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On the propagation of a disturbance in a smoothly
varying heterogeneous porous medium saturated
with three fluid phases

D. W. Vasco1

ABSTRACT

From the equations governing the deformation of a porous
medium containing three fluid phases, I derive expressions
for the phase velocity of the various modes of displacement.
These expressions are valid for a medium with smoothly
varying heterogeneity. There is a single mode of transverse
displacement, similar in nature to an elastic shear wave. The
four-phase velocities of the longitudinal modes of displace-
ment are derived from the solutions of a quartic equation.
The coefficients of the polynomial equation are written as
linear sums of the determinants of 4 × 4 matrices. The ma-
trices contain various combinations of the parameters from
the governing equations. The three-phase expressions are
compared to two-phase estimates for the case in which
one of the fluid saturations vanishes. Also, in a numerical
illustration, velocity variations of around 10% are associated
with the cyclic injection of carbon dioxide and water into an
oil-saturated reservoir.

INTRODUCTION

In situations of practical interest, one must consider the flow of
three fluids at depth. It is quite common for two immiscible liquid
phases, such as oil and water, to be found within a reservoir, parti-
cularly after the onset of production. In addition, there can be an
accompanying gas phase, such as air, steam, carbon dioxide, or
methane, present within the reservoir pore volume. With advance-
ments in recovery techniques and developments in environmental
remediation, such instances of three-phase flow will become in-
creasingly commonplace (Batzle et al., 1998). Three-phase flow
can be quite complicated, particularly in the presence of such
factors as gravitational effects due to density variation and lateral

variations in properties such as permeability. Therefore, geophys-
ical monitoring can be important in understanding three-phase flow
within a reservoir (Hoversten et al., 2003). To this end, it is impor-
tant to relate changes due to such flow to variations in seismic
properties.
Currently, the most common approach for relating seismic prop-

erties to the presence of fluids is to combine Biot’s theory for a
porous rock saturated with a single fluid phase (Biot, 1956a,
1956b) with an approach for computing the composite bulk mod-
ulus of a fluid saturated rock (Gassmann, 1951; Smith et al., 2003).
Multiple fluids are accommodated by computing effective fluid
properties such as the density and bulk modulus, for a mixture
(Batzle and Wang, 1992). In this way, any number of fluids might
be accounted for. This approach has the advantage of simplicity and
uses only essential parameters.
A more rigorous approach is to combine the properties of the

individual constituents, along with the flow properties of the porous
rock, including such features as absolute permeability, relative per-
meability properties, and capillary pressure properties. Such ap-
proaches are too numerous to provide a comprehensive review
in this Introduction. Therefore, I point out some representative stu-
dies that treated single phase flow (Garg, 1971; Pride et al., 1992),
and two-phase flow (Berryman et al., 1988; Santos, 1990; Tuncay,
1995; Tuncay and Corapcioglu, 1996, 1997; Lo et al., 2005, 2009)
for a homogeneous medium. Recently, the two-phase work was ex-
tended to a medium containing smoothly varying heterogeneity in
Vasco and Minkoff (2012). These papers dealt with large-scale,
wave-induced flow, the so-called macroscopic flow. It has been
pointed out that there are other scales of flow that may be important
with regard to seismic wave propagation through a porous medium.
There is a small-scale (microscopic) fluid migration from micro-
cracks, including grain contacts, referred to as squirt-flow (Biot,
1962b; Mavko and Nur, 1975; O’Connell and Budianski, 1977;
Jones, 1986; Dvorkin et al., 1994). This effect has been incorpo-
rated into the Biot model (Pham et al., 2002). Also, an intermediate
or mesoscopic flow, due to wave-induced flow on a scale smaller
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than the wavelength of the elastic wave but larger than the pore scale
was first proposed by White (1975) and explored in more depth by
Pride et al. (2004). The microscopic and the mesoscopic flow have
been adopted into a single phase Biot type model (JafarGandomi
and Curtis, 2011).
In this paper, I extend the two-phase work of Vasco and Minkoff

(2012) to the case in which there are three fluid phases. Specifically,
I consider the zeroth-order terms of an asymptotic analysis of the
equations governing the coupled deformation and flow in a hetero-
geneous porous medium containing three fluids. The resulting lin-
ear system of equations is used to derive expressions for the
slowness and hence the phase velocity of the various modes of dis-
placement. For the purposes of this paper, I use Biot’s (1956a,
1956b) theory of macroscopic flow to relate the coefficients of
the poroelastic governing equations to the rock, fluid, and flow
properties, as detailed in Appendix A, but the other methods just
noted can be used to account for microscopic and mesoscopic flow.

METHODOLOGY

The governing equations

I consider a porous medium saturated with three immiscible fluid
phases That is, if Si denotes the saturation of the ith phase, then in
the available pore space

X3
i¼1

Si ¼ S1 þ S2 þ S3 ¼ 1: (1)

For a given unit volume of fluid-filled porous rock, with porosity ϕ,
I denote the fraction of the ith fluid as

αi ¼ ϕSi: (2)

The three phases are assumed to behave as Newtonian fluids, repre-
senting liquids and/or gases moving through the pore space of the
solid matrix. The components of the solid are assumed to react elas-
tically. Thus, the composite body acts as a poroelastic material.
As shown in Tuncay and Corapcioglu (1996), under the assump-

tions of negligible mass exchange between the phases, small defor-
mation, a seismic wavelength much larger then the microscopic
scale, and a linearization of the density variation, the average
momentum equations reduce to

αsρs
∂ _us
∂t

¼ αs∇ · σs −
X3
j¼1

dj (3)

and

αiρi
∂ _ui
∂t

¼ αi∇ · σi þ di; (4)

where the solid and fluid displacements are denoted by us and ui, ρs
is the density of the solid components while ρi is the density of the
ith fluid, σs and σi are the respective stress tensors, and the dots over
the displacement vectors denote time derivatives. In an effort to
keep the presentation compact, I represent the three equations
for the fluid phases by a single indexed equation 4, allowing i
to take the values 1, 2, and 3 for the respective fluid phases.
The vectors di are the momentum transfer vectors or interaction

terms, representing drag forces due to the interaction of the fluids
with the solid matrix (Pride et al., 1993). Pride et al. (1992) argue
that the drag forces can be written in the specific form

di ¼ ρiαiνð1þ νÞ−1 ∂ _wi

∂t
; (5)

where _wi is the flow velocity of fluid i. The flow velocity of the
fluid phase is measured relative to the current position of the solid,
given by _wi ¼ _ui − _us. The quantity ð1þ νÞ−1 is referred to as the
“dynamic tortuosity” by Johnson et al. (1987). The dynamic tortu-
osity controls how much fluid flows in response to the applied
forces. The variable νmay be thought of as a convolutional operator
in the time domain, or as a frequency-dependent coefficient in the
frequency domain, related to the interaction of the fluid and the
solid (Pride et al., 1992, 1993).
If I substitute the expression 5 for di, define the coefficient

Di ¼ ρiαiνð1þ νÞ−1; (6)

and add and subtract αiρi∂ _us∕∂t from the left side of equation 4,
then I can write equations 3 and 4 as

αsρs
∂ _us
∂t

þ
X3
j¼1

Dj
∂ _wj

∂t
¼ αs∇ · σs (7)

αiρi
∂ _ui
∂t

þ ðαiρi −DiÞ
∂ _wi

∂t
¼ αi∇ · σi: (8)

Taking the Fourier transform of equations 7 and 8, defining

νs ¼ αsρsω
2; (9)

νi ¼ αiρiω
2; (10)

ξi ¼ αiρiνð1þ νÞ−1ω2; (11)

and

Γi ¼ αiρi½1 − νð1þ νÞ−1�ω2; (12)

I can write equations 7 and 8 in the frequency domain

αs∇ · σs þ νsUs þ
X3
j¼1

ξjWj ¼ 0 (13)

αi∇ · σi þ νiUs þ ΓiWi ¼ 0; (14)

where the capital letters signify the Fourier transform of the respec-
tive time-domain quantities.
To complete the formulation, I need to write equations 13 and 14

solely in terms of the solid and fluid displacements, Us and
Wi; i ¼ 1; 2; 3. Assuming a linear poroelastic constitutive relation-
ship relating the stress tensors to the displacements, I can write 13
and 14 as

L2 Vasco
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∇ · Gm

�
∇Us þ ∇ðUsÞT −

2

3
∇ · UsI

�
þ

∇
�
Ku∇ · Us þ

X3
j¼1

Csj∇ · Wj

�
þ νsUs þ

X3
j¼1

ξjWj ¼ 0

(15)

∇½Cis∇ · Us þ Σ3
j¼1Mij∇ · Wj� þ νiUs þ ΓiWi ¼ 0: (16)

The coefficients of the effective poroelastic medium depend upon
the properties of the fluids contained within the pores and on the
nature of the rock and its constituents. There are now numerous
constitutive models relating the properties of the components of
a porous medium to the effective elastic coefficients. The early
model of Biot (1962a) for a single fluid has been particularly influ-
ential and has been extended to a medium containing two fluid
phases (Berryman et al., 1988; Santos et al., 1990; Tuncay and Cor-
apcioglu, 1996; Lo et al., 2005).
In Appendix A, I extend the approach of Tuncay and Corapcioglu

(1996) to a porous medium containing three fluid phases. There, the
coefficients are defined in terms of the properties of the fluids, the
properties of the solid constituents, and the properties of the porous
rock, including the capillary pressure functions. Note that it is pos-
sible to further generalize the coefficients by adopting the theories
listed in the Introduction to this paper. That is, I could account for
fluid flow into microcracks (Biot, 1962b; Dvorkin et al., 1994) and
mesoscopic flow (White, 1975; Pride et al., 2004) perhaps in the
fashion described in Carcione and Gurevich (2011). Regardless

of the theory used to set up the equations of poroelasticity, and
hence the complex, frequency-dependence of the coefficients, the
techniques described in the remainder of this paper are still applic-
able and the expressions for the slownesses in a heterogeneous med-
ium are still valid.
I wish to point out that, although there are a large number of

derived parameters in the constitutive relationship outlined in
Appendix A, there are only a handful of fundamental quantities un-
derlying all of the derived parameters. The 12 basic parameters are
listed in Table 1. The two right-most columns signify two sets of
values used in the Applications section. The first set involved homo-
geneous distributions of two and three fluids within a homogeneous
porous rock. The second set is associated with the simulation of an
enhanced oil recovery (EOR) operation in which carbon dioxide gas
and water are injected in a cyclic fashion into an oil bearing reser-
voir. In that case, many of the properties vary spatially within the
reservoir and hence are labeled as “variable”. Note that for some,
such as the densities and compressibilities, there are values for each
fluid phase and for the solid phase. There are three major categories
into which the parameters may be classified. However, there is over-
lap between the various categories and they are not exclusive. The
attributes of the solid: the bulk modulus of the solid grains or par-
ticles, Ks, the density of the solid, ρs, and the frame moduli of the
porous matrix, Kfr (bulk) and Gfr (shear) are listed first in Table 1.
Second, there are the properties associated with the three fluid
phases: the bulk moduli of the fluids (Ki), the densities of the fluid
components (ρi), and the viscosities of the fluid phases (μi). Finally,
there are the flow properties of the poroelastic medium, that is the
porosity (ϕ), the absolute permeability (k), the relative permeabil-
ities (kri), and the capillary pressure properties (Pc12 and Pc13). The

Table 1. Table listing the 12 fundamental parameters required to compute the transverse and longitudinal phase velocities and
attenuations at a particular frequency.

Category Parameter Description (units) Multiphase applications CO2 simulation

Solid Ks Grain bulk modulus (Pa) 35.00 × 109 34.00 × 109

ρs Grain density (kg∕m3) 2650.00 2650.00

Kfr Frame bulk modulus (Pa) 8.33 × 106 1.50 × 109

Gfr Frame shear modulus (Pa) 3.85 × 106 1.00 × 109

Fluids Kj Bulk modulus (Pa) 2.25 × 109 (Water) Variable

0.14 × 106 (Air)

0.57 × 109 (Oil)

ρj Density (kg∕m3) 997.00 (Water) Variable

1.10 (Air)

762.00 (Oil)

μj Viscosity (Pa-s) 1.00 × 10−3 (Water) Variable

18:00 × 10−6 (Air)

1.44 × 10−3 (Oil)

Sj Saturation (fraction) Variable Variable

Flow k Static permeability (m2) 8.00 × 10−13 0.50 × 10−13

ϕ Porosity (fraction) 0.45 0.30

krj Relative permeability (m2) Variable Variable

Pcij Capillary pressure (Pa) Variable Variable

Propagation in porous media with three fluids L3
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first two, ϕ and k, could easily been included as properties of the
solid. I list them as flow properties because they are of primary im-
portance in the modeling of fluid flow in the subsurface. In fact,
absolute permeability, k, is a quantity of great interest due to its
role in controlling fluid flow. All of these parameters are contained
in the coefficients in equations 9, 10, 11, and 12 and in the matrixK
given by the expression A-25. Some of the flow properties enter
through the variable ν, a quantity related to the dynamic tortuosity,
as shown in the Applications section (see equations 55 and 56).
Note that there is also the frequency, a general parameter that in-
fluences aspects of the propagation such as the velocity and the at-
tenuation. I do not include it in Table 1 because it is an independent
parameter and is not a property of either the solid or the fluid.

Asymptotic analysis

The governing equations 15 and 16 are rather formidable, relating
four coupled vectors, with coefficients that depend upon spatial
position and with some coefficients that are functions of frequency.
To work toward a solution and to gain insight, some simplification
is required. For this purpose, I adopt an asymptotic approach,
motivated by the idealization of a smoothly varying heterogeneous
medium. That is, I shall assume that, away from boundaries such as
layering and faults, the length scale of the heterogeneity is much
larger than the length scale of any propagating disturbance. Such
an assumption is compatible with the goal of using seismic obser-
vations to characterize variations in reservoir properties, that is,
solving the inverse problem. In inverse problems, one can typically
only recover large-scale variations in reservoir properties due to
limited resolution (Menke, 1989). Thus, the models of interest will
consist of smoothly varying perturbations added to the original
background model.
To specify the asymptotic expansion, consider a parameter D re-

presenting the length scale of the heterogeneity. Furthermore, let d
represent the length scale associated with a propagating distur-
bance, for example the spatial wavelength of a pulse. Define a scale
parameter ε as the ratio of the length scales

ε ¼ d
D
; (17)

and because d ≪ D one also has ε ≪ 1. I frame the problem in
terms of slow coordinates X, the spatial coordinates x scaled by ε

X ¼ εx; (18)

creating an implicit dependence of the solution vectors Us and Wi

upon ε.

Asymptotic expressions for the displacements

The asymptotic expansion is a series representation of the displa-
cement vectors in terms of powers of the scale parameter ε

UsðX;ω; θÞ ¼ eiθ
X∞
n¼0

εnUn
s ðX;ωÞ (19)

WiðX;ω; θÞ ¼ eiθ
X∞
n¼0

εnWn
i ðX;ωÞ; (20)

where θðx;ωÞ is a function, referred to as the “local phase,” related
to the kinematics, or the traveltime, of the propagating disturbance
(Whitham, 1974; Anile et al., 1993). The functions Un

s ðX;ωÞ and
Wn

i ðX;ωÞ represent the amplitudes of the displacements and their
successive corrections. The series 19 and 20 are generalized plane-
wave expansions of the solid and fluid displacement fields in the
frequency domain (Friedlander and Keller, 1955; Luneburg,
1966; Kline and Kay, 1965; Chapman, 2004). Because the expan-
sion parameter ε is assumed to be small, the heterogeneity is as-
sumed to vary smoothly, only the first few terms of the series
are significant. For example, the zeroth-order term is often used
to represent the solution (Kline and Kay, 1965; Vasco et al., 2003).
To completely transform the governing equations 15 and 16, I

rewrite the derivative operators in terms of the slow coordinates.
For example, the partial derivative of Us with respect to the spatial
coordinate xi becomes

∂Us

∂xi
¼ ∂Xi

∂xi
∂Us

∂Xi
þ ∂θ

∂xi
∂Us

∂θ
; (21)

and hence, making use of equation 18,

∂Us

∂xi
¼ ε

∂Us

∂Xi
þ ∂θ

∂xi
∂U
∂θ

(22)

(Anile et al., 1993). Thus, the differential operators are likewise
written as

∇Us ¼ ε∇XUs þ ∇θ
∂Us

∂θ
; (23)

where ∇X denotes the gradient with respect to the components of
the slow variables X. In what follows, I shall drop the subscript X
from the gradient operator in slow coordinates.

Terms of zeroth-order: The phase of the disturbance

Asymptotic solutions are obtained by rewriting the governing
equations in slow coordinates and transforming derivative operators
as in expression 22. Next, the power series expansions 19 and 20 are
inserted into the transformed governing equations. The result is a set
of four vector equations, each containing terms of various orders in
ε. Because ε ≪ 1, only the lowest-order terms are retained. This
procedure was presented in detail in Vasco (2009) and Vasco
and Minkoff (2012) for propagation in a porous medium containing
one and two fluid phases, respectively. Because the approach has
been described in detail in these two studies, I shall only present the
results of the asymptotic analysis. Specifically, the terms of zeroth-
order in ε are contained in the following equations

αU0
s − βl · U0

s lþ
X3
j¼1

ðξjW0
j − Csjl · W0

j lÞ ¼ 0 (24)

νiU0
s − Cisl · U0

s lþ ΓiW0
i −

X3
j¼1

Mijl · W0
j l ¼ 0; (25)

where U0
s and W0

i are the zeroth-order amplitude functions in
equations 19 and 20,

L4 Vasco
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l ¼ ∇θ (26)

is the phase gradient vector,

α ¼ νs − Gml2 (27)

and

β ¼ Ku þ
1

3
Gm; (28)

where l ¼ j∇θj is magnitude of the vector l. The set of equations 24
and 25 may be written as the matrix equation

ðA − BÞU ¼ 0; (29)

where

A ¼

0
B@

αI ξ1I ξ2I ξ3I
ν1I Γ1I 0 0
ν2I 0 Γ2I 0
ν3I 0 0 Γ3I

1
CA; (30)

B ¼

0
BB@

βllT Cs1llT Cs2llT Cs3llT

C1sllT M11llT M12llT M13llT

C2sllT M21llT M22llT M23llT

C3sllT M31llT M32llT M33llT

1
CCA; (31)

and

U ¼

0
BB@

U0
s

W0
1

W0
2

W0
3

1
CCA: (32)

The quantity I in the matrix A is the 3 × 3 identity matrix with ones
on the diagonal and zeros off of the diagonal. The quantity llT is the
outer product of the column vector l, which may be thought of as a
3 × 1 matrix, and the row vector lT, which may be thought of as
a 1 × 3 matrix. One may also think of llT as a dyadic, a general-
ization of a vector to a matrix (Spiegel, 1959, p. 73; Ben-Menahem
and Singh, 1981).
The system of equations 29 has a nontrivial solution U if the

determinant of the coefficient matrix vanishes (Noble and Daniel,
1977, p. 203)

det ðA − BÞ ¼ 0: (33)

Because the elements of the matrices A and B contain the coeffi-
cients in the governing equations, and the components of l ¼ ∇θ,
equation 33 is a differential equation for θ. This differential equa-
tion, with coefficients that depend upon spatial coordinates and the
frequency, ω, is the eikonal equation determining the propagation
time of a disturbance through a heterogeneous medium saturated
with three fluid phases. Because the coefficients may depend upon
frequency, the propagation is likely to be dispersive.
The matrices A and B are 12 × 12 and the determinant in equa-

tion 33 is a 12th-order polynomial in the elements of the matrices.

Furthermore, the elements of these matrices contain product terms
of the vector components of l. For example, the matrix B contains
product terms of the form llT . Thus, the polynomial equation is of
degree 24 in the components of l. A direct formulation of the poly-
nomial determined by equation 33 will lead to some rather involved
algebra.
Rather than computing the determinant directly, I take an alter-

native approach and work with the eigenvalues and eigenvectors of
the matrix ðA − BÞ. This approach makes use of the fact that the
determinant of a matrix is the product of the eigenvalues of the
matrix (Noble and Daniel, 1977, p. 264). Thus, the determinant
of the matrix vanishes when one or more of the eigenvalues
vanishes. If I denote the eigenvalue by λ, and the corresponding
eigenvector by e then I have that

ðA − BÞe ¼ λIe ¼ 0: (34)

For a nontrivial eigenvector e, condition 34 is equivalent to equa-
tion 33, so one gains no mathematical advantage from reformulating
the problem. However, motivated by the structure of the matrices A
and B and some insight from the nature of wave propagation, I can
specify the form of the eigenvectors e and simplify equation 34.
With regard to the structure of the matrices A and B, given by 30

and 31, there is a certain homogeneity in the coefficients of each
matrix. In particular, the matrix A has a block matrix structure
and may be thought of as a 4 × 4 matrix with elements that contain
the identity matrix (the zero elements may be thought of as 0 × I).
Similarly, the matrix B is a 4 × 4 block matrix with all blocks con-
taining the matrix llT . The vector direction l has special significance
because when multiplied by A or B the block elements return either
the vector l or the zero vector. Similarly, the two vector directions
perpendicular to l which we denote by l⊥1 and l⊥2 , return their values
or zero when multiplied by A and zero when multiplied by B. Thus,
vectors of the form

el ¼

0
BBB@

lsl
l1l
l2l
l3l

1
CCCA; (35)

e⊥1 ¼

0
BBB@

tsl⊥1
t1l⊥1
t2l⊥1
t3l⊥1

1
CCCA; (36)

and

e⊥2 ¼

0
BBB@

ssl⊥2
s1l⊥2
s2l⊥2
s3l⊥2

1
CCCA; (37)

return either scaled versions of themselves or zero when multiplied
by the elements of the matrices ofA and B. This suggests that, when
I substitute each of these vectors into equation 34, the result will be
four equations in the four unknown coefficients of each vector.

Propagation in porous media with three fluids L5
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The forms of the vectors el, e⊥1 , and e⊥2 also have physical sig-
nificance and represent well-known modes of wave propagation.
For example, the vector el represents longitudinal wave propaga-
tion, in which the solid and fluid displacements are parallel to
the direction of propagation l ¼ ∇θ (Chapman, 2004). Conversely,
the vectors l⊥1 and l⊥2 signify transverse displacements, displace-
ments perpendicular to the direction of propagation, similar to
an elastic shear wave. Longitudinal and transverse modes are solu-
tions of the elastic wave equation in a homogeneous medium (Aki
and Richards, 1980, p. 68; Chapman, 2004, p. 111) as well as high-
frequency solutions for a heterogeneous isotropic medium (Aki and
Richards, 1980, p. 89). Longitudinal and transverse modes are also
documented for waves in homogeneous poroelastic media contain-
ing a single fluid (Pride, 2005) and two fluids (Tuncay and Corap-
cioglu, 1996). The three vectors el, e⊥1 , and e⊥2 are linearly
independent and may be used to represent all modes of propagation.
In the subsections that follow, I shall consider the transverse and
longitudinal modes of propagation in succession.

The transverse mode of propagation

Because the transverse mode of propagation is somewhat simpler
due to the vanishing of all contributions from the matrix B, I begin
by considering the vector e⊥1 . The treatment of the other transverse
eigenvector e⊥2 is similar and will produce an identical slowness, or
corresponding velocity. The eigenvector equation 34 reduces to0

BB@
αI ξ1I ξ2I ξ3I
ν1I Γ1I 0 0
ν2I 0 Γ2I 0
ν3I 0 0 Γ3I

1
CCA
0
BB@

tsl⊥1
t1l⊥1
t2l⊥1
t3l⊥1

1
CCA ¼

0
BB@

0
0
0
0

1
CCA: (38)

This equation has a nontrivial solution if the determinant of the
coefficient matrix vanishes. Due to the structure of the matrix A
and of the vector e⊥1 , this condition is equivalent to

det

0
BBB@

νs − Gml2 ξ1 ξ2 ξ3
ν1 Γ1 0 0

ν2 0 Γ2 0

ν3 0 0 Γ3

1
CCCA ¼ 0; (39)

where I have used the definition of α, equation 27. This can be seen
by factoring out the identity matrices and the vectors l⊥1 and writing
the system 38 as four equations for the four unknowns ts, t1, t2, and
t3. Alternatively, one can adopt the formal approach in Vasco and
Minkoff (2012) and use the rule for the determinant of a matrix
composed of block matrices (Silvester, 2000).
The vanishing of the determinant in equation 39 produces a quad-

ratic equation for l with no linear term. I can solve the quadratic
equation for l, resulting in the expression

l ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Gm

�
νs −

ξ1ν1
Γ1

−
ξ2ν2
Γ2

−
ξ3ν3
Γ3

�s
; (40)

indicating a single solution for the transverse mode. The negative
value signifies a wave propagating in the opposite direction. Be-
cause the other transverse vector e⊥2 produces the same solution;
both transverse waves propagate with the same speed. Making

use of the definitions for νs and νi, I can write equation 40 in a
more familiar form

l ¼ �ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ϕÞρs − ϕρf

Gm

s
; (41)

where

ρf ¼
ξ1
Γ1

S1ρ1 þ
ξ2
Γ2

S2ρ2 þ
ξ3
Γ3

S3ρ3 (42)

is a weighted fluid density. Note that the weights depend upon fre-
quency through the ratios

ξi
Γi

¼ νð1þ νÞ−1
1 − νð1þ νÞ−1 : (43)

So the transverse slowness, or the corresponding wave speed, gen-
erally depends upon the frequency ω, perhaps leading to dispersive
propagation. Furthermore, the ratio ξi∕Γi can also be complex, lead-
ing to the attenuation of the transverse mode as it propagates.

The longitudinal modes of propagation

Now consider the situation in which the solid and fluid displace-
ments are aligned with the direction of propagation l. In such a case
of longitudinal propagation, the eigenvector is of the form el, given
by equation 35. Therefore equation 34 is equivalent to

ðA − B̂Þel ¼ 0; (44)

where A was given previously, equation 30, and

B̂ ¼

0
BBB@

βl2I Cs1l2I Cs2l2I Cs3l2I
C1sl2I M11l2I M12l2I M13l2I
C2sl2I M21l2I M22l2I M23l2I
C3sl2I M31l2I M32l2I M33l2I

1
CCCA: (45)

The matrix A − B̂ consists of a 4 × 4 block matrix where each block
contains the identity matrix, similar to the case for transverse pro-
pagation, equation 38. Following the procedure applied to that ma-
trix, or the procedure described in Vasco and Minkoff (2012), I can
show that the condition for equation 44 to have a nontrivial solution
is the vanishing of the determinant of the matrix

M ¼

0
BB@

νs −Hs ξ1 − Cs1s ξ2 − Cs2s ξ3 − Cs3s
ν1 − C1ss Γ1 −M11s −M12s −M13s
ν2 − C2ss −M21s Γ2 −M22s −M23s
ν3 − C3ss −M31s −M32s Γ3 −M33s

1
CCA;

(46)

where I have defined

s ¼ l2 (47)

and
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H ¼ Ku þ
4

3
Gm: (48)

The requirement that the determinant of the matrixM vanish results
in a fourth-order polynomial for s. However, expanding the deter-
minant using the standard formula (Noble and Daniel, 1977, p. 199)
will result in complicated expressions for the coefficients of the
polynomial. A better approach, presented in Vasco and Minkoff
(2012), makes use of an expression for the determinant of a matrix
in which a column is the sum of two components. For example,
each term in the coefficient matrix M is composed of a constant
term and a term linear in s. Thus, I can expand the determinant
of the matrix M as

detM¼

���������

νs ξ1−Cs1s ξ2 −Cs2s ξ3 −Cs3s

ν1 Γ1 −M11s −M12s −M13s

ν2 −M21s Γ2−M22s −M23s

ν3 −M31s −M32s Γ3 −M33s

���������

− s

���������

H ξ1 −Cs1s ξ2 −Cs2s ξ3 −Cs3s

C1s Γ1 −M11s −M12s −M13s

C2s −M21s Γ2 −M22s −M23s

ν3 −M31s −M32s Γ3 −M33s

���������
; (49)

where the vertical bars signify that the quantity is the determinant of
the enclosed matrix. I can apply this procedure recursively to pro-
duce the quartic equation

Q4s4 −Q3s3 þQ2s2 −Q1sþQ0 ¼ 0 (50)

with coefficients that are linear combinations of the determinants of
4 × 4 matrices, given in Appendix B. The quartic equation can be
solved either numerically or analytically. An explicit solution can be
derived in terms of the solutions of a related cubic equation, the
resolvent cubic (Clark, 1984; Faucette, 1996; Stahl, 1997; Nickalls,
2009). Note that ifQ4 vanishes, then equation 50 reduces to a cubic
equation with three roots. This can occur if any of the rows are pro-
portional to one another. For example, if the mechanical properties
of two of the fluids are similar then the seismic slowness would not
be sensitive to the relative proportion of the two fluids. Effectively,
there would be two seismically indistinct fluids in the pore space
and the two-phase results of Vasco and Minkoff (2012) may
be used.
The quartic equation 50 leads to a set of partial differential equa-

tions for the phase function θðx;ωÞ, introduced in equations 19 and
20. Each partial differential equation is a Hamilton-Jacobi equation
for θðx;ωÞ, known as an eikonal equation (Chapman, 2004). The
eikonal equations, and the equivalent characteristic equations may
be used to define the trajectories or rays on which solutions are pre-
scribed (Courant and Hilbert, 1962). Note that the trajectories are
generally frequency-dependent and differ for each mode of propa-
gation. There is a distinct phase variable associated with each mode,
that is for each of the four roots of equation 50. To see this, consider
equation 50 written in the factored form

ðl2 − s1Þðl2 − s2Þðl2 − s3Þðl2 − s4Þ ¼ 0; (51)

where the definition 47 has been used to substitute l2 for s. From the
definition 26 of l one can see that equation 51 is equivalent to

ð∇θ · ∇θ − s1Þð∇θ · ∇θ − s2Þð∇θ · ∇θ − s3Þ
× ð∇θ · ∇θ − s4Þ ¼ 0: (52)

Thus, each root produces an eikonal equation of the form

∇θ · ∇θ − siðx;ωÞ ¼ 0;

where the dependence of the root si on the spatial coordinates,
through the heterogeneity of the medium parameters has been made
explicit, similarly for the frequency dependence.

APPLICATIONS

Here, I apply the methods presented above to three illustrative
examples. In the first example, I compare the phase velocity esti-
mates for the case in which one of the fluid saturations goes to zero,
reducing the problem to that of two-phase flow. I compare the pre-
dictions made using the current methods to those made using the
techniques described in Vasco and Minkoff (2012), which are in
agreement with the earlier calculated values of Tuncay and Corap-
cioglu (1996) and Lo et al. (2005). In the second example, I con-
sider the most general situation in which there are three fluids in the
porous medium. For this case, there are four modes of longitudinal
propagation and the velocities and attenuation coefficients vary as
functions of the water, gas, and oil saturations. In the final example,
I use the results of a compositional numerical simulation of the cyc-
lic injection of water and carbon dioxide into a reservoir containing
oil to examine the velocity variations induced by EOR.
Before tackling the individual modes of propagation, one needs

to determine an expression for ν in terms of the properties of the
medium. As stated in the discussion following equation 5, the quan-
tity ð1þ νÞ−1 is referred to as the dynamic tortuosity (Johnson et al.
1987) and it is determined by the amount of fluid flowing in re-
sponse to an applied force. Rather then enter into a detailed analysis
of the physics of flow that might enable us to derive expressions for
simplified media (Pride et al., 1993), I adopt a more pragmatic ap-
proach. That is, as in Vasco and Minkoff (2012), I determine a value
for ν by comparing the appropriate coefficients in the governing
equations 15 and 16 with the governing equations in Tuncay and
Corapcioglu (1996). In particular, after transforming their equations
into the frequency domain and accounting for a somewhat different
formulation, I have

ξj ¼ −iωCj (53)

and

Γj ¼ ω2ρ̂j þ iωCj (54)

for j ¼ 1; 2; 3, where Cj are the coefficients in Tuncay and Corap-
cioglu (1996) augmented by the additional fluid phase, of the form

Cj ¼
ϕ2Sjμj
kkrj

(55)
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for Darcy flow, and ρ̂j is the volume averaged density, given by
ρ̂j ¼ αjρj ¼ ϕSjρj. Recall the flow properties contained in Cj:
the porosity ϕ, the absolute permeability k, and the relative perme-
ability for fluid j, krj. Using equations 53, and the equations repre-
sented by 11, I can solve for an explicit expression for ν:

ν ¼ Cj

Cj þ iωαjρj
: (56)

Note that ν appears to be a function of the particular fluid of interest
and that it is a frequency-dependent, complex quantity. Using this
expression for ν, and the expressions 55 for Cj, I can calculate all
the coefficients of the governing equations in terms of the properties
of the fluids and the properties of the medium. Thus, I can define all
the parameters in the expressions 41 and 50 determining the slow-
nesses for the transverse and longitudinal modes of propagation.
For the transverse and longitudinal modes, there is the issue of

calculating the relative permeabilities for a porous medium contain-
ing three fluid phases. This is not a trivial undertaking and is the
subject of a significant amount of research that I can only touch
upon. The earliest work was that of Leverett and Lewis (1941)
on unconsolidated sands. An influential model was developed by
Stone (1973) and subsequently modified by Aziz and Settari
(1979). In their approach, the three-phase relative permeability
model is constructed from sets of two-phase observations. Corey
et al. (1956) estimated three-phase relative permeabilities based
upon simple measurements of saturation pressure data. Other influ-
ential models include those of Baker (1988), Jerauld (1997), and
Blunt (2000). Many of the models assume that the relative perme-
ability of the gas phase only depends upon the gas saturation, and
similarly for the aqueous phase, whereas the relative permeability of
the oil phase is a function of the gas and aqueous saturations. A
model by Sarem (1966) assumed that the relative permeabilities
only depended on the saturation of each phase in question.
Here, I use the three-phase relative permeability functions of Par-

ker et al. (1987), generalizations of the two-phase formulation of
Van Genuchten (1980) and Mualem (1976). The exact form of
the relative permeability functions are

krg ¼
ffiffiffiffiffi
S̄g

q
½1 − ðS̄lÞ1∕m�2m (57)

krw ¼
ffiffiffiffiffiffi
S̄w

q
f1 − ½1 − ðS̄wÞ1∕m�mg2 (58)

kro ¼
ffiffiffiffiffiffiffiffiffiffi
S̄lS̄w

q
f½1 − ðS̄wÞ1∕m�m − ½1 − ðS̄lÞ1∕m�mg2 (59)

for the gas, water, and oil phases, respectively, where

S̄g ¼
Sg

1 − Sm
(60)

S̄w ¼ Sw − Sm
1 − Sm

(61)

S̄l ¼
Sw þ So þ Sm

1 − Sm
¼ 1 − Sg þ Sm

1 − Sm
; (62)

where m ¼ 1 − 1∕n is an exponent and Sm is an apparent minimum
or irreducible wetting fluid saturation. As in many of the other for-
mulations, the gas and aqueous relative permeabilities only depend
upon their respective saturations, whereas the oil relative permeabil-
ity depends upon the gas and water saturations. In Figure 1, I plot
the water, gas, and oil relative permeabilities for a model that
is similar to the two-phase relative permeability functions used
in Vasco and Minkoff (2012) with n ¼ 2.037 and Sm ¼ 0.0.
Prior to entering into detailed calculations and comparisons of the

various prediction, I wish to take a step back and consider the fun-
damental parameters required for the computations. There are 12
essential quantities, indicated in Table 1, which all the computations
depend upon. The 12 properties can be grouped into three main
categories as indicated in the table and mentioned in the Methodol-
ogy section. The parameter values used in the calculations involving
two and three fluids and in the simulation of the injection of carbon
dioxide are also given in Table 1. The parameters used in the two-
and three-phase test calculations were chosen to facilitate a compar-
ison with two previous studies. In particular, as in the previous two-
phase work of Vasco and Minkoff (2012), the values from Lo et al.
(2005) were used to allow for a qualitative comparison with their
results. A computer program containing the explicit expressions for
the coefficients presented in Tuncay and Corapcioglu (1996) al-
lowed for a quantitative comparison with their two-phase predic-
tions, as in Vasco and Minkoff (2012). Because Lo et al. (2005)
were modeling an unconsolidated Columbia fine sandy loam, the
frame moduli are significantly smaller then typical reservoir rocks
(Table 1). Thus, one would expect that the velocities would be lower
then those usually observed in a deep reservoir.

A comparison with two-phase estimates

The comparison of the three-phase estimates with previous two-
phase estimates (Vasco and Minkoff, 2012) is done in two stages.
First, I consider transverse displacements that have a relatively sim-
ple relationship to the medium properties through equations 39 and
41. The dependence of the transverse slowness on the flow proper-
ties of the porous medium is through the ratio ξi∕Γi, which depends
upon ν as shown in equation 43. As shown above, assuming Darcy
flow, the quantity ν depends upon the porosity, the intrinsic perme-
ability k, and the relative permeabilities kri. The slowness of the
transverse displacement does not depend upon the capillary pres-
sure variation of the porous medium.

Transverse displacements

Now consider the expression for the phase velocity of the trans-
verse mode of propagation. As noted in Vasco and Minkoff (2012),
due to the particular definition of the phase function θ, the phase
velocity, c, is given by

c ¼ ω

l
(63)

where l is given by equation 41.
To compare the three-phase velocity estimates to two-phase es-

timates using the approach described in Vasco and Minkoff (2012),
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consider the case in which one of the saturations vanishes. For ex-
ample, if the gas phase vanishes then the problem reduces to a two-
phase system, consisting of oil and water. In that case, the relative
permeability curves are given by equations 57, 58, and 59 with one
of the saturations Sw, Sg, or So set equal to zero. In essence, one is
using the relative permeability variations from pairs of edges of the
triangles shown in Figure 1. The resulting phase velocity estimates,
as a function of the water saturation, are shown in Figure 2 for oil-
water and gas-water systems. The two-phase estimates are indicated
by the symbols whereas the three-phase estimates are denoted by
the dashed lines. The estimates were computed at a frequency of
100 Hz. In Figure 3, I plot the velocity estimates for a gas-water
system over a range of frequencies. Velocity estimates are shown
for water saturations of 0.1 and 0.9.

Longitudinal displacements

The velocities associated with the longitudinal modes of displa-
cement are determined by solutions of the quartic polynomial 50.
The coefficients of the polynomial depend upon the parameters in
the governing equations 15 and 16. For a Biot model, the parameters
are given in Appendix A. There, I show that the capillary properties
of the medium influence the velocities of the longitudinal modes.
This was not the case for the transverse mode of displacement. The
capillary pressure functions that I use are those of Parker et al.
(1987)

Pcgo ¼ −
ρwg
αgo

½S̄l−1∕m − 1�1∕n (64)

Pcgw ¼ −
ρwg
αow

½S̄w−1∕m − 1�1∕n − ρwg
αgo

½S̄l−1∕m − 1�1∕n; (65)

plotted in Figure 4 along with Pcow ¼ Pcgo − Pcgw. As I did for the
transverse mode of displacement, to compare the three-phase esti-
mates with two-phase estimates (Vasco and Minkoff, 2012), I shall
consider cases in which one of the fluid saturations vanishes.
First, consider the gas-water system in which the oil saturation is

zero. In Figure 5, I plot the gas-water capillary pressure, Pcgw var-
iation using the curve given by equation 65 and the two-phase ca-
pillary pressure model of Van Genuchten (1980) used by Vasco and
Minkoff (2012). In this case, the two curves differ; the model of
Parker et al. (1987) is different from the two-phase Van Genuchten
(1980) model. In Figure 6, the longitudinal velocities P1, P2, and
P3 estimates, made using the method described above, are plotted
along with the two-phase estimates based upon the two-phase for-
mulation of Vasco and Minkoff (2012). The fast wave (P1) velo-
cities are identical for the three-phase and two-phase estimates,
regardless of the difference in the capillary pressure curves. The
other two velocities, P2 and P3, appear to be strongly influenced
by the difference in the capillary pressure curves.
Next, consider the case in which the gas phase vanishes and I

have an oil-water system. The capillary pressure curves computed
using the two-phase (Van Genuchten, 1980) and the three-phase
(Parker et al., 1987) formulations are shown in Figure 7. In this case,
the two-phase and three-phase capillary pressure curves differ to a
lesser degree. The three longitudinal velocities, P1, P2, and P3 are
shown in Figure 8, computed using the two- and three-phase

Figure 1. Three-phase relative permeability functions, krw (top), krg
(middle), and kro (bottom) of Parker (1987), as given by equa-
tions 58, 57, and 59. The relative permeabilities are plotted as func-
tions of the water and gas saturations which are the two independent
saturations because So ¼ 1 − Sw − Sg.
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approaches. Again, the fast velocities P1 agree for both approaches
whereas the other two velocity estimates (P2 and P3) differ, though
to a lesser degree than for the gas-water system.

Figure 2. Phase velocity of the transverse mode of displacement as
a function of the water saturation, Sw. The center frequency of the
disturbance is 100 Hz. There are two distinct cases plotted here:
only gas and water are present (gas-water), and only oil and water
are present (oil-water). The symbols (filled squares and open cir-
cles) denote the velocities computed using the two-phase approach
of Vasco and Minkoff (2012). The dashed lines denote the velocity
estimates made using the approach described in the text of this
paper.

Figure 3. Phase velocity as a function of the frequency in hertz for a
system in which only gas and water are present. Two distinct water
saturations are considered, Sw ¼ 0.1 and Sw ¼ 0.9. As in Figure 2,
the symbols denote the two-phase estimates of Vasco and Minkoff
(2012) whereas the dashed lines denote the three-phase estimates.

Figure 4. Capillary pressure curves of Parker (1987), given by
equations 64 and 65, as functions of the water and gas saturation.
Of the three capillary pressure functions, Pcow (top), Pcgw (middle),
and Pcgw (bottom) only two are independent because Pcow ¼
Pcgo − Pcgw.
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In the presence of three fluid phases

Now consider the situation in which three fluids are present in the
porous medium. The relative permeability (equations 57–59) and
capillary pressure (equations 64 and 65) functions of Parker et al.
(1987) are used in the calculations. The solid, fluid, and flow param-
eters are given in Table 1.

Transverse displacements

For transverse displacements, there is only a single mode of pro-
pagation, though this mode will have two degrees of freedom in the
plane transverse to the direction of propagation. The range of the
transverse velocity over all possible three-phase fluid saturations is
shown in Figure 9. As hinted at by the linear variations in Figure 2,
at a frequency of 100 Hz the velocity of the transverse mode appears
to be a linear function of the fluid saturations. Note that this is not
true at all frequencies, as indicated in the lower panel of Figure 9
where I plot the velocities for a frequency of 50 KHz. Such behavior
is suggested by the high-frequency variation of the transverse mode
velocities in Figure 3. In particular, the phase velocities for the high
and low saturations appear to cross over as the frequency is in-
creased to a sufficiently high value.

Longitudinal displacements

Consider the situation in which the displacement is in the direc-
tion of propagation l. In this case, there are four solutions to the
quartic equation 50 and hence four modes of longitudinal propaga-
tion. The velocities associated with the four longitudinal modes are
functions of the three fluid saturations. Therefore, one must plot the
velocities as functions of the three fluid saturations, constrained by
the fact that the saturations sum to unity (see equation 1). Thus, it is
best to plot the velocities over phase triangles as in Figure 10. In
these plots, the origin, which signifies that no water or gas are pre-
sent, represents the case in which the medium is entirely saturated

Figure 5. Relative permeability curves for the gas-water system
(So ¼ 0), for the capillary pressure function Pcgw. The two-phase
capillary pressure curve is that of van Genuchten (1980) whereas
the three-phase curve is from Parker (1987).

Figure 6. The first three longitudinal phase velocities for the gas-
water system (vanishing So) as a function of the water saturation.
The two-phase estimates are denoted by the filled squares whereas
the three-phase estimates are indicated by the open circles.
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with oil. The diagonal of the triangle is the line on which no oil is
present, thus signifying a pure gas-water system.
The complete set of velocity estimates, for each of the phase tri-

angles, are shown in Figure 10. As is evident from the coefficients 9,
10, 11, and 12 the velocities are frequency-dependent, and for this
example are computed for a frequency of 100 Hz. As indicated in
Figure 6, and noted by others, the presence of even a small amount
of gas has a dramatic effect on the velocity of the fastest longitudinal
mode (P1). Thus, for P1 the velocity is low, around 100 m∕s for
most of the saturation triangle and only approaches much higher
values (more than 1500 m∕s), when the gas saturation is less then
1%. The velocity variation of the second longitudinal mode (P2) is
also dominated by the gas saturation until Sg is less than 5%–10%.
However, the velocity associated with this mode is generally higher
for larger gas saturations. This may be due to the lower viscosity of
gas compared to the viscosities of oil and water. The longitudinal
mode corresponding to P2 is similar to a diffusive transient pressure
disturbance and is strongly influenced by the flow properties and
the fluid properties (Pride, 2005; Vasco, 2009). For the lower values
of the gas saturation, the P2 velocity has a minimum between water
saturations of 0.6 and 0.9, in agreement with the variation plotted in
Figure 8. The velocity variations for the P3 and P4 longitudinal
modes are the most complicated, perhaps due to its sensitivity to
the capillary pressure differences between the fluid phases. In con-
trast to P2, the highest velocities for P3 and P4 occur when the gas
saturation is a minimum.
In general, the solutions, or roots, of the quadratic equation 50 are

complex. The attenuation coefficient is the imaginary component of
l, and is given by the imaginary component of the root. Due to the
nature of the contribution of the phase θ to the displacements (see
equations 19 and 20) a positive imaginary component represents
exponential decay as the disturbance propagates. A larger imagin-
ary component signifies much greater attenuation for a given
propagation distance. In Figure 11, the attenuation coefficients
are plotted as functions of the water, gas, and oil saturations.

Figure 7. Relative permeability curves for the oil-water system
(vanishing Sg), for the capillary pressure function Pcow. The
two-phase capillary pressure curve is that of van Genuchten
(1980), whereas the three-phase curve is from Parker (1987).

Figure 8. The first three longitudinal phase velocities for the oil-
water system (vanishing Sg) as a function of the water saturation.
The two-phase estimates are denoted by the filled squares whereas
the three-phase estimates are indicated by the open circles.
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The attenuation coefficient associated with P1 is quite small, less
than 0.001 m−1. The largest values occur when the gas saturation is
around 10% and for higher values of water saturation. For the sec-
ond mode (P2), the attenuation coefficient is at least five orders of
magnitude larger, with a peak value of around 400 m−1. The at-
tenuation is greatest for very low gas saturations and water satura-
tions of around 0.6 to 0.8, the same region in which the phase
velocity is low (Figure 10). The attenuation coefficients for the
P3 and P4 longitudinal modes are roughly three orders of magni-
tude larger then that for P2. They are largest for high gas saturations
and are generally inversely related to the phase velocities shown in
Figure 10. In general, the modes P3 and P4 and severely attenuated
as they propagate, indicating that they will be difficult to observe.
As noted above, the coefficients, and hence the roots of the quad-

ratic equation 50 are frequency-dependent and we would expect that
the phase velocities and the attenuation coefficients to be functions
of frequency. To view the frequency-dependence, I fix the fluid sa-
turations at equal values, that is at Sw ¼ So ¼ Sg ¼ 1∕3, and allow
the frequency to vary from 1 Hz to 105 Hz (Figure 12). In general,
the fastest velocity, P1, does not change significantly over the fre-
quency band, which encompasses the seismic frequency range. The
velocity associated with the P2mode, which is similar to a transient
fluid pressure disturbance, changes significantly from about 100 Hz
onward. Similarly, the two modes associated with capillary pressure
differences, P3 and P4 have velocities that increase rapidly after 10
to 100 Hz. Such behavior has been noted in other studies. For ex-
ample, Tuncay and Corapcioglu (1996) plotted the phase velocities
of P1, P2, and P3 for the situation in which two fluid phases are
present. They recovered behavior similar to that shown in Figure 12,
with increasing velocities for frequencies exceeding 100 Hz. Lo
et al. (2005, 2009), who plotted phase velocities for waves propa-
gating in a medium containing two fluids, give results for four fre-
quencies (50, 100, 150, and 200 Hz). The general trend is one of
increasing velocities with increasing frequency, as indicated in
Figure 12.
In Figure 13, the attenuation coefficients of the four modes (P1,

P2, P3, and P4) are plotted as functions of frequency. Again, I fix
the fluid saturations at equal values, that is at Sw ¼ So ¼ Sg ¼ 1∕3,
and allow the frequency to vary from 1 to 105 Hz. The behavior of
the attenuation coefficient mirrors that of the phase velocity, in-
creasing as a function of frequency. In general, the attenuation
coefficient for the fastest mode, P1, increases at much higher fre-
quencies, greater than 104 Hz, than do the coefficients for the other
modes. For these modes (P2, P3, and P4), the attenuation starts to
increase significantly at around 100 Hz. Neither Tuncay and
Corapcioglu (1996) nor Lo et al. (2005, 2009) plot the attenuation
coefficients as functions of frequency for their two-phase calcula-
tions. However, their plots of attenuation coefficients for various
frequencies do display a similar trend: larger attenuation coeffi-
cients at higher frequencies.

Seismic velocity variations due
to the injection of carbon dioxide

EOR is one area in which three fluid phases are likely to be pre-
sent within a given reservoir. One particular technique that also
serves to mediate greenhouse gas emissions involves injecting
carbon dioxide to enhance secondary recovery. Depleted oil and
gas fields are likely to contain two or more phases, such as oil
and water or oil and gas. Injecting an additional phase, such as

carbon dioxide will likely results in three-phase flow within the
reservoir. Time-lapse seismic surveying has been proposed as a tool
for monitoring the injection of carbon dioxide into oil and gas re-
servoirs as well as saline aquifers (Hoversten et al., 2003; Carcione
et al., 2006; Kazemeini et al., 2010). In fact, time-lapse seismic ob-
servations are providing useful information regarding the migration
of carbon dioxide within a reservoir (Arts et al., 2004). Thus, the
injection of carbon dioxide provides a useful illustration of this ap-
proach for computing velocities in a poroelastic medium containing
three fluid phases.

Figure 9. The phase velocity of the transverse mode of displace-
ment as a function of the water and gas saturation. At the origin,
where Sw and Sg are zero, the medium is fully saturated by oil.
On the diagonal line, So vanishes and one has a gas-water system.
(Top) Velocities for a frequency of 100 Hz. (Bottom) Velocities for a
frequency of 50,000 Hz.
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The illustration is based upon the Society of Petroleum Engi-
neers’ fifth comparative problem (Killough and Kossack, 1987)
which simulates a water-alternating-gas production cycle. In this
problem, water and carbon dioxide are injected into an oil saturated
reservoir in a cyclic fashion over a span of 5479 days. The process
was modeled using the Eclipse compositional reservoir simulator
for three-phase flow (oil, water, and gas) with multiple components

(C1N2, CO2, C2, H2S, C3C5, C6C11, C16P, C43P) allowed in the
oil and gas phases (Schlumberger, 2005). The reservoir model
consisted of three layers with each layer subdivided into a 7 × 7
grid of rectangular cells. The grid blocks are 152 × 152 m laterally
and the layer boundaries are 2537.5, 2543.6, 2552.7, and 2567.9 m.
The porosity in each layer is 0.3 and the permeabilities of the layers
are 500, 50, and 200 millidarcies. The well configuration consists of

Figure 10. The four longitudinal phase velocities plotted as functions of the two independent saturations (Sw and Sg). At the origin, where Sw
and Sg are zero, the medium is fully saturated by oil. On the diagonal line, So vanishes and one has a gas-water system. For the fast longitudinal
model, P1, the velocities increase rapidly near the water saturation axis.
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a quarter five-spot, as shown in Figure 14, with an injector in the
lower left corner and a producer in the upper right corner. A cyclic
injection of water, alternating with carbon dioxide, with a period of
one year is modeled using the Eclipse 3000 multicomponent reser-
voir simulator (Schlumberger, 2005). The fluid pressure within the
second layer, after 1096 days of injection, is shown in Figure 14,

along with the flow trajectories from the injector to various loca-
tions within the model.
For multicomponent fluids, the densities, viscosities, and com-

pressional moduli are functions of the chemical components in
the fluids as well as functions of the fluid pressure and temperatures
(Peaceman, 1977, p. 26). For a real fluid, the Peng-Robinson

Figure 11. The four longitudinal attenuation coefficients, the imaginary component of the roots of the quadratic equation 50, plotted as
functions of the two independent saturations (Sw and Sg). At the origin, where Sw and Sg are zero, the medium is fully saturated by oil.
On the diagonal line, So vanishes and one has a gas-water system.
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Figure 12. The phase velocities for the four long-
itudinal modes (P1, P2, P3, and P4) plotted as
functions of frequency (Hz). For these calcula-
tions, I have considered the situation in which
the fluid saturations are equal (Sw ¼ So ¼
Sg ¼ 1∕3).

Figure 13. The attenuation coefficients for the
four longitudinal modes plotted as functions of
frequency (Hz). For these calculations, I have con-
sidered the situation in which the fluid saturations
are equal (Sw ¼ So ¼ Sg ¼ 1∕3).

L16 Vasco

D
ow

nl
oa

de
d 

06
/0

3/
13

 to
 1

31
.2

43
.2

27
.7

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



equation of state (Peng and Robinson, 1977), a generalization of
van der Waals equation, is often used to relate the pressure (P)
in the fluid component to the temperature (T) and volume (V)

P ¼ RT
V − b

−
a

½V þ ð ffiffiffi
2

p þ 1Þb�½V − ð ffiffiffi
2

p
− 1Þb� ; (66)

where R is the gas constant and a and b are parameters character-
izing the particular fluid component. For a multicomponent mix-
ture, the coefficients are defined in terms of the concentrations
Xi, and the parameters of the individual component, ai and bi, ac-
cording to

a ¼
X
i

X
j

XiXjð1 − δijÞ
ffiffiffiffi
ai

p ffiffiffiffiffi
aj

p
(67)

b ¼
X
i

Xibi; (68)

where δij are empirically determined interaction coefficients (Peng
and Robinson, 1977). The details of the multicomponent modeling,
including modifications to the Peng-Robinson equation of state,
may be found in the Eclipse manual (Schlumberger, 2005). It
should be noted that there are newer equations of state that may
better represent mixtures of hydrocarbon chains (Wei and Sadus,
2000; Marghari and Hosseinzadeh-Shahri, 2003). The simulator
partitions the chemical components among the three fluid phases
and calculates the composite properties of each phase. In particular,
the numerical simulator outputs the viscosities and densities of each
phase directly.
In addition to the viscosities and densities, one also requires the

bulk modulus of each fluid phase to compute the velocities (see the
matrix K given by the expression A-25). The bulk modulus of each
phase may be derived from the equation of state using the definition
of the isothermal bulk modulus

KT ¼ −V
∂P
∂V

; (69)

where the derivative is evaluated at a specific constant temperature.
An explicit expression for KT follows from Peng-Robinson equa-
tion of state 66

KT ¼ V
RT

ðV − bÞ2 −
2aVðV þ bÞ

ðV2 þ 2bV − b2ÞÞ2 : (70)

To obtain the adiabatic bulk moduli, the quantity associated with
elastic wave propagation, and the corresponding quantities for
the three fluid phases (K1; K2, and K3 in equation A-14), one must
multiply the expression 70 by the ratio of the specific heat capacities
(Batzle and Wang, 1992). As noted by Batzle and Wang (1992), the
ratio of the specific heat capacities can be expressed in terms of the
equation of state of the fluid and a reference curve of the constant
pressure heat capacity.
The water, oil, and gas phase saturations and the phase densities

and viscosities calculated by the numerical simulator are used in
computing the coefficients in the governing equations 15 and 16.
The water, gas, and oil saturations in the second layer, 1096 days

after the start of injection, are shown in Figure 15. A bank of water
is visible in the lower left corner of the model as is the gas due to
two cycles of carbon dioxide injection. There is also gas present
around the producer, perhaps due to the production-induced pres-
sure decrease, causing gas to come out of solution.
Using the output of the numerical simulator, along with the re-

lative permeability and capillary pressure functions of Parker et al.
(1987) described earlier (see equations 57, 58, 59, 64, and 65), I
constructed the coefficients for equations 41 and 50 defining the
slownesses of the transverse and longitudinal modes of displace-
ment. The properties of the solid grains are: ρs ¼ 2650 kg∕m3

and Ks ¼ 34.0 GPa, those of the frame are: Kfr ¼ 1.5 GPa and
Gfr ¼ 1.0 GPa (Table 1). A frequency of 100 Hz was used in
the calculations. For the velocity of the transverse mode (Figure 16),
the most significant feature is a region of low velocity correspond-
ing to the bank of water. This agrees with the variation plotted in
Figure 9 which indicates that the lowest velocity of the transverse
mode of propagation at 100 Hz occurs when the water saturation is
greatest. Conversely, for the fastest longitudinal model (P1), one
observes relatively higher velocities associated with the water bank
and low velocities associated with the areas of greatest gas satura-
tion (Figure 17). The peak velocity variations are around 10% of the
background velocity of 1600 m∕s. Such velocity variations are of
the same order as those observed in laboratory experiments invol-
ving the injection of carbon dioxide into a water saturated sandstone
at a pressure of 12 MPa (Shi et al., 2007). The second phase ve-
locity, P2, appears to be greatest where the gas saturation is highest,
in agreement with the behavior shown in Figure 10.

Figure 14. Fluid pressure variations associated with a numerical
simulation of a cyclical water alternating gas injection. The water
and gas are alternatively injected in yearly cycles. The pressure
shown is after 1096 days of injection. The fluid flow lines are
plotted in this figure, extending from the injection well (open star)
to various points in the reservoir layer. The production well is in-
dicated by the open circle in the upper right corner of this plot.
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DISCUSSION

Starting from a fairly general set of governing equations for
coupled deformation and flow in a porous medium containing three
fluid phases, one can derive expressions for the phase velocities of
the various modes of displacement. The expressions are valid in the
presence of smoothly varying properties. Because the equations are
formulated in the frequency domain, the coefficients of the equa-
tions, and hence the expressions for velocity may be functions
of frequency. The expressions for the velocities can be used for
ray-based modeling of the seismic wavefield (Chapman, 2004).
The expressions could also be incorporated into a finite-difference
scheme for calculating travel times, in the manner of Vidale (1988)
or Sethian (1999). In addition, the asymptotic approach can be used
to formulate the transport equation and to compute amplitudes
(Chapman, 2004).
The approach taken in this paper allows one to make full use of

information routinely available to reservoir engineers. That is, the
velocity estimates depend upon the porosity, permeability, relative
permeability curves, capillary pressure curves, fluid phase densities,
fluid phase viscosities, fluid saturations, and fluid bulk moduli. As
indicated in the application to the injection of carbon dioxide, the
fluid phase properties output by a compositional simulator can be
used directly in the calculations. Furthermore, expressions for the
fluid bulk moduli can be derived from the equation of state under-
lying the compositional reservoir simulation. In the application, the
Peng-Robinson equation of state (Peng-Robinson, 1977), one of
the default models in the Eclipse simulator, was used. The Peng-
Robinson equation of state, one variant of the Van der Waals cubic
equations of state (Wei and Sadus, 2000) provides general matches
to the bulk modulus variations of hydrocarbon components
(Maghari and Hosseinzadeh-Shahri, 2003). The Peng-Robinson

Figure 16. Phase velocity variations associated with the transverse
mode of displacement. The velocities in the middle layer (2543.6–
2552.7 m) of the three-layer model are shown in this figure.

Figure 15. Fluid saturations for water, Sw (top), gas, Sg (middle),
and oil, So (bottom) after 1096 days of injection. The saturation
variations in the middle layer (2543.6–2552.7 m) of the three-layer
model are shown.
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equation of state has been used extensively to model carbon dioxide
injection into reservoirs containing hydrocarbons (Oldenburg et al.,
2004; Schlumberger, 2005; Singh et al., 2011).
As noted by Wei and Sadus (2000) many other equations of state

are available and there have been many enhancements to the Van der
Waals-based equations of state. For example, there are hard-sphere
chain equations of state, appropriate for longer chained molecular
fluids (Nasrifar and Bolland, 2006). There are equations of state spe-
cifically designed for carbon dioxide at a wide range of temperatures
and pressures such as that proposed by Span andWagner (1996) This
equation of state appears to give an accurate match to laboratory-
derived seismic velocities for temperatures up to 200 K and pressures
up to 1000 MPa (Han et al., 2010). Although an equation of state
based upon laboratory results is the most accurate, it is difficult to
perform experiments under all the possible conditions (pressure, tem-
perature, compositions) encountered during injection and production.
For example, the recent experiments of Han et al. (2010) do not con-
sider the effects of changing fluid composition.
For the applications in this paper, I have only accounted for the

macroscopic flow, formulated by Biot (1956a, 1956b), as detailed in
Appendix A. However, the asymptotic analysis and the expressions
for the phase velocity only depend upon the coefficients in the gov-
erning equations 15 and 16, and do not require the specific relation-
ship between these coefficients and the rock properties given in
Appendix A. In particular, the method can be generalized to include

dissipation due to microscopic fluid flow from the pore space to
microcracks (Biot, 1962; Mavko and Nur, 1975), often referred
to as “squirt-flow.” One can also account for intermediate scale
or mesoscopic flow, along the lines of a double-porosity model,
as was done for a medium containing a single fluid in Pride et al.
(2004), or for squirt flow and macroscopic (global) flow using a
Zener model (Zener, 1948), as in Carcione and Gurevich (2011).
The resulting model is similar to the governing equations presented
in this paper. However, the elastic coefficients may now depend
upon frequency. Such frequency-dependent coefficients do not pre-
sent any fundamental difficulty for the approach described in this
paper. Because I am working in the frequency domain and the
asymptotic expansion is not in terms of frequency, I can apply
the same approach to the equations allowing for dissipation due
to flow into microcracks.
The approach taken in this paper can be used to extend concepts

developed in a single phase context to the situation in which there
are multiple phases. For example, by considering the drag forces in
the form 5, as in Pride et al. (1993), one can define the transition
frequency

ω0 ¼
μfϕ

ρfð1þ νÞ−1k ; (71)

a variation of Biot’s characteristic frequency (Biot, 1956). The char-
acteristic frequency separates the low and high frequency domains

Figure 17. Phase velocity variations associated
with the four longitudinal modes of displacement:
P1, P2, P3, and P4. The velocities in the middle
layer (2543.6–2552.7 m) of the three-layer model
are shown in this figure.
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noted by Biot (1956). In the low-frequency domain, the flow is la-
minar and the secondary or slow longitudinal modes display a dif-
fusive behavior. In the high-frequency domain, the flow is turbulent
and the secondary longitudinal modes begin to exhibit the charac-
teristics of propagating waves. The single phase expression 71 for
the characteristic frequency can be generalized to a porous medium
containing three fluid phases. To do so, recall the weighted fluid
density, introduced in equation 42

ρf ¼ χ1S1ρ1 þ χ2S2ρ2 þ χ3S3ρ3 (72)

where

χi ¼
ξi
Γi

¼ νð1þ νÞ−1
1 − νð1þ νÞ−1 ; (73)

similarly substitute the weighted fluid viscosity for μf

μf ¼ χ1S1μ1 þ χ2S2μ2 þ χ3S3μ3: (74)

Thus, in the presence of multiple fluid phases, the transition or char-
acteristic frequency is a function of the properties of the fluids and
their saturations. In Figure 18, I plot the characteristic frequency for
the three-phase example presented in the Applications section. Note
that the characteristic frequency varies between 150 Khz and
350 Khz and is a strong function of the water saturation. This range
of values is reasonable and is supported by longitudinal velocity
variations in Figure 12, where the velocities of the secondary phases
begin to increase significantly at around 100 Khz, signifying a tran-
sition in behavior.
One can also reformulate the approach to include the effect of

interacting boundaries, extending the approach to laterally varying
layered media. That is, one can include the boundary effects in the

vertical direction while allowing for lateral variations within a given
layer. The interaction of boundaries can have a significant effect on
reflections from a thin poroelastic layer (Korneev et al., 2004; Quin-
tal et al., 2011). As in ray-based modeling (Chapman, 2004), one
can incorporate boundary conditions into the asymptotic approach
and examine the interaction of a propagating disturbance with an
interface. For multiple boundaries, one can derive a ray series
for various reflections and reverberations (Kennett, 2001).

CONCLUSIONS

In this paper, I derive expressions for the phase velocities of the
various modes of propagation in a porous medium containing three
fluid phases. The approach allows for smoothly varying heteroge-
neity and fluid saturations, and because I am working in the
frequency domain, the velocities may be arbitrary functions of fre-
quency. The motivation for this work is to model the propagation of
high-frequency waves through a poroelastic medium containing
multiple fluids. The results contained in this paper are a first step
in that direction. In future work, I hope to consider amplitudes and
the transport equation as well as the reflection and transmission of a
propagating disturbance at an interface.

ACKNOWLEDGMENTS

This work was supported by Aramco and by the Assistant Secre-
tary, Office of Basic Energy Sciences of the U. S. Department of
Energy under contract DE-AC03-76SF00098. I would also like to
acknowledge the support of Aramco. I would like to thank Shingo
Watanabe of Texas A&M University for conducting the reservoir
simulation for the SPE fifth comparative problem. A Fortran
program for the calculation of the velocities associated with the
longitudinal modes is available from the author.

APPENDIX A

THE MACROSCOPIC CONSTITUTIVE RELATIONS

In this Appendix, I discuss the stress-strain relationships used in
this paper. I begin with the constitutive relations invoked at the mi-
croscopic scale. For the solid, I assume linear elastic behavior in
which the increment of solid stress, σs, is related to the displacement
in the solid, us, via the expression

σs ¼ Ks∇ · usIþ Gs

�
∇us þ ð∇usÞT −

2

3
∇ · usI

�
; (A-1)

where Ks is the solid bulk modulus and Gs is the solid shear mod-
ulus. The three fluids are taken to be Newtonian in nature. Thus, the
fluid stress is related to the flow velocity of the ith fluid phase,
vi ¼ _ui, where the dot indicates the time derivative, according to

σi ¼ −PiIþ μi

�
∇vi þ ð∇viÞT −

2

3
∇ · viI

�
; (A-2)

where Pi is the incremental change in the pore fluid pressure, σi is
the incremental fluid stress tensor, and μi is the shear viscosity.
I can average the constitutive equations A-1 and A-2 over a re-

presentative volume V (Bear, 1972, p. 19; Tuncay and Corapcioglu,

Figure 18. The characteristic frequency, separating the low-
frequency laminar flow region in which the secondary longitudinal
modes exhibit diffusive behavior from the high-frequency turbulent
flow region. In the high-frequency region, the secondary longitudi-
nal modes behave more like propagating waves.

L20 Vasco

D
ow

nl
oa

de
d 

06
/0

3/
13

 to
 1

31
.2

43
.2

27
.7

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



1996), making use of a theorem by Slattery (1968, 1981). For the
solid component, I have

1

V

Z
V
σsdV ¼ Ks

�
∇ · ðαsūsÞ þ

1

V

Z
S
us · ndS

�
I

þ Gs

�
∇ðαsūsÞ þ ∇ðαsu: sÞT −

2

3
∇ · ðαsūsÞIþ

X3
i¼1

Ksi

�
;

(A-3)

where

Ksi ¼
1

V

Z
S

�
usnþ nus −

2

3
us · nI

�
dS (A-4)

is a second-order tensor with zero trace (Tuncay and Corapcioglu,
1996). Terms such as usn are vector outer products that may be
thought of as a matrix formed by multiplying the column vector
us by the row vector u. If there is no mass change between the solid
and liquid phases,

1

V

Z
S
us · ndS ¼ αs − αos ¼ Δαs; (A-5)

where Δαs is the change in the fraction of the solid phase. Because
the displacements are assumed to be small

ūj · ∇αj ≈ 0 (A-6)

for j ¼ s, 1, 2, 3, and equation A-3 becomes

αsσ̄s ¼ Ks½αs∇ · ūs þ Δαs�I

þ Gs

�
αs∇ūs þ αsð∇ūsÞT −

2

3
αs∇ · ūsIþ

X3
i¼1

Ksi

�
;

(A-7)

where σ̄s is the intrinsic averaged incremental stress tensor. For the
three fluid phases, I have the averaged expressions

αiσ̄i ¼ Ki½αi∇ · ūi þ Δαi�I

þ μi

�
αi∇v̄i þ αið∇v̄iÞT −

2

3
αi∇ · v̄iIþ Jis þ

X3
j¼1

Jij

�
;

(A-8)

where

Jij ¼
1

V

Z
S

�
vinþ nvi −

2

3
vi · nI

�
dS (A-9)

is a second-order tensor with zero trace (Tuncay and Corapcio-
glu, 1996).
To fully specify the constitutive equations, I need to determine

Δαs, and the coupling terms Ksi, Jis, and Jij in equations A-7
and A-8. Given a sufficient number of constraint equations, I
can derive an expression for Δαs in terms of the divergences of
the solid and fluid displacements. In the next few paragraphs, I as-

semble the necessary set of equations so that I may determine Δαs
as well as Ksi, Jis, and Jij.
First, I invoke the concept of capillary pressure from the physics

of fluid flow (Bear, 1972, p. 453; de Marsily, 1986, p. 210). Capil-
lary pressure is the difference in pressure between the various fluids
within the averaging volume. That is, there is a jump in pressure at
the fluid-fluid interfaces due to interfacial tension that is
assumed to depend upon the fluid saturations

P̄1 − P̄2 ¼ Pc12ðS1; S2; S3Þ (A-10)

P̄3 − P̄1 ¼ Pc31ðS1; S2; S3Þ; (A-11)

where Pc12 and Pc31 are specified functions, typically determined
from laboratory experiments on cores and/or fits to proposed func-
tional forms (Wyckoff and Botset, 1936; Van Genuchten, 1980).
Note that the capillary pressure functions really only depend upon
two of the three fluid saturations because the saturations sum to
unity, see equation 1. Because the fluid pressure and saturation
changes are incremental and assumed to be small over any small
time interval, I can linearize the capillary pressure relationships

P̄1 − P̄2 ¼
∂Pc12

∂S1
ΔS1 þ

∂Pc12

∂S2
ΔS2 (A-12)

P̄3 − P̄1 ¼
∂Pc31

∂S1
ΔS1 þ

∂Pc31

∂S2
ΔS2. (A-13)

To complete the specification of the constitutive relation between
the stresses and the displacements, I subdivide the material that fol-
lows into two subsections. The first subsection treats the isotropic
component of the stresses and the divergence of the displacement
vector fields. The shear modulus of the solid frame enters the con-
stitutive equation in the final subsection when I consider the devia-
toric component of the displacement due to a shear stress. Because I
have chosen to represent viscous forces as the coupling terms dj in
equations 3 and 4, the effects of permeability and relative perme-
abilities will enter later, through the dynamic tortuosity.

Volumetric component

By considering the volumetric component of the constitutive
equations, I can relate the solid and fluid pressures to the divergence
of the respective displacements. In fact, I define the solid and fluid
pressures in terms of the trace of the averaged incremental stress
tensor

αjP̄j ¼ −
1

3
trðαjσ̄jÞ ¼ −Kjðαj∇ · ūj þ ΔαjÞ (A-14)

for j ¼ s, 1, 2, 3. In writing equation A-14, I have made use of
equations A-7 and A-8 and the fact that the trace of the factors
Ksi, Jis, and Jij vanish. I can rearrange equation A-14 and write
it as a relationship between Δαj, P̄j, and ∇ · ūj,

KjΔαj þ αjP̄j ¼ −Kjαj∇ · ūj: (A-15)
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Equation A-15 may be written solely in terms of the change in the
solid volume fraction (Δαs) and the fluid saturation changes (ΔS1
and ΔS2) if I use the fact that

αi ¼ Siϕ ¼ Sið1 − αsÞ (A-16)

[see equation 2]. Because ΔSj and Δαs are assumed to be small, I
can use equation A-16 to write

Δαi ¼ Δ½Sið1 − αsÞ� ≈ ð1 − αsÞΔSi − SiΔαs: (A-17)

Thus, I can write equation A-15 in terms of Δαs, ΔSj, and P̄j

−SjKjΔαs þ ϕKjΔSj þ αjP̄j ¼ −Kjαj∇ · ūj: (A-18)

Note that, because the saturations sum to unity, I can write the ex-
pression for Δα3 entirely in terms of ΔS1, ΔS2, and Δαs. To keep
the equations simpler, I retain S3 in many of the formulas presented
below. When necessary S3 may be replaced by S3 ¼ 1 − S1 − S2 if I
wish to eliminate it from the equations.
An additional constraint is provided by a generalization of the

single phase relationship derived by Pride et al. (1992) which relates
the divergence of the solid displacement field to the fluid and solid
pressures

∇ · ūs ¼ −αs
ðP̄s − P̄fÞ

Kfr
−
P̄f

Ks
: (A-19)

Following Tuncay and Corapcioglu (1996) I write the fluid pressure
as a weighted sum of the phase pressures, where the weights are the
fluid saturations

P̄f ¼
X3
i¼1

SiP̄i: (A-20)

Upon substituting A-20 into equation A-19 and rearranging terms I
have the final constraint

−
1

Kw
P̄s þDk

X3
i¼1

SiP̄i ¼ ∇ · ūs; (A-21)

where

Kw ¼ Kfr

αs
(A-22)

and

Dk ¼
αs
Kfr

−
1

Ks
: (A-23)

Equations A-10, A-11, A-15 or its alternative version A-18, and
A-21 constitute a system of seven equations in the seven unknowns
Δαs, ΔS1, ΔS2, P̄s, P̄1, P̄2, and P̄3. I may write the linear system of
equations in matrix-vector form

KΔ ¼ ϒ; (A-24)

where K is the coefficient matrix0
BBBBBBBBB@

0 Pc12;1 Pc12;2 0 −1 1 0

0 Pc31;1 Pc31;2 0 1 0 −1
1 0 0 αs

Ks
0 0 0

−S1 ϕ 0 0 α1
K1

0 0

−S2 0 ϕ 0 0 α2
K2

0

−S3 −ϕ −ϕ 0 0 0 α3
K3

0 0 0 −Kw
−1 S1Dk S2Dk S3Dk

1
CCCCCCCCCA
;

(A-25)

Δ ¼

0
BBBBBBBB@

Δαs
ΔS1
ΔS2
P̄s

P̄1

P̄2

P̄3

1
CCCCCCCCA

(A-26)

and

ϒ ¼

0
BBBBBBBB@

0

0

−αs∇ · ūs
−α1∇ · ū1
−α2∇ · ū2
−α3∇ · ū3

∇ · ūs

1
CCCCCCCCA
; (A-27)

where

Pc12;j ¼
∂Pc12

∂Sj
; (A-28)

and

Pc31;j ¼
∂Pc31

∂Sj
: (A-29)

Because the system of equations A-24 is linear, I can solve for the
unknowns as linear functions of the right side.
At this juncture, I can follow one of two possible paths. On the

one hand, if I were primarily interested in computing velocities and
do not require explicit expressions in terms of the fundamental ma-
terial constants in the matrix K, I could invert the matrix A-25 nu-
merically and solve for the pressures P̄s, P̄1, P̄2, and P̄3 in terms of
the divergences on the right side of equation A-24. On the other
hand, if I desire explicit expressions for the coefficients of the con-
stitutive relationship in terms of the fundamental quantities, then I
must construct an analytic expression for the solution of equa-
tion A-24. One difficulty with this second approach is that the coef-
ficient matrix A-25 is 7 × 7 and, even though the matrix is sparse,
solving for all seven unknowns will produce a rather involved ex-
pression. I can reduce the complexity of the analytic expressions
somewhat, reducing the sparse coefficient matrix A-25 to a dense
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3 × 3 matrix, by first eliminating the variables Δαs, ΔS1, ΔS2, and
P̄3. However, the final analytic expressions are still rather involved
and thus more prone to result in errors in their specification and in
their numerical implementation.
Consider the first approach, in which I solve the system of equa-

tions A-24 numerically. Let us denote the inverse of the coefficient
matrix K by matrix B with elements Bij. Because of the structure of
the right side of equations A-24, given by the vector Υ (expres-
sion A-27), I can write the expression for P̄s as

αsP̄s ¼ ass∇ · ūs þ
X3
j¼1

asj∇ · ūj (A-30)

where

ass ¼ αsðB47 − B43αsÞ (A-31)

asj ¼ −αsαjB4ðjþ3Þ: (A-32)

And similarly, for the ith fluid phase I have the expressions

αiP̄i ¼ ais∇ · ūs þ
X3
j¼1

aij∇ · ūj (A-33)

where the coefficients are given by

ais ¼ αiðBð4þiÞ7 − Bð4þiÞ3αsÞ (A-34)

aij ¼ −αiαjBð4þiÞðjþ3Þ: (A-35)

Deviatoric component

To complete the specification of the constitutive relations, I con-
sider the deviatoric component due to the application of an external
shear stress. As in Tuncay and Corapcioglu (1996), I assume that all
shear resistance of the porous medium is due to the solid matrix and
that the fluid does not contribute. Thus, the shear deformation of
fluid phases is uncoupled and Ksi ¼ Jis ¼ Jij. Essentially, I am as-
suming that, for the sake of the constitutive relationship, the fluid
viscosities are negligible in equation A-8 in comparison with the
volumetric component and the bulk modulus. The effect of fluid
viscosities, present in the momentum equation, will be included
as momentum transfer vectors between phases, dj, as discussed
in the main body of the paper [see equations 3 and 4]. Thus, the
deviatoric component of σ̄s, denoted by σ̄Ds , is given by

αsσ̄
D
s ¼ Gfr

�
∇ūs þ ð∇ūsÞT −

2

3
∇ · ūsI

�
; (A-36)

where Gfr is the frame shear modulus, typically determined from
experiments on the unsaturated sample.

The complete constitutive relationship

Putting everything together, I have the following constitutive
relationships

αsσ̄s ¼
�
ass∇ · ūs þ

X3
j¼1

asj∇ · uj

�
I

þ Gfr

�
∇ūs þ ð∇ūsÞT −

2

3
∇ · ūsI

�
(A-37)

and

αiσ̄i ¼
�
ais∇ · ūi þ

X3
j¼1

aij∇ · ūj

�
I (A-38)

for the solid and fluid phases, respectively.

The constitutive relationship in terms of �us and �ws

Because the final formulation will be in terms of ūs and w̄i where
w̄i ¼ ūi − ūs, I need to convert to those variables. I can rewrite the
constitutive relationships in terms of the new variables by adding
and subtracting ūs. The result is

αsσ̄s ¼
�
âss∇ · ūs þ

X3
i¼1

asi∇ · wi

�
I

þ Gfr

�
∇ūs þ ð∇ūsÞT −

2

3
∇ · ūsI

�
(A-39)

and

αiσ̄i ¼
�
âis∇ · ūs þ

X3
j¼1

aij∇ · wj

�
I (A-40)

for the solid and fluid phases, respectively, with the adjusted coef-
ficients of ∇ · ūs

âss ¼ ass þ as1 þ as2 þ as3 (A-41)

âis ¼ ais þ ai1 þ ai2 þ ai3 (A-42)

for i ¼ 1, 2, 3. Finally, I can rename the coefficients so that they
follow the notation of Vasco and Minkoff (2012) for two-phase
flow. This notation is intended to maintain continuity with devel-
opments in single-phase flow (Pride, 2005; Vasco, 2009). Thus,
I define the variables found in the governing equations 15 and 16

Ku ¼ âss; (A-43)

Csi ¼ ais; (A-44)

Cis ¼ âis; (A-45)

Mij ¼ aij; (A-46)

and
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Gm ¼ Gfr: (A-47)

APPENDIX B

COMPUTING THE DETERMINANT ASSOCIATED
WITH THE LONGITUDINAL MODES

In this Appendix, I present the expressions for the coefficients of
the quartic equation 50 that determines s ¼ l2, where l is the
magnitude of the vector l ¼ ∇θ. The approach for calculating
the coefficients is described in Vasco and Minkoff (2012). The
essential idea relates to the expansion of the determinant of the
matrix

M ¼

0
BB@

νs −Hs ξ1 − Cs1s ξ2 − Cs2s ξ3 − Cs3s
ν1 − C1ss Γ1 −M11s −M12s −M13s
ν2 − C2ss −M21s Γ2 −M22s −M23s
ν3 − C3ss −M31s −M32s Γ3 −M33s

1
CCA:

(B-1)

The determinant of M can be expanded using the formula for the
determinant of a matrix in which a column is the sum of two com-
ponents (Noble and Daniel, 1977, p. 200), as noted in the main body
of the text (see equation 49). I can apply this rule recursively
because every column ofM may be described as such a sum. Thus,
I can write the equation

det M ¼ 0 (B-2)

as the quartic equation

Q4s4 −Q3s3 þQ2s2 −Q1sþQ0 ¼ 0; (B-3)

with the coefficients

Q4 ¼

��������
H Cs1 Cs2 Cs3
C1s M11 M12 M13

C2s M21 M22 M23

C3s M31 M32 M33

��������
; (B-4)

Q3 ¼

���������

νs Cs1 Cs2 Cs3

ν1 M11 M12 M13

ν2 M21 M22 M23

ν3 M31 M32 M33

���������
þ

���������

H ξ1 Cs2 Cs3

C1s Γ1 M12 M13

C2s 0 M22 M23

C3s 0 M32 M33

���������

þ

���������

H Cs1 ξ2 Cs3

C1s M11 0 M13

C2s M21 Γ2 M23

C3s M31 0 M33

���������
þ

���������

H Cs1 Cs2 ξ3

C1s M11 M12 0

C2s M21 M22 0

C3s M31 M32 Γ3

���������
;(B-5)

Q2 ¼

���������

νs ξ1 Cs2 Cs3
ν1 Γ1 M12 M13

ν2 0 M22 M23

ν3 0 M32 M33

���������
þ

���������
νs Cs1 ξ2 Cs3
ν1 M11 0 M13

ν2 M21 Γ2 M23

ν3 M31 0 M33

���������

þ

���������

νs Cs1 Cs2 ξ3
ν1 M11 M12 0

ν2 M21 M22 0

ν3 M31 M32 Γ3

���������
þ

���������
H ξ1 ξ2 Cs3
C1s Γ1 0 M13

C2s 0 Γ2 M23

C3s 0 0 M33

���������
(B-6)

Q1 ¼

���������

νs ξ1 ξ2 Cs3

ν1 Γ1 0 M13

ν2 0 Γ2 M23

ν3 0 0 M33

���������
þ

���������

νs ξ1 Cs2 ξ3

ν1 Γ1 M12 0

ν2 0 M22 0

ν3 0 M32 Γ3

���������

þ

���������

νs Cs1 ξ2 ξ3

ν1 M11 0 0

ν2 M21 Γ2 0

ν3 M31 0 Γ3

���������
þ

���������

H ξ1 ξ2 ξ3

C1s Γ1 0 0

C2s 0 Γ2 0

C3s 0 0 Γ3

���������
; (B-7)

and

Q0 ¼

��������
νs ξ1 ξ2 ξ3
ν1 Γ1 0 0

ν2 0 Γ2 0

ν3 0 0 Γ3

��������
; (B-8)

where the vertical bars signify that the quantity is the determinant of
the enclosed matrix.
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