein may be confidently identified by an unmodified and a modified peptide at 

two different sites to satisfy the two-peptide rule, and the unmodified peptide could go on to 

yield confident information on protein dynamics. On a related note, so far in our unpublished 

data we have not observed any systematic difference in turnover rates between modified and 

unmodified peptides of the same proteins. 
 
 

Computational workflow for protein kinetics analysis: Proteins were identified from the 

acquired mass spectra using ProLuCID (Xu et al., 2006) Protein functional information and 

Gene Ontology entries were queried through NCBI DAVID (Huang da et al., 2009) and COPaKB 

(Zong et al., 2013). Protein turnover kinetics was quantified with ProTurn. 

 

The nonlinear fitting parameters utilized to deduce protein turnover rates were as follows. 

Orbitrap spectra were input to ProTurn after conversion into the open [.mzML] format using 

MSConvert (Chambers et al., 2012). ProTurn was then instructed to select only confidently 

identified peptides that were uniquely assigned to a protein from the ProLuCID search result 

[.dta] file. 



 111 

 

For each identified peptide, all isotopomer areas-under-curves over a 60-ppm window of the 

peptide mass were integrated from the raw mass spectra, at the retention time in the MS1 

extracted ion chromatograph as indicated by the scan number in the protein identification list.  

Savizky-Golay filters over 7 data points were applied to the MS1 chromatograph prior to it-

negration (Savitzky and Golay, 1964). False positive identifications were further controlled by 

the requirement of a peptide to be explicitly identified in at least 4 time points before it is con-

sidered for kinetics calculation. Turnover rates were extracted by multivariate optimization to a 

nonlinear function. The optimization results were independently verified by two data-fitting 

scripts, written in R and in MATLAB. Peptide isotopomer time-series were accepted if they fit 

to the model with r ≥ 0.9, or alternatively with standard error of estimate of ≤ 10%. 

 

For iBAQ-based label-free quantification in ProTurn, the integrated isotopomer peak areas 

were summed up as the peptide cluster area. Protein areas were defined as the sum of all 

peptide areas from identified peptides, normalized to the total spectral intensity, then normal-

ized to the potential number of peptides (six or more amino acids in length) that may be pro-

duced from the protein sequence in an in silico tryptic digest. 

 

Statistical analysis. Non-parametric Mann-Whitney-Wilcoxon statistics were calculated in R 

(v.3.0.3) to estimate the significance of difference in turnover rates. Fisher’s exact test with the 

Benjamini-Hochberg procedure was performed through NCBI DAVID (Huang da et al., 2009) to 

estimate the significance of enrichment of functional categories. Results with P < 0.05 after 

multiple testing correction were considered significant. 

 

Validation of protein abundance changes. To corroborate the mass spectrometry data on 

protein abundance, we measured protein abundance in the heart before and after isoproterenol 

challenge with immunoblotting. Equal amounts of cardiac proteins (40 µg) were heated with 
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Laemmli loading buffer with 100 mM dithiothreitol at 70 °C for 10 minutes. The proteins were 

separated using SDS-PAGE on a Bio-Rad Mini-Protean 10–200 kDa Tris-glycine gel (Weber 

and Osborn, 1969), then transferred onto a polyvinylidene difluoride membrane (Bio-Rad 

TransBlot Turbo). Protein loading and transfer was verified with Ponceau S staining. The blots 

were blocked in the blocking buffer (5% bovine serum albumin, 0.005% sodium azide, in 1× 

Tris-buffered saline/ Tween 20 (TBST) (Cell Signaling)), reacted with primary antibodies at 4 °C 

overnight, washed with 1× TBST, reacted with secondary antibodies at ambient temperature 

for 1 hr, washed with 16y× TBST, then detected by chemiluminescence. All antibodies were 

purchased from Cell Signaling, including rabbit monoclonal IgG against GAPDH (#5174), HK1 

(#2024), HK2 (#2867), ANXA2 (#8235), VIM (#5741), TGM2 (#3557), PGAM1 (#12098), LDHA/C 

(#3558), ALDOA (#8060), PKM1/2 (#3190), PDH (#3205); and rabbit polyclonal antibodies 

against ANXA5 (#8555), MSN (#3146), ATP1A1 (#3010). Primary antibodies were diluted in 

1:1000 in the blocking buffer. Secondary antibodies were 1:3000 goat anti-rabbit IgG conju-

gated to horseradish peroxidase (#7074) in the blocking buffer. 
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III. Mechanisms of proteolysis in cardiac mitochondria 
 

 

In this chapter, we integrate mRNA, protein, and turnover data to identify a class of proteins 

with impaired proteolysis during cardiac remodeling. Using this method, we found a number of 

mitochondrial proteins with decreased degradation during disease development, including 

FXN, LTEM1, CYC1, and others. To characterize the potential mechanisms by which the impli-

cated proteins are degraded in the cardiac mitochondrion, we developed a 2D-DIGE based 

method to quantify the rate of proteolysis under experimental perturbations in vitro. Intra-

mitochondrial proteases including Lon exhibited different proteolytic activities and specificities 

than the 20S proteasome, which was also found to retard the turnover of mitochondrial pro-

teins in vivo. The described methods should be applicable to other systems where the rate and 

target of protein degradation in the mitochondria are of interest. The material composing this 

chapter was published and can be found in our publication (Lau et al., 2012). 

 

 
Impaired degradation of mitochondrial proteins in remodeling hearts 

 

Protein degradation stress and abnormal protein accumulation is a hallmark of multiple heart 

diseases (Divald et al., 2010; Gomes et al., 2006; Papa et al., 2007). In end-stage heart failure, 

several lines of evidence indicate impairments of the ubiquitin-proteasome system and the 

accumulation of poly-ubiquitinated protein, as reviewed in (Day, 2013). In human patients with 

hypertrophic and dilated cardiomyopathies, where proteasome activities markedly decrease in 

the failing heart but partially recover after mechanical unloading by LVAD (Predmore et al., 

2010). The capacity of protein quality control decreases in the diseased heart in human and 
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rodents (Gianni et al., 2010; Wang et al., 2011b), whereas in a mouse transverse aortic con-

striction model, proteasome activities decrease and ubiquitinated proteins accumulate as heart 

failure develops (Tsukamoto et al., 2006). The heart appears to be particularly prone to protein 

degradation stress compared to other cell and tissue types in the body, possibly because of 

the large amount of sarcomeric proteins that need to be degraded. Several protein misfolding 

models can lead to heart failure without other overt phenotypes (Hamada et al., 2004; Wang 

and Robbins, 2006). Activation of proteasomes decrease hypertrophy and increases lifespan in 

a desmin-related cardiomyopathy model (Li et al., 2011). Hence disrupted protein quality con-

trol may act both as an initiator of disease and as a cellular response to insults (Gianni et al., 

2010; Wang et al., 2011b). 

 

In the early-remodeling mouse model we employed here, we do not expect a decrease in 

global proteolytic activity. Indeed, peptidase activities in both 26S (ATP-dependent) and 20S 

(ATP-independent) proteasomes were augmented after isoproterenol and before the transition 

into heart failure (Drews et al., 2010). Hence our studies were not designed to examine pro-

teasome functional insufficiency, a term reserved for global dysfunction of proteasome enzy-

matic activity, in our current model, as it manifests only in later stages of cardiac disease when 

protein aggregates and proteotoxicity are observed. Nevertheless, altered degradation may 

contribute to disease development by altering the state of the proteome in heart diseases. 

Examples abound for proteins whose expression level is primarily controlled by degradation, 

notably p53 and PINK1, where both proteins are continuously synthesized in the cell but their 

steady-state levels are kept low due to rapid, continuous degradation under normal cellular 

conditions (Jin et al., 2010; Lukashchuk and Vousden, 2007). When cellular conditions call for 

protein activation (replication errors for p53 and mitochondrial depolarization for PINK1), spe-

cific proteolysis is suppressed, leading to an increase in steady-state level. 
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Accordingly, we hypothesize that a target subset of proteins in the heart exhibit impairment of 

selective degradation during cardiac remodeling, either through post-translational modifica-

tions or interactions with proteolytic mechanisms. Our goal was to identify a particular class of 

proteins based on kinetic and abundance behaviors, which may represent a class of candidate 

disease drivers. This paradigm is distinct from the identification and rescuing of global proteo-

lytic impairment that affects a broad swath of proteome substrates, as may be expected in 

late-stage heart failure. In this chapter, we will explore the combinatorial use of mRNA, protein 

expression, and protein turnover data to identify proteins with impaired proteolysis.  

 

Given that mRNA and protein expression are well known to be poorly correlated, we explored 

whether protein turnover rate information can be used to disambiguate the discrepancy be-

tween mRNA and protein abundance, I computed the degree of concordance between chang-

es in mRNA and protein levels following isoproterenol-induced remodeling, defined here as an 

mRNA exhibiting appreciable unidirectional changes of more than 10% in magnitude as its 

cognate protein in the isoproterenol vs. control sample. Proteins and mRNA changes were 

poorly correlated, exhibiting concordant behaviors (co-directional changes) in 19% of all the 

examined mRNA/protein species (Spearman’s correlation coefficient: 0.07). The poor correla-

tion between abundance and turnover changes, however, did not translate into considerably 

higher proportions of concordant changes (24%) when mRNA abundance was matched to-

ward either unidirectional protein abundance change or unidirectional protein turnover change. 

Taken together, the poor correlation between turnover and abundance suggests that protein 

turnover data alone explain only a small degree of the discrepancy between mRNA and protein 

abundance. Rather, it provides strong evidence that protein turnover measurements can be 

leveraged to provide additional discriminatory power to study the plasticity of the pathological 

proteome in parallel to commonly pursued protein expression profiling. 
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FIGURE 3.1 illustrates the discordant changes amongst RNA abundance, protein abundance, 

and protein dynamics in the remodeling heart. The changes in each parameter of 1,300 genes 

or proteins are shown. In each graph, the genes/proteins are ranked in descending order from 

the gene/protein with highest ratio in RNA abundance in remodeling over normal hearts to the 

one with the lowest (Left). It can be seen that neither the changes in protein abundance nor 

protein turnover had any obvious correlation with changes in RNA level either globally or when 

a specific protein is concerned, i.e., a gene/protein species with severely down-regulated RNA 

levels in disease may nevertheless exhibit highly increased protein abundance or turnover, and 

vice versa. 

 

Hence we conclude that changes in mRNA, protein abundance, and protein turnover in the 

diseased heart were effectively orthogonal to one another. The independence of RNA expres-

sion, protein expression, and protein dynamics suggest that these multi-scale data types may 

be synthesized to generate new hypotheses and may thus be harnessed collectively to de-

scribe the state of homeostasis of cardiac proteins. Such analysis could provide intrinsically 

mechanistic information regarding how mitochondrial protein abundance occurs (increased 

abundance due to increased synthesis or decreased degradation). Our method thus provides a 

novel method to detect selective impairments of protein degradation at the target substrate 

level, prior to severe protein aggregation formation, as opposed to commonplace measure-

FIGURE 3.1 RNA, protein abundance, and protein dynamics
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ments of global decreases in proteolytic capacity, which would affect the degradation of multi-

ple proteins on a large-scale. 

 

 

TABLE 3.1 explores some potential combinations of changes in RNA abundance, protein 

abundance, and protein turnover in disease development. The three parameters can be pur-

sued combinatorially to identify proteins associated with impaired degradation in disease, 

which would show decreased/unchanged RNA abundance, decreased/unchanged protein 

turnover (isotope incorporation normalized by the entire protein pool), but increased protein 

abundance. It should be noted that these interpretations are not definitive. For example, the 

characteristic profile of decreased/unchanged RNA level, decreased/unchanged protein turno-

ver and increased protein abundance does not definitively indicate only impaired degradation 

of proteins. It is possible for increased synthesis (due to post-transcriptional mechanisms) and 

attenuated degradation to simultaneously occur, which would be reflected as decreased turno-

ver and RNA level.  Nevertheless, by comparing these three independent parameters, we now 

have a tool at hand that allows us to detect proteins with inhibited proteolysis in the heart 

before the onset of aggregate formation. This provides an important differential that may lead 

to more actionable findings. For example, although we observed from the data that the mito-

chondrial protein prohibitin (PHB) turns over faster in the remodeling heart, at present we do 

not know whether it turns over faster due to increased synthesis alone, or increased degrada-

tion, information that is needed if we are to modulate its turnover.  

 

 

TABLE 3.1 Possible scenarios of protein dynamic changes in disease

RNA abundance

Increased
Decreased

Decreased/No change
Decreased/No change

1
2
3
4

Protein abundance

Increased
Decreased
Increased
Increased

Protein turnover

Increased
Decreased/No change

Increased
Decreased/No change

Possible interpretation

Increased transcription
Decreased transcription
Post-transcriptional control
Impaired degradation
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At this point it may be apposite to revisit how the protein turnover cycle serves as an underly-

ing mechanism of protein expression as alluded to in the previous chapter. The collection of 

both protein expression and protein turnover data allows us to, at least in principle, solve the 

quantitative changes of the protein pool over time (Claydon and Beynon, 2012): 

  

d[P]/dt = (ks – kd) · [P] 

 

where [P] denotes the size of the protein pool and ks and kd denote the rate constant of protein 

synthesis and protein degradation, respectively. It is further noted that as synthesis is assumed 

to be a zero-order process, ks
 takes the form of raw number of molecules entering the protein 

pool per unit of time; whereas given protein degradation is assumed to be a first-order pro-

cess, kd is expressed as the flux of the protein pool and takes the form of the proportion of the 

pool removed from the pool per unit of time. If we assume that changes in the proteome over 

physiologically relevant periods occur gradually, then over an instantaneous period of time 

being considered the protein pool would approach steady state, such that the rate of synthesis 

(protein molecules entering the protein pool) is roughly balanced by the rate of degradation 

(protein molecules exiting the protein pool). In other words, given that d[P]/dt ≅ 0, it follows 

that the raw number of molecules coming in to the protein pool per unit time (ks) and the raw 

number of molecules leaving the pool ([P] · kd) would be equal, such that: 

 

[P] = ks/kd 

 

With this model, one can describe changes in particular proteins during hypertrophy in further 

details, and the following two, albeit very approximate, calculations are given here for discus-

sion purpose, with the intention to illustrate this general concept, and should be interpreted 

with the caveat in mind that the protein expression values originate from relative quantification 

experiments. 
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We first consider four-and-a-half LIM domain protein 1 (FHL1), which in the previous chapter 

we described as being one of the proteins with the most drastic changes in protein turnover in 

cardiac remodeling, which also showed a congruent increase in protein abundance. From our 

experimental data, FHL1 has a relative expression level of 6.7 × 10-4 and k = 0.078 d-1. Given 

that k is a first-order rate constant that is expressed as the flux of isotopes through the protein 

pool, we assume that the experimentally measured k approximates kd in the model. Further 

assuming a weighted average molecular weight of 46 kDa in the cardiac proteome, one can 

surmise that there are approximately 9.0 × 1010 FHL1 molecules per 1 µg of injected cardiac 

protein samples, and that 7.0 × 108 FHL1 molecules are being synthesized per day. In the 

remodeling heart, the relative expression level of FHL1 is 1.3 × 10-3 and kd is 0.278 d-1. Hence 

there are 1.8 × 1010 FHL1 molecules per 1 µg of protein samples, and that 5.0 × 109 molecules 

are being introduced into the protein pool per 1 µg of protein samples per day. Hence in the 

remodeling heart, the synthesis of FHL1 increases at least 7-fold, the degradation of FHL1 

increases ~ 3.5 fold, and the expression level of FHL1 increases by twofold. 

 

Next, consider cardiac troponin T (TNNT2), which encodes part of the troponin complex and is 

a major component of the cardiac contractile machinery. As the heart undergoes hypertrophy 

and increases in mass, TNNT2 expression would be expected to increase over the entire or-

gan. However, given that muscle fibers occupy a high proportion of cardiac mass, its changes 

will dominate the changes in cardiac mass in the absence of drastic changes in the composi-

tion of cardiac cells, so one may expect minor changes in overall abundance of TNNT2 per unit 

mass of heart.  From our experimental data, TNNT2 has a relative expression level of 2.3 × 10-3 

and k = 0.091 d-1. Again if we assume that the experimental k approximates kd, there are ap-

proximately 3.1 × 1010 cardiac troponin T molecules per 1 µg of injected cardiac protein sam-

ples, and 2.7 × 109 molecules are being synthesized per 1 µg of samples per day. In the 

remodeling heart, relative expression of TNNT2 is 1.8 × 10-3, kd is 0.108 d-1, and the synthesis 



 120 

rate is 2.6 × 109 molecules per day. It may be surmised that any potential increase in TNNT2 

over the entire organ is due largely to increased synthesis. 

 

Because of the potential variability in these calculations, they will not be further considered in 

detail in the following analysis. Instead, we attempted to differentiate the directions of change 

of each gene/protein in multiple parameters, in order to categorize different types of behaviors 

in turnover and expression. To do so, we performed unsupervised agglomerative hierarchical 

clustering to categorize the quantified cardiac proteins according to their changes in RNA 

abundance, protein abundance, and protein turnover, in order to describe their state of home-

ostasis in transcriptional and translational spaces. Under such clustering analysis, proteins that 

behave closely in both expression and dynamics in the remodeling hearts would be grouped 

together, and may be enriched for functional annotations that would allow inference of in-

volvement of particular pathways. 

 

 

 

FIGURE 3.2 is a heat map representation of the results of the agglomerative hierarchical clus-

tering analysis. A total of 1,376 proteins (or their cognate mRNA) in normal and remodeling 

hearts, as described in Chapter II, were analyzed. From each gene or protein, the RNA abun-

FIGURE 3.2 Hierarchical clustering of RNA, protein, and turnover data

Pairwise correlation matrix
(1376 proteins)

Cluster I II III IV V VI VII VIIIIX X

ρ
−1 +1
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dance, protein abundance, and protein turnover data during disease development as collected 

from the previous chapter were standardized, which were then used to calculate the Spear-

man’s correlation coefficients between every protein pair combination. The data were used to 

generate a 1,376 x 1,376 protein correlation matrix for hierarchical clustering analysis. 

 

The clustered protein data are here represented as a heat map, in which blue-colored cells 

represent strong negative correlations between the two proteins that the cells represent along 

the diagonal axes, whereas yellow represents strong positive correlation. Due to the low di-

mensionality of the data, the selection of clusters was intended to be exploratory in nature in 

order to help identify potential proteins of interest, and no test of significance of clustering was 

carried out. Nevertheless, a number of principal protein clusters can be observed (yellow 

blocks), each containing proteins with inter-correlated kinetic behaviors during cardiac remod-

eling. Cluster VIII (outlined in red) in particular contained proteins which showed characteristic 

profiles of impaired degradation, as shown below. 
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FIGURE 3.3 examines Cluster VIII of cardiac proteins from the unsupervised clustering experi-

ments above. Cluster VIII contains 89 cardiac proteins, which are here represented by a heat 

map of their standardized Z score within a particular parameter (number of standard deviations 

from the population average). Green color denotes two positive standard deviations from the 

mean (i.e., the protein is highly up-regulated in that particular parameter), whereas red denotes 

two negative standard deviations from the mean (highly down-regulated). 

 

It can be seen that the 89 proteins generally exhibit decreased/unchanged mRNA abundance 

(red color), increased/unchanged protein abundance (green color), but decreased/unchanged 

protein turnover (red color) in cardiac remodeling. This cluster is significantly enriched for 

mitochondria-located proteins (Swissprot/Protein Information Resource SP/PIR keyword Mito-

chondrial Transit Peptide; 2.7-fold enriched; Fisher’s Exact test P: 1.3 x 10-7; Benjamini-

Hochberg adjusted P: 1.2 ✕ 10-4). This was an unusual and conspicuous pattern within the 

sample, as it was inconsistent with the global trend of increased turnover and synthesis one 

expects during the course of cardiac hypertrophy. Since neither RNA abundance nor protein 

turnover increased, the data indicated a post-transcriptional and post-translational mechanism 

whereby these proteins are perturbed in disease (e.g., impaired degradation).  

FIGURE 3.3 Cluster of mitochondrial proteins with impaired proteolysis
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FIGURE 3.4 is an alternative representation of the profiles of two proteins in the cluster 

(SLC25A42 and DBT), intended to illustrate the general patterns of changes in RNA, protein 

expression, and protein turnover during remodeling amongst proteins in the cluster. 

 

The cluster could be further subdivided using the change in protein turnover during reverse 

remodeling as a differential factor, i.e., by following the assumption that a bona fide disease 

protein is likely to recover in molecular profiles during recuperative reverse remodeling where 

decreases in hypertrophy is observed.  

 

 

 

 

FIGURE 3.4 Mitochondrial proteins with impaired proteolysis (continued)
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FIGURE 3.5 Mitochondrial proteins with impaired proteolysis (continued)
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FIGURE 3.5 shows a subset of proteins in Cluster VIII which showed increased protein turno-

ver during reverse remodeling (Rev.). The heat map is as in above, with the addition of reverse 

remodeling (Rev.) data being displayed in addition to remodeling (Iso.) data. The 42 shown 

proteins exhibit impaired degradation that are recovered during isoproterenol withdrawal and 

are interpreted here as potential disease proteins associated with the pathogenesis of cardiac 

remodeling. A number of proteins in this protein set have previous been implicated in cardiac 

hypertrophy and heart failure. Frataxin (FXN) is a mitochondrial matrix protein that is mutated in 

Friedreich’s ataxia, a devastating mitochondrial disease associated with cardiac degeneration, 

cardiac hypertrophy, and heart failure (Lane et al., 2013). Leucine-zipper-EF hand-containing 

transmembrane region (LETM1) is a mitochondrial protein involved in respiratory chain biogen-

esis that is deleted in Wolf-Hirschhorn syndrome, a developmental disorder that affects multi-

ple systems including the heart. Apolipoprotein O (APOO) is a non-mitochondrial proteoglycan 

in the cluster, which has been shown to be up-regulated in the heart in obesity and diabetes 

(Lamant et al., 2006). PRMT1 is an arginine methyltransferase that is required for mitochondrial 

localization of BAD (Sakamaki et al., 2011), required for PGC-1alpha activation, and that is 

associated with coronary heart diseases. The present dataset suggest a potential mechanism 

(impaired degradation) whereby these proteins may participate in the disease process. Fur-

thermore, a number of proteins in the cluster were previously not associated with cardiac 

remodeling, and thus present new candidate disease drivers. Tumor necrosis factor receptor-

associated protein-1 (TRAP1) is a pleiotropic mitochondrial-specific heat shock protein-90 

(HSP90)-like chaperone, which is involved in mitochondrial redox and cell death pathways and 

in neurodegenerative diseases (Altieri et al., 2012). 

 

Though not every protein in this cluster is mitochondrial, the enrichment of mitochondrial pro-

teins such as FXN, LETM1, CYC1, and others in this cluster of proteins with distinct turnover 

characteristic is intriguing. Based on the data, I hypothesized that cardiac remodeling stimuli 

contributes to heart disease in part by disrupting the expression and turnover dynamics of 
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specific mitochondrial proteins in the heart; more specifically, the disruption of mitochondrial 

protein degradation mechanisms lead to decreased proteolysis, accumulation of specific pro-

tein species, and disease development. If this hypothesis proves to be useful in predicting 

disease proteins, one may envision that protein dynamics studies can provide a more informa-

tive route to future interventions than protein expression analysis alone, in that the half-life of 

particular constituents of the mitochondrial proteome may be individually modulated through 

suppressing or activating targeted protein synthesis or degradation pathways. 

 

 
Substrates and activities of intra-mitochondrial proteases 

 

The route to translatable findings will additionally require understanding the mechanism of 

degradation of individual mitochondrial proteins. To illustrate this point, although the turnover 

data indicate that the degradation of frataxin may be altered in the failing heart, at present 

there are limited clues as to the mechanisms through which the protein may be degraded in 

health or disease that may serve as potential intervention targets. Finding out the degradation 

mechanism of mitochondrial proteins is therefore an important objective, to which we consid-

ered two available strategies that may be employed. Firstly, an in vitro method to detect prote-

ase substrates may be pursued, where the protein substrates are introduced to proteolytic 

agents of choice and proteolysis allowed to take place in vitro under controlled conditions. The 

degree of proteolysis may then be measured by the residual protein abundance in the absence 

of interfering protein synthesis. This method allows more experimental perturbations to be 

applied to test various hypotheses. Secondly, an in vivo study may be employed where a 

particular protein degradation pathway is inhibited, possibly pharmacologically, and the result-

ing half-life of proteins is measured, and an increase in half-life for a protein may be inferred as 

evidence of its normally being degraded by the suppressed pathway. This method has proven 

useful to measure single targeted protein degradation mechanisms in the adult heart in the 
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past (Beardslee et al., 1998). Both methods were attempted here in order to address whether 

the mitochondrial protein turnover changes were impacted by their differential degradation in 

vitro and in vivo. We will investigate both the proteolytic agent, and the availability of sub-

strates, both of which will modulate protein degradation rates. We show that mitochondrial 

proteases degrade proteins in isolated cardiac mitochondria minimally, but show preferences 

for selected protein charge variants. 

 

Protease systems that exist inside mitochondria include several ATP-dependent protease 

complexes: the Lon protease homolog, Clp, and the m-AAA and i-AAA metalloprotease com-

plexes, among which the Lon protease homolog is the best characterized. The Lon protease is 

a homoheptameric complex of LONP1 monomers conserved in all domains of life, and con-

tains distinct domains for ATP binding, substrate recognition, and proteolysis. The substrate-

recognition domain is thought to bind to exposed hydrophobic domains from potential protein 

substrates (Smith et al., 1999). Indeed, Lon has been shown to promote the degradation mildly 

oxidized proteins (Bota and Davies, 2002; Bota et al., 2002; Kaser and Langer, 2000) and 

impede protein carbonyl accumulation in vitro (Ngo and Davies, 2009; Ngo et al., 2011). Never-

theless, in vivo data on the physiological significance of these targets have been inconclusive 

(Bender et al., 2011; Major et al., 2006). Thus far only a few proteins have been conclusively 

demonstrated to be Lon substrates in vivo (Bezawork-Geleta et al., 2014; Matsushima et al., 

2010), most notable of which is the mitochondrial transcription factor A (TFAM), through the 

action on which Lon may modulate mitochondrial DNA copy number (Matsushima et al., 2010). 

Curiously, genetic ablation of the LONP1 homolog in yeast (Pim1) causes impairments in respi-

ration and mitochondrial functions (Suzuki et al., 1994) but results in the accumulation of only 

very few proteins in the yeast mitochondrion (14 out of > 200 spots) (Bayot et al., 2010), an 

observation potentially attributable to compensatory effects from decreased protein synthesis 

of the Pim1 substrates in Pim1Δ strains. Hence the general repertoire of Lon protease sub-

strates remains poorly defined. 
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FIGURE 3.6 illustrates two potential routes of degradation that a hypothetical intra-

mitochondrial protein may go through. Extra-mitochondrial proteolysis is shown on the left, 

which may occur via PINK1/Parkin mitophagy, general macroautophagy, or cytosolic pro-

teasomes, which have been theorized to destroy mitochondrial proteins either through mito-

chondrial assisted degradation, or export of mitochondrial proteins into the cytosol.  

 

 

TABLE 3.2 lists the endogenous AAA+ protease complexes we identified from the cardiac 

mitochondrion. A number of detected protein subunits belonging to the AAA+ family of intra-

mitochondrial proteases are shown, Including the Lon homolog, Clp protease, m-AAA, and i-

AAA metalloproteases. The Spectral abundance column shows the abundance of the protease 

expressed as the proportion of all proteins in the mitochondrial proteome, as measured from 

FIGURE 3.6 Overview of mitochondrial protein degradation mechanisms
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TABLE 3.2 Endogenous protease complexes in cardiac mitochondria

Gene name

LONP1
CLPP
CLPX
AFG3L2
SPG7
YME1L1

Protein name

Lon protease homolog
Clp protease (proteolytic subunit)
Clp protease (ATP-binding subunit)
m-AAA AFG3-like protein 2
m-AAA Paraplegin
i-AAA FtsH homolog

Spectral abundance

0.10% ± 0.01%
0.03% ± 0.00%
0.03% ± 0.00%
0.04% ± 0.00%
0.01% ± 0.00%
0.01% ± 0.00%

Rank

166
293
431
266
557
558

SYPRO Ruby

~0.10%
ND
ND
ND
ND
ND
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label-free spectral count technique. The Rank column shows the abundance rank of the prote-

ase in descending abundance in the mitochondrial proteome. The SYPRO Ruby column shows 

the results when we measured the relative abundances of cardiac mitochondrial proteins with 

the ruthenium-based fluorescent dye SYPRO Ruby, following two-dimensional isoelectric 

focusing (IEF)-polyacrylamide gel electrophoresis (PAGE) separation.  Both independent meth-

ods indicated that AAA+ proteases were minute in abundance in cardiac mitochondria. The Lon 

homolog LONP1 was the only species with appreciable concentration, representing ~0.1% of 

total detected cardiac mitochondrial proteins. These quantification results were reaffirmed by a 

recent investigation in the Ping laboratory (Lotz et al., 2013).  

 

The relative abundance of LONP1 in the mitochondrion is comparable to the expression of its 

bacterial homolog as quantified in Mycoplasma pneumonia (0.2%) (Maier et al., 2011), but both 

are dwarfed by the content of proteasomes in the cytosol, which may be as abundant as ac-

counting for 0.9% of liver proteins (Tanaka et al., 1986). Given the proximity of mitochondrial 

proteins to ROS-mediated protein damage, the low abundance of proteases in cardiac mito-

chondria is remarkable. To determine the potential activity of the intra-mitochondrial mitochon-

drial proteases in degrading protein substrates, we measured their endogenous enzymatic 

activity using an in vitro fluorescent substrate. The method is based on the introduction of 

fluorescence tagged casein to the proteases of interest for a period of time, followed by pre-

cipitation of undigested proteins and measurement of fluorescence in the supernatant. 
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FIGURE 3.5 shows the activity of intra-mitochondrial proteases in digesting a fluorescent 

substrate. (Left) Activity over protease inhibitor control (gray) can be differentiated after 12 

hours of incubation from 100 µg of mitochondrial proteins (red) (3 arbitrary units (AU) vs. 1 AU), 

which was equivalent to approximately 50% the activity of 2.5 ng of bovine trypsin (green). 

Each data point represents reading from one experimental replicate. Lines and shaded areas 

represent local regression and 95% confidence intervals of the trend over time. (Right) We 

sought to differentiate the nature of proteolytic activities by using inhibitors that show specific 

preference to different protease classes based on their catalytic mechanism. In total, we tested 

the effects of the serine protease inhibitor phenylmethanesufonyl fluoride (PMSF; 1 mmol·L-1); 

the cysteine protease inhibitor E-64 (0.35 g·L-1); the aspartate protease inhibitor pepstatin (1 

µmol·L-1); the metalloproteinase inhibitor 1,10-phenanthroline (2 g·L-1); and a protease inhibitor 

cocktail (Roche Complete), which contains serine protease, cysteine protease, and metallopro-

tease inhibitors. A minimal and variable response towards E-64, pepstatin, and 1,10-

phenanthroline was observed, which in three separate experiments not shown here only mar-

ginally reduced the proteolytic activities of mitochondria to 90% ± 20% of normal. By contrast, 

both PMSF and, to a higher degree, Roche Complete abolished the majority (~60 – 80%) of the 

observed activities in the shown experiment. 

 

FIGURE 3.7 Enzymatic activities of intra-mitochondrial proteases
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Thus, cardiac mitochondria exhibit proteolytic capacity in vitro, which appear to be largely in 

serine protease type despite the various numbers of proteases present, consistent with LONP1 

being the predominant proteolytic system inside mitochondria, which agree with its predomi-

nant abundance. We next determined whether the measured proteolytic activity is impacted by 

the presence of oxidative stress as may be encountered by the cardiac mitochondrion during 

remodeling, and to contrast it to changes in 20S proteasome activity under identical condi-

tions. 

 

 

FIGURE 3.8 shows the activities of mitochondrial proteases and 20S proteasome under vari-

ous concentrations of H2O2 in vitro. (Left) Comparisons of baseline proteolytic activity using the 

in vitro casein assay between 100 µg of cardiac mitochondrial proteases and 1 µg of 20S 

proteasome isolated from the mouse heart.  Error bars: standard errors of means; n=6; aster-

isks: P < 0.05, Student’s t test. (Right) The effects of H2O2 on the proteolytic activity of 20S 

proteasome (20S) and mitochondrial proteases (Mito) are shown. The introduction of as little as 

10 µmol·L-1 of H2O2 was found to be sufficient to reduce the normalized activity of mitochondri-

al lysates to roughly half of normal levels. On the other hand, 20S proteasomes were resistant 

to up to 1 mM Error bar: SEM; asterisks: P < 0.05 vs. no H2O2, Student’s t test; n = 4 for 20S 

proteasome, n = 10 for mitochondrial proteases. 

FIGURE 3.8 Proteolytic activities under oxidative insult
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The observation that oxidative insults may deactivate LONP1 is corroborated by a recent re-

port, which found that oxidative modifications induced by H2O2 suppresses its proteolytic 

activity reversibly (Hoshino et al., 2014). Accordingly, we determined whether in vivo modula-

tion of oxidation could also alter the proteolytic activity of LONP1 in the mouse heart. A pilot 

experiment was conducted that compared normal Hsd:ICR (CD-1) mice, to mice treated with 

10 mg·kg-1·wk-1 of the pro-oxidant herbicide paraquat, and to mice treated with paraquat plus 

0.7 mg·kg-1·d-1MitoTEMPO, a mitochondrial-targeted antioxidant (Trnka et al., 2009). The mice 

were labeled with 2H2O as described in the previous chapters and samples were taken at day 

3, 7, 10, and 14 to generate a preliminary overview of protein turnover distributions. Among the 

mitochondrial proteins with statistically significant differences in turnover rates between para-

quat and normal samples, the median turnover rate upon paraquat treatment was 84% of that 

in a normal mouse (5th to 95th percentile: 71% to 92%). Simultaneous administration of Mito-

TEMPO reverted the effect of paraquat, in that the median turnover rate of the proteins was 

102% of that in a normal mouse (5th to 95th percentile: 95% to 111%). Hence, preliminary anal-

yses suggest that the introduction of oxidative stress appears to slow down the turnover of 

mitochondrial proteins in vivo, which is consistent with, though not diagnostic of, an inhibition 

of mitochondrial proteases causing an impairment of degradation. 

 

Although our initial plan was to differentiate how different proteases may permute in the dis-

ease heart, the current experimental design will mostly discern the contributions from LONP1. 

The other protease complexes are known to serve other physiological functions, but as they 

are less amenable to large-scale biochemical investigations, we shifted our focus to determin-

ing which substrates are being degraded by the observed intrinsic proteolytic activity of cardi-

ac mitochondria. 
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To elucidate how mitochondrial protein degradation is regulated at the individual protein level, 

we examined the substrate pool of intra-mitochondrial proteases. Our approach was to use 

two-dimensional differential gel electrophoresis (2D-DIGE) – a combination of fluorescent Cy 

dye labeling and IEF SDS-PAGE two-dimensional separation (Wang et al., 2011a) – to resolve 

and quantify individual mitochondrial proteins. These experiments were performed in vitro by 

design, in order to avoid the confounding influence of synthesis and to complement the in vivo 

half-life data described in the previous two chapters. Although in vivo isotope labeling may be 

used to quantify protein turnover as a summation of protein synthesis, translocation, and deg-

radation, such methods cannot easily differentiate the contributions and activities of different 

degradation mechanisms. Furthermore, they cannot easily distinguish intact protein substrates 

from proteolytic fragments, whereas the use of in vitro fluorescence labeling followed by two-

dimensional electrophoretic separation allowed us to directly assess proteolytic changes of 

individual substrates and isoforms.  

 

 

FIGURE 3.9 illustrates the principle of the 2D-DIGE strategy to measure the degree of in vitro 

proteolysis in the cardiac mitochondrion. Equal amounts (100 µg) of cardiac mitochondrial 

proteins were permitted either to degrade by the present proteolytic agents, or were protected 

FIGURE 3.9 2D-DIGE strategy to identify mitochondrial protease targets
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by protease inhibitors throughout incubation. The residual proteins from the proteolyzed sam-

ples were labeled with Cy5 dyes, which fluoresces in red. The un-degraded control sample was 

labeled with Cy3 dye, which fluoresces in green. The two samples were mixed and resolved on 

two-dimensional gels then scanned for quantity comparison of each resolved protein spot. A 

protein that is not degraded by the present proteases appears as yellow in the combined fluo-

rescence image (equal intensity of red and green), whereas a protein that is susceptible to 

degradation appears as green (present only in the un-degraded sample). 

 

Hence to discover the in vitro targets of mitochondrial proteases, we incubated isolated mouse 

heart mitochondria either in the presence of either ATP or protease inhibitor, after which the 

2D-DIGE approach was utilized to determine which proteins remain to be present in the mito-

chondrial extract.  

 

 

 

FIGURE 3.10 displays the result of one representative gel from triplicate 2D-DIGE experiments. 

Each gel spot represents one protein species (a gene product or charge/size isoform thereof) 

as separated by charge and molecular weight. Following incubation of cardiac mitochondria in 

isolation to promote endogenous proteolysis, 111 unique proteins were identified by liquid 

FIGURE 3.10 In vitro proteolytic maps of mitochondrial proteases
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chromatography-tandem mass spectrometry (LC-MS/MS) to yield a protein-specific in vitro 

degradation map. It can be seen from the map on the left that the majority of the proteins 

exhibited a modest decrement in abundance in the proteolysis-enabled sample. On average, 

over 80% of each protein species remained intact after incubation, but specific spots with 

degraded proteins were nevertheless detected (Right), altogether indicating that the mitochon-

drial proteome was relatively stable in isolation in vitro. This observation corroborates similar 

reports in the literature from experiments performed in yeast (Augustin et al., 2005; Bender et 

al., 2010) and suggests that mitochondrial proteases have highly specific substrate prefer-

ences. This is further consistent with the observation that functional ablation of the yeast Lon 

homolog PIM1 resulted in the accumulation of few detectable proteins (Major et al., 2006) and 

proteolysis assays generally did not indicate the respiratory complexes to be efficient sub-

strates of mitochondrial proteases (Bender et al., 2010; Major et al., 2006). 

 

However, the in vivo data from the previous chapters unequivocally indicated that mitochondri-

al proteins do turn over at appreciable rates in the heart, whereas in the in vitro experiments, a 

number of proteins susceptible to oxidative damage including the NADH:ubiquinone oxidore-

ductase iron-sulfur cluster subunits did not appear to be efficient substrates of mitochondrial 

proteases. A possible explanation for the modest degrees of in vitro degradation is that a 

missing degradation signal is not present in the experimental system, or that the mitochondrial 

proteases have a limited intrinsic capacity to degrade mitochondrial proteins under basal con-

ditions. Another possibility, which we will consider later, is that these proteins could conceiva-

bly be degraded by extra-mitochondrial factors, provided there is accessibility between the 

proteolytic agent and its substrates.  

 

Despite the overall stability of the proteome, different degrees of degradation were clearly 

discernible from selected individual protein spots, which may be used to infer substrate selec-

tivity. A number of mitochondrial proteins exist in charge variants that were readily resolved by 



 135 

isoelectric focusing. It can be seen from the zoomed-in view on the right that the mitochondrial 

proteases favor the degradation of the more basic isoforms of selected proteins, suggesting a 

possible recognition mechanism for proteolysis that would be otherwise masked by other 

means of detection. This isoform preference was repeatedly observed in multiple mitochondrial 

protein species.  

 

 

 

FIGURE 3.11 shows the similar 2D-DIGE patterns we observed from a number of mitochondrial 

proteins. (Left) The 2D-DIGE image shows an example of such basic isoform preference on the 

mitochondrial 2-oxoglutarate dehydrogensase (OGDH), with its five charge variants outlined in 

white. The isoforms were numbered with the most abundant isoform arbitrarily numbered as 0, 

and its more basic number as +1, and so on. The heat maps below show the degree of degra-

dation (measured as the percentage of decreased abundance vs. control samples) in several 

other mitochondrial proteins including the Lon protease itself (LONP1), leucine-rich PPR motif-

containing protein (LRPPRC), pyruvate dehydrogenase E1 beta subunit (PDHB), succinyl-CoA 

ligase [ADP-forming] subunit beta (SUCLA2), and succinate dehydrogenase subunit A (SDHA); 

where the basic isoform (the high-pI end of the IEF-PAGE map from the most prominent iso-

form) was conspicuously more prone to experimental degradation. This specificity was absent 

FIGURE 3.11 Isoform preference of mitochondrial proteases
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from proteolysis conducted by proteasomes, as we will consider below. To confirm this result, 

we conducted reverse labeling experiments (data not reproduced here from our publication 

(Lau et al., 2012)) as well as detection with silver staining in lieu of 2D-DIGE (Right), and found 

that the charge specificity remained observable. 

 

It is known that many proteins contain isoform series that can be separated by their horizontal 

migration patterns in two-dimensional electrophoresis (Claydon et al., 2012). These “trains” of 

charge variants were proposed to reflect protein lifetime-dependent progression (e.g., chemical 

asparagine deamidation) (Lindner and Helliger, 2001; Weintraub and Deverman, 2007), but 

recent proteomics evidence suggests the variants have similar isotope incorporation rates and 

thus are of the same molecular age (Claydon et al., 2012). There are also some other discrep-

ancies between this hypothesis and the 2D-DIGE data. Because asparagine reduces the pI of 

the residue (Yang and Zubarev, 2010), the charge variants would be expected to rank from 

oldest to newest from the most acidic (left) to the most basic (right). The data would suggest 

that only newly synthesized proteins are capable of being degraded by the mitochondrial pro-

teases, which is clearly not what one would expect in a protein degradation system in homeo-

stasis. Lastly, if the chance of protein degradation is not orthogonal to molecular age, one 

might expect that total protein pool replacement would be more linear than the observed first-

order kinetics. 

 

An alternative hypothesis for the specificity for charge variants is that they may represent post-

translational modification that designate proteins for degradation but are independent of their 

molecular age. Substrate presentation, which governs substrate recognition and recruitment, is 

finely tuned in the major proteolytic system of the cell, where recruitment to proteasomes by 

E3 ligases and ubiquitin receptors work with proteins with degradation signals (degrons) that 

are exposed to the ubiquitin-proteasome system under various cell states to orchestrate indi-

vidual protein degradation rates and thus individual protein steady-state expression. 



 137 

 

We postulate that similar cytochemical or enzymatic post-translational modification signals 

may be recognized by intra-mitochondrial proteases directly or indirectly (such as by promot-

ing misfolding or as a degron for intermediate signals) (Bota and Davies, 2002; Leonhard et al., 

2000; Marcillat et al., 1988). To assay the identity of the charge variants, we performed a series 

of biochemistry and gel staining experiments designed to look for several different post-

translational modifications in the mitochondria. Although the results did not provide support to 

the hypotheses, they are recorded here in the interest of future experimental designs and that 

these general surveys of post-translational modifications in cardiac mitochondria may be sub-

jects of future investigations. 

 

My initial hypothesis was that the protein charge variants may represent differential protein 

phosphorylation and acetylation on different individual molecules of the protein pool. Protein 

phosphorylation targets serine, threonine, and tyrosine residues and acetylation targets lysine; 

both are highly common protein modifications in the mitochondrion. Both modifications are 

reversible, are protein- and site- specific, respond to stimuli, and function as important regula-

tors of cellular signaling. Both modifications are small, and charge-altering (phosphorylation 

introduces a negative phosphate whereas acetylation neutralizes the positive charge on lysine). 

This matches the 2D electrophoresis profile we observed (horizontal but not vertical shifts), 

although not the directionality. Both protein modifications have been implicated in protein 

degradation signals in other cellular compartments. Recent studies implicate histone acetyla-

tion to be a direct recognition signal in lieu of ubiquitination for 20S proteasomes bound to 

PA200 regulatory complex (Qian et al., 2013). In systems where propagation of signaling is 

dependent on the inhibition of selective degradation such as the Wnt signaling pathway 

(Clevers, 2006), phosphorylation acts as the permissive signal to regulate the rate of degrada-

tion. 
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FIGURE 3.12 displays two representative gel images from 2D-DIGE experiments designed to 

determine whether the degradation-susceptible gel spots were enriched in protein phosphory-

lation or acetylation. (Left) Untreated mitochondrial proteins (Cy 5; red) were compared with 

those treated with lambda phosphatase (New England Biolabs) (Cy3; green). (Right) Mitochon-

drial proteins isolated from untreated mouse hearts (Cy5; red) were compared with those iso-

lated from mice treated with histone deacetylase (HDAC) inhibitors (suberoylanilide hydroxamic 

acid and sodium valproate) for 6 hours in vivo prior to euthanasia (Cy3; green). The proteins 

were resolved with IEF-SDS PAGE as above. It can be seen that relatively few changes in the 

implicated isoforms were present and the patterns of changes did not conform to the patterns 

of substrate susceptibility of the protein degradation map. We used an alternative strategy to 

detect endogenous protein phosphorylation patterns using a phosphate-binding fluorescent 

gel stain (Pro-Q Diamond) and likewise did not detect matching phosphorylation patterns that 

may discriminate the charge variants (data not shown). Hence we did not observe any evi-

dence that the protease substrate preference was due to protein phosphorylation or acetyla-

tion. 

 

FIGURE 3.12 2DE patterns of protein phosphorylation and acetylation
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It is possible that protein phosphorylation or acetylation nevertheless acts as endogenous 

degradation signals but that their roles were obscured in the experiments above. For example, 

the HDAC inhibitors we used are thought to inhibit mostly class I and class II HDACs, whereas 

class III HDAC sirtuins (SIRT3, SIRT4 and SIRT5) exist in the mitochondria that may be the 

biologically relevant deacetylating agents. Future investigations may employ sirtuin inhibitors 

(e.g., sirtinol) to examine their effects on mitochondrial proteolysis. Secondly, it is possible that 

the protein charge isoforms on the 2D-DIGE gels represent differential multiples of a combina-

tion of modification moieties (e.g., having 8, 7, 6 and 5 phosphates and 5 acetyl-lysine moie-

ties, etc.), which would complicate their distinction under perturbation. 

 

My next hypothesis was that the charge variants might represent an oxidative modification, of 

which many types exist including cysteine thiol oxidation, nitrosylation, and protein carbonyla-

tion. The reported preference of LONP1 to degrade mildly oxidized aconitase (Bota and Davies, 

2002) suggested oxidative protein modifications to be another potential cause of the observed 

degradation preferences. Our first strategy was to detect the staining patterns for protein car-

bonylation (using Millipore OxyBlot) and lysine 4-hydroxy-2-nonenal (4-HNE) modification with 

immunoblotting. 
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FIGURE 3.13 displays two representative blot images from 2DE experiments designed to 

determine whether the degradation-susceptible gel spots were enriched in protein carbonyla-

tion (Left) or 4-HNE modifications (Right). Neither patterns conclusively confirmed that the 

isoform charge variant trains corresponded to differential amounts of oxidative modifications, 

although for some proteins Oxyblot appeared to react preferentially with the spots on more 

acidic side, which would be consistent with charge-reducing carbonylation of positively-

charged residues. 

 

These experiments do not rule out the involvement of other oxidative modifications, including 

cysteine oxidative modification to sulfonic acid, which has been shown to confer similar charge 

train patterns in other proteins by increasing the isoelectric point of the protein spots (Fujiwara 

et al., 2007). We next explored whether in vitro perturbations of ROS levels may shift the migra-

tion patterns of the mitochondrial proteins. 

FIGURE 3.13 2DE patterns of oxidative post-translational modifications
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FIGURE 3.14 shows the shift in isoform charge variants following exposure to 1 mM of H2O2 for 

30 minutes in vitro, as compared using 2D-DIGE. Exposing mitochondrial lysate to H2O2 shifted 

the isoelectric pattern toward the anode, as may be expected from the carbonylation modifica-

tions of positively charged residues. It is, however, not clear whether this may be connected to 

the substrate preference of mitochondrial proteases, as such hypothesis would suggest that 

mitochondrial proteases preferentially degrade un-damaged proteins! Nevertheless, it is worth 

noting that as described previously in this chapter, ROS decreased the general capacity of 

isolated mitochondria to degrade fluorescein-labeled casein. An intriguing possibility is that 

mitochondrial proteases become ineffectual in the presence of excessive ROS on both the 

protease and substrate levels. 

 

We conducted additional experiments to assay the 2DE patterns other post-translational modi-

fications may present, including glycosylation using Pro-Q Emerald stains or glycosidase 

treatment (data not shown). Altogether, these data suggest that although mitochondrial prote-

ases may influence protein turnover by targeting substrates that possess a potential degrada-

tion signal, at present the identity of the degradation signal remains elusive. 

 

 
Can proteasomes degrade mitochondrial proteins? 
 
 

As noted previously in this chapter, a number of mitochondrial proteins do not appear suscep-

tible to the endogenous proteolytic activity of the mitochondrion. These proteins may normally 

FIGURE 3.14 Charge isoform patterns following in vitro oxidation
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turn over via extra-mitochondrial factors including autophagy and the ubiquitin-proteasome 

system. Proteasome degrades the majority of cellular proteins including in the cytosol, the ER, 

and the nucleus (Lee and Goldberg, 1998). Although proteasomes are not known to reside 

within the mitochondrion, multiple lines of evidence are converging to implicate the involve-

ment of cytosolic proteasomes in mitochondrial protein homeostasis (Azzu and Brand, 2010; 

Radke et al., 2008). 

 

Ubiquitination is a post-translational modification commonly associated with proteasomal 

degradation of the modified protein. Surprisingly, large-scale profiling experiments have re-

vealed that ubiquitinated proteins exist not only on the mitochondrial surface facing the cytosol 

(e.g., mitofusin) (Livnat-Levanon and Glickman, 2011) but also on the inner membrane isolated 

from the cytosolic contents, including in all five of the respiratory complexes (Kim et al., 2011). 

Two inner-membrane proteins, the uncoupling protein 2 and uncoupling protein 3 (UCP2 and 

UCP3), have been investigated in further details and were found to require both proteasomes 

and an intact outer membrane in order to turn over effectively in cultured cells (Azzu and 

Brand, 2010; Azzu et al., 2010). These studies lend credence to the notion that particular mito-

chondrial proteins may in fact be degraded through proteasomal pathways in physiologic 

conditions, perhaps after being exported through an unknown retrograde transportation mech-

anism to the cytosol that has been proposed (Heo et al., 2010; Livnat-Levanon and Glickman, 

2011; Xu et al., 2011).  Retrograde transport may occur with the aid of the transitional endo-

plasmic reticulum ATPase (VCP) protein or nuclear protein localization protein 4 homolog 

(NPL4), both of which function in endoplasmic reticulum-assisted degradation (ERAD)- associ-

ated retrotranslocation (Heo et al., 2010), and both of which have unexpectedly been found to 

associate with the mitochondrion (Livnat-Levanon and Glickman, 2011). Alternatively, this 

process may also be facilitated by heat-shock protein 90 (HSP90), a pleiotropic chaperone 

protein involved in mitochondrial protein import and homeostasis that has also been shown to 

be involved in the retrotranslocation of the F1F0 ATP synthase complex subunit OSCP to the 
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outer membrane and its subsequent proteasomal degradation (Margineantu et al., 2007). Cor-

roborating this, previous studies in the Ping laboratory have observed mitochondrial proteins 

accumulate in the cytosol of diseased hearts (Zhang et al., 2008b), which would permit en-

counters with proteasomes. Lastly, proteasome inhibitors including bortezomib, epoxomicin, 

and MG115 can disrupt mitochondrial functions, morphology, and turnover in vitro and in vivo 

(Nowis et al., 2010; Sullivan et al., 2004) , although this may be due to direct inhibition of pro-

tein degradation or an indirect effect on mitochondrial dynamics. 

 

Given these supporting evidences, I hypothesized that proteasomes possess a previously 

under-appreciated capacity to degrade multiple mitochondrial proteins. It would therefore be 

an objective of interest to determine in an unbiased manner the extent to which the homeosta-

sis of mitochondrial proteins may be affected by proteasomes in vitro, and whether disrupted 

proteasome capacity mechanistically alters mitochondrial dynamics in vivo. I first designed 

experiments to address whether any of the cardiac mitochondrial proteins are possible sub-

strates of 20S proteasomes using the 2D-DIGE strategy as previously described in the chapter. 

 

 

FIGURE 3.15 illustrates the experimental design for measuring the proteolytic substrates of 

20S proteasomes using the 2D-DIGE approach. In the proteolysis sample, cardiac mitochon-
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FIGURE 3.15 Experimental design to identify 20S degradation targets
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dria were incubated with 1:50 molar ratios of mouse cardiac 20S proteasomes at 37 °C for 9 

hours. Control samples were not incubated. The two samples were labeled with Cy3 and Cy5 

dye, mixed, and resolved with 2DE. The degrees of proteolysis were measured via the percent-

age of residual proteins in the proteolysis sample as previously described in the chapter. 

 

 

FIGURE 3.16 shows a representative 2D-DIGE experiment aimed at identifying the in vitro 

substrate of 20S proteasome in the cardiac mitochondrion. (Left) Substrate preference may be 

discerned from the differential degradation patterns of individual protein spots, as described 

earlier in the chapter. (Right) Zoomed-in images from the 2D gel shows that ATP synthase beta 

subunit (ATP5B) was not susceptible to 20S proteasome-mediated degradation, as an equal 

amount of the protein remained in both the proteolytic and control samples; whereas succinyl-

CoA ligase [ADP-forming] subunit beta (SUCLA2) was effectively degraded, as virtually no 

protein remained in the proteolysis sample and the combined 2D-DIGE spot was green.  
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FIGURE 3.16 In vitro 20S-mediated degradation of mitochondrial proteins
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FIGURE 3.17 summarizes and compares the observed substrate preferences of the mitochon-

drial proteases with that of the 20S proteasome. Differences in in vitro proteolytic rates (Left) 

and in substrate preferences (Right) between the two proteolytic mechanisms are apparent. 

The protein degradation profiles were correlated with functional categories or multi-protein 

complex association. The tricarboxylic acid cycle and the NADH:ubiquinone oxidoreductase 

complex contained more proteins susceptible to the 20S proteasome. The identified 

NADH:ubiquinone oxidoreductase components exhibited a median in vitro half-life of 7.1 hours 

under 20S proteasome (5th − 95th percentile: 3.4 − 17.1 hours). In comparison, proteins belong-

ing to other respiratory chain complexes had over twice the median half-life, at 15.7 hours, in 

the same experiments (5th − 95th percentile: 9.2 − 44.4 hours). This discrepancy in degradation 

rates could not be satisfactorily correlated to any examined biophysical parameters including 

hydrophobicity, abundance, isoelectric point, and molecular weight (data not reproduced here 

from our publication (Lau et al., 2012)). The data therefore favor the hypothesis that biological 

properties confer substrate selectivity in proteolysis. 

 

To determine whether proteasome-mediated degradation of mitochondrial proteins may in fact 

occur in vivo, we conducted a pilot experiment to compare the protein turnover rates of normal 

mice and mice treated in vivo with epoxomicin, an irreversible proteasome inhibitor with no 

activity against the Lon protease. Twenty-eight wild-type C57BL/6J mice were randomized into 
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two groups, receiving daily injection of 0.5 mg·kg-1·d-1 epoxomicin or vehicle, respectively, 

whilst labeled with 2H2O simultaneously. Protein turnover rates from the two groups were 

measured as described. 

 

 

FIGURE 3.18 shows the results of the above experiment and the comparison of protein turno-

ver rates. Amongst 1,056 compared proteins, 83% exhibited an expected decrease in overall 

turnover rates following epoxomicin stimulus, consistent with the inhibition of proteasomes 

leading to a decrease in replacement of the majority of cellular proteins that are ordinarily 

degraded through the ubiquitin-proteasome system; whereas 17% of proteins exhibited an 

increase in overall turnover rates. The bottom 10% of proteins (with most drastically decreased 

turnover rates) were significantly enriched in proteins involvedin focal adhesion including colla-

gens and caveolins (3.6-fold enrichment, Fisher’s Exact P: 6.9 × 10-5; Benjamini-Hochberg P: 

0.02), whereas the top 10% of proteins (with increased turnover rates following epoxomicin) 

were suggestively enriched in proteases (3.2-fold enrichment, Fisher’s Exact P: 2.6 × 10-4; 

Benjamini-Hochberg P: 0.19), and include several 19S and 20S proteasome subunits (PSMA4, 

PSMA5, and PSMC5). 

FIGURE 3.18 Effect of in vivo epoxomicin stimulus on protein turnover
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FIGURE 3.19 shows the functional categories of quantified cardiac proteins along with the ratio 

of their turnover rates in epoxomicin vs. vehicle treatment. A number of mitochondrial proteins 

are amongst the majority of proteins, which exhibited a decrease in protein turnover. The data 

are therefore consistent with cytosolic proteasomes being able to influence the dynamics of 

mitochondrial proteins, and suggest that a number of mitochondrial proteins are potential 

proteasome substrate in vivo. However, a major limitation of the experimental results is that 

they do not distinguish secondary effects (such as the decreased degradation of mitofusion 2 

affecting mitochondrial dynamics) from direct proteolysis of mitochondrial proteins by pro-

teasomes. 

 

To summarize this chapter, our results corroborate accumulating evidence on alternative 

mechanisms of mitochondrial protein turnover in vitro and in vivo. We showed that the stability 

and degradation of the cardiac mitochondrial proteins provide a mechanism for altered mito-

chondrial protein turnover in the diseased heart, where the inhibition of oxidative metabolism 

FIGURE 3.19 Epoxomicin-sensitive turnover rates in functional clusters
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and the accumulation of metabolic byproducts in the mitochondria are known to directly con-

tribute to the etiology of myocardial dysfunction. The failure to contain mitochondrial protein 

damage and restore protein homeostasis would result in the disruption of key metabolic and 

energetic subsystems and serve a molecular trigger of further pathogenesis. The interrelation-

ship among cardiac mitochondria, ROS, and protein quality control suggests an axis where 

disrupted protein dynamics of the mitochondria plays a decisive role in the course of cardiac 

remodeling. As misfolded proteins are typically degraded through multiple pathways, several 

effectors may act in concert to modulate mitochondrial proteome turnover. The UPS presents a 

recent candidate contributor of extra-mitochondrial degradation mechanisms, and the 20S 

proteasome is here shown to independently degrade mitochondrial proteins in the absence of 

ubiquitination. We hypothesize a working model where the 20S proteasomes may act as an 

oxidative stress response to modulate mitochondrial protein dynamics under different physio-

logical and pathological conditions. These findings should stimulate further investigations on 

the roles of alternative protein degradation mechanisms on the homeostasis of cardiac mito-

chondria in normal and stressed conditions. 

 

 
Materials and methods 

 

Method summary: Hsd:ICR (CD-1) mouse cardiac mitochondria and 20S proteasomes were 

isolated as previously described (Zhang et al., 2008b; Zong et al., 2006). The mitochondrial 

proteome was set up to undergo proteolysis either by its endogenous proteases, or by exoge-

nous, active 20S cardiac proteasomes. Relative protein abundances following proteolysis were 

determined by two-dimensional differential gel electrophoresis (2D-DIGE), then identified by 

LC-MS. 
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Reagents. All chemicals were purchased from Sigma-Aldrich unless specified. Milli-Q (Milli-

pore) filtered water (18.2 MΩ) was used throughout the study.  

 

Study approval: Mouse experiments were conducted in accordance with the Guide for the 

Care and Use of Laboratory Animals by the National Research Council and approved by Uni-

versity of California, Los Angeles. Animals were euthanized with an overdose of pentobarbital 

(150 mg·kg-1 i.p.) or cervical dislocation in accordance with guidelines established by the Amer-

ican Veterinary Medical Association Panel on Euthanasia. 

 

Isolation of cardiac mitochondria: Male Hsd:ICR (CD-1) outbred mice (Harlan laboratories) at 

8 – 12 weeks of age were used for the study. To isolate mitochondria from the heart, we eu-

thanized ≈20 mice and performed thoracotomy to excise the hearts. The heart was immediate-

ly minced and homogenized using a Dounce glass homogenizer (≈25 strokes) in a sucrose 

buffer (250 mmol·L-1 sucrose, 10 mmol·L-1 HEPES, and 10 mmol·L-1 Tris-HCl, pH 7.5). The 

sucrose buffer for mitochondrial preparations used for studying endogenous proteolytic activi-

ties contained no protease inhibitors, whereas the preparations for other experiments con-

tained in addition 1 mmol·L-1 EGTA, protease inhibitors (Roche Complete, 1×), phosphatase 

inhibitors (Sigma Phosphatase Inhibitor Cocktail II and III, 1×), and 10 mmol·L-1 of dithiothreitol 

(Sigma). The heart homogenate was centrifuged (800 rcf, 4 °C, 7 minutes) to remove debris. 

The supernatant was centrifuged (4,000 rcf, 4 °C, 20 minutes) to pellet crude mitochondria. The 

mitochondrial pellets were washed once, then resuspended in 19% Percoll (Sigma) (v/v) in 

sucrose buffer, overlaid on 30% and 60% Percoll and ultracentrifuged (12,000 rcf, 4 °C, 20 

minutes) to remove microsomal contamination.  Purified mitochondria were collected from the 

30%/60% Percoll interface and washed twice in the sucrose buffer, followed by centrifugation 

(4,000 rcf, 4 °C, 20 minutes) to remove the residual Percoll. We quantified the yield of isolated 

mitochondria by rupturing an aliquot of intact mitochondria through sonication in a hypotonic 
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buffer (10 mmol·L-1 Tris-HCl, pH 7.4), followed by bicinchoninic acid assays using pure bovine 

serum albumins as standards (Pierce). 

 

Isolation of cardiac 20S proteasome: To purify 20S proteasomes for in vitro reactions, we 

euthanized ≈100 Hsd:ICR mice and performed thoracotomy to excise the hearts. The hearts 

were immediately minced and homogenized using a Dounce glass homogenizer (≈25 strokes) 

in a buffer (20 mmol·L-1 Tris-HCl, 5 mmol·L-1 MgCl2, protease inhibitors (Roche Complete, 1×), 

phosphatase inhibitors (Sigma Phosphatase Inhibitor Cocktail II and III, 1×), and 0.5 mmol·L-1 

dithiothreitol, pH 7.8). We centrifuged the homogenate (25,000 rcf, 4 °C, 2 hours) to collect the 

cytosolic fraction in the supernantant, where the majority of proteasomes reside. We precipi-

tated this cytosolic supernatant sequentially using 20%, 40%, and 60% ammonium sulfate to 

yield the 20S proteasome-containing fraction, which precipitates at 40% ammonium sulfate.  

This fraction was dialyzed against 20 mmol·L-1 Tris-HCl, 5 mmol·L-1 MgCl2, 0.5 mmol·L-1 dithio-

threitol, pH 7.4 at 4 °C overnight, then further purified using ion-exchange chromatography on 

a Q Fast Flow XK26/40 column (Amersham). The crude 20S proteasomes was resolved by 

isocratic steps of 270 mmol·L-1, 450 mmol·L-1 and 600 mmol·L-1 KCl, dissolved in 20 mmol·L-1 
-

Tris-HCl, 5 mmol·L-1 MgCl2, 0.5 mmol·L-1 dithiothreitol, 10% glycerol, pH 7.4, at a flow-rate of 5 

mL·min-1, at 4 °C. The eluent from 450 mmol·L-1 KCl was collected and ultracentrifuged 

(205,000 rcf, 4 °C, 19 hours) to sediment the proteasomal complexes. The resulting pellets 

were resuspended in 20 mmol·L-1 Tris-HCl, 5 mmol·L-1 MgCl2, 0.5 mmol·L-1 dithiothreitol, 10% 

glycerol, pH 7.4 and further resolved by ion-exchange chromatography on a Mono Q HR5/50 

column using identical solvents as above. The purified 20S-proteasome eluted at ≈360 mmol·L-

1 KCl under the following gradient:  0 – 270 mmol·L-1 KCl for 7.875 column-volumes, 270 – 450 

mmol·L-1 KCl for 21 column-volumes and 450 – 600 mmol·L-1 KCl for 4.375 column-volumes, at 

the flow rate of 0.5 mL·min-1, at 4 °C. My colleagues in the Ping laboratory have previously 

used this method to successfully acquire highly purified 20S proteasome complexes (Drews et 

al., 2010; Wang et al., 2011a; Zong et al., 2006). We quantified the 20S proteasome yield with 
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bicinchoninic acid assays using pure bovine serum albumin as standards (Thermo Pierce), and 

further assessed the purity of the preparation using SDS-PAGE and Coomassie Blue staining. 

The activities of 20S proteasomes were validated using established fluorescent substrates of 

20S proteasomes (Z-LLC-AMC for caspase-like activity, Boc-LSTR-AMC for trypsin-like activi-

ty, and Suc-LLVY-AMC for chymotrypsin-like activity) as previously described (Zong et al., 

2006). 

 

In vitro proteolysis of cardiac mitochondrial proteins: To assess the effect of endogenous 

proteolytic activities on degrading the cardiac mitochondrial proteome in vitro, we incubated 

isolated mitochondria (150 µg polypeptide equivalent) in 100 µL of sucrose buffer and 100 

mmol·L-1 ATP at 37 °C for ~15 hours. The effect of 20S proteasome-mediated degradation was 

examined by adding murine cardiac 20S proteasome to ruptured mitochondria (150 µg poly-

peptide equivalent) and incubating the mixture in 100 µL of 50 mmol·L-1 HEPES, 100 mmol·L-1 

KCl, 10 mmol·L-1 MgCl2, and 100 mmol·L-1 CaCl2, pH 7.6 at 37 °C for 9 hours. Mitochondria 

and 20S proteasomes were incubated separately in the proteasome-negative control. In the 

reaction mix, the molar ratio of 20S proteasome to mitochondrial proteins was ≈ 1:50, assum-

ing an average molecular weight of mitochondrial proteins of 55,000 Da and that of the 20S 

proteasome complex to be 750,000 Da. Following incubation, the proteins were frozen at −20 

°C to deactivate enzymatic activities and acetone-precipitated using the GE Healthcare Amer-

sham Ettan 2D Clean-up Kit according to the manufacturer’s instructions. 

 

Measurement of proteolytic activities of mitochondrial proteases: We estimated the en-

dogenous proteolytic activity of mitochondria by incubating 100 µg of isolated murine cardiac 

mitochondria with 100 mmol·L-1 ATP and 10 µL of fluorescein-labeled casein (Sigma Protease 

Fluorescent Detection Kit) at 37 °C in the dark for 2 hours. Any undigested proteins were pre-

cipitated by incubation with 150 µL of 0.6 N trifluroacetic acid at 37 °C for 30 minutes, followed 

by centrifugation (10,000 rcf, ambient temperature, 10 minutes). To detect the amount of di-
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gested peptides, we mixed 10 µL of the supernatant with 200 µL of 500 mmol·L-1 Tris, pH 8.5, 

and measured the fluorescence at 485 nm/527 nm using a Thermo Fluoroska Nascent micro-

plate spectrofluorometer.  

 

Fluorescence labeling and separation of mitochondrial proteins: To resolve and quantify 

the mitochondrial proteins following in vitro proteolysis, we resuspended the acetone-

precipitated digests in 30 µL of deionized 8 mol·L-1 urea, 2 mol·L-1 thiourea, and 4% (w/v) 3-[(3-

cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS). Protein labeling was carried 

out with 150 pmol Cy3 or Cy5 fluorescent cyanine dyes using the CyDyeTM DIGE Fluor (minimal 

dye) Labeling Kit (GE Healthcare) on ice for 3 hours according to manufacturer’s instruction. 

Furthermore, aliquots from replicate experiments were combined and labeled with Cy2 fluores-

cent dyes as internal loading standards of each gel. The labeling reaction was quenched with 

20 nmol L-lysine. The Cy2, Cy3 and Cy5 samples of each experiment were combined and 

diluted to 340 µL with deionized 8 mol·L-1 urea, 2 mol·L-1 thiourea, and 4% (w/v) 3-[(3-

cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), 2% (v/v) tributylphosphine 

(Sigma), 1% (v/v) carrier ampholite (GE IPG buffer 3 – 11 non-linear), 1% (v/v) GE deStreak 

reagent, and 1.5% (w/v) dithiothreitol. IEF was conducted on 18-cm Immobiline DryStrip pH 3-

11 non-linear IPG strips (GE Healthcare) on an Ettan IPGphor 3 instrument (GE Healthcare) with 

the following profile: 30 V, 8 hours; 150 V, 2 hours; 300 V, 2 hours; 600 V, 2 hours; 1000 V, 2 

hours; 1000 – 8000 V ramping, 1 hour; 8000 V until 60000 V·hr. The IPG strips were equilibrat-

ed in 50 mmol·L-1 Tris-HCl, 8% (w/v) SDS, 6 mmol·L-1 urea, 30% (v/v) glycerol, 1% (w/v) dithio-

threitol, pH 8.8, at ambient temperature in the dark, for 30 minutes, followed by 50 mmol·L-1 

Tris-HCl, 8% (w/v) SDS, 6 mmol·L-1 urea, 30% (v/v) glycerol, 4% (w/v) iodoacetamide, pH 8.8, 

for 30 minutes. We then separated the charge-resolved proteins by size using SDS-PAGE on a 

12% Tris-glycine acrylamide gel at 80 V at ambient temperature in the dark for 19 hours. 2D-

DIGE gels were scanned on a Typhoon 9410 workstation (Amersham) near 489 nm/506 nm, 

550 nm/570 nm, and 650 nm/670 nm for each of the Cy dyes using the manufacturer’s scanner 
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control software. The protein spots from fluorescent signal scans were recognized and quanti-

fied using the Progenesis SameSpots software (v.4) (Nonlinear Dynamics).  

 

Identification of protein species using LC-MS: Following quantification, the gels were silver-

stained and protein spots were manually excised and digested with 1:50 (w/w) modified se-

quencing-grade trypsin (Promega) using a standard in-gel digestion protocol my colleagues in 

the Ping laboratory has previously utilized(Wang et al., 2011a). The extracted peptides were 

separated on a 300-Å-pore, 5-µm-particle, 75 µm × 150 mm C18 reverse-phase nanoLC col-

umn (New Objective) and analyzed on a Thermo LTQ-XL linear ion-trap mass spectrometer, 

controlled using the XCalibur v.1.5 software with typical parameters for routine protein identifi-

cation. The acquired spectra were searched using the SEQUEST algorithm in Thermo Bioworks 

v.3.3.1, against the UniProt mouse database (2011-07-27; 55,744 entries). The identified pep-

tides were further grouped into non-redundant protein sets with Scaffold v.2.0 (Proteome 

Software). Gel spots that did not result in the unambiguous assignment to a single protein 

claiming a preponderance of unique peptides were excluded from quantitative analyses. 

In a parallel set of experiments, we also assessed the relative abundances of proteins from 

isolated mitochondria using shotgun proteomics and spectral counts as previously described 

(Paoletti et al., 2006). Briefly, we defined the spectral abundance factor of a protein as the sum 

of peptide spectral counts divided by its length. The spectral abundance factors of all proteins 

identified in an experiment are normalized within the population to give the normalized spectral 

abundance factor (NSAF) as a quantitative measurement of relative protein expression levels in 

the mouse heart. 

 

Measurement of protein turnover rates: Protein processing, MS analysis and bioinformatics 

workflows were as reported in Chapter II unless otherwise specified. Hierarchical clustering 

analysis was performed with the software program Cluster (v.3.0 for Mac OS X) by Michael 
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Eisen (Eisen et al., 1998) using Spearman’s correlation as similarity matrix and complete link-

age clustering, then visualized as a scalable heat map with JTreeView (v.3.0) (Saldanha, 2004). 
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IV.  Translational potential and future perspectives 
 

 

This chapter begins with a discussion on some ongoing applications of the presented methods 

to measure protein turnover in vivo in animal models, including the use of six inbred mouse 

strains with different outcomes after isoproterenol challenge as a model to distinguish proteo-

mic features associated with susceptibility to cardiac hypertrophy. I then explore the challeng-

es and outlook on how protein turnover studies can be translated to studying human diseases 

of the heart and of other systems. My colleagues and I devised a non-linear kinetic model that 

accounts for the rate constant of isotope enrichment in human experiments, and demonstrate 

that it can be used to measure the turnover rates of over 500 human plasma proteins. The 

material composing this chapter was published and can be found in our publications (Lam et 

al., 2014; Wang et al., 2014). 

 

 
Approaches for further applications and data validation 

 

We utilized a genetic model as a differential to further categorize candidate proteins and identi-

fy potential disease drivers. To do so, we performed the turnover experiment in multiple strains 

of inbred mice from the hybrid mouse diversity panel (HMDP). Susceptibility to and progression 

of HF are governed in no small part by genetic variability (Bleumink et al., 2004), thus environ-

mental stressors must be viewed within the diverse context of biochemical individuality – the 

genetic canvas that distinguishes one person from another and contributes to the molecular 

phenotypes that determine disease susceptibility. The Lusis lab has pioneered the use of a 

panel of >100 laboratory mouse strains with variable traits and fully defined genotypes to ex-
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amine the genetic basis of common traits (Ghazalpour et al., 2012; van Nas et al., 2013; Parks 

et al., 2013).  

 

 

FIGURE 4.1 shows the spectrum of cardiac phenotype in different mouse strains. (Top) Like 

individuals in a human population, the HMDP mouse strains exhibit individual differences in 

heart failure traits, and their polymorphic genetic makeup profoundly influences outcome in the 

isoproterenol-induced heart failure model. Data are shown on various traits including fractional 

shortening (FS), hypertrophy, fibrosis, and survival following 21 days of isoproterenol challenge 

(data from (Rau, 2013)). These variations also manifest during disease development as variable 

intermediate phenotypes (e.g., RNA and protein levels) that can be exploited for systems level 

interrogations (Civelek and Lusis, 2014). The HMDP mice therefore constitute a renewable 

systems biology resource for studying the molecular complexity that underlies why some 

individuals are predisposed to common diseases, while others are not.  

 

In order to carry out such analyses, however, the question of whether protein dynamics is 

influenced by genetic must first be addressed. Recent studies have shown that absolute pro-

tein abundance is a heritable trait that influences phenotype (Wu et al., 2013) and holds prom-

FIGURE 4.1 Spectrum of cardiac phenotypes in mice
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ise for clinical diagnosis (Gerszten et al., 2011). We therefore asked whether protein half-life is 

an intrinsic trait that varies greatly by genetic backgrounds in the HMDP strains by comparing 

the measured turnover data from several distinct strains in the following preliminary studies, 

which will determine whether we may leverage the genetic differences of distinct mouse strains 

to identify causal disease associations in conjunction with the power protein dynamics to 

reveal non-steady-state perturbations. 

 

 

TABLE 4.1 lists the expected phenotypes of the mouse strains used, based on data following 

isoproterenol challenge in (Rau, 2013). For reason of throughput, we limited the number of 

mouse strains to six (FVB/NJ, BALB/cJ, C57BL/6J, DBA/2J, A/J, CE/J). FVB/NJ, CE/J, and 

C57BL/6J are considered to be resistant to isoproterenol-mediated cardiac remodeling, based 

on mortality, fibrosis, hypertrophy, and fractional shortening data from (Rau, 2013); BALB/cJ, 

A/J, and DBA/2J are considered to be susceptible to isoproterenol, although it may be seen 

that susceptibility of a strain depends on the trait being measured (in addition to the heart 

failure model being employed). For our purpose in locating the extreme strains, we considered 

hypertrophy and mortality with priority. Note that these studies were not designed to map 

causal polymorphisms for heart failure, but rather would use the above strains which was 

demonstrated to show extreme phenotypes (very resistant or very susceptible to isoproterenol-

induced heart failure) as differentials to generate hypotheses and prioritize candidates for 

TABLE 4.1 Expected phenotypes of examined mouse strains

Mouse strain

FVB/NJ
CE/J
C57BL/6J

BALB/cJ
A/J
DBA/2J

Mortality

Resistant (0-25%)
Resistant (0%)
Moderate (25-50%)

Susceptible (50-75%)
Susceptible (50-75%)
Moderate (25-50%)

Fibrosis

Resistant
Resistant
Resistant

Susceptible
Moderate

Susceptible

Hypertrophy

Moderate (20-40%)
Resistant (0-20%)

Moderate (20-40%)

Moderate (20-40%)
Susceptible (40-60%)
Susceptible (40-60%)

Fractional shortening

Decrease
Increase

No change

No change
Decrease

No change
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validation studies; e.g., a bona fide disease driver is likely to have particularly perturbed half-life 

in susceptible strains, whereas a protective proteome change may present in resistant strains. 

 

 

FIGURE 4.2 illustrates the experimental scheme. For each of the six mouse strains, 28 male 

animals (9 – 12 weeks of age) were randomized to receive either vehicle (normal hearts) or 20 

mg·kg-1·d-1 isoproterenol (remodeling hearts) for up to 14 days. Labeling with 2H2O was initiated 

simultaneously as described in previous chapters. Samples were collected at day 0, 1, 3, 5, 7, 

10, 14 following the initiation of labeling, and analyzed for protein turnover with MS and Pro-

Turn as described. 
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FIGURE 4.3 plots the experimental heart-weight-to-body-weight ratios of the six mouse strains 

following isoproterenol treatment in our laboratory. As expected, the susceptible mouse strains 

(top) exhibited substantially higher degrees of hypertrophy following isoproterenol than the 

resistant strains (bottom). Each data point represents an individual animal; solid and dashed 

line represents local regression and 95% confidence interval. 

 

 

TABLE 4.2 summarizes the results of the MS experiments on the six mouse strains. Turnover 

rates (d-1) are given as median [5th to 95th percentile]. The median deviation is given as the 

median of all median absolute deviations of turnover rates amongst peptides belonging to the 

each protein. Data from Hsd:ICR mice are reproduced from Chapter II for reference. 

TABLE 4.2 Summary and statistics of examined mouse strains

Strain

FVB/NJ

CE/J

C57BL/6J

BALB/cJ

A/J

DBA/2J

Hsd:ICR

Turnover rate 
(control)

0.15 [0.04 - 0.64]

0.11 [0.03 - 0.45]

0.09 [0.03 - 0.45]

0.12 [0.04 - 0.58]

0.11 [0.03 - 0.52]

0.13 [0.03 - 0.54]

0.10 [0.03 - 0.51]

Turnover rate
(isoproterenol)

0.11 [0.03 - 0.48]

0.13 [0.03 - 0.52]

0.13 [0.03 - 0.45]

0.12 [0.03 - 0.50]

0.13 [0.04 - 0.46]

0.14 [0.04 - 0.45]

0.13 [0.03 - 0.43]

Quantified proteins*
(control, isoproternol)

1421, 1078

1599, 1420

1168, 1824

1038, 1130

1625, 1745

1742, 1630

2271, 2439

Median deviation
(control, isoproterenol)

17.7%, 18.2%

17.8%, 18.4%

19.3%, 19.2%

17.7%, 18.0%

22.0%, 18.7%

19.3%, 17.8%

22.1%, 20.0%
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FIGURE 4.4 demonstrates how basal protein half-life varies significantly between two inbred 

mouse strains with differential susceptibility to heart failure, indicating half-life data can be co-

mapped with genetic differences in the HMDP strains to cardiac traits of interest. (Top) Prelimi-

nary data from 830 compared proteins show that basal protein turnover differ between two 

mouse strains. (Bottom) Each graph shows the percentage of protein pool that has been 

turned over at different time points. Each line represents an independent measurement, e.g., 

~60% of the mitochondrial heat shock protein HSPA9 molecules turned over after 6 days in 

FVB/NJ mice, as opposed to ~40% in BALB/cJ mice, suggesting HSPA9 has higher turnover 

rates in the FVB/NJ strain. Similarly, the mitochondrial ATP synthase subunit ATP5H turns over 

faster in FVB/NJ mice, whereas the myosin light chain protein MYL7 turns over faster in 

BALB/cJ mice. The variability observed between mouse strains was greater than the variability 

from independent replicate observations within the same strain, suggesting the difference was 

due to genetic backgrounds. Future multivariate analysis will determine whether particular 

proteins exhibit turnover behaviors that segregate with phenotypic classifications. 

FIGURE 4.4 Strain differences in protein turnover rates
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We next considered the potential validation workflows for large-scale protein turnover da-

tasets, e.g., the data from this and the previous chapters which identified a number mitochon-

drial proteins whose disrupted degradation with impaired proteolysis. From these data one 

may hypothesize that selected mitochondrial proteins normally maintained in homeostasis by 

intra-mitochondrial proteases, exhibit impaired proteolysis during remodeling that may contrib-

ute to further disease development. Although it lies beyond the current scope of investigation, 

it would be of interest to theorize how such findings may be validated to identify causal disease 

drivers. 

 

In the simplest iteration, candidate disease drivers can be genetically manipulated to simulate 

enhanced or diminished protein abundance as may occur during isoproterenol remodeling. 

Although we are identifying protein targets that may not show overt steady-state abundance 

changes, silencing or overexpression will nevertheless change their turnover dynamics and 

allow us to test whether the protein may modulate disease phenotypes. High-priority targets 

may be tested with siRNA or adenoviral vectors followed by functional assays in H9c2 rat 

cardiomyoblast cells or neonatal rat ventricular myocytes (NRVM) to determine whether per-

turbing such the discovered protein targets may affect phenotypes. These experiments may be 

carried out under a hypertrophic remodeling stimulus (48 hours of stimulation of 10 µmol·L-1 

phenylephrine or 1 nmol·L-1 endothelin-1). Cellular remodeling may be assessed using cell size, 

cell morphology, growth rate, respiratory rates, and apoptosis, whereas qRT-PCR can be 

performed to quantify expression of the fetal gene program (e.g., ANF, beta-MHC), with the 

goal of testing whether manipulating protein targets can ameliorate expected transformations 

to hypertrophic phenotypes. 
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More sophisticated in vitro genetic maniputation studies will validate whether the candidates 

can causally modulate hypertrophy phenotypes via the discovered turnover changes. Methods 

to modulate protein turnover genetically (e.g., N-end rule and ubiquitin fusion modifications 

(Dantuma et al., 2000)) have been described that may be considered. If a validated degradation 

signal exists (e.g., phosphorylation or acetylation), tagged constructs can be made for the 

candidate proteins in which discovered modification sites can be mutated (S/T -> A for non-

phosphorylatable; S/T -> D/E for phosphomimetic; K -> R for non-acetylatable, K -> Q for 

acetyl-mimetic) to measure their effects on protein degradation and cardiac phenotypes. Car-

diac-specific and/or muscle specific (tinC-Gal4 or Dmef2-Gal4) UAS-RNAi drosophila lines 

(from VDRC) may be used to directly test their effects in cardiac parameters and in tissue 

metabolic functions. Once we home in on several candidate disease proteins, we may also 

formally test the hypothesis that the differential turnover of these proteins contributes to heart 

disease development by expanding to 50 or more HMDP mouse strains to measure their half-

life using highly targeted, high-throughput assays such as multiple-reaction monitoring (MRM) 

mass spectrometry, from which turnover quantitative trait loci may be mapped. 

 

We envision that these and other future experiments will help establish the causality of protein 

dynamics regulations in effecting cardiac remodeling, which will be indispensible to the search 

for actionable targets and interventional strategies that modulate turnover. In the long-term, 

however, the utility of protein turnover studies will hinge upon the ability to validate the data in 

other model systems and in human, with the eventual objective of measuring protein turnover 

in the hearts of heart failure patients and LVAD patients in order to understand the anatomy, 

behavior, and time-evolution of human heart disease as well as to identify new markers for 

disease sub-classifications. To achieve this goal, an indispensible first step is to validate and 

optimize the analytical approach and to determine whether it may be applicable to other model 

systems and human. 
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Protein turnover in non-linear enrichment systems 

 

A primary rationale for 2H2O labeling in our studies is that 2H2O is unique among protein tracers 

in its compatibility with human clinical investigations. Several advantages of 2H2O over other 

isotope tracers as described in Chapter I are particularly applicable to future clinical studies. 

Firstly, contrary to labeled amino acids or 15N tracers, 2H2O oral uptake is straightforward to 

administer without dietary modifications, which would obviously present additional difficulty in 

subject recruitment and administration, as the subject would have to ingest an enriched meal 

in place of usual foodstuff. Secondly, the ability to monitor body water enrichment from any 

body fluid is especially beneficial for clinical studies as it minimizes the number of procedures 

and potential inconvenience or invasiveness. Thirdly, 2H2O is sufficiently inexpensive to remain 

financially feasible within the scale of human consumption. A labeling regiment would consume 

approximately 0.75 to 1.5 L of 70% 2H2O, depending on body mass, to achieve up to 2% 

labeling for up to 14 days, which would cost approximately $500 per subject at the time of 

writing. By contrast, equivalent isotope enrichment with 13C-labeled leucine would cost approx-

imately $5,000 per subject based on 3 g of total leucine intake per day. Thirdly, 2H2O has a 

well-established safety record in human going back decades (Busch et al., 2007; Price et al., 

2012a). No physiological effects have been reported at the proposed dosage (~2%). 

 

Nevertheless, several technical constraints hinder the application of 2H2O labeling to validate 

disease drivers in the clinical setting, which we aimed to address in a pilot study. Firstly, hu-

man has slower metabolism and protein turnover than in smaller animal models, which de-

creases the amount of labels incorporated into the subject during the labeling period, which 

favors experiments with longer labeling duration to be able to effectively measure protein 

turnover rates. However, procedurally it would be desirable to minimize the labeling duration in 
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a human study so as to minimize the impact of the labeling regimen to the human subject. In 

addition, a viable strategy to acquire cardiac protein turnover rates must be able to deduce 

protein turnover from only a single time point, given the severely limited surgical availability of 

cardiac samples and the impossibility to acquire repeated biopsy samples in most cases. In 

patients, samples procurements are only available at specific points, such as during LVAD 

installation, cardiac transplant, or the routine biopsies of post-transplant surveillance.  

 

Secondly, a lower dose of 2H2O enrichment is targeted for human subjects (2%) as compared 

to animal studies (5%), which limits the amount of isotopes that are incorporated into proteins. 

Since fixed variations in the measured isotopomer fractional abundance by the mass spec-

trometer will translate into larger errors in measured protein turnover rates, we expect that the 

median absolute deviations of turnover rates from peptides in the same protein will be larger as 

a result. To maintain data integrity, the data analysis workflow must needs incorporate more 

stringent filtering criteria, which will exclude some proteins with lower abundance from taken 

into consideration. 

 

Thirdly, human subjects take in 2H2O through small boluses. In rodent models, one can admin-

ister an initial i.p. injection of almost isotopically pure 2H2O into the animal to quickly reach the 

desired level of enrichment, which amounts to approximately 1 mL of 2H2O in a 40-g outbred 

Hsd:ICR (CD-1) mouse, assuming 60% body mass of water. An equivalent booster in human 

would unfeasibly require an injection of 1 L of 2H2O into the subject at once. Hence, label en-

richment in body water rises gradually before reaching the target level, which complicates data 

analysis workflows, as described below. 
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FIGURE 4.5 illustrates the analytical complications that may arise from the slow enrichment of 

labels in human patients. The top half of the figure shows the principles of isotope incorpora-

tion in mice, as has been previously discussed. Protein turnover is assumed to follow first-

order kinetics. For instance, if we consider the proportion of protein molecules in a protein pool 

that are newly synthesized after a certain point in time, this value should be a function of time 

that follows an exponential rise curve: the more newly synthesized proteins are present, the 

more newly synthesized proteins will be degraded, thus tapering the rise of the proportion of 

new proteins as it approaches the plateau. Couple this to a constant background of 2H2O label 

enrichment, such that every new protein molecule is labeled with a constant amount of iso-

topes, and we get the same first-order exponential rise curve in the appearance of higher-mass 

protein isotope in the mass spectrometer. By contrast, the scenario is slightly different in hu-

man as shown in the bottom half of the figure. Protein turnover still follows the same natural 

laws and display first-order kinetics, yet the enrichment of 2H2O is by necessity variable. As a 

result, a protein molecule that is made shortly after labeling begins will contain less labels than 

one that is made later when label enrichment is higher, thus jeopardizing the pattern of higher-

mass isotopes in the MS data, and forbidding straightforward interpretation of the data. As 

FIGURE 4.5 Complications for 2H2O labeling in human
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stated above, the reason for such discrepancy of label enrichment is largely due to the in hu-

man patients, labels have to be introduced slowly and gradually.  

 

Several strategies account for this discrepancy. Firstly, one can compare within samples with-

out parametrizing the turnover rate constant k. Direct comparisons of enrichment level for 

equivalent peptides can give a qualitative measures of whether a particular protein may be 

turning over faster, or slower, in a system, which has been demonstrated by several groups. In 

a pioneering study, Emson et al. administered psoriasis patients with 2H2O and collected skin 

samples with tape (Emson et al., 2013). The authors found 2H2O-label appearance on keratin 

samples from psoriasis-affected skin to be significantly quicker than in healthy skin, suggesting 

increased keratin synthesis is a quantitative biomarker of psoriasis that may be useful as a 

non-invasive clinical indicator of treatment response. Since the study analyzed total label in-

corporation from the acid hydrolysate of isolated proteins, the weighted average of all protein 

turnover rates was measured. As our approach allows the turnover rate of individual protein 

species in human to be quantified separately, we anticipate that it can avail similar translational 

strategies and greatly expand the scope of investigations. 

 

Secondly, a method has been described by Marc Hellerstein and colleagues to correct for 

fractional synthesis calculation under non-steady-state enrichment, which involves manual 

calculation using MIDA to deduce the enrichment rate from the isotope distribution data at 

each time point (Price et al., 2012a). This method was demonstrated in four healthy subjects 

and deduced the protein turnover rates of approximately 100 plasma proteins.  

 

Our solution is to model the precursor enrichment using a first-order kinetics model using a 

unified a combined equation. This method has several advantages, e.g., it forgoes the labori-

ous manual data processing required to generating the resulting data table to calculate the 

precursor enrichment at each time point individually, and will be described below. 
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Following our initial analytical workflow described in Chapter I, we identified several areas in 

which improvements may be made to our data analysis methods, with the goal being to in-

crease the scope of half-life characterization to cover more of the proteome, in more diverse 

biological systems, and in a manner such that it is rigorous and sensitive enough to compare 

changes in protein half-life between health and disease. 

 

Firstly, we devised a new mathematical model that does not involve free three-parameter 

fitting. The three-parameter method has many tangible advantages, such as the option to forgo 

GC measurement and its independence from the MIDA parameters which makes it feasible to 

characterize protein turnover in systems where the amino acid incorporation may be unknown, 

such as in vitro system with variable amino acid compositions in the culturing medium. How-

ever, several drawbacks also limit the utility of the method to disease models, for instance, the 

method still requires the kinetic curve to have elapsed sufficiently long for the plateau to be 

accurately predicted. In certain experimental systems with slow turnover (mouse mitochondria, 

human neurons, etc.) where proteins require a long period of time to plateau to their maximum 

isotope incorporation, the method is likely to perform poorly without extended labeling. This 

shortcoming is compounded by the fact that some disease models preclude a long period of 

labeling, e.g., the isoproterenol challenge model which we will utilize to simulate cardiac re-

modeling functions as intended to mimic cardiac remodeling within a time frame of 7 to 14 

days, after which the mouse develops into full failure and insights into early cardiac remodeling 

can no longer be gained. Hence my colleagues and I devised an alternative approach, which 

defines the initial and plateau values of peptide isotope enrichment with MIDA parameters but 

additionally incorporate the rate constant of precursor enrichment to calculate protein turnover 

under non-steady-state 2H2O enrichment level. 
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FIGURE 4.6 illustrates the principle of the non-steady-state enrichment model. A protein mole-

cule that is synthesized shortly after labeling begins therefore would contain fewer isotope 

labels than one synthesized later, which complicates the ascertainment of the fraction of newly 

synthesized proteins from the MS data. In both constant labeling and non-steady-state label-

ing, protein turnover can be assumed to follow first-order kinetics. Under constant labeling, 

each new molecule of protein being synthesized will introduce a fixed amount of label into the 

label pool; hence the resulting peptide isotope distribution follows first-order kinetic curves. 

Under gradual enrichment scheme, label incorporation into proteins deviates from the first-

order exponential decay function. To correct for the variable label enrichment, we further de-

rived a nonlinear mathematical function that incorporates the rate constant of 2H2O enrichment 

(kp) and the rate constant of protein turnover (k).  

 

To correctly resolve isotopomer shifts by accounting for, both the rate constants of 2H2O en-

richment and protein turnover need to be accounted for. The gradual incorporation of isotope 

labels in a proteolytic peptide can be represented by the decrease in the fractional abundance 

of the 0th isotopomer, A0, i.e., the fraction of peptides devoid of any heavy isotopes. We fol-

lowed the assumption that the decrease in fractional abundance of the unlabeled (0th) peptide 

FIGURE 4.6 Principles of kinetic model for non-linear label intake
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isotopomer (dA0/dt) upon 2H incorporation follows the kinetics of protein pool replacement. 

Thus the rate of decrease is strictly the result of protein turnover and follows first-order kinet-

ics, where k is the protein turnover rate constant and A0,max is the fractional abundance of the 

0th isotopomer in the newly-synthesized, labeled peptide, i.e., the amount of label that is enter-

ing the peptide pool. The component (A0,max – A0) therefore represents the difference between 

the steady-state label and the protein label at a particular time.  

 

The amount of label entering the protein is governed by the number of labeling sites on the 

peptide, N, the precursor enrichment level, p, and the natural fractional abundance of the 0th 

isotopomer prior to labeling, a. In a simplified scenario where fast and constant precursor label 

enrichment can be achieved (e.g., in cell cultures following change of medium), A0,max is con-

stant and represents the fractional abundance of the 0th isotopomer when the peptide is fully 

labeled as dictated by the precursor level, i.e., the fractional abundance when the peptide has 

reached the plateau and undergoes no additional changes. The resulting exponential decay 

equation reflects first-order kinetics as expected. However, in most realistic labeling situations, 

p and therefore A0,max are time-dependent given slow label intake, and a simple exponential 

decay equation no longer adequately describes the changes of A0. This is due to the fact that 

when an organism intakes 2H2O, the pre-existing unlabeled H2O predominates in molar ratio, 

and relative isotope abundance of 2H rises slowly. We further reasoned that the time-

dependent change of relative isotope abundance itself follows first-order kinetics with the 

steady-state level pss and the rate constant of kp. 

 

In a human labeling experiment, this sigmoidal function resolves isotopomer shifts by account-

ing for both the initial lag of available isotopes and the rise-to-plateau kinetics of protein turno-

ver. Under fast enrichment, such as in mice, where kp >> k, the function approximates a first-

order exponential decay function. Thus this nonlinear model could handle a wide range of 

labeling scenarios in mice, in human, and in other organisms with gradual label enrichment 



 170 

including drosophila. This model is analogous in some aspects to more complex multi-

compartment models with multiple rate constants that have been proposed for 15N labeling 

(Guan et al., 2012), with a notable difference that the unified single kinetic equation facilitates 

curve-fitting and error estimation.  

 

The solution to the differential equation can be found in the Supplemental Information of our 

publication (Lam et al., 2014) and is not reproduced here. The following contains a brief analy-

sis of the properties of the equation, which is a function of five parameters: (i) k, the turnover 

rate of the protein to which the peptide belongs. This is the parameter of interest. (ii) pss, the 

plateau level of enrichment of 2H2O in the biological system. This parameter was readily meas-

ured from body fluid samples with gas chromatography-mass spectrometry. (iii) kp, the rate 

constant of the rise-to-plateau kinetics of body water 2H2O enrichment. This parameter could 

be acquired from fitting gas chromatography measurements of body fluid samples at regular 

time points following the initiation of labeling to a first-order kinetics equation. (iv) a, which 

represents the unlabeled fractional abundance of the 0th isotopomer of the particular peptide. 

The value of a could be readily calculated from the peptide sequence and the natural biological 

abundance of heavy isotopes of carbon, nitrogen, oxygen, and sulfur, using the formula: 

 

 a = (1 – 0.011)NC × (1 – 0.00366)NN × (1 – 0.0238) NO ×(1 – 0.0498)NS  

 

where NC, NN, NO, NS denote the number of carbon, nitrogen, oxygen, and sulfur atoms in the 

peptide, respectively. Lastly, (v), N, which represents the number of deuterium-accessible 

labeling sites on the peptide sequence. N could then be calculated as the sum of the known 

average accessible deuterium/tritium labeling sites on individual amino acids (Naa) in mice, as 

has been reported in the literature (Commerford et al., 1983). It may be seen from experimental 

data that the values of a and N accurately predict the plateau values of A0 of identified pep-

tides, which is given by a · (1 – pss)N. The values of a and N may be further adjusted in cases of 
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methionine oxidation, serine/threonine/tyrosine phosphorylation, lysine acetylation, and the 

lysine ubiquitination remnant diglycine, based on their respective atomic compositions. 

 

The values for pss and kp, for an experiment, together with the values of a and N for each indi-

vidual peptide, were then substituted into the kinetic model, which could now be fitted using 

the Nelder-Mead method (Nelder and Mead, 1965) for the optimal value of k that minimizes the 

residual values between the model and the experimental data points. In systems where the 

target enrichment levels are quickly achieved (kp ≫ k) such as in mouse models, A0,max is effec-

tively constant and the nonlinear model approaches a simple first-order exponential decay 

function. The nonlinear model is therefore applicable to both gradual and fast labeling experi-

ments and can be used in both the mouse and human labeling studies. 

 

A second development that occurred after our initial experiment in Chapter I and in parallel 

with the experiments in Chapter II was the acquisition of a more capable mass spectrometer in 

the form of a Thermo Orbitrap Elite instrument coupled to an Easy-nLC ultra-high performance 

liquid chromatography system. The new instrument gave higher intrinsic performance by virtue 

of its new ion guide design and smaller Orbitrap construction that allows shorter ion transient 

time. The new instrument allows experiments to be run at R = 60,000 resolution (at m/z 400) 

(as opposed to R = 7,500 on the Orbitrap XL) without sacrificing precision in measuring mass 

isotopomer relative abundance, which greatly increased performances in protein identification 

and peak integration. Details and performance comparison data are omitted here for brevity.  

 

A third development took place as my colleagues and I built on top of the algorithm a complete 

software package with graphical user interface, which we named ProTurn. 
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FIGURE 4.7 is a simplified workflow schematic of ProTurn. ProTurn is written in-house by 

programmers in the Ping lab and contains approximately 30 classes in approximately 30,000 

lines of code in Java. My colleague Maggie Lam and I directed four student Java programmers 

(Brian Bleakley, Louie Liu, Tevfik Dincer, and Hannah Chou) to work on the user interface. A 

primary distinction of the user interface and the up to five-fold improved speed performance 

from previous work is that it allows all fitting parameters to be quickly optimized and iterated. 

 

 

 

FIGURE 4.8 shows the user interface of a current build of ProTurn (2.0.5). Several elements are 

visible. The accordion menu to the left allows the user to choose between options and execu-

tion of the peak integration, kinetic curve-fitting, result display, and dataset comparison func-

tions. Options from the peak integration page are shown, which house user-interactive 

FIGURE 4.7 Simplified flowchart of ProTurn
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FIGURE 4.8 The graphical user interface of ProTurn
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elements for selecting file source and format, inputting the preferred integration mass window, 

adjusting smoothing options, and the option to automatically calculate peak areas. The pro-

gress bar and console are also visible at the center of the interface.  

 

Following these developments, I embarked on a series of incremental improvements to the 

overall analytical workflow. Operational and filtering parameters in the workflow were heuristi-

cally optimized based on the criterion that an improved parameter should either (i) maximize 

the number of protein species being quantified or (ii) minimize the variance of turnover rates 

among peptides of the same protein, without negatively impacting the other. Given the scarce 

amount of in vivo protein half-life data in the literature and the absence of true protein turnover 

standards, the assumption that all proteolytic peptides originating from the same protein mole-

cule ought to have the same turnover rate provides a good standard with which to optimize the 

methods. This was estimated by the median of the median absolute deviation of the turnover 

rates of all peptides belonging to each protein in the sample. The additive effects of multiple 

changes were recorded to the best of abilities but for the reason of time and resources not 

every combination of parameters were tested.  

 

Some progresses of the ongoing parameter optimization are briefly summarized here. (i) We 

included in ProTurn the option to perform Savitzky-Golay filtering for noise removal prior to 

peak are integration. Previously only box-car smoothing was performed. Savitzky-Golay filter-

ing was found to be more effective in handling the inaccuracy of protein isotope fractional 

abundance measurement for some peptides with low signals. Seven-point smoothing was 

found to maximize performance. (ii) We used a more stringent 60-ppm integration window as 

opposed to the previous 100-ppm, which helps avoid overlapping peptides with similar mass-

to-charge ratios and retention time but different isotopic patterns. (iii) Included a dual fitting 

error filter utilizing both goodness-of-fit (r) and standard error of estimate to include slow turno-

ver proteins, whose flat kinetic curves naturally resulted in low r values.  
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These optimization efforts were time consuming but important to the overall research goal. 

Parameter optimization meant that the number of analyzed proteins in the normal mouse cyto-

sol increased by more than 60%. Coupled to the increased performance of the Orbitrap Elite 

instrument and improved sample pre-fractionation methods, throughout this period the scope 

of our mitochondrial turnover measurements leaped from covering approximately 400 proteins 

in the mitochondrial samples as presented in Chapter I to over 800 in Chapter II, which laid the 

foundation for a high-coverage global analysis of protein dynamics in disease samples. 

 

The non-linear equation has utilities in multiple animals in which a priming dose is not possible 

and enrichment is gradual. Potential applications range from human subjects, where individu-

als consume 2H2O gradually via small, regular boluses; to drosophila, where 2H2O is introduced 

while the cornmeal/ molasses/ yeast fly media is formed. To demonstrate the utility of this 

method, we characterized the plasma protein samples from ten human subjects, reasoning 

that plasma proteins are less invasive to acquire and have immediate translational potential as 

diagnostic markers. 
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TABLE 4.3 lists the demographic information of the 10 human subjects we recruited for a 

longitudinal study. Initially, four healthy volunteers were recruited for Phase I in a longitudinal 

study. Six more subjects were subsequently recruited via open advertisement at UCLA for 

Phase II, which brought the total number of subjects to 10. The average age of the subjects 

was 26 ± 3 (range: 21 – 51) years; body weights averaged 76 ± 5 (range: 51 – 108) kg; heights 

ranged 160 – 188 cm; body mass index values were 19.9 – 30.5, altogether indicating a repre-

sentative distribution of body types. 

 

 

Phase I Subjects

Subject 1
Subject 2
Subject 4
Subject 6

Phase II Subjects

Subject 5
Subject 7
Subject 8
Subject 9
Subject 10
Subject 11

Age (yr)

51
39
35
21

21
23
21
21
27
25

Gender

F
M
M
F

M
M
F
F
M
M

Weight (kg)

68
82
108
64

87
84
59
51
82
88

Height (cm)

175
178
188
168

180
180
168
160
175
175

BMI

22.7
25.8
30.5
22.7

26.7
25.8
20.9
19.9
26.6
28.6

Ethnicity

Asian
Asian
Asian

Caucasian

Caucasian
Caucasian
Caucasian
Caucasian
Caucasian

Asian-Indian

TABLE 4.3 Demographics of human subjects

FIGURE 4.9 Labeling protocol and sample processing workflow
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FIGURE 4.9 illustrates the labeling protocol and sample processing workflow of the study. The 

procedure comprised regular boluses of 70% 2H2O for 14 days and procurement of 3 mL pe-

ripheral blood at 10−15 time points (daily in Phase I; day 0, 1, 2, 4, 5, 8, 9, 10, 12, 14 of admin-

istration in Phase II) to extract plasma and erythrocyte proteins for analysis. In addition, saliva 

(0.5 mL) was collected at each time point for body water enrichment analysis (not shown). The 

intake dosage was weight adjusted where each subject consumed 0.51 mL·kg-1 of 2H2O over 

four daily doses per os during the first 7 days, followed by 0.56 mL·kg-1 over two doses per os 

during the second period of 7 days; with the exception of the first of the two replicate proce-

dures for Subject #1, where the subject consumed 0.66 and 0.74 mL·kg-1 in the first and se-

cond week, respectively. Monitoring and regular body fluid sampling occurred after 

consumption concludes for up to 240 days following the start of labeling. The entire procedure 

including recruitment, label administration, and the acquisition of approximately 1,400 mass 

spectrometry experiments took approximately one year to complete. 

 

 

 

FIGURE 4.10 The gradual enrichment of 2H2O in the body water of the subjects can be mod-

eled by a first-order exponential decay function to deduce the enrichment rate (kp) and level 

FIGURE 4.10 Enrichment and turnover kinetics in human
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(pss) that are used in turn to model the turnover kinetics of peptide isotopomers. (Left) Experi-

mentally measured values of body water enrichment in a subject from 0 to 15 days of labeling 

is modeled with an exponential rise curve. Upon labeling, the body water 2H2O level of the 

subjects followed first-order kinetics as expected, gradually approaching ≈1.6−2.2% at the 

enrichment rates of 0.15−0.25 d-1. After termination of labeling, the enrichment level of body 

2H2O gradually subsided in the subjects at a rate of ≈0.1 d-1. The volunteers were further moni-

tored for up to 6 months after labeling and reported no adverse effects.  (Right) Experimental 

data and kinetic curve fitting of a human plasma peptide (EQLGEFYEALDCLCIPR3+). The frac-

tional abundance of the unlabeled isotopomer (m0/mi) decreases in a sigmoidal curve that 

reflects the two rate constants of 2H2O ramping (kp) and protein turnover (k). Red shade: upper 

and lower limits of fitting.  
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FIGURE 4.11 Kinetic curve fitting in labeled human plasma samples
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FIGURE 4.11 contains histograms of goodness-of-fit of the nonlinear fitting model in healthy 

human subjects (Subjects #1, #2, #4, and #6). Only peptides explicitly identified in ≥ 4 time 

points and containing quantifiable mass isotopomer information are included. The top row 

graphs tally the distributions of goodness-of-fit (r) values in all quantified peptides in each 

subject, with the dark gray shading corresponding to whether those peptides also returned a 

low standard errors of estimates of ≤ 10%. The bottom row graphs tally the distributions of the 

standard errors of estimates in all quantified peptides in each subject, with the dark gray shad-

ing corresponding to whether those peptides also returned a good r value. The two filtering 

mechanisms worked complementarily to include well-fitted peptide time-series in turnover rate 

calculation. In these subjects, the nonlinear fitting method implemented in ProTurn modeled at 

least 32 − 47% of the consistently observed peptides closely (r ≥ 0.9 or standard error of esti-

mate of 4 to 9%) in each plasma sample, whereas more than 50% of consistently identified 

proteins yielded turnover rates, indicating our approach does not negatively impact the scope 

and coverage of proteomics inquiries. 

 

 

 

FIGURE 4.12 enumerates the number of quantified proteins from each of the four subjects in 

the phase I study, and the reproducibility of the labeling procedure. (Left) Venn diagram of the 

commonly and uniquely quantified proteins in four healthy human subjects (Subjects #1, #2, #4 

FIGURE 4.12 Number of quantified proteins and technical reproducibility
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and #6). The turnover rates of 496 human plasma proteins were confidently quantified, with 

182 proteins quantified in at least three subjects. (Right) Scatter plot and Spearman’s correla-

tion coefficient of turnover rates, showing the reproducibility of protein turnover rates in two 

labeling procedures and mass spectrometry experiments conducted on the same subject 

(Subject #1), who was recalled six months following the first labeling experiment to initiate a 

second round of labeling. Each data point represents a commonly quantified individual protein. 

Despite the different 2H2O enrichment level (1.8% vs. 1.4%) and enrichment rate in the repli-

cate experiments, due to the introduction of weight-adjusted 2H2O dose in the second enrich-

ment in line with the labeling protocol of all other subjects, we acquired reproducibly quantified 

kinetics with relatively little variation (Spearman’s correlation coefficient ρ: 0.857).  

 

 

FIGURE 4.13 shows the range of protein turnover rates in the human subjects. A total of 182 

plasma proteins that were quantified in three or more subjects are shown, ranked by ascending 

average turnover rates in all subjects where the protein is quantified. From human serum albu-

min (ALB), which has an average half-life of 18.3 days in the subjects, to insulin-like growth 

factor 2 (IGF2), with an average half-life of 8 hours, the measured turnover rates spanned over 

two orders of magnitude. The relative turnover rates of fourteen other commonly studied hu-

man serum proteins are listed on the graph. By contrast, the 59 proteins we also quantified 

FIGURE 4.13 Range of protein turnover rates in the human subjects
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from transcriptionally quiescent erythrocytes had negligible turnover, with half-life of more than 

50 days (data not shown here). The full dataset can be found in the Supplemental Data of our 

publication (Wang et al., 2014) and is not reproduced here. The results confirm that the de-

signed labeling procedure, to a very low level of ≤ 2% enrichment, was safe and sufficient to 

monitor large-scale protein turnover in human. 

 

 

 

FIGURE 4.14 Biological variability of turnover in human
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FIGURE 4.14 shows the biological variability of the measurements, represented as scatter 

plots and Spearman’s correlation coefficient of turnover rates of proteins commonly quantified 

in any pairwise combination of the four human subjects. Overall, good correlation (Spearman’s 

correlation coefficient ρ: 0.85 – 0.83) between subjects was observed. Altogether, these data 

demonstrate the robustness of large-scale protein kinetics quantitation in human, and consti-

tute to our knowledge the largest human protein kinetics dataset to-date. Future studies are 

required that will better define the possible sources of variability in human protein turnover, 

e.g., the impact of age and gender, and whether the low isotope enrichments contribute dis-

proportionately to the standard errors of half-life of slow-turnover proteins. The human study 

presented here serves to validate our approach and software. The dataset will benefit future 

investigations by providing critical reference for experimental designs and power analysis to 

determine sample size. 

 

Following these results, we initiated Phase II of labeling experiment, during which we expanded 

the number of subjects from four to ten. In addition, we continued to monitor the label enrich-

ment level and general wellbeing of the subjects for up to eight months after the end of their 

label intake in order to determine the safety of the enrichment procedure and the clearance of 

the label from the body. 
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FIGURE 4.15 traces the label enrichment of a subject (Subject #2) as measured from peripheral 

blood samples using GC-MS at various time points throughout and after the labeling proce-

dure. Each data point represents the average reading of the percentage of 2H2O in plasma; red 

line denotes the best-fit exponential rise curve of the data points during labeling, as defined by 

kp and pss; blue line denotes the exponential decay curve of enrichment post-labeling. A gradu-

al increase during the first week of the protocol was observed, following by gradual plateauing 

in the next 7 days. The enrichment kinetic curve is expected to plateau at 2.15% of body wa-

ter, but this actual enrichment level was never reached because labeling was terminated on 

schedule before the kinetic curve plateaued. 2H2O enrichment was also measured from the 

saliva sample and gave virtually identical results (R2: 0.985) as presented in our publication 

(Wang et al., 2014). 

 

The cessation of 2H2O intake is followed by a typical physiological clearance of 2H2O, with a 

characteristic half-life of approximately seven days. By day 240, approximately eight months 

after the completion of intake, we recalled three subjects (Subject #1, #2, and #4) to follow up 

on their body water 2H2O enrichment, and detected virtually no trace of deuterium remaining in 

their body fluids (plasma or saliva). 
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FIGURE 4.16 shows the vital signs and hemodynamics of the 10 subjects during the course of 

labeling. Aggregated data of body temperature, heart rate, systolic and diastolic blood pres-

sure (BP) are shown. Each data point represents an individual reading from a subject; red area 

indicates the 95% confidence range of local regression analysis. Both aggregate analysis and 

individual line charts (not shown here) indicate that the vital signs from the 10 human subjects 

were within normal ranges, and did not alter significantly over time for each individual as well 

as the group average, suggesting the specified dosage and duration had no discernible effect 

on vital signs and hemodynamics of healthy subjects. 
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FIGURE 4.16 Vital signs of human subjects during and after labeling
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TABLE 4.4 summarizes the enrichment kinetics and protein turnover quantification results from 

10 human subjects. The columns show the precursor enrichment rate (kp), precursor plateau 

level (pss), number of proteins with quantified turnover rates in each subject (# Proteins), and 

the median of the turnover rate values acquired (Median k). In the experiment, the subjects 

showed a range of plateau enrichment level due to individual differences in metabolism and 

total water intake, which ranges from 1.02% to 2.12% (predicted plateau). The rate of enrich-

ment likewise varied between 0.147 d-1 to 0.303 d-1. 

 

We observed no correlation between the median protein turnover rate constant (k) and the 

precursor enrichment rate constant (kp) (Pearson’s correlation coefficient r: 0.07, P value of 

trend: 0.85); nor between k and the steady-state precursor enrichment level (pss) (r: -0.07, P: 

0.85), suggesting the enrichment curve fitting does not have a measurable impact on the 

measured protein turnover rate. We also did not observe a significant correlation between the 

measured protein turnover rates with the age of the subjects (r: 0.06, P: 0.87) or their body 

mass index (r: -0.32, P: 0.35).  

 

However, a potential trend may exist between the enrichment level (pss) with the number of 

proteins with quantified turnover rates. Although the correlation is not significant (r: 0.40, P: 

0.25), such correlation may be expected since higher enrichment will lead to more label incor-

Phase I Subjects

Subject 1
Subject 2
Subject 4
Subject 6

Phase II Subjects

Subject 5
Subject 7
Subject 8
Subject 9
Subject 10
Subject 11

kp (d-1)

0.258
0.147
0.151
0.159

0.238
0.176
0.281
0.303
0.275
0.181

pss

1.78%
2.15%
2.12%
1.62%

1.02%
1.72%
1.36%
1.05%
1.21%
2.05%

# Proteins

185
159
424
283

229
282
246
187
233
330

Median k (d-1)

0.181
0.234
0.14

0.195

0.189
0.184
0.163
0.199
0.1835
0.173

TABLE 4.4 Summary of enrichment and turnover data
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poration, which leads to more proteins’ shift being appreciably measured. This correlation 

becomes more apparent when the quality of data fitting is concerned as described below. 

 

 

 

FIGURE 4.17 shows a linear regression analysis between the plateau enrichment value within a 

particular subject and the proportion of quantifiable peptides in the MS experiment. Each data 

point represents an individual subject as labeled in red. Data from subject 1 came from a repli-

cate experiment from the data shown previously in this chapter. The quantifiability of peptide 

was determined by a variable filter that minimizes variations amongst peptides. Dashed line: 

linear regression; coefficient of determination R2: 0.836. The data suggest a positive correla-

tion between enrichment level and the proportion of total quantified peptides that yielded 

confident protein turnover rates. Thus although a minimal labeling of 1% was sufficient to 

acquire protein turnover information, a substantial benefit is observed in data quality at 2% 

enrichment. This likely reflects the fact that at low enrichment levels the small amount of iso-

topes incorporated into the protein pool is technically difficult to discern by MS, especially for 

long-half-life proteins that are slow to accumulate deuterium. We conclude that our original 

intended target enrichment of 1.5% – 2% approximates a cost-effective trade-off between mini-

mal intake and experimental performance for current technological platforms. 

FIGURE 4.17 Correlation between enrichment and data quality
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In total, these experiments obtained from the 10 human subjects the temporal dynamics of 542 

plasma proteins, 325 of which were quantified in ≥ 3 subjects. To our knowledge, this dataset is 

among the largest collections of human protein dynamics to-date, both in terms of proteome 

coverage and in the number of biological replicates. The quantified proteins belong to diverse 

functional categories as evident from GO terms and include proteins of intracellular origins, 

consistent with the notion that proteins from cell leakage can be accessed and measured in the 

plasma. Consecutive technical triplicate MS experiments showed that the technical CV of > 90% 

of quantified peptides were ≤ 5%. The proteome dynamics data were generally reproducible 

among the tested subjects despite their differences in age and lifestyle, with ~25% median CV. 

As expected, the measured protein half-life was virtually independent from protein expression 

over 3+ orders of magnitude of abundance (ρ: 0.109). Consumption of 2H2O had no discernible 

effect on protein abundance, as measured by spectral counts before and after the 2H2O intake 

protocol in the 10 subjects (Benjamini-Hochberg adjusted P: 0.49 – 1.00). The full dataset is in 

our publication (Wang et al., 2014) and is not reproduced here. 

 

A germane consideration is whether the quantified proteins are of interest to biomarker discov-

ery or cardiovascular disease study. The total plasma proteome presents a formidable 1012 

dynamic range of concentration. Recent HUPO Plasma Proteome Project efforts reported the 

concentration of 1,243 plasma based on spectral count information, spanning over 6 orders of 

magnitude (Farrah et al., 2011). Given that a single typical MS experiment can only sample a  

104 – 106 –fold dynamic range of protein concentrations, but that the plasma proteome is 

thought to have a dynamic range of concentration of 1010 to 1012 (Anderson and Anderson, 

2002), some underrepresentation of the plasma proteome is inevitable in the current investiga-

tion. Nevertheless, proteins of interest can be found across the sampled concentration range. 

Previous HUPO annotations have identified 338 out of ~3,000 plasma proteins with known 

relevance to cardiovascular diseases (Berhane et al., 2005). The present dataset revealed the 
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turnover of 119 of these proteins, with disease relevance ranging from cardioprotection to 

myocardial infarction markers. The quantification of their turnover rates serves as a blueprint 

for future comparisons with cardiac disease patients. 

 

Finally, we validated the accuracy of our method by comparing the data from the present 

large-scale study to the range of known human plasma protein turnover rates from past single-

protein studies in the literature, wherever such data may exist: 

 

 

TABLE 4.5 compares the turnover rate data from the 10 human subjects against the range of 

reported literature values, for 10 plasma proteins with previous turnover rate data from single-

protein studies in the literature. The known turnover rates in the literature were extracted from 

References (Carraro et al., 1991; Katz, 1961; Kekki et al., 1966; Krauss, 1969; de Sain-van der 

Velden et al., 1998; Shapiro and Martinez, 1969; Socolow et al., 1965).  

 

 
Proteomes across time and space 

 

The role of mitochondrial dynamics in cardiac research is being increasingly recognized. Mito-

chondria in the heart undergo continual fission, fusion, biogenesis, and engulfment through 

mitophagy in order to maintain cardiac health and functions. Both the spatial and temporal 

Protein

Albumin

Ceruloplasmin

Fibrinogen α chain
Fibrinogen β chain
Fibrinogen γ chain
Fibronectin
Haptoglobin
Prothrombin
Transferrin

Transthyretin

Gene name

ALB

CP

FGA

FGB

FGG

FN1

HP

F2

TF

TTR

k (d-1)

0.02 - 0.07

0.05 - 0.14

0.10 - 0.21

0.06 - 0.12

0.07 - 0.19

0.12 - 0.23

0.23 - 0.44

0.18 - 0.28

0.04 - 0.14

0.16 - 0.31

Replicates

6

10

10

5

6

10

10

10

8

9

Avg ± s.d.

0.04 ± 0.01

0.09 ± 0.01

0.15 ± 0.01

0.09 ± 0.01

0.12 ± 0.02

0.15 ± 0.02

0.31 ± 0.02

0.20 ± 0.01

0.09 ± 0.01

0.21 ± 0.02

Literature
Range

0.03 - 0.06

0.14 - 0.20

0.14 - 0.19

0.14 - 0.19

0.14 - 0.19

0.30 - 0.40

0.17 - 025

0.21 - 0.30

0.07 - 0.20

0.22 - 0.31

TABLE 4.5 Comparison of human turnover data with literature values
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distributions and dynamism of mitochondria are vital to cellular functions, and disruptions of 

either process often ends with catastrophic consequences (Gottlieb and Gustafsson, 2011; 

Hammerling and Gustafsson, 2014). At the same time, proteins in the cell are highly dynamic 

both across space and time even in the absence of overt organelle changes. Protein molecules 

traffic to various locales at various cell states, and protein pools renew at characteristic rates.  

 

We envision that the protein turnover studies here will be part of ongoing method develop-

ments that will increase our capability to understand the complexity of the proteome and its 

dynamisms across time and space. The proteome is a collection of orthogonal properties over 

the lifetime of its constituent proteins. As a cardiac protein is expressed, it is modified co-

translationally or post-translationally, localizes to one or more specific cellular compartments, 

interacts with other proteins or metabolites, and performs its signaling, structural, or catalytic 

functions, before being commissioned for degradation under tightly controlled schedule and 

mechanism. As discussed in the beginning of this dissertation, although current large-scale 

proteomics experiments have focused disproportionally on a few particular parameters such as 

abundance or phosphorylation, many such aspects in the life of a protein may be perturbed in 

disease, and thus each may constitute a potential untapped source of new knowledge regard-

ing disease mechanisms and therapies. We conclude this chapter and the dissertation by 

discussing some future challenges in translating the presented methods to measure mitochon-

drial protein turnover in the human heart to identify disease-associated proteins. 

 

In the experiments shown earlier in this chapter we  examined protein turnover in the human 

plasma. The plasma was chosen as a sample because of its immediate translational potential 

as diagnostic indicators as well as its accessibility. Although the general features of our meth-

od are expected to be applicable to other human tissues in preclinical studies, currently no 

FDA-approved protocol exists for the use of 2H2O in clinical research and diagnostic applica-

tions. This can in part be attributed to a lack of standardized protocols for 2H2O administration, 
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or detailed documentation of physical parameters relevant to clinical interests and safety pre-

cautions. For instance, if 2H2O is to be approved for measuring cardiac protein turnover rate in 

human heart failure patients, it would be imperative to have a detailed understanding of the 

hemodynamic responses in human subjects, especially those with compromised health condi-

tions. Thus the prospects of clinical research and diagnostics are contingent upon preclinical 

efforts that meticulously document the potential outcomes of labeling protocols in human sub-

jects.  

 

It is hoped that these preliminary studies will buttress future investigations in the cardiovascu-

lar research community to characterize protein turnover kinetics of many important cardiac 

functional groups, including metabolic regulation, calcium signaling, contractile function, and 

protein trafficking. In order to achieve these goals, several present challenges must be over-

come, including the observation that gross protein turnover appears to be inversely propor-

tional to the metabolic rate of the animal, which suggests many human organ tissue samples 

will turn over at much slower rate than is accommodated in the present experimental design. 

Human plasma proteins turn over much slower than their mouse counter parts, and cardiac 

proteins have slower turnover than plasma proteins. Thus human cardiac proteins will have 

exceedingly long half-life that may be beyond the detection limit allowed by the sampling time 

points, e.g., if the normal turnover rate of a particular protein in the heart is 200 days, then 

labeling a subject for 10 days is unlikely to give useful information on protein kinetics change 

irrespective of the mass spectrometry techniques, since the protein pool will have only turned 

over 5% during the labeling period and would have only incorporated very little isotopes.  Initial 

studies may therefore be limited to only regulatory proteins that may have higher turnover 

rates. 

 

Moreover, proteome turnover measurements in the heart will be hindered by clinical accessibil-

ity of tissue samples. Previous 2H2O labeling methods invariably required repeated sample 
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biopsies, which presents unnecessary distress and is impractical in many clinical settings. This 

limitation is alleviated by the described nonlinear fitting model, in which the initial and final 

isotopomer abundances of a peptide in the MS (i.e., the unlabeled and fully turned over pro-

tein, respectively) can be precisely defined by the peptide sequence and 2H2O enrichment in 

the body water. A single data point acquired in between could therefore effectively demarcate 

the trajectory of the kinetic curve.  

 

 

FIGURE 4.18 illustrates how protein turnover rates may be measured by sampling the tissue of 

interest at only one time point using the described fitting method. (Left) Theoretical kinetic 

curves for a particular peptide, (EQLGEFYEALDCLCIPR3+) from the human plasma protein 

AGP2, at different hypothetical turnover rates from 0.05 d-1 to 1 d-1. The fractional abundance 

of the unlabeled isotopomer (m0/mi) decreases in a sigmoidal curve that reflects the two rate 

constants of 2H2O ramping (kp) and protein turnover (k). Since k determines the kinetic curve, a 

single measurement of mass isotopomer fractional abundance (A0) is sufficient to capture 

turnover rate if at the sampling time point the protein has accumulated sufficient isotopes but 

the kinetic curve has not yet reached its plateau. The puncta denote the corresponding A0 that 

would have been measured from a single-time-point experiment with a sample on day 8 of 

labeling. (Right) Actual experimental data and fitting of the same peptide sequence from a 

single-point experiment from the day 8 plasma sample of Subject #1. The triplicate data points 

FIGURE 4.18 Measuring protein turnover from a single time point
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acquired from the single sample define the kinetic curve to the same effect as the multiple data 

points from different time points, demonstrating the feasibility to acquire protein kinetics infor-

mation without a time-course experiment. 

 

To demonstrate the feasibility of deducing protein kinetics deduction from a single, non-time-

course measurement, we performed triplicate MS experiments on human plasma samples from 

each of three individual time points (day 4, day 8, and day 12 of labeling) in two subjects 

 

 

FIGURE 4.19 plots the turnover rates of proteins when measured from a technical triplicate 

from a single-time-point sample against those from curve-fitting of a 15-point time course. 

Correlations in turnover rates between peptides commonly analyzed from single-point sam-

pling and 15-point time course experiments, from Subject #1 (Top row) and Subject #2 (Bottom 

row), sampled at either day 4 (Left), day 8 (Middle), or day 12 (Right) after the initiation of label-

ing. A filter is used such that only proteins with fitted turnover rates that would cause the sam-

pling time point to fall between 0.5 and 3 half-lives to be accepted. A protein with a particular 
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turnover rate needs therefore to be measured at an appropriate time point designed to capture 

its kinetics. We found that although the day 4 samples presented more variations – possibly 

due to limited label incorporation by that time, both the day-8 and the day-12 single-point 

measurements were highly consistent with 15-point time-course data. Overall, good correlation 

was observed between the single-point and time-course data (Spearman’s correlation coeffi-

cient ρ: 0.74 – 0.93). The average peptide relative standard error was approximately 20% 

compared to the time-course experiment.  

 

Because cardiac proteins have limited surgical accessibility and are typically only available 

during cardiac transplant or ventricular assist device implantation, the described method opens 

opportunities for kinetic investigations of the human heart, among other invasive tissue sam-

ples. 

 

 

FIGURE 4.20 illustrates a hypothetical protocol to measure mitochondrial protein turnover in 

the human heart. For clinical investigations of protein dynamics in human diseases, case-

control studies can compare the plasma protein turnover of age-matched healthy subjects and 

early- or late-stage heart failure patients (NYHA Class I – IV) to identify novel biomarkers and to 

sub-classify patients. In this protocol, following enrolment into the study and decision to com-

FIGURE 4.20 Hypothetical workflow for human heart sample measurements
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mence labeling, the human subjects may drink 4 doses of 0.51 mL·kg-1 sterile 70% 2H2O at 11 

am, 2 pm, 6 pm, and 9 pm daily for 7 days (approximately 150 mL·d-1 for a 75-kg subject), 

followed by two doses of 0.56 mL·kg-1 sterile 70% 2H2O at 11 am and 9 pm daily for 7 days. In 

parallel to the 2-week 2H2O-drinking period, blood/saliva specimens will be collected daily for 

14 days. Healthy subjects will have all received a donor heart with normal cardiac functions, 

and will act as healthy heart controls. Following heart transplantation, endomyocardial biopsies 

from the donor heart are routinely scheduled for rejection surveillance (monthly for the first year 

after transplant). Two weeks prior to a scheduled biopsy, the enrolled patient may start a two-

week 2H2O intake protocol to label the myocardium. We will procure and analyze the procured 

biopsy (~8 mm3), which in our hands yield ~500 µg total proteins. For heart failure subjects, we 

may enroll high-priority patients anticipated to receive one of the 300 heart transplants project-

ed to take place at UCLA in the next 5 years, until we obtain 15 labeled cardiac samples. After 

enrollment, subjects will be labeled as above, where a 10-day window exists after labeling 

begins for labeled cardiac samples to be procured. An average high-priority patient will under-

go operation with a median waiting time of 30 days. If heart transplantation occurs within the 

labeling period, a myocardial biopsy labeled with 2H2O will be procured from the explanted 

heart for analysis. If no operation takes place, labeling will terminate. 

 

The discovered protein turnover biomarkers may be used to detect, analyze, or predict patient 

response to medical or surgical intervention (e.g., after angiotensin-converting-enzyme inhibitor 

or left-ventricular-assist-device-mediated mechanical unloading). Because the presented 

method is capable of quantifying protein turnover from as few as one time point, future studies 

can be envisioned that directly compare the proteome dynamics of healthy and diseased 

human hearts, such as can be acquired from routine clinical biopsies during surgical interven-

tion or post-transplant allograft rejection surveillance. Similar studies can be envisioned in the 

future such that therapeutic designs in other diseases may also benefit from further insights 

into protein removal mechanisms. The stability of protein targets will directly influence the 
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efficacy and pharmacokinetics of drugs such as cardioprotective agents. The half-life of crucial 

therapeutic mediators could conceivably be prolonged if their primary removal mechanisms are 

simultaneously inhibited while the drug is active; alternatively, parallel mechanisms could be 

exploited to intervene in cell death pathways and minimize injury.  

 

 

 
Materials and methods 

 

Method summary. Human participants were administered regular boluses of 2H2O over a 2-

week period. Saliva and blood samples were collected at 10 time points and analyzed by GC-

MS and LC-MS to deduce 2H2O enrichment rate and protein half-life using a modified kinetics 

equation to account for gradual labeling. 

 

Study approval. Human procedures were performed in compliance with UCLA Institutional 

Review Boards (IRB#12-000899). All participants gave written informed consent. 

 

Reagents. 2H2O (70% and 99.9% molar ratio) was purchased from Cambridge Isotope Labora-

tories and filtered through 0.1-µm polyethersulfone membranes (VWR). Other chemical rea-

gents were from Sigma-Aldrich unless specified. High-performance liquid chromatography-

grade water (J.T.Baker) was used for all analytical solvent preparations. Milli-Q (Millipore) fil-

tered water (18.2 MΩ) was used for all other preparations. 

 

Enrollment and labeling of human participants. Ten healthy participants (Subjects #1, #2, #4 

– #11) gave written informed consent and enrolled in the study. To label body water with 2H2O, 

we instructed the participants to intake 4 boluses of 0.51-mL·kg-1 (body mass) sterile 70% 

molar ratio 2H2O daily at 11:00 am, 2:00 pm, 6:00 pm, and 9:00 pm for the first 7 days; and 2 
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boluses of 0.56-mL·kg-1 sterile 70% molar ratio 2H2O daily at 11:00 am and 9:00 pm for the 

next 7 days; with the exception of the first replicate of Subject #1, where body-mass adjust-

ment was not performed and the first- and second- week boluses were 0.66 mL·kg-1 and 0.74 

mL·kg-1, respectively.  

 

During labeling, participants were given daily general physical examinations and inquired with a 

concise medical health questionnaire for any signs of discomforts by the clinical coordinator 

David Liem. Vital signs were monitored by measuring blood pressure, heart rate, and tempera-

ture on a daily basis. From day 0 to day 14 at 10 to 15 time points, 3 mL of whole blood sam-

ples were collected by qualified phlebotomists in the clinical laboratory of the UCLA Ronald 

Reagan Medical Center at 12:00 noon. The participants were monitored for 14 days to 6 

months post-administration, and indicated no discomfort or side effects throughout the label-

ing and monitoring periods. Compliance with the intake protocol was ensured by the surveil-

lance of body water enrichment level, by the return of 2H2O vials for counting, and by oral 

inquiry. All subjects maintained normal food and fluid intake during the study and routine daily 

activities. 

 

Isolation and digestion of labeled human blood proteins. The human whole blood sample 

was collected in lithium heparin tubes and separated into plasma and blood cells by centrifu-

gation (800 rcf, 4 °C, 5 minutes). Erythrocytes were isolated by centrifugation on 1:1 His-

topaque-1077 (400 rcf, 4 °C, 30 minutes) followed by washing twice with phosphate-buffered 

saline. Plasma samples (7 µL; approximately 500 µg proteins at 70 g·L-1) were immunodepleted 

of the 14 most abundant proteins in the human plasma using Agilent Hu14 Multiple Affinity 

Removal System columns (Agilent Technologies). The immunodepleted plasma proteins were 

digested on 10,000 Da polyethersulfone filters (Nanosep; Pall Life Sciences) as described 

(Wisniewski et al., 2009). Sample buffer was exchanged on-filter with 100 mmol·L-1 ammonium 

bicarbonate. The samples were then heated at 70 °C with 3 mmol·L-1 dithiothreitol for 5 
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minutes, followed by alkylation with 9 mmol·L-1 iodoacetamide in the dark at ambient tempera-

ture. Proteins were digested with 50:1 (w/w) sequencing grade trypsin (Promega) on-filter for 

16 hours at 37 °C. Human erythrocyte protein samples were separately digested in-solution; 

200 µg of proteins were heated at 80 °C with 0.2% (w/v) Rapigest (Waters) for 5 minutes, then 

heated at 70 °C with 3 mmol·L-1 dithiothreitol for 5 minutes, followed by alkylation with 9 

mmol·L-1 iodoacetamide in the dark at ambient temperature. Proteins were digested with 50:1 

sequencing grade trypsin (Promega) for 16 hours at 37 °C, then acidified with 1% (v/v) tri-

fluoroacetic acid (Thermo Pierce). 

 

Separation of peptides by two-dimensional liquid chromatography. To resolve the human 

plasma samples and improve sample coverage, we separated the depleted peptides with two-

dimensional reversed-phase/reversed-phase LC prior to MS analysis (Lam et al., 2011; Lau et 

al., 2011). First-dimension (high-pH) separation for human plasma samples was conducted on 

a Phenomenex C12 reversed-phase column (Jupiter Proteo C12, 4 µm particle, 90 Å pore, 100 

mm length × 1 mm inner diameter) at high pH using a Finnigan Surveyor LC system. The sol-

vent gradient was as follows: 0th  – 2nd minute, 0 – 5% B; 3rd – 32nd minute, 5 – 35% B; 32nd – 

37th minute, 80% B; 50 µL·min-1; A: 20 mM ammonium formate, pH 10; B: 20 mM ammonium 

formate, 90% (v/v) acetonitrile, pH 10. We then injected 50 µg of proteolytic peptides with a 

syringe into a manual 6-port/2-position switch valve. Twelve fractions from 16 – 40 minute 

were collected, lyophilized and re-dissolved in 20 µL of 0.5% (v/v) formic acid with 2% (v/v) 

acetonitrile prior to low-pH reversed-phase separation.  

 

We then performed second-dimension (low-pH) reversed-phase chromatography using an 

Easy-nLC 1000 nano-UPLC system (Thermo Scientific) on an EasySpray C18 reversed-phase 

column (PepMap, 3-µm particle, 100-Å pore; 150 mm length × 75 µm dimension; Thermo 

Scientific) held at 50 °C. The solvent gradient was 0th – 110th minute: 0–40% B; 110th – 117th  

minute: 40–80% B; 117th – 120th  minute: 80% B; 300 nL·min-1; A: 0.1% (v/v) formic acid, 2% 
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(v/v) acetonitrile; B: 0.1% (v/v) formic acid, 80% (v/v) acetonitrile. The autosampler on the 

Easy-nLC 1000 nano-UPLC system then injected 10 µL of each high-pH fraction into the sol-

vent flow path. 

 

Protein identification and quantification using mass spectrometry. Mass spectrometry was 

performed on an LTQ Orbitrap Elite mass spectrometer (Thermo Fisher Scientific) controlled by 

XCalibur (v.2.1.0) coupled to the Easy-nLC 1000 nano-UPLC system through a Thermo 

EasySpray interface. Each survey scan was analyzed inside the Orbitrap at 60,000 resolving 

power in profile mode, followed by data-dependent collision-induced dissociation MS2 scans 

on the top 15 ions inside the ion trap. MS1 and MS2 target ion accumulations were 1 × 104 and 

1 × 106, respectively. We set dynamic exclusion to 90 seconds to avoid acquisition of redun-

dant spectra. We further used an MS1 scan lock mass of m/z 425.120025 for internal mass 

calibration. 

 

Protein identification was performed with ProLuCID (Xu et al., 2006) against a reverse-decoyed 

database (Uniprot human Reference Proteome Reviewed, February 9th, 2013, 20,241 entries). 

The search allowed for static cysteine carbamidomethylation (+57.02146 Da) modification and 

up to 3 variable modifications, including methionine oxidation (+15.9949 Da), lysine acetylation 

(+42.0106 Da), serine/threonine/tyrosine phosphorylation (+79.9663 Da), or lysine ubiquitylation 

(+114.0403 Da). Tryptic, semi-tryptic, and non-tryptic peptides within a 20-ppm mass window 

surrounding the candidate precursor mass were searched under separate confidence calcula-

tion. Protein identifications were filtered by DTASelect (Tabb et al., 2002) .requiring ≤ 1% glob-

al peptide false discovery rate and two unique peptides per protein. ProLuCID performs 

multiple iterations of database search for every spectrum, first to identify only unmodified 

peptides and then to assume variable mass shifts of unmodified peptides (Wong et al., 2007). 

DTASelect, with the –modstat parameter set to on, then applies separate statistical filters to 

the modified and unmodified peptides to identify variable modifications using separate protein 
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identification confidence calculations, which would explain why searching with variable modifi-

cations in our typical workflow did not negatively impact protein identification performance. 

Note that modified peptides (other than methionine oxidation) were not considered for compara-

tive analyses as we await rigorous validations of the number of label-accessible atoms on the 

modification moieties. However, scenarios exist where performing database search with modifi-

cations would nevertheless improve coverage –  because a protein may be confidently identified 

by an unmodified and a modified peptide at two different sites to satisfy the two-peptide rule, 

and the unmodified peptide could go on to yield kinetic information. On a related note, so far in 

our unpublished data we have not observed any systematic difference in turnover rates between 

modified and unmodified peptides of the same proteins. 

 

For protein abundance calculation based on spectral counts, normalized spectral abundance 

factors were calculated in DTASelect. Additional protein identification was performed using 

MaxQuant/Andromeda (Cox and Mann, 2008; Cox et al., 2011) for comparison. A two-stage, 

probabilistic strategy to handle variable modifications is also employed in 

MaxQuant/Andromeda. 

 

Computational workflow for protein kinetics analysis: Proteins were identified from the 

acquired mass spectra using ProLuCID (Xu et al., 2006) Protein functional information and 

Gene Ontology entries were queried through NCBI DAVID (Huang da et al., 2009) and COPaKB 

(Zong et al., 2013). Protein turnover kinetics was quantified with ProTurn. The nonlinear fitting 

parameters utilized to deduce protein turnover rates were as follows. Orbitrap spectra were 

input to ProTurn after conversion into the open [.mzML] format using MSConvert (Chambers et 

al., 2012). ProTurn was then instructed to select only confidently identified peptides that were 

uniquely assigned to a protein from the ProLuCID search result [.dta] file. 
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For each identified peptide, all isotopomer areas-under-curves over a 60-ppm window of the 

peptide mass were integrated from the raw mass spectra, at the retention time in the MS1 

extracted ion chromatograph as indicated by the scan number in the protein identification list.  

Savizky-Golay filters over 7 data points were applied to the MS1 chromatograph prior to it-

negration (Savitzky and Golay, 1964). False positive identifications were further controlled by 

the requirement of a peptide to be explicitly identified in at least 4 time points before it is con-

sidered for kinetics calculation. Turnover rates were extracted by multivariate optimization to a 

nonlinear function. Peptide isotopomer time-series were accepted if they fit to the model with r 

≥ 0.9, or alternatively with a sliding standard error of estimate of ≤ 5 – 9%, which was heuristi-

cally determined in each subject such that the median of the median absolute deviations of the 

measured turnover rates of peptides belonging to each protein was approximately 30% to 

35%. 

 

For single-point analyses, the peptide isotopomer data were filtered without a priori knowledge 

of the true turnover rates from the full time-course datasets. For a fitting to be considered valid, 

the coefficient of variance of the measured peptide isotopomer fractional abundance in the 

triplicate mass spectrometry experiments must be ≤ 10%, whereas the residual sum of 

squares of fitting must be ≤ 1.5%, and the fitted turnover must lie within 0.5 to 3 half-lives at 

the sampling time. 

 

For iBAQ-based label-free quantification in ProTurn, the integrated isotopomer peak areas 

were summed up as the peptide cluster area. Protein areas were defined as the sum of all 

peptide areas from identified peptides, normalized to the total spectral intensity, then normal-

ized to the potential number of peptides (six or more amino acids in length) that may be pro-

duced from the protein sequence in an in silico tryptic digest. 

 
 
 



 200 



 201 

APPENDIX A. ORIGINAL PROPOSED AIMS 

 

 

Aim 1: Temporal dynamics of the mitochondrial proteome in cardiac remodeling. Using a 

stable isotope labeling method we recently developed, we will measure the in vivo turnover 

rates of mitochondrial proteins in mice undergoing isoproterenol-stimulated cardiac remodel-

ing, post-stimulus reverse-remodeling, or oxidative stress. These experiments are designed to 

identify protein turnover changes in key pathways that may parallel aberrations in cardiac 

functions.  

 

Aim 2:  Regulatory mechanisms of mitochondrial protein degradation in health and disease. 

We will assay the effect of mitochondrial proteases and cytosolic proteasomes on mitochon-

drial protein turnover in vitro. These experiments will test the hypothesis that individual protein 

degradation mechanisms are differentially regulated in the stressed heart to instigate protein 

remodeling in cardiac mitochondria. 

 

Aim 3: Translational models for proteome turnover analysis in human subjects. Following a 

UCLA IRB-approved human 2H2O labeling protocol, we will enroll healthy human subjects to 

study basal human plasma proteome turnover rates. These pilot studies will help us develop 

the labeling and computational methods for future clinical investigations on protein kinetics. 
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