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Abstract

The Fibonacci dimension fdim(G) of a graph G is introduced as the smallest
integer f such that G admits an isometric embedding into Γf , the f -dimensional
Fibonacci cube. We give bounds on the Fibonacci dimension of a graph in terms
of the isometric and lattice dimension, provide a combinatorial characterization of
the Fibonacci dimension using properties of an associated graph, and establish the
Fibonacci dimension for certain families of graphs. From the algorithmic point of
view, we prove that it is NP-complete to decide whether fdim(G) equals the isometric
dimension of G, and show that no algorithm to approximate fdim(G) has approx-
imation ratio below 741/740, unless P=NP. We also give a (3/2)-approximation
algorithm for fdim(G) in the general case and a (1+ε)-approximation algorithm for
simplex graphs.

1 Introduction

Hypercubes play a prominent role in metric graph theory as well as in several other areas
such as parallel computing and coding theory. One of their central features is the ability
to compute distances very efficiently because the distance between two vertices is simply
the number of coordinates in which they differ; the same ability to compute distances
may be transferred to any isometric subgraph of a hypercube. In this way partial cubes
appear, a class of graphs intensively studied so far; see the books [12, 19, 32], the recent
papers [3, 25, 43, 44], the recent (semi-)survey [42], and references therein. In particular
we point out a recent fast recognition algorithm [17] and improvements in classification
of cubic partial cubes [16, 37].
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The isometric dimension of a graph G is the smallest (and at the same time the largest)
integer d such that G isometrically and irredundantly embeds into the d-dimensional cube.
Clearly, the isometric dimension of G is finite if and only if G is a partial cube. This
graph dimension is well-understood; for instance, it is equal to the number of steps in
Chepoi’s expansion procedure [9] and to the number of Θ-equivalence classes [13, 46] of
a given graph. Two related graph dimensions need to be mentioned here since they are
both defined on the basis of isometric embeddability into graph products. The lattice
dimension of a graph is the smallest d such that the graph embeds isometrically into Z

d

(a Cartesian product of paths). Graphs with finite lattice dimension are precisely partial
cubes, and the lattice dimension of any partial cube can be determined in polynomial
time [15]. Another dimension is the strong isometric dimension—the smallest integer d
such that a graph isometrically embeds into the strong product of d paths [20, 21]. In this
case every graph has finite dimension, but this universality has a price: it is very difficult
to compute the strong isometric dimension.

Fibonacci cubes are a subclass of the partial cubes that were first introduced by Hsu et
al. in 1993 [29, 30], although closely related structures had been studied previously [4, 22,
28]. Several papers have investigated the structural properties of this class of graphs [11,
34, 38, 41]. In [8] it was shown that Fibonacci cubes are Θ-graceful while in [45] an efficient
recognition algorithm is presented. The original motivation for introducing Fibonacci
cubes was as an interconnection network for parallel computers; in that application, it is
of interest to study the embeddability of other networks within Fibonacci cubes [10, 24].

In this paper we study this embedding question from the isometric point of view.
We introduce the Fibonacci dimension of a graph as the smallest integer f such that
the graph admits an isometric embedding into the f -dimensional Fibonacci cube; as we
show, a graph G can be embedded in this way if and only if G is a partial cube. In the
next section we give definitions, notions, and preliminary results needed in this paper.
In Section 3 we a give a combinatorial characterization of the Fibonacci dimension using
properties of an associated graph. We provide upper and lower bounds showing that the
Fibonacci dimension is always within a factor of two of the isometric dimension. We
also provide tighter upper bounds based on a combination of the isometric and lattice
dimensions, and we discuss the Fibonacci dimension of some particular classes of graphs.
In Section 4 we show that computing the Fibonacci dimension is an NP-complete problem,
provide inapproximability results, and give approximation algorithms.

2 Preliminaries

We will use the notation [n] = {1, . . . , n}. For any string u we will use u(i) to denote its
ith coordinate. Unless otherwise specified, the distance in this paper is the usual shortest-
path distance for unweighted graphs. A graph G is an isometric subgraph of another graph
H if there is a way of placing the vertices of G in one-to-one correspondence with a subset
of vertices of H , such that the distance in G equals the distance between corresponding
vertices in H .

The vertex set of the d-cube Qd consists of all d-tuples u = u(1)u(2) . . . u(d) with
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Figure 1: The Fibonacci cube Γ10.

u(i) ∈ {0, 1}. Two vertices are adjacent if the corresponding tuples differ in precisely
one position. Qd is also called a hypercube of dimension d. Isometric subgraphs of hyper-
cubes are partial cubes.

A Fibonacci string of length d is a binary string u(1)u(2) . . . u(d) with u(i) ·u(i+1) = 0 for
i ∈ [d − 1]. In other words, a Fibonacci string is a binary string with no two consecutive
ones. The set of Fibonacci strings of length d can be decomposed into two subsets: the
subset of strings in which a starting 0 is followed by a Fibonacci string of length d − 1,
and the subset of strings in which a starting 10 is followed by a Fibonacci string of length
d − 2. For this reason the number of distinct Fibonacci strings of length d satisfies the
Fibonacci recurrence and equals a Fibonacci number. The Fibonacci cube Γd, d ≥ 1, is
the subgraph of Qd induced by the Fibonacci strings of length d. The Fibonacci cube
may alternatively be defined as the graph of the distributive lattice of order-ideals of a
fence poset [4, 22, 28] or as the simplex graph of the complement graph of a path graph.
Since graphs of distributive lattices and simplex graphs are both instances of median
graphs [2, 7], we have:

Theorem 2.1 ([34]) Fibonacci cubes are median graphs. In particular, Fibonacci cubes
are partial cubes and Γd isometrically embeds into Qd.

We will use the lattice Z
d equipped with the L1-distance. Therefore, the distance

between any two elements (x1, . . . , xd), (y1, . . . , yd) ∈ Z
d is given by

∑
i |xi − yi|. It will

be convenient to visualize Z
d as an infinite graph whose vertex set are elements of Z

d and
where two vertices are adjacent when they are at distance one; with this visualization,
L1-distance coincides with the shortest path distance in the graph.

Let G be a connected graph. The isometric dimension, idim(G), is the smallest integer
k such that G admits an isometric embedding into Qk. If there is no such k we set
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Figure 2: Left: an isometric embedding of Γ3 into Q3, with the complementary semicubes
W(3,1) and W(3,0) shown as the shaded regions of the drawing. Right: the semicube graph
of the embedding, consisting of a three-vertex path and three isolated vertices.

idim(G) = ∞. By definition, idim(G) < ∞ if and only if G is a partial cube. The lattice
dimension, ldim(G), is the smallest integer ℓ such that G admits an isometric embedding
into Z

ℓ. We similarly define the Fibonacci dimension, fdim(G), as the smallest integer f
such that G admits an isometric embedding into Γf , and set fdim(G) = ∞ if there is no
such f .

Let β : V (G) → V (Qk) be an isometric embedding. We will denote the ith coordinate
of β with β(i). The embedding β is called irredundant if β(i)(V (G)) = {0, 1} for each
i ∈ [k]. If an embedding is not irredundant, we may find an embedding onto a lower-
dimensional hypercube by omitting the redundant coordinates. An isometric embedding
β : G → Qk is irredundant if and only if k = idim(G) [46].

Let G be a partial cube with idim(G) = k and assume that we are given an isometric
embedding β of G into Qk. Each pair (i, χ) ∈ [k] × {0, 1} defines the semicube W(i,χ) =
{u ∈ V (G) | β(i)(u) = χ}. For any i ∈ [k], we refer to W(i,0), W(i,1) as a complementary
pair of semicubes. This definition and notation seems to depend on the embedding β.
However, any irredundant isometric embedding β ′ describes the same family of semicubes
and pairs of complementary semicubes, possibly indexed in a different way.

For a partial cube G and a complementary pair of semicubes W(i,0), W(i,1), the set of
edges with one endvertex in W(i,0) and the other in W(i,1) constitute a Θ-class of G. The
Θ-classes of G form a partition of E(G).

To determine the lattice dimension of a graph G, Eppstein [15] introduced the semicube
graph Sc(G) of a partial cube G as the graph with all the semicubes as nodes, semicubes
W(i,χ) and W(i′,χ′) being adjacent if W(i,χ) ∪W(i′,χ′) = V (G) and W(i,χ) ∩W(i′,χ′) 6= ∅. One
can then show that the lattice dimension of G is equal to idim(G) − |M |, where M is a
maximum matching of Sc(G). See also [35] for further work on semicube graphs.

For any graph G, its simplex graph κ(G) is defined as follows. There is a vertex uK in
κ(G) for each clique K of G; here we regard ∅, each vertex, and each edge of G as a clique.
There is an edge between vertices uK and uK ′ of κ(G) whenever the cliques K and K ′ of
G differ by exactly one vertex. In particular, there is an edge between u∅ and ua for each
a ∈ V (G), and there is an edge between ua and uab for each edge ab ∈ E(G). We will also
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Figure 3: A graph G (left) with its corresponding simplex graph κ(G) (center) and 2-
simplex graph κ2(G).

use the 2-simplex graph κ2(G) of a graph G, which is the subgraph of κ(G) induced by
the vertices uK of κ(G) corresponding to cliques K with at most 2 vertices. Alternatively,
the 2-simplex graph of G may be formed by subdividing each edge of G and adding a
new vertex u∅ adjacent to each vertex that existed prior to the subdivision. An example
is given in Figure 3. When G has no triangle, then κ2(G) = κ(G). 2-simplex graphs
were used in [33] to establish a close connection between the recognition complexity of
triangle-free graphs and of median graphs.

Finally, computing an embedding of G into Qd (or Γd) means to attach to each vertex
v of G a tuple β(v) that is a vertex of Qd such that β provides an isometric embedding.

3 Combinatorial aspects

3.1 The general case

Proposition 3.1 Let G be a connected graph. Then fdim(G) is finite if and only if
idim(G) is finite. Moreover,

idim(G) ≤ fdim(G) ≤ 2 idim(G) − 1 .

Proof. Let f = fdim(G) < ∞, so that G isometrically embeds into Γf . By Theorem 2.1,
Γf isometrically embeds into Qf , hence G isometrically embeds into Qf . The Fibonacci
strings with which Γf was derived may be used directly as the coordinates of an isometric
embedding. Consequently idim(G) ≤ f = fdim(G).

Conversely, let k = idim(G) < ∞ and consider G isometrically embedded into Qk.
To each vertex u = u(1)u(2) . . . u(k−1)u(k) of G (embedded into Qk) assign the vertex
ũ = u(1)0u(2)0 . . . u(k−1)0u(k). Clearly, ũ(i) · ũ(i+1) = 0 for any i ∈ [2k − 2]. Therefore, we

can consider ũ as a vertex of Γ2k−1. Let G̃ be the subgraph of Γ2k−1 induced by the vertices
ũ, u ∈ V (G). Since Γ2k−1 is isometric in Q2k−1 (invoking Theorem 2.1 again), it readily

follows that G̃ is isometric in Γ2k−1. We conclude that fdim(G) ≤ 2k−1 = 2 idim(G)−1.
�
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It is now clear that we only need to study the Fibonacci dimension of partial cubes.
Using the lattice dimension ldim(G) we will further improve in Proposition 3.7 the upper
bound on fdim(G), and provide an alternative lower bound in Proposition 3.8.

Let G be a partial cube with idim(G) = k. In order to obtain an expression for
fdim(G) in terms of idim(G) we construct the graph X(G) as follows. The nodes of X(G)
are the semicubes W(i,χ), (i, χ) ∈ [k] × {0, 1}, of G, semicubes W(i,χ) and W(j,χ′) being
adjacent if i 6= j and W(i,χ)∩W(j,χ′) = ∅. Note that X(G) is very close to the complement
of the Eppstein’s semicube graph Sc(G).

A path P of X(G) with the property that |P ∩ {W(i,0), W(i,1)}| ≤ 1 for each comple-
mentary pair of semicubes W(i,0), W(i,1), will be called a coordinating path. A set of paths
P of X(G) will be called a system of coordinating paths provided that any P ∈ P is
a coordinating path and for each complementary pair of semicubes W(i,0), W(i,1) there is
exactly one P ∈ P such that |P ∩ {W(i,0), W(i,1)}| = 1.

Lemma 3.2 Let G be a partial cube and let P be a system of coordinating paths of X(G).
Then there is an isometric embedding of G into Γf ′, where f ′ = idim(G) + |P| − 1 .

Proof. Let k = idim(G), let p = |P|, and let P = {P1, . . . , Pp} be the given system of
coordinating paths of X(G). Let

P1 : W(a1,χ1) → W(a2,χ2) → · · · → W(ai1
,χi1

)

P2 : W(ai1+1,χi1+1) → W(ai1+2,χi1+2) → · · · → W(ai2
,χi2

)

...
Pp : W(aip−1+1,χip−1+1) → W(aip−1+2,χip−1+2) → · · · → W(aip ,χip).

As the paths meet exactly one of the complementary semicubes exactly once, ip = k.
More precisely, there is a bijection φ : {a1, a2, . . . , aip} → [k] such that if φ(ai) = j then
either W(ai,χi) = W(j,0) or W(ai,χi) = W(j,1) holds.

For any vertex u of G and any i ∈ [k] set

ū(i) =

{
1 if u ∈ W(ai,χi);

0 otherwise.

Assigning the k-tuple
u = ū(1)ū(2) . . . ū(ip)

to any vertex u of G yields the canonical isometric embedding of G into Qk = Qip . Now
assign to u the following d-tuple:

ū(1) . . . ū(i1)0ū(i1+1) . . . ū(i2)0 . . . 0ū(ip−1+1) . . . ū(ip) .

In this way, G is embedded into Qf ′ , where f ′ = k + p − 1. Moreover, the embedding
is clearly still isometric. Because W(ai,χi) ∩ W(ai+1,χi+1) = ∅ provided that W(ai,χi) and
W(ai+1,χi+1) are connected by an edge of some path Pj , the labeling of u is a Fibonacci
string. Hence we have described an isometric embedding of G into Γf ′. �

Let p(X(G)) be the minimum size of a system of coordinating paths of X(G). Then:
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Theorem 3.3 Let G be a partial cube. Then

fdim(G) = idim(G) + p(X(G)) − 1 .

Proof. Let p = p(X(G)), k = idim(G), and f = fdim(G). If readily follows from
Lemma 3.2 and the definition of p(X(G)) that f ≤ k + p − 1.

Consider now G isometrically embedded into Γf . For u ∈ V (G) let u(1) . . . u(f) be the
embedded vertex. Let 1 ≤ i1 < i2 < · · · < ir ≤ f be the indices for which all the vertices
of G are labeled 0. That is, u(ij) = 0 holds for any u ∈ V (G) and any ij , 1 ≤ j ≤ r. Then

β(u) = u(1) . . . u(i1−1)u(i1+1) . . . u(i2−1)u(i2+1) . . . u(ir−1−1)u(ir−1+1) . . . u(ir)

is an isometric embedding into Qf−r.
We next assert that for any coordinate i of the (f − r)-tuples β, Yi = {β(i)(u) | u ∈

V (G)} = {0, 1}. Note first that Yi 6= {1} because otherwise the ith coordinate could
be removed and hence we would isometrically embed G into Γf−1. On the other hand
Yi 6= {0} since we have removed all such coordinates in the construction of β. Hence the
assertion. However, this implies that f is an irredundant embedding and therefore

k = idim(G) = f − r .

For a given coordinate ℓ of β, set Wℓ = {u ∈ V (G) | β(ℓ)(u) = 1}. Then Wℓ is a
semicube. Moreover, because β is obtained from Fibonacci strings, the paths

W1 → W2 → . . . → Wi1−1,
Wi1+1 → Wi1+2 → . . . → Wi2−1,
...

Wir−1+1 → Wir−1+2 → . . . → Wir ,

form a system of coordinating paths with r +1 paths. Consequently, r +1 ≥ p and hence

k = f − r ≤ f − p + 1 .

We conclude that f ≥ k + p − 1 which completes the proof. �

Note that Proposition 3.1 also follows easily from Theorem 3.3.

3.2 Particular cases

It is interesting to ask which partial cubes have extremal Fibonacci dimension. Interest-
ingly, it is difficult to characterize the partial cubes whose Fibonacci dimension is as small
as possible compared to their isometric dimension; see Section 4.1. However, there is a
neat characterization for the opposite case, the partial cubes whose Fibonacci dimension
is as large as possible, which we provide next. Afterwards we establish the Fibonacci
dimension of the Cartesian product of graphs and the Fibonacci dimension of trees.
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The crossing graph G# of a partial cube G has the Θ-classes of G as its nodes, where
two nodes of G# are joined by an edge whenever they cross as Θ-classes in G; see [36].
More precisely, if W(a,0), W(a,1) and W(b,0), W(b,1) are pairs of complementary semicubes
corresponding to Θ-classes E and F , then E and F cross if each semicube has a nonempty
intersection with the semicubes from the other pair; that is, it holds that W(a,0) ∩ W(b,0),
W(a,0) ∩ W(b,1), W(a,1) ∩ W(b,0), and W(a,1) ∩ W(b,1) are nonempty.

Corollary 3.4 Let G be a partial cube with idim(G) = k. Then fdim(G) = 2k − 1 if and
only if G# = Kk.

Proof. By Theorem 3.3, fdim(G) = 2k − 1 if and only if p(X(G)) = k. This holds if and
only if X(G) has no edges which is in turn true if and only if for any distinct i, j ∈ [k]
the semicubes W(i,0) and W(i,1) nontrivially intersect W(j,0) and W(j,1). But this is true if
and only if the corresponding Θ-classes cross. �

A characterization of complete crossing graphs in terms of the expansion procedure
is given in [36]: G# is complete if and only if G can be obtained from K1 by a sequence
of all-color expansions. We also note that among median graphs only hypercubes have
complete crossing graphs [39].

Corollary 3.5 For any partial cubes G and H, fdim(G �H) = fdim(G) + fdim(H) + 1.

Proof. It is easy to infer that X(G �H) is isomorphic to X(G) ∪ X(H). Therefore,
p(X(G �H)) = p(X(G)) + p(X(H)). Since it is well-known that

idim(G �H) = idim(G) + idim(H)

we have

fdim(G �H) = idim(G �H) + p(X(G �H)) − 1

= idim(G) + idim(H) + p(X(G) ∪ X(H)) − 1

= idim(G) + idim(H) + p(X(G)) + p(X(H)) − 1

= (idim(G) + p(X(G)) − 1) + (idim(H) + p(X(H))

= fdim(G) + fdim(H) + 1 ,

where for the first equality Theorem 3.3 is applied. �

Corollary 3.6 For any tree T , fdim(T ) = idim(T ) = |E(T )|.

Proof. Let n = |V (T )|. It is well-known that idim(T ) = |E(T )| = n − 1, and that each
edge e of T constitutes a Θ-class [26] (cf. [32, Corollary 3.4.]). This means that each edge
e ∈ E(T ) defines a pair of complementary semicubes: each semicube is the set of vertices
in one of the two subtrees of T − e.
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Figure 4: A tree with a longest path P marked with thicker edges. In the proof of
Corollary 3.6, P1 would be the path between r and v, P2 would be the path between r
and u, the labeling of the edges of P1 corresponds to a proper enumeration, and the nodes
marked with squares correspond to the semicube We5

.

Let P be a longest path in the tree T . We split P at a vertex r into two subpaths
P1, P2, such that P1 and P2 have the same length (if P has an even number of edges), or
differ by one edge (if P has an odd number of edges). Without loss of generality, let us
assume that P1 is not strictly shorter than P2. Therefore |E(P1)| = |E(P2)| if |E(P )| is
even and |E(P1)| = 1 + |E(P2)| if |E(P )| is odd. See Figure 4.

It may be convenient to visualize T as rooted at r. We further define the level of an
edge xy of T as the minimum of dT (r, x), dT (r, y). For any edge e of T , let We denote
the subset of vertices in the subtree T − e that does not contain the vertex r. As noted
before, We is a semicube, and hence a node of X(T ), for any e ∈ E(T ).

Let e1, e2, . . . en−1 be an enumeration of the edges of T with the following properties:
(a) any edge at level i is listed before any edge at level i + 1, and (b) the edge of P1 at
level i is the first edge at level i in the enumeration. Consider the sequence of semicubes
We1

, We2
, . . . , Wen−1

. If the edges ei and ei+1 are at the same level, then clearly Wei
∩

Wei+1
= ∅. If ei and ei+1 are not at the same level, then ei+1 must be an edge on P1 while ei

cannot be an edge on P1. Therefore we also have Wei
∩Wei+1

= ∅ in this case. This means
that We1

→ We2
→ . . . → Wen−1

is a path in X(G), and furthermore forms a system of
coordinating paths because it visits each complementary pair of semicubes exactly once.
We conclude that p(X(T )) = 1, and thus fdim(T ) = idim(T ) by Theorem 3.3. �

3.3 Relation to lattice dimension

Using the lattice dimension ldim(G), we can provide upper and lower bounds on the
Fibonacci dimension fdim(G). The first bound improves upon Proposition 3.1.

Proposition 3.7 Let G be a partial cube. Then fdim ≤ idim(G) + ldim(G) − 1.

Proof. For any integers a, b with a ≤ b, we use P(a,b) to denote the subgraph of Z
1

induced by vertices a, a + 1, . . . , b − 1, b. Hence P(a,b) is a path on b − a + 1 vertices and
fdim(P(a,b)) = b − a by Corollary 3.6.
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Figure 5: A lattice embedding of Γ4.

Let ℓ = ldim(G) and consider an isometric embedding β of G into Z
ℓ. For each

coordinate i ∈ [ℓ], let ai = min{β(i)(v) | v ∈ V (G)} and let bi = max{β(i)(v) | v ∈ V (G)}.
It is shown in [15, Lemma 1] that

∑
i(bi − ai) is precisely idim(G). By the choice of

ai, bi, the embedding β is also an isometric embedding of G into the Cartesian product
P(a1,b1) �P(a2,b2) � · · · �P(aℓ,bℓ), and therefore

fdim(G) ≤ fdim
(
P(a1,b1) �P(a2,b2) � · · · �P(aℓ,bℓ)

)
.

Since Corollary 3.5 implies

fdim
(
P(a1,b1) �P(a2,b2) � · · · �P(aℓ,bℓ)

)
=

(
ℓ∑

i=1

fdim(P(ai,bi))

)
+ (ℓ − 1)

=

(
ℓ∑

i=1

(bi − ai)

)
+ (ℓ − 1)

= idim(G) + ldim(G) − 1,

we conclude that fdim(G) ≤ idim(G) + ldim(G) − 1. �

Proposition 3.8 Let G be a partial cube. Then ldim(G) ≤ ⌈fdim(G)/2⌉.

Proof. Consider the Fibonacci cube Γf for f ≥ 3, and let u∗ denote the last f −2 entries
of each tuple u ∈ V (Γf). Define an embedding β of Γf into Z

1
� Γf−2 by

β(u) =





(0, u∗) if u = 01u∗;

(1, u∗) if u = 00u∗;

(2, u∗) if u = 10u∗.

It is straightforward to see that β is an isometric embedding. Using induction on the
Fibonacci dimension, with base cases ldim(Γ1) = ldim(Γ2) = 1, we obtain

ldim(Γf) ≤ 1 + ldim(Γf−2) ≤ 1 + ⌈(f − 2)/2⌉ = ⌈f/2⌉.
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If a partial cube isometrically embeds into Γf , we then have ldim(G) ≤ ldim(Γf) ≤ ⌈f/2⌉,
and the result follows. �

For graphs with low lattice dimension, we may determine the Fibonacci dimension
exactly:

Proposition 3.9 Suppose that ldim(G) = 2. Then fdim(G) = idim(G) + i, where i = 1
when G is isomorphic to the Cartesian product of two paths and i = 0 otherwise.

Proof. When G is isomorphic to the product of two paths, the result follows from Corol-
laries 3.5 and 3.6. Otherwise, G is a proper subgraph of P1 �P2, where P1 and P2 are
two paths with total length equal to idim(G). Among the four corner vertices of P1 �P2

determined by pairs of endpoints of the two paths, at least one corner must be absent in
G if G is to be a proper subgraph of the product of paths; we may assume without loss
of generality that this missing corner corresponds to the last vertex of P1 and the first
vertex of P2.

We may embed P1 isometrically into a Fibonacci cube (following Corollary 3.6) using
the coordinates

101010 . . . , 001010 . . . , 000010 . . . , . . . , . . . 010000, . . . 010100, . . . 010101

when P1 has even length, or with a similar pattern when P1 has odd length. That is, we
start with an alternating sequence of zeros and ones, remove the ones one at a time, and
then add ones one at a time to end with the opposite alternating sequence of ones and
zeros. This pattern can be chosen in such a way that the final coordinate is zero for all
vertices of P1 except for its the last vertex. Similarly, we may embed P2 isometrically
into a set of Fibonacci strings in such a way that the initial coordinate is zero except in
the first vertex of P2. Concatenating these two representations of positions in P1 and P2

produces an irredundant isometric embedding of G into a Fibonacci cube. �

4 Algorithmic aspects

4.1 Bad news

We show that it is NP-complete to decide whether the isometric and Fibonacci dimensions
of a given graph are the same. Furthermore, we show that it is NP-hard to approximate
the Fibonacci dimension within (741/740) − ε, for any constant ǫ > 0.

Let G be a graph with n vertices. We assume for simplicity that V (G) = [n], and use
a, b to refer to the vertices of G. Let Ḡ be the complementary graph of G.

Lemma 4.1 Let H be either the simplex graph κ(G) or the 2-simplex graph κ2(G). Then
H is a partial cube with idim(H) = n.

Proof. Consider the embedding β : H → Qn given as follows:
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Figure 6: Isometric embedding of κ(G) for the graph G of Figure 3, left.

• for u∅ we set β(u∅) = u(1) . . . u(n) with u(i) = 0 for all i ∈ [n];

• for each a ∈ [n] we set β(ua) = u(1) . . . u(n) with u(a) = 1 and u(i) = 0 for all
i ∈ [n] \ {a};

• for each node uK of H , we set β(uK) =
∑

a∈K β(ua).

See Figure 6 for an example when H = κ(G). It is straightforward to see that β is
an isometric embedding of H into Qn, and hence H is a partial cube. Moreover, β
is irredundant: β(i)(ua) is nonzero if and only if a 6= i. Since there is an irredundant
isometric embedding of a graph H into Qk if and only if idim(H) = k, it follows that
idim(H) = n. �

In fact, stronger result that Lemma 4.1 was proved in [2] for κ(G) and in [33] for
κ2(G): H is a median graph.

Lemma 4.2 Let H be either the simplex graph κ(G) or the 2-simplex graph κ2(G). There
is a set W of semicubes of H with the following properties:

(a) Each node in W has degree zero in X(H).

(b) Each pair of complementary semicubes of H has a node in W.

(c) X(H) − W is isomorphic to Ḡ.

Proof. We will use the isometric embedding β given in the proof of Lemma 4.1. For any
a ∈ [n] we then have the semicubes

W(a,0) = {uK ∈ V (H) | β(a)(uK) = 0}

= {uK ∈ V (H) | a is not a vertex in K},
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and

W(a,1) = {uK ∈ V (H) | β(a)(uK) = 1}

= {uK ∈ V (H) | a is a vertex in K}.

Let us now consider the graph X(H). See Figure 7 for an example. The node set of X(H)
is W(a,χ), (a, χ) ∈ [n] × {0, 1}. For the edge set, we have the following properties:

• There is no edge between W(a,0) and W(b,0) because u∅ ∈ W(a,0) ∩ W(b,0).

• There is no edge between W(a,0) and W(b,1) because ub ∈ W(a,0) ∩ W(b,1).

• There is an edge between W(a,1) and W(b,1) if and only if ab /∈ E(G). Indeed, there
is a vertex uK of H in W(a,1) ∩W(b,1) if and only if a and b are vertices in the clique
K, which happens precisely when ab is an edge of G. Therefore W(a,1) ∩ W(b,1) 6= ∅
if and only if ab ∈ E(G).

It follows that each node W(a,0), a ∈ [n], has degree zero in X(H). Therefore, the subfamily
of nodes W = {W(a,0) | a ∈ [n]} of X(H) satisfies properties (a) and (b) in the lemma. The
graph X(G) − W contains only the nodes W(a,1), a ∈ [n]. Since there is an edge between
W(a,1) and W(b,1) if and only if ab /∈ E(G), the mapping a 7→ W(a,1) is an isomorphism
between Ḡ, and property (c) follows. �

Let (1, 2)-TSP denote the (metric) symmetric Traveling Salesman Problem in which all
distances are either 1 or 2. The (1, 2)-TSP problem is NP-hard. Furthermore, Engebretsen
and Karpinski [14] have shown that it is NP-hard to approximate the (1, 2)-TSP within
(741/740) − ε for every constant ε > 0. On the positive side, Berman and Karpinski [6]
have given an (8/7)-approximation algorithm for (1, 2)-TSP.

Any graph G naturally defines an instance IG of (1, 2)-TSP, where the points of the
metric space are the vertices of G, and the distance between two points is 1 if there is
an edge between them in G, and 2 otherwise. Let ℓ(IG) denote the length of the optimal
tour for an instance IG of (1, 2)-TSP.

For later use, it will be convenient to exchange now the roles of G and its complemen-
tary graph Ḡ.

Lemma 4.3 Let H be either the simplex graph κ(Ḡ) or the 2-simplex graph κ2(Ḡ). The
graph G has a Hamiltonian path if and only if fdim(H) = n. If G does not have a
Hamiltonian path, then fdim(H) = ℓ(IG) − 1.

Proof. Consider the set of nodes W in X(H) given by Lemma 4.2. Since each node of W

has degree zero in X(H) and W contains one semicube from each pair of complementary
semicubes of H , we can just disregard the nodes W for finding the value p(X(H)). When
we disregard the nodes W, we obtain X(H) − W, which is isomorphic to G because of
property (c) in Lemma 4.2. (Recall we exchanged the roles of G and Ḡ.) It follows that
p(X(H)) is the minimum number of vertex-disjoint paths that are needed to cover each
vertex of G.
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Figure 7: The graph X(κ2(G)) for the graph G of Figure 3, left.

The graph G has a Hamiltonian path if and only if p(X(H)) = 1. Using Theorem 3.3
and Lemma 4.1, this is equivalent to

fdim(H) = idim(H) + p(X(H)) − 1 = idim(H) = n.

If G does not have a Hamiltonian path, then ℓ(IG) is |V (G)| = n plus the minimum
number of vertex-disjoint paths that are needed to cover each vertex of G. Thus ℓ(IG) =
n + p(X(H)). Using Theorem 3.3 and Lemma 4.1 we conclude that

fdim(H) = idim(H) + p(X(H)) − 1 = n + p(X(H)) − 1 = ℓ(IG) − 1.

�

We next show that computing the Fibonacci dimension, or even to approximate it, is
NP-hard.

Theorem 4.4 It is NP-complete to decide whether idim(H) = fdim(H) for a given graph
H.

the electronic journal of combinatorics 18 (2011), #P55 14



Proof. Note that idim(H) can be computed in polynomial time [1, 17, 31]. Therefore, an
explicit isometric embedding of H into Γidim(H) would be enough to check in polynomial
time that idim(H) = fdim(H). It follows that the problem is in the class NP.

To show hardness, consider the graph H = κ2(Ḡ). It is clear that H can be constructed
in polynomial time for any given graph G; this is not necessarily true for κ(Ḡ) if Ḡ has large
cliques. Lemma 4.3 implies that idim(H) = fdim(H) if and only if G has a Hamiltonian
path. Since deciding whether a graph has a Hamiltonian path is NP-complete [23], it is
NP-hard to decide whether idim(H) = fdim(H). �

Theorem 4.5 It is NP-hard to approximate the Fibonacci dimension of a graph within
(741/740)− ε for every constant ε > 0.

Proof. Assume that there is a constant ε > 0 and a polynomial time algorithm Approx-
Fib that, for any input graph H , computes a value f ′(H) such that

fdim(H) ≤ f ′(H) ≤
(

741
740

− ε
)
fdim(H).

Given any graph G with n vertices, we can apply algorithm ApproxFib to the graph
H = κ2(Ḡ) to obtain a value f ′ that satisfies

fdim(H) ≤ f ′ ≤
(

741
740

− ε
)
fdim(H). (1)

Consider the value ℓ′ = f ′ + 1 as an approximation to ℓ(IG).
From Lemma 4.3 it follows that

ℓ(IG) − 1 ≤ fdim(H) ≤ ℓ(IG). (2)

(There is the special case when G has a Hamiltonian cycle because then ℓ(IG) = n =
fdim(H).) Combining inequalities (1) and (2) we obtain

ℓ(IG) ≤ fdim(H) + 1 ≤ f ′ + 1 = ℓ′,

and

ℓ′ = f ′ + 1

≤
(

741
740

− ε
)
fdim(H) + 1

≤
(

741
740

− ε
)
ℓ(IG) + 1

=
(

741
740

+ 1
ℓ(IG)

− ε
)

ℓ(IG)

≤
(

741
740

+ 1
n
− ε
)
ℓ(IG).

Since 2/ε is a constant, we may assume that G has more than 2/ε vertices, and thus

ℓ(IG) ≤ ℓ′ ≤
(

741
740

+ 1
n
− ε
)
ℓ(IG) ≤

(
741
740

− ε
2

)
ℓ(IG).

We then conclude that ℓ′ can be computed in polynomial time and approximates the value
ℓ(IG) within (741/740)−(ε/2). However, Engebretsen and Karpinski [14] have shown that
it is NP-hard to approximate the (1, 2)-TSP within (741/740)−δ for every constant δ > 0.
Therefore, it is also NP-hard to approximate the Fibonacci dimension of a graph within
(741/740)− ε for every constant ε > 0. �
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4.2 Good news

We first provide an exact algorithm to compute fdim(G) whose running time is exponential
in idim(G). We then provide a (3/2)-approximation algorithm for arbitrary graphs, and
better approximation algorithms specialized to simplex graphs.

We assume that our input is a partial cube G with n vertices and also that we are given
an embedding β of G into Qk, where k = idim(G). Such embedding can be constructed in
O(n2) time [17]1. We first describe how to construct X(G) and then give an algorithmic
counterpart of Lemma 3.2.

Lemma 4.6 The graph X(G) can be computed in O(k2n) time.

Proof. Each semicube W(i,χ) is identified by a pair (i, χ) ∈ [k]×{0, 1}. We first construct
the complete graph on the node set {(i, χ) ∈ [k] × {0, 1}} and then, for each vertex
v ∈ V (G), the edges (i, β(i)(v))(j, β(j)(v)) are removed for all distinct i, j ∈ [k]. The
resulting graph is (isomorphic to) X(G). Using any standard data structure for graphs,
each edge can be deleted in constant time. For each of the n vertices of G, we thus spend
O(k2) time, for a total of O(k2n) time. �

Lemma 4.7 Assume we are given a system of p coordinating paths of X(G). Then we
can compute in O(kn) time an isometric embedding of G into Γf ′, where f ′ = k + p − 1 .

Proof. The proof given in Lemma 3.2 is constructive and can be implemented in O(n(k+
p)) = O(kn) time. �

From X(G) it is possible to compute p(X(G)), and thus fdim(G), in roughly O(k!)
time by trying all permutations of the indices [k] to obtain systems of coordinating paths
of X(G). We next improve this to a dependency that is exponential in k.

Proposition 4.8 Given a partial cube G with n vertices and an isometric embedding
G → Qk, where k = idim(G), we can compute in O(2kk2 + k2n) time an isometric
embedding of G in Γf , where f = fdim(G).

Proof. Firstly, we construct the graph X(G) using Lemma 4.6 in O(k2n) time. Secondly,
we find in O(2kk2) time a system of coordinating paths of X(G) with minimum size using
dynamic programming, as described below. Finally, we use Lemma 4.7 to construct the
embedding in O(kn) time. We only have to describe the second step.

We compute the value p(X(G)) using dynamic programming across subsets of pairs of
complementary semicubes, as follows. Our approach is essentially the same as a standard
one for TSP [5, 27]. For any subset of indices I ⊆ [k], let XI(G) denote the subgraph of
X(G) induced by nodes W(i,0), W(i,1), i ∈ I. For any triple (I, j, χ) ∈ 2[n] × [n] × {0, 1}
with j ∈ I, let π(I, j, χ) denote the minimum number of paths in a system of coordinating

1The algorithm in [17] assumes the word-RAM model of computation. Without bit-manipulation,
there are algorithms [1, 31] taking O(n2 log n) time.
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paths for XI(G), with the property that W(j,χ) is an end-node of some coordinating
path. That is, π(I, j, χ) is the minimum number of paths in X(G) that visit each pair
of complementary semicubes W(i,0), W(i,0), i ∈ I, exactly once, it has one path ending at
node W(j,χ), and does not visit any semicube W(i,∗) for i /∈ I.

It is clear that for any j ∈ [k] it holds π({j}, j, 0) = π({j}, j, 1) = 1. For subsets I
with more than one index there are two cases to distinguish, depending on whether the
paths defining π(I, j, χ) have W(j,χ) as an isolated node or not. Therefore it holds

π(I, j, χ) = min





1 + min
(j′,χ′)∈(I\{j})×{0,1}

π(I \ {j}, j′, χ′)

min
(j′, χ′) ∈ (I \ {j}) × {0, 1}

s.t.
W(j,χ)W(j′,χ′) ∈ E(X(G))

π(I \ {j}, j′, χ′)

Note that π(I, j, χ) only depends on values π(I ′, j′, χ′) with |I ′| = |I| − 1. Therefore,
we can compute all values π(I, j, χ) by considering them for increasing values of |I|,
at a cost of O(k) per value. Since there are at most |2[k]| · |[k]| · 2 = O(2kk) tuples
(I, j, χ) to consider, we can compute in O(2kk2) time the values π(I, j, χ) for all tuples
(I, j, χ) ∈ 2[n] × [k] × {0, 1} with j ∈ I. Finally, it holds that

p(X(G)) = min
(j,χ)∈[n]×{0,1}

π([n], j, χ),

and hence we can recover p(X(G)) in O(k) time. To obtain the actual system of coordi-
nating paths, we only need to augment each entry (I, j, χ) with a list of the paths that
define π(I, j, χ). �

We next move onto approximation algorithms. Note that the value idim(G)+ldim(G)−
1 is a (3/2)-approximation to the value fdim(G) because of Propositions 3.7 and 3.8. More-
over, the proofs of Propositions 3.7 and 3.8 are constructive, and therefore we can use
isometric embeddings of G into Qidim(G) and into Z

ldim(G) to construct an isometric em-
bedding of G into Γidim(G)+ldim(G)−1. Since an isometric embedding of G into Z

ldim(G) can
be computed in polynomial time [16], we can then compute in polynomial time an em-
bedding of G into Γf ′ for f ′ ≤ (3/2)fdim(G). We next give an alternative algorithm with
the same performance (time and approximation factor) that does not make the detour
through finding an isometric embedding into Z

ldim(G).

Theorem 4.9 Given a partial cube G with n vertices and an isometric embedding G →
Qk, where k = idim(G), we can compute in O(k2n) time an isometric embedding of G in
Γf ′, where f ′ ≤ (3/2)fdim(G).

Proof. We first describe the algorithm, then derive its running time, and finally discuss
the bound on the dimension of the computed embedding.
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The algorithm is as follows. Firstly, construct the graph X(G). Secondly, construct
the graph Y (G) obtained from X(G) by identifying each pair of complementary semicubes
into a single node. Hence, Y (G) has k nodes. Thirdly, construct a matching MY in Y (G)
of maximum cardinality. Let MX denote the matching in X(G) that corresponds to MY .
We can then regard each edge of MX as a path in X(G) that passes through two nodes. Let
P1, . . . , P|MX | denote these paths. There are precisely k − 2|MX | pairs of complementary
semicubes that are not adjacent to MX . For each of those pairs, we make a path consisting
of a single semicube of the pair. This gives a family of |MX |+(k−2|MX|) = k−|MX | paths
that form a system of coordinating paths of X(G). Finally, we compute the embedding
into Γf ′ given by Lemma 4.7, where

f ′ = k + (k − |MX |) − 1 = 2k − |MX | − 1. (3)

This finishes the description of the algorithm. Clearly, this algorithm computes a valid
embedding of G into Γf ′.

To derive its running time, note that X(G) is constructed in O(k2n) time using
Lemma 4.6. We can then construct Y (G) by identifying the nodes (i, 0) and (i, 1) of
X(G) for all i ∈ [d]. Finding a maximum matching MY in Y (G) takes O(k5/2) time
using [40] because Y (G) has k nodes and O(k2) edges. From MY we can recover the
matching MX in X(G), and construct the embedding using Lemma 4.7 in O(kn) time.
We conclude that the algorithms takes O(k5/2+k2n) time, which is O(k2n) because k ≤ n.

It remains to bound f ′. Let p = p(X(G)) and let P1, P2, . . . Pp be a system of coordi-
nating paths of X(G). Consider these paths in Y (G), and let EP denote the set of edges
appearing in P1, P2, . . . Pp. It holds that

p = k − |EP |. (4)

Taking each other edge in the path Pi, we see that Pi contains a matching with ⌈|E(Pi)|/2⌉
edges. Thus the paths P1, . . . Pp in Y (G) contain a matching with at least |EP |/2 edges.
We conclude that

|MX | = |MY | ≥
|EP |

2
. (5)

Combining equations (3)-(5) we obtain

f ′ = 2k − |MX | − 1

≤ 2k −
|EP |

2
− 1

= 2k −
k − p

2
− 1

=
3

2
(k + p − 1) − p +

1

2

≤
3

2
(fdim(G)),

where in the last step we have used Theorem 3.3. �

We now turn our attention to approximation algorithms for simplex graphs.
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Theorem 4.10 Let ε ∈ (0, 1) be a constant. Given a simplex graph H with n vertices
and an isometric embedding H → Qk, where k = idim(H), we can compute in O(n2+1/ε)
time an isometric embedding of H in Γf ′, where f ′ ≤ (1 + ε)fdim(H).

Proof. Since H is a simplex graph, then H = κ(G) for some graph G. It holds k =
idim(H) = |V (G)| because of Lemma 4.1. The graph X(H) can be constructed in O(k2n)
time by Lemma 4.6. We can construct the set of nodes W of Lemma 4.2 by placing in W,
for each i ∈ [k], either W(i,0) or W(i,1), whichever has degree zero in X(G). By property
(c) of Lemma 4.2 it holds that X(H) − W and Ḡ are isomorphic.

We construct a system of coordinating paths of X(H) with the following greedy proce-
dure. We start with a system of k coordinating paths P = {P1, . . . , Pk}, where each path
consists of a node from V (X(H)) \W. Then, we repeat the following step as many times
as possible: if there are paths P, P ′ ∈ P that can be joined by adding an edge between
two of its extreme nodes, we do so, and replace in P the paths P, P ′ by the new path.
This step may be repeated at most k − 1 times, in which case we end up with a single
path in P. Since each repetition of the step takes O(k2) time, the whole procedure needs
O(k3) time. Let P denote the resulting system of coordinating paths.

We distinguish two cases depending on the size of P. If |P| ≤ εk, then we can use
Lemma 4.7 with P to construct an embedding of H into Γf ′, where f ′ ≤ k + |P| − 1 ≤
(1 + ε)k ≤ (1 + ε)fdim(H). If |P| > εk, then by selecting an extreme node in each path
of P we obtain in X(G)−W an independent set of nodes of cardinality at least εk. Since
X(G)−W and Ḡ are isomorphic, this means that Ḡ has an independent set with at least
εk vertices, and hence G has a clique K with at least εk vertices. Since the input graph
H is the simplex graph of G, we conclude that H has at least 2|K| ≥ 2εk vertices; that is
n ≥ 2εk. Using Proposition 4.8, we can then compute an isometric embedding of H into
Γfdim(H) in

O(2kk2 + k2n) = O
((

2εk
)1/ε

n2 + n3
)

= O
(
n1/εn2 + n3

)
= O

(
n2+1/ε

)

time. In either case, we obtain in O
(
n2+1/ε

)
time an isometric embedding of H into Γf ′ ,

where f ′ ≤ (1 + ε)fdim(H). �

The proof of this result is closely related to (and was the inspiration for) related results
on approximation algorithms that find a solution to one of two given graph optimization
problems (such as, in this case, the maximum clique or the minimum 1-2 TSP) with a
better approximation ratio than either problem could be approximated alone; see [18].

Note that the last result takes time polynomial in the size of the given simplex graph.
However, we could consider that the simplex graph κ(G) is described by G, and give G
as the input. The following result approximates the Fibonacci dimension of κ(G) for a
given graph G in time that is polynomial in the size of G. Note that we cannot compute
an explicit isometric embedding of κ(G) in polynomial time of because the size of κ(G)
may be exponential in G.

Theorem 4.11 Let ε ∈ (0, 1) be a constant. Given a graph G with n vertices, we can
compute in polynomial time a value f ′ such that fdim(κ(G)) ≤ f ′ ≤ (8

7
+ ε)fdim(κ(G)).
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Proof. If G has less than 1/ε vertices, which is a constant, we can then compute
fdim(κ(G)) exactly in constant time. Let us assume henceforth that G has at least 1/ε
vertices.

From Lemma 4.3 it follows that fdim(κ(G)) = ℓ(IḠ) − 1 if Ḡ does not have a Hamil-
tonian cycle, and fdim(κ(G)) = n = ℓ(IḠ) if Ḡ has a Hamiltonian cycle. Berman and
Karpinski [6] describe a polynomial-time (8/7)-approximation algorithm for (1, 2)-TSP.
Let ℓ′ be the (8/7)-approximation to the value ℓ(IḠ) returned by their algorithm. If ℓ′ = n,
then Ḡ has a Hamiltonian cycle, and fdim(κ(G)) = n. If ℓ′ > n, consider f ′ = ℓ′ − 1 as
an approximation to fdim(κ(G)). For f ′ we have the upper bound

f ′ = ℓ′ − 1 ≤ 8
7
ℓ(IḠ) − 1 ≤ 8

7
(ℓ(IḠ) − 1) + 1

7
≤ 8

7
fdim(κ(G)) + 1

7
,

which using that nε ≥ 1 and n ≤ fdim(κ(G)) leads to

f ′ ≤ 8
7
fdim(κ(G)) + εn

7
≤ 8

7
fdim(κ(G)) + εfdim(κ(G)) ≤ (8

7
+ ε)fdim(κ(G)).

On the other hand, for f ′ we also have the lower bound

fdim(κ(G)) = max{n, ℓ(IḠ) − 1} ≤ max{n, ℓ′ − 1} = ℓ′ − 1 = f ′.

The result follows. �

By Lemma 4.3 it holds that fdim(κ(G)) = fdim(κ2(G)), and hence the same result
holds for the 2-simplex graph κ2(G).
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[11] E. Dedó, D. Torri, and N. Zagaglia Salvi. The observability of the Fibonacci and the
Lucas cubes. Discrete Math., 255(1-3):55–63, 2002.

[12] M. M. Deza and M. Laurent. Geometry of Cuts and Metrics, volume 15 of Algorithms
and Combinatorics. Springer-Verlag, Berlin, 1997.
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