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SOFTWARE Open Access

ghost-tree: creating hybrid-gene
phylogenetic trees for diversity analyses
Jennifer Fouquier1, Jai Ram Rideout2, Evan Bolyen2, John Chase2, Arron Shiffer2,3, Daniel McDonald4, Rob Knight5,
J Gregory Caporaso2,3 and Scott T. Kelley1,6,7*

Abstract

Background: Fungi play critical roles in many ecosystems, cause serious diseases in plants and animals, and pose
significant threats to human health and structural integrity problems in built environments. While most fungal
diversity remains unknown, the development of PCR primers for the internal transcribed spacer (ITS) combined
with next-generation sequencing has substantially improved our ability to profile fungal microbial diversity. Although
the high sequence variability in the ITS region facilitates more accurate species identification, it also makes multiple
sequence alignment and phylogenetic analysis unreliable across evolutionarily distant fungi because the sequences are
hard to align accurately. To address this issue, we created ghost-tree, a bioinformatics tool that integrates sequence data
from two genetic markers into a single phylogenetic tree that can be used for diversity analyses. Our approach starts
with a “foundation” phylogeny based on one genetic marker whose sequences can be aligned across organisms
spanning divergent taxonomic groups (e.g., fungal families). Then, “extension” phylogenies are built for more closely
related organisms (e.g., fungal species or strains) using a second more rapidly evolving genetic marker. These smaller
phylogenies are then grafted onto the foundation tree by mapping taxonomic names such that each corresponding
foundation-tree tip would branch into its new “extension tree” child.

Results: We applied ghost-tree to graft fungal extension phylogenies derived from ITS sequences onto a foundation
phylogeny derived from fungal 18S sequences. Our analysis of simulated and real fungal ITS data sets found that
phylogenetic distances between fungal communities computed using ghost-tree phylogenies explained significantly
more variance than non-phylogenetic distances. The phylogenetic metrics also improved our ability to distinguish small
differences (effect sizes) between microbial communities, though results were similar to non-phylogenetic methods for
larger effect sizes.

Conclusions: The Silva/UNITE-based ghost tree presented here can be easily integrated into existing fungal analysis
pipelines to enhance the resolution of fungal community differences and improve understanding of these communities
in built environments. The ghost-tree software package can also be used to develop phylogenetic trees for other marker
gene sets that afford different taxonomic resolution, or for bridging genome trees with amplicon trees.

Availability: ghost-tree is pip-installable. All source code, documentation, and test code are available under the BSD
license at https://github.com/JTFouquier/ghost-tree.
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Background
While it is now relatively straightforward to profile
bacterial diversity in environmental samples using culture-
independent approaches [1, 2], protocols for profiling fun-
gal communities are less developed. Fungi play critical
roles in many ecosystems. Fungi support plant growth in
soils [3], are responsible for enormous agricultural losses
[4] can cause serious diseases in humans [5] and can de-
grade structural integrity of built environments (e.g.,
homes and office buildings). Fungal spores are also known
to cause severe allergic reactions or even toxicity [6]. Des-
pite their importance, fungal diversity remains largely
uncategorized.
One issue that has slowed progress in this area is that

the small subunit ribosomal RNA (SSU rRNA) gene, the
most commonly used marker gene in bacterial commu-
nity surveys, has evolved relatively slowly in fungi. In
practice, this means that reads of fungal SSU rRNA (also
commonly referred to as the 18S gene) do not differ
enough across taxa to provide a useful level of taxo-
nomic resolution. As a result, there is much interest in
using the Internal Transcribed Spacer (ITS) region for
profiling fungal communities [7]. Although the ITS is an
intergenic sequence, it is still sometimes referred to as a
marker gene and we refer to it as a marker gene here for
consistency with other projects. The ITS region has a
much higher mutation rate (and therefore much more
sequence variability across species) than the fungal SSU
rRNA, so sequence reads of this region provide much
greater taxonomic resolution.
While the higher sequence variability in the ITS

marker gene facilitates more accurate taxonomic iden-
tification, it also makes multiple sequence alignment of
ITS sequences highly unreliable across evolutionarily
distant groups of fungi. These unreliable alignments, in
turn, result in unreliable phylogenetic trees, which is
problematic because phylogenetic information is useful
both for taxonomic placement of unknown sequences
and for phylogenetic diversity calculations. For ex-
ample, phylogenetic diversity metrics such as Faith’s
phylogenetic diversity (PD) index [8] and UniFrac [9]
have improved resolution of community differences
relative to their non-phylogenetic analogs that were
mostly developed for studying communities of macro-
organisms (e.g., Chao1 and Bray-Curtis dissimilarity).
The UniFrac distance metric, in particular, has been
used to investigate patterns of bacterial diversity in
thousands of studies and revealed powerful new in-
sights into the factors driving bacterial community
composition [9]. These metrics are very likely useful for
studying fungal communities as well, but the lack of
phylogenetic resolution in fungal SSU rRNA and the
high sequence variability in fungal ITS have prevented
their application.

Here, we present ghost-tree, an open-source bioinfor-
matics software tool for creating phylogenetic trees using
multiple genetic loci. The ghost-tree method uses se-
quences from an evolutionarily conserved marker gene
that can be aligned across distant taxonomic lineages to
build a “foundation” phylogenetic tree. Then, sequences
from a less conserved marker gene that allows for higher
taxonomic resolution are aligned within groups of closely
related taxa to create “extension” phylogenetic trees that
are then grafted onto the foundation tree. The result is the
“ghost tree.” In this text, we refer to the software package
as ghost-tree (italic and hyphenated) and the resulting
trees as ghost trees (roman, i.e., not italicized and not hy-
phenated). The principle behind creating ghost trees is the
same as studies using multiple genetic loci to reconstruct
phylogenetic relationships (e.g., multilocus sequence typ-
ing). However, typical multiple-gene trees require robust
sequence alignments of all gene markers across all taxa.
We applied ghost-tree, to build foundation trees from

aligned databases of fungal 18S rRNA gene sequences
and then graft extension trees from fungal ITS to create
a single phylogeny that can be used in phylogenetic di-
versity analyses of fungal communities. Our analysis of
simulated and real fungal ITS data sets showed that
Principle Coordinates Analysis (PCoA) using ghost tree-
based UniFrac distances explained substantially more of
the variance in the data than non-phylogenetic distances.
The phylogenetic approach also significantly improved
the ability to distinguish small effect sizes compared
with non-phylogenetic metrics using ANOSIM-based
group comparisons, though non-phylogenetic methods
achieved slightly higher R values for detecting a large
effect. Our hybrid 18S/ITS fungal ghost tree and the
ghost-tree software package that can be used to develop
phylogenetic trees for other sets of marker genes can be
downloaded from GitHub at: https://github.com/JTFou
quier/ghost-tree.

Implementation
ghost-tree workflow
ghost-tree takes as input (1) the Foundation Alignment
(for example, the Silva 18S alignment) where sequences
are annotated with taxonomy; (2) the Extension Sequence
Collection (for example, unaligned ITS sequences from
the UNITE database); and (3) a taxonomy map, which
contains taxonomic annotations of the sequences in (2).
The Foundation Alignment is filtered by ghost-tree using
scikit-bio (scikit-bio.org) to remove highly gapped and
high entropy positions. Next, FastTree [10] is used, with
the Jukes and Cantor model of DNA evolution [11], to
build a phylogenetic tree from the resulting filtered
alignment. This is the Foundation Tree. In parallel, the
Extension Sequence Collection can be clustered with
SUMACLUST, an open source OTU clustering software
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package (https://git.metabarcoding.org/obitools/sumaclu
st/wikis/home/), resulting in an operational taxonomic
unit (OTU) map that groups sequences into OTUs by
percent identity. For each Extension Sequence OTU, a
consensus taxonomy is determined from the Taxonomy
Map, and OTUs with the same consensus taxonomy are
combined into a single OTU. The sequences in each
OTU are then aligned using MUSCLE with diagonal
optimization of the first iteration and two maximum it-
erations, which is suitable for closely related sequences
[12]. FastTree is then applied to these alignments to
build an Extension Tree for each alignment. This process
of “alignment and tree building” is applied to all OTUs
in the Extension Sequence Collection. Each OTUs’

consensus taxonomy is associated with the root of the
Extension Tree. The taxa at the root of the extension
trees are then used to graft the Extension Tree onto the
tip in the Foundation Tree with the same taxonomy,
resulting in the ghost tree (see illustrations in Fig. 1).
We applied ghost-tree to build a phylogenetic tree from
Silva (Ver. SSU 119.1) 18S sequences (our foundation)
[13] and UNITE (Ver. 12_11_otus) ITS sequences (our
extensions) [14]. This tree is available in the ghost-tree
GitHub repository. This workflow is illustrated in Fig. 1.

Test data set
To compare diversity analysis results, we began with two
ITS profile data sets: one containing 20 human saliva

Fig. 1 ghost-tree workflow diagram
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samples [15] and one containing 16 public restroom
floor samples [16]. Both sample sets used the ITS-1F
forward primer (5′-CTTGGTCATTTAGAGGAAG-
TAA-3′) sequence [17] and the ITS2 reverse primer (5′-
GCTGCGTTCTTCATCGATGC-3′) sequences [18] to
generate ITS1 sequence reads. All analyses referencing
Python scripts described below were performed in Mac-
QIIME 1.9.0-20140227 ([19]; http://www.wernerlab.org/
software/macqiime). The public restroom floor se-
quences were generated on an Ilumina MiSeq and the
saliva on a GS-FLX pyrosequencer. Sequence data was
combined for both studies after demultiplexing (split_li-
braries.py was performed by the authors on the public
restroom floor sequences; already demultiplexed data
was obtained from NCBI SRA for the saliva data). OTUs
were picked using uclust-based closed-reference OTU
picking (pick_otus.py) with UNITE OTUs v12_11 as the
reference database and the most abundant sequence in
each OTU was selected as the OTU representative se-
quence (pick_rep_set.py).
The BIOM table was then filtered using filter_otus_fro

m_otu_table.py to contain only OTUs with accession
numbers present in the ghost tree. To create a data set
with a known small effect size, we used simsam.py, which
creates a specified number of phylogenetically similar sim-
ulated samples using a phylogenetic tree and the filtered
BIOM table. Specifically, the small effect we looked for
was whether simulated samples derived from a single
source sample were more similar to each other than to
simulated communities derived from different source
samples. Ten simulated samples were created for each of
the 36 source samples with 0.6 dissimilarity (d) using sim-
sam.py, resulting in our “simulated BIOM table,” and a
simulated mapping file with metadata for all 360 resulting
samples. Simulated BIOM tables were created using ghost-
tree (which we refer to as the ghost-tree-Simulated
Communities, or GTSCs) and repeated using FastTree
with ITS sequences aligned with MUSCLE (which we
refer to as the FastTree-Simulated Communities, or
FTSCs).

Principal coordinates analyses
PCoA plots for unweighted and weighted UniFrac were
created using beta_diversity_through_plots.py with the
appropriate simulated mapping file, simulated BIOM
table, and ghost tree or our FastTree as the reference
tree. PCoA plots for the Jaccard distance [20], a qualita-
tive non-phylogenetic diversity metric, and Bray-Curtis
distance [21], a quantitative, non-phylogenetic diversity
metric, were created separately by using three scripts.
First, beta_diversity.py was run with methods “binar
y_jaccard” and “bray_curtis”, respectively, on the sim-
ulated BIOM table to produce two distance matrices
(DMs). Next, principal_coordinates.py was applied to

those DMs to produce principal coordinates (PC) matri-
ces. Finally, make_emperor.py was run using the PC files
and the simulated mapping file to produce PCoA plots for
Jaccard and Bray-Curtis. This process was repeated for
unsimulated samples and for both FTSCs and GTSCs.

Diversity calculations and statistics
To test whether simulated samples derived from the
same source sample were more similar than those de-
rived from different source samples (the small effect),
per-environment OTU tables (saliva and restroom floor)
were created using split_otu_table.py. ANOSIM was
computed using compare_categories.py to compare the
distribution of distances between samples with the same
source to the distribution of samples with a different
source. Six distance matrix calculations were created for
both FTSCs and GTSCs using the appropriate simulated
mapping file with 999 permutations: Jaccard, Bray-Curtis,
unweighted UniFrac with FastTree, weighted UniFrac with
FastTree, unweighted UniFrac with ghost-tree, and weighted
UniFrac with ghost-tree. The Jaccard distance is a qualita-
tive non-phylogenetic diversity metric where no tree is
required. The Bray-Curtis distance is a quantitative, non-
phylogenetic diversity metric where no tree is required. The
weighted UniFrac metric includes information on the abun-
dance of various taxa in addition to the phylogenetic tree,
while the unweighted UniFrac only includes the phylogen-
etic information (for details see [9]). The unweighted and
weighted FastTree distances are calculated with a phylogen-
etic tree based on a FastTree phylogenetic analysis of only
the ITS data aligned using MUSCLE.
To test whether samples could be differentiated by

their environment type (restroom or saliva, the large ef-
fect), ANOSIM was computed using compare_categorie
s.py on each of the six distance matrices for the simu-
lated and real BIOM tables using the appropriate (either
simulated or unsimulated) mapping file, with 999 per-
mutations. This analysis was performed for simulated
and unsimulated sample sets.

ghost-tree software
ghost-tree is hosted on GitHub under the BSD open
source software license. It is implemented in Python,
using scikit-bio (www.scikit-bio.org) and Click (http://
click.pocoo.org/), and adheres to the PEP8 Python style
guide. ghost-tree is subject to continuous integration
testing using Travis CI which, on each pull request, runs
unit tests with nose, monitors code style using flake8,
and monitors test coverage with coveralls.

Results and discussion
To evaluate whether ghost-tree supports improved sam-
ple resolution in studies of fungal community analysis,
we evaluated its ability to detect small and large effect
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sizes. We analyzed two real-world (referred to in the ta-
bles and figures as unsimulated/real) ITS sequence data
sets: one a collection of human saliva samples and one
of surfaces in public restrooms. The communities in hu-
man saliva and on restroom surfaces were expected to
differ substantially from one another, and we further ex-
pected that any of the metrics should be able to detect
these differences. This was, therefore, considered the
“large effect size” data set.
To generate data sets with known small effect sizes,

we simulated 10 samples for each saliva and restroom
sample (the source samples), using QIIME’s simsam.py
workflow. The simsam.py workflow generates sample
replicates that are phylogenetically similar to their
source sample. Metrics that can differentiate closely
related samples should assign smaller distances between
samples that are simulated from the same source sample
and larger distances between samples that are simulated
from different source samples. We considered the
grouping of each set of simulated samples that were

derived from the same source to be the “small effect
size” data set. Because simsam.py requires a phylogenetic
tree to simulate phylogenetically similar samples, we
have simulated communities using trees generated both
with ghost-tree and FastTree and evaluated each result-
ing set of samples with both the ghost-tree-generated
phylogeny and the FastTree-generated phylogeny. Be-
cause of the limitations with fungal community analysis
noted above, it is difficult to obtain data sets with known
large and small effect sizes that also sequence the same
region of the ITS, so we used this approach to generate
both small and large effect size samples.

Large effect size analyses
Analysis of the unsimulated (real) data with large effect
sizes found that, as expected, both non-phylogenetic and
phylogenetic methods readily distinguished fungal com-
munities determined from human saliva and restroom
floors (Table 1; Fig. 2). However, while the non-
phylogenetic methods had the highest R values, they

Table 1 Quantitative group comparisons using ANOSIM and PCoA to analyze large effect sizes (between environments) of simulated
and unsimulated human saliva and public restroom floor samples

Test statistic (R) p value % explained

Unsimulated (real) data community analysis

Jaccard (Fig. 2a) 0.865 0.001 31.24

Bray-Curtis (Fig. 2b) 0.849 0.001 47.17

Unweighted UniFrac with FastTree (Fig. 2c) 0.734 0.001 43.56

Weighted UniFrac with FastTree (Fig. 2d) 0.263 0.001 63.52

Unweighted UniFrac with ghost-tree (Fig. 2e; Additional file 1: Figure S1A) 0.753 0.001 50.79

Weighted UniFrac with ghost-tree (Fig. 2f; Additional file 1: Figure S1B) 0.463 0.001 76.21

Unweighted UniFrac with ghost-tree 0 branch foundation (Additional file 1: Figure S1C) 0.730 0.001 50.61

Weighted UniFrac with ghost-tree 0 branch foundation (Additional file 1: Figure S1D) 0.458 0.001 76.91

Unweighted UniFrac with ghost-tree 0 branch extensions (Additional file 1: Figure S1E) 0.700 0.001 66.11

Weighted UniFrac with ghost-tree 0 branch extensions (Additional file 1: Figure S1F) 0.453 0.001 67.97

Simulated data community analysis

Jaccard to analyze FTSCs (Fig. 3a) 0.191 0.001 3.05

Bray-Curtis to analyze FTSCs (Fig. 3b) 0.191 0.001 2.71

Jaccard to analyze GTSCs (Fig. 3c) 0.036 0.001 1.63

Bray-Curtis to analyze GTSCs (Fig. 3d) 0.036 0.001 2.43

Unweighted UniFrac with FastTree to analyze FTSCs (Fig. 3e) 0.675 0.001 22.10

Weighted UniFrac with FastTree to analyze FTSCs (Fig. 3f) 0.255 0.001 43.69

Unweighted UniFrac with FastTree to analyze GTSCs (Fig. 3g) 0.298 0.001 68.87

Weighted UniFrac with FastTree to analyze GTSCs (Fig. 3h) 0.150 0.001 54.08

Unweighted UniFrac with ghost-tree to analyze FTSCs (Fig. 3i) 0.302 0.001 27.72

Weighted UniFrac with ghost-tree to analyze FTSCs (Fig. 3j) 0.117 0.001 35.55

Unweighted UniFrac with ghost-tree to analyze GTSCs (Fig. 3k) 0.580 0.001 20.40

Weighted UniFrac with ghost-tree to analyze GTSCs (Fig. 3l) 0.307 0.001 44.98

Note: For unsimulated samples, sample size is 36, and two groups were analyzed using 999 permutations. For simulated samples, sample size is 360, and two groups
were analyzed using 999 permutations. The test statistic (R), p value, and percent variation explained in the first the PCoA axes are presented for each comparison
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explained less of the variation than the phylogenetic
metrics computed with ghost-tree or FastTree phyloge-
nies. The phylogenetic metrics computed with ghost-
tree’s tree also explained slightly more of the variation
(Table 1, unweighted UniFrac percent explained =
50.790; weighted UniFrac percent explained = 76.210;
Fig. 2e, f ) than the phylogenetic metrics based on the
FastTree phylogeny (Table 1, unweighted UniFrac per-
cent explained = 43.56; weighted UniFrac percent ex-
plained = 63.52; Fig. 2c, d). Weighted UniFrac with
FastTree also proved less able to distinguish large effect
sizes (Table 1, ANOSIM R = 0.263; Fig. 2d) than the
weighted UniFrac with ghost-tree (Table 1, ANOSIM R =
0.463; Fig. 2f). The same was true for unweighted UniFrac,
though the difference in R value was negligible.

The analysis of the FTSC- and GTSC-simulated data
with large effect sizes found a similar pattern. All methods
were able to differentiate between salivary and restroom
floor communities, though the non-phylogenetic methods
had lower R values and explained only a small portion of
the overall variation (Table 1; Fig. 3a–d). The unweighted
and weighted UniFrac distances based on FastTree and
ghost-tree performed much better on the FTSC and GTSC
communities (Table 1; Fig. 3e–l). Unsurprisingly, the re-
sults were the strongest when the phylogenetic distances
were computed for a simulated data using the same phyl-
ogeny that was used to simulate it. For instance, un-
weighted UniFrac using the ghost tree had a higher
ANOSIM R value and explained more of the overall vari-
ation using the GTSC (Table 1; Fig. 3k) than the FTSC
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Fig. 2 Principal coordinates comparing unsimulated (real) samples based on a Jaccard distances, b Bray-Curtis distances, c unweighted UniFrac
distances where trees are computed using FastTree, d weighted UniFrac distances where trees are computed using FastTree, e unweighted UniFrac
distances where trees are computed using ghost-tree, and f weighted UniFrac distances where trees are computed using ghost-tree. Blue
points are simulated and real human saliva samples, and red points are simulated and real restroom surface samples. Plots were made
using EMPeror software [26]
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(Table 1; Fig. 3i). It is therefore important to consider how
each metric performed with when a different tree was
used for simulating the community and computing phylo-
genetic distances. Interestingly, while the UniFrac metrics
based on the FastTree phylogeny had the best statistics,
they showed no clear separation of the communities not
only in the PCoA plots, particularly when using the
GTSCs (Fig. 3g, h), but also in the weighted analysis using
the FTSCs (Fig. 3f). The reason for this discrepancy is un-
known, but the visual separation is clearly much better
using the ghosttree with both the FSTCs and GTSCs.

Small effect size analyses
Table 2 details the result of ANOSIM analysis compar-
ing simulated (small effect size) data within each of the
two sample types. The results show that the phylogen-
etic metrics are better at distinguishing samples with
very small effect size differences compared with the
non-phylogenetic metrics. While the p values were
highly significant for all the tests (except FastTree phyl-
ogeny with GTSCs), the ANOSIM R values were consid-
erably higher using the unweighted and weighted
UniFrac with both ghost-tree and FastTree. Interestingly,
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Fouquier et al. Microbiome  (2016) 4:11 Page 7 of 10



the UniFrac analysis using FastTree on data simulated
using the FastTree phylogeny (FTSC) had the highest R
value of all the tests for both the restroom- and saliva-
simulated datasets (Table 2). However, when the UniFrac
distances using FastTree were generated for the GTSCs,
the R values dropped considerably and became non-
significant in two of the tests (unweighted and weighted
UniFrac using FastTree to analyze GTSCs; Table 2). On
the other hand, the unweighted and weighted UniFrac
ghost-tree metrics appeared to be much more robust
regardless of the underlying phylogeny used to create
the simulated communities.
Finally, to determine the relative influence of the

phylogenetic information from the foundation tree (18S
phylogeny) and the extension trees (ITS phylogenies),
we tested how the removal of all branch lengths in each
(and therefore the phylogenetic information contributed
by each) affected our ability to detect our small effect
sizes. Additional file 1: Figure S1 shows the PCoA visuali-
zations of these analyses. Removal of both the foundation
phylogenetic information and the extension tree informa-
tion lowered the resulted ANOSIM R values in both
unweighted and weighted UniFrac analyses (Table 1) sug-
gesting that both contributed to the analysis. However, the
total variation explained dropped the most when the ex-
tension tree phylogenetic information was removed indi-
cating that, at least for these data, the ITS extension trees
contributed the most to the analysis with these particular
environments.

Conclusions
Fungi play an integral role in many ecosystems and have
known impacts on building materials, agricultural soils,
and human health. Here, we show how the ghost-tree ap-
proach allows incorporation of phylogenetic information
into fungal community analysis based on the ITS marker
sequence. Phylogenetic-based analysis (e.g., UniFrac) of
bacterial communities has proven a powerful means for
detecting associations between environmental conditions
and microbial diversity, assessing the temporal dynamics
of communities, and detecting shifts in microbial com-
munity structure after experimental treatments [22–24].
Our results show that incorporating phylogeny into di-
versity metrics can enhance the resolution at which we
can detect differences among fungal communities and
should, therefore, improve our understanding of fungal
ecosystems in the built environment and other settings.
Phylogenetic analyses based on single marker genes

should always be used cautiously, but, as with the ana-
lysis of bacterial communities, the inclusion of phylo-
genetic information seems to improve fungal community
diversity analysis. One limitation to our approach is that
branch lengths are not scaled when grafting extension
trees onto the foundation tree, which would control for

Table 2 Quantitative group comparisons using ANOSIM to
analyze small effect sizes (within environments) of simulated
human saliva and public restroom floor samples

Test statistic (R) p value

Restroom samples

Non-phylogenetic methods

Jaccard to analyze FTSCs 0.225 0.001

Bray-Curtis to analyze FTSCs 0.239 0.001

Jaccard to analyze GTSCs 0.053 0.001

Bray-Curtis to analyze GTSCs 0.056 0.001

FastTree

Unweighted UniFrac with FastTree
to analyze FTSCs

0.673 0.001

Weighted UniFrac with FastTree
to analyze FTSCs

0.798 0.001

Unweighted UniFrac with FastTree
to analyze GTSCs

0.038 0.057

Weighted UniFrac with FastTree
to analyze GTSCs

-0.001 0.518

ghost-tree

Unweighted UniFrac with ghost-tree
to analyze FTSCs

0.125 0.001

Weighted UniFrac with ghost-tree
to analyze FTSCs

0.073 0.001

Unweighted UniFrac with ghost-tree
to analyze GTSCs

0.619 0.001

Weighted UniFrac with ghost-tree
to analyze GTSCs

0.655 0.001

Saliva samples

Non-phylogenetic methods

Jaccard to analyze FTSCs 0.250 0.001

Bray-Curtis to analyze FTSCs 0.253 0.001

Jaccard to analyze GTSCs 0.032 0.001

Bray-Curtis to analyze GTSCs 0.032 0.001

FastTree

Unweighted UniFrac with FastTree
to analyze FTSCs

0.852 0.001

Weighted UniFrac with FastTree
to analyze FTSCs

0.756 0.001

Unweighted UniFrac with FastTree
to analyze GTSCs

0.031 0.001

Weighted UniFrac with FastTree
to analyze GTSCs

0.023 0.001

ghost-tree

Unweighted UniFrac with ghost-tree
to analyze FTSCs

0.125 0.001

Weighted UniFrac with ghost-tree
to analyze FTSCs

0.068 0.001

Unweighted UniFrac with ghost-tree
to analyze GTSCs

0.524 0.001

Weighted UniFrac with ghost-tree
to analyze GTSCs

0.596 0.001

Note: For restroom sample diversity metrics, sample size is 160, and 16 groups
were analyzed using 999 permutations. For saliva sample diversity metrics,
sample size is 200, and 20 groups were analyzed using 999 permutations
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different rates of evolution across the two marker genes
being combined. We next plan to explore how to best
scale branch lengths to further improve diversity analysis,
and this will be added in a future iteration of ghost-tree.
The Silva/UNITE-based ghost tree developed for the

analyses presented here is publicly accessible and can be
easily integrated into a user’s existing fungal analysis
pipeline. The ghost-tree software package can also be
used to develop phylogenetic trees for other marker gene
sets that provide different taxonomic resolution or for
bridging genome trees with amplicon trees. Marker gene
sequence databases such as SILVA and UNITE provide
reference sequences and taxonomy that are widely used
for fungal community analysis. For other marker genes
where reference trees are not widely distributed, or when
researchers wish to integrate sequences that are not rep-
resented in a reference database as with open-reference
OTU picking workflows [25], trees must be constructed
from the marker sequence reads if phylogenetic analyses
will be performed. The ghost tree method facilitates de-
velopment of phylogenetic trees that can be distributed
with reference sequences or built from marker sequence
reads in conjunction with a reference database.

Availability and requirements
All source code, documentation (including installation
requirements) and test code are available under the BSD
license at https://github.com/JTFouquier/ghost-tree.

Additional file

Additional file 1: Figure S1. Principal Coordinates comparing unsimulated
(real) samples based on (a) unweighted UniFrac distances where trees are
computed using ghost-tree, (b) weighted UniFrac distances where trees are
computed using ghost-tree, (c) unweighted UniFrac distances where trees are
computed using ghost-tree, 0-branch length-foundation, (d) weighted UniFrac
distances where trees are computed using ghost-tree, 0-branch-length
foundation, (e) unweighted UniFrac distances where trees are computed using
ghost-tree, 0-branch-length extensions, (f) weighted UniFrac distances where
trees are computed using ghost-tree, 0-branch-length extensions. Blue points
are simulated and real human saliva samples, and red points are simulated
and real restroom surface samples. Plots were made using EMPeror software
[25]. (PDF 522 kb)
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