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THE LONG-TIME BEHAVIOR OF 3 DIMENSIONAL RICCI
FLOW ON CERTAIN TOPOLOGIES

RICHARD H BAMLER

Abstract. In this paper we analyze the long-time behavior of 3 dimensional
Ricci flow with surgery. We prove that under the topological condition that
the initial manifold only has non-aspherical or hyperbolic components in its
geometric decomposition, there are only finitely many surgeries and the curva-
ture is bounded by Ct−1 for large t. This proves a conjecture of Perelman for
this class of initial topologies.

The proof of this fact illustrates the fundamental ideas that are used in the
subsequent papers of the author.

Contents

1. Introduction 1
2. Definition of Ricci flows with surgery 3
3. Existence of Ricci flows with surgery 7
4. Perelman’s longtime analysis result 8
5. The thick-thin decomposition 10
6. Analysis of the thin part 11
7. Further geometric properties of the thin part 22
8. Evolution of areas of minimal surfaces 27
9. Proof of Theorem 1.1 30
References 34

1. Introduction

In this paper we analyze the long-time behavior of the Ricci flow with surgery
on certain 3 dimensional manifolds. Our main result will be the following theorem,
which we will present more precisely at the end of the introduction:

Let (M, g) be a closed 3 dimensional Riemannian manifold that
fulfills the purely topological condition that all components of its
geometric decomposition are hyperbolic or non-aspherical.
Then there is a Ricci flow that has only finitely many surgeries and
whose initial metric is g. This Ricci flow with surgery either goes
extinct in finite time or exists for all positive times. Moreover, the
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2 RICHARD H BAMLER

Riemannian curvature in this flow is bounded everywhere by Ct−1

for large t.

The Ricci flow with surgery has been used by Perelman to solve the Poincaré
and Geometrization Conjecture ([23], [24], [25]). More precisely, given any initial
metric on a closed 3-manifold, Perelman managed to construct a solution for the
Ricci flow with surgery on a maximal time interval and showed that the surgery
times do not accumulate. This means that on every finite time interval there
are only a finite number of surgery times. Furthermore, he could prove that if
the given manifold is a homotopy sphere (or more generally a connected sum
of prime, non-aspherical manifolds), then the Ricci flow goes extinct in finite
time. This implies that the initial manifold is a sphere if it is simply connected
and hence establishes the Poincaré Conjecture. On the other hand, if the Ricci
flow continues to exist, he could show that the manifold decomposes into a thick
part, which approaches a hyperbolic geometry, and an thin part, which becomes
arbitrarily collapsed on local scales. Based on this collapsing, it is then possible
to show that the thin part can be decomposed into geometric pieces ([27], [21],
[15]) and hereby proving the Geometrization Conjecture.

Observe that although the Ricci flow with surgery was used to solve such
difficult problems, some of its basic properties are still unknown, because they
surprisingly turned out to be irrelevant in the end. For example, it was only con-
jectured by Perelman that in the long-time existent case there are finitely many
surgeries, i.e. that after some time the flow can be continued by a conventional
smooth, non-singular Ricci flow defined up to time infinity. Furthermore, it is still
unknown whether and in what way the Ricci flow exhibits the the full geometric
decomposition of the manifold.

In [16], [17] and [18], Lott and Lott-Sesum could give a description of the
long-time behavior of certain Ricci flows on manifolds that consist of a single
component in their geometric decomposition. However, they needed to make
additional curvature and diameter or symmetry assumptions.

In this paper, we only have to impose a topological condition on the initial
manifold. Using the language developed in section 2 our precise result reads:

Theorem 1.1. Given a surgery model (Mstan, gstan, Dstan), there is a continuous
function δ : [0,∞)→ R+ such that:

Let M be a Ricci flow with surgery with normalized initial conditions and
δ(t)-precise cutoff (see section 2 for more details) such that M(0) satisfies the
following topological condition:
M(0) ≈ M1# . . .#Mm is a connected sum of closed 3-manifolds Mi. Each

Mi is either spherical, diffeomorphic to S2 × S1 or its torus decomposition only
consists of hyperbolic pieces (i.e. we can find collections of pairwise disjoint,
incompressible, embedded tori Ti,1, . . . , Ti,mi ⊂Mi such that the connected compo-
nents of M \ (Ti,1 ∪ . . . ∪ Ti,mi) carry complete finite volume hyperbolic metrics).

Then M has only finitely many surgeries and there are constants T,C < ∞
such that |Rmt| < Ct−1 on M(t) for all t ≥ T .
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We like to point out that this curvature estimate only used to be known to hold
on the thick part. Hence, our theorem contributes towards a better understanding
of the geometry of the thin part. Observe that the result implies that the rescaled
metrics t−1g(t) have uniformly bounded curvature for large t. Such solutions are
said to be of type III and have been subject of study by Hamilton ([11]).

We give a short outline of the proof: The thin part of the manifold is locally
collapsed along S1, T 2 or S2 fibers. We will show that there are certain “good”
areas where the fibers are either diffeomorphic to S1 or T 2 and incompressible in
the manifold. Hence, if we pass to the universal cover, these areas will become
non-collapsed on a local scale. We can then use a modification of Perelman’s
Theorem [24, 7.3] to deduce a curvature bound on the scale

√
t. By looking closer

at the decomposition arising from the collapse, we can argue that if not all areas
of the thin part are good, there must be some good area that is collapsed along
incompressible S1-fibers over a 2-dimensional space. Hence, by the conclusion
above, this collapse takes place at scale

√
t. Next, we establish the existence of

minimal annuli that intersect every fiber of this fibration and whose area goes to
zero compared to the scale

√
t. This will then give us a contradiction implying

that the thin part only consists of good areas and hence the curvature is controlled
everywhere.

The paper is organized as follows: In section 2 we clarify the concepts behind
Ricci flows with surgery. We are keeping the definitions here as general as possible
so that they match or follow from existent literature on the subject. Section 3
recapitulates known existence results for Ricci flows with surgery. In section 4
we quote Perelman’s important long-time curvature estimate and generalize it to
the universal cover. We then explain the known geometric results arising from
the long-time analysis in sections 5 and 6. In section 7 we analyze the behavior of
the collapse when passing to the universal cover and in section 8 we prove bounds
for the evolution of minimal spheres and annuli in Ricci flow. Finally, the proof
of the main theorem can be found in section 9.

I would like to thank Gang Tian for his constant help and encouragement
and John Lott for many long conversations. I am also indebted to Bernhard
Leeb and Hans-Joachim Hein, who contributed essentially to my understanding
of Perelman’s work. Thanks also go to Simon Brendle, Daniel Faessler, Robert
Kremser, Tobias Marxen, Rafe Mazzeo, Richard Schoen, Stephan Stadler and
Brian White.

2. Definition of Ricci flows with surgery

In this section, we give a precise definition of the Ricci flows with surgery that
we are going to analyze. We will mainly use the language developed in [1] here.
We first define Ricci flows with surgery in a very broad sense

Definition 2.1 (Ricci flow with surgery). Consider a time interval I ⊂ R. Let
T 1 < T 2 < . . . be times of the interior of I which form a possibly infinite, but
discrete subset of R and divide I into the intervals

I1 = I ∩ (−∞, T 1), I2 = [T 1, T 2), I3 = [T 2, T 3), . . .
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and Ik+1 = I ∩ [T k,∞) if there are only finitely many T i’s and T k is the last
such time and I1 = I if there are no such times. Consider Ricci flows (M1 ×
I1, g1

t ), (M
2 × I2, g2

t ), . . . on 3-manifolds M1,M2, . . .. Let Ωi ⊂ M i be open sets
on which the metric git converges smoothly as t↗ T i to some Riemannian metric
giT i on Ωi and let

U i
− ⊂ Ωi and U i

+ ⊂M i+1

be open subsets such that there are isometries

Φi : (U i
−, g

i
T i) −→ (U i

+, g
i+1
T i

), (Φi)∗gi+1
T i
|U i+ = giT i |U i− .

We assume that we never have U i
− = Ωi = M i and U i

+ = M i+1 and we assume
that every component of M i+1 contains a point of U i

+. Then, we call M =
((T i), (M i× I i, git), (Ωi), (U i

±), (Φi)) a Ricci flow with surgery on the time interval
I and T 1, T 2, . . . surgery times.

If t ∈ I i, then (M(t), g(t)) = (M i × {t}, git) is called the time t-slice of M.
The points inM(T i) \U i

+×{T i} are called surgery points. For t = T i, we define
the (presurgery) time T i−-slice to be (M(T i−), g(T i−)) = (Ωi × {T i}, giT i). The
points Ωi × {T i} \ U i

− × {T i} are called presurgery points. We will call a point
that is not a presurgery point a non-presurgery point.

IfM has no surgery points, then we callM non-singular and writeM = M×I.

We will often view M in the space-time picture, i.e. we imagine M as a
topological space

⋃
t∈IM(t) =

⋃
iM

i × I i where the components in the latter
union are glued together via the diffeomorphisms Φi. The following vocabulary
will prove to be useful when dealing with Ricci flows with surgery:

Definition 2.2 (Ricci flow with surgery, points in space-time). For (x, t) ∈ M,
consider a spatially constant line in M that starts in (x, t) and goes forward
or backward in time for some time ∆t ∈ R and that doesn’t hit any surgery
points, except possibly at its endpoints. When crossing surgery times, we can
continue the line via the isometries Φi. We denote the endpoint of this line by
(x, t + ∆t) ∈ M. Observe that this point is only defined if there are no surgery
points between (x, t) and (x, t + ∆t). We say that a point (x, t) ∈ M survives
until time t+ ∆t if the point (x, t+ ∆t) ∈M is well-defined.

Observe that this notion also makes sense, if (x, t−) ∈M is a presurgery point
and ∆t ≤ 0.

Using this definition, we can define parabolic neighborhoods in M.

Definition 2.3 (Ricci flow with surgery, parabolic neighborhoods). Let (x, t) ∈
M (presurgery points are allowed, in this case we have to replace t by t−), r ≥ 0
and ∆t ∈ R. Consider the ball B = B(x, t, r) ⊂ M(t). If (x, t−) is a presurgery
point, we have to look at B(x, t−, r) ⊂ M(t−). For each (x′, t) ∈ B consider
the union I∆t

x′,t of all points (x′, t + t′) ∈ M that are well-defined in the sense of

Definition 2.2 for t′ ∈ [0,∆t] resp. t′ ∈ [∆t, 0]. We say that I∆t
x′,t is non-singular if

(x′, t + ∆t) ∈ I∆t
x′,t. Define the parabolic neighborhood P (x, t, r,∆t) =

⋃
x′∈B I

∆t
x′,t.

We call P (x, t, r,∆t) non-singular if all the I∆t
x′,t are non-singular.
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We will now characterize three important approximate local geometries that
we will have to deal with very often: ε-necks, strong ε-necks and (ε, E)-caps. The
notions below also make sense for presurgery times.

Definition 2.4 (Ricci flow with surgery, ε-necks). Let ε > 0 and consider a
Riemannian manifold (M, g). We call an open subset U ⊂M an ε-neck, if there
is a diffeomorphism Φ : S2 × (−1

ε
, 1
ε
) → U such that there is a λ > 0 with

‖λ−2Φ∗g(t)−gS2×R‖C[ε−1] < ε where gS2×R is the standard metric on S2× (−1
ε
, 1
ε
)

of constant scalar curvature 2.
We say that x ∈ M(t) is a center of U if x ∈ Φ(S2 × {0}) for such a Φ. If M

is a Ricci flow with surgery and (x, t) ∈M, then we say that (x, t) is a center of
an ε-neck if (x, t) is a center of an ε-neck in M(t).

Definition 2.5 (Ricci flow with surgery, strong ε-necks). Let ε > 0 and consider
a Ricci flow with surgery M and a time t2. Consider a subset U ⊂ M(t2) and
assume that all points of U survive until some time t1 < t2. Then the subset
U × [t1, t2] ⊂M is called a strong ε-neck if there is a factor λ > 0 such that after
parabolically rescaling by λ−1, the flow on U × [t1, t2] is ε-close to the standard
flow on some time-interval [−a, 0] for a ≥ 1. By this we mean a = λ−2(t2−t1) ≥ 1
and there is a diffeomorphism Φ : S2 × (−1

ε
, 1
ε
)→ U such that

‖λ−2Φ∗g(λ2t+ t2)− gS2×R(t)‖C[ε−1](S2×(− 1
ε
, 1
ε

)×[−a,0]) < ε.

Here (gS2×R(t))t∈(−∞,0] is the standard Ricci flow on S2×R that has scalar curva-
ture 2 at time 0 and λ−2Φ∗g(λ2t+ t2) denotes the pull-back of the parabolically
rescaled flow on U × [t1, t2].

A point (x, t2) ∈ U × {t2} is called a center of U × [t1, t2] if (x, t2) ∈ Φ(S2 ×
{0} × {t2}) for such a Φ.

Definition 2.6 (Ricci flow with surgery, (ε, E)-caps). Let ε, E > 0 and con-
sider a Riemannian manifold (M, g) and an open subset U ⊂ M . Suppose
that (diamU)2|Rm|(y) < E2 for any y ∈ U and E−2|Rm|(y1) ≤ |Rm|(y2) ≤
E2|Rm|(y1) for any y1, y2 ∈ U . Furthermore, assume that U is either diffeomor-

phic to B3 or RP 3 \ B3
and that there is a compact set K ⊂ U such that U \K

is an ε-neck.
Then U is called an (ε, E)-cap. If x ∈ K for such a K, then we say that x is a

center of U .
Analogously as in Definition 2.4, we define (ε, E)-caps in Ricci flows with

surgery.

With these concepts at hand we can now give an exact description of the surgery
process that will underlie the Ricci flows with surgeries which we are going to
analyze. The author has chosen the phrasing so that it includes the outcomes of
the constructions presented in [24], [14], [20], [2] and [1].

We will first need to fix a geometry that models the metric which we will endow
the filling 3-balls with after each surgery.

Definition 2.7 (surgery model). Consider Mstan = R3 with its natural SO(3)-
action and let gstan be a complete metric on Mstan such that
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(1) gstan is SO(3)-invariant,
(2) gstan has non-negative sectional curvature,
(3) for any sequence xn ∈Mstan with dist(0, xn)→∞, the pointed Riemann-

ian manifolds (Mstan, gstan, xn) smoothly converge to the standard S2 ×R
of scalar curvature R = 2.

For every r > 0, we denote the r-ball around 0 by Mstan(r). Let Dstan > 0 be a
positive number. Then we call (Mstan, gstan, Dstan) a surgery model.

Definition 2.8 (ϕ-positive curvature). We say that a Riemannian metric g on a
manifold M has ϕ-positive curvature for ϕ > 0 if for every point p ∈ M there is
an X > 0 such that secp ≥ −X and

scalp ≥ −3
2
ϕ and scalp ≥ 2X(log(2X)− logϕ− 3).

Observe that by [11] this condition is improved by Ricci flow in the following
sense: If (M, (gt)t∈[t0,t1]) is a Ricci flow with t0 > 0 and gt0 is t−1

0 -positive, then gt
is t−1-positive for all t ∈ [t0, t1].

Definition 2.9 (Ricci flow with surgery, δ(t)-precise cutoff). Let M be a Ricci
flow with surgery defined on some time interval [0, T ), let (Mstan, gstan, Dstan) be a
surgery model and let δ : [0,∞)→ R+ be a function. We say thatM is performed
by δ(t)-precise cutoff (using the surgery model (Mstan, gstan, Dstan)) if

(1) For all t the metric g(t) (and g(t−) if t is a surgery time) has t−1-positive
curvature.

(2) For every surgery time T i, the subset M(T i) \ U i
+ is a disjoint union

Di
1 ∪ . . . ∪Di

mi
of smoothly embedded 3-disks.

(3) For every such Di
j there is an embedding

Φi
j : Mstan(δ−1(T i)) −→M(T i)

such that Di
j ⊂ Φi

j(Mstan(Dstan)) and such that for all j = 1, . . . ,mi the

images Φi
j(Mstan(δ−1(T i))) are pairwise disjoint and there are constants

0 < λij ≤ δ(T i) such that∥∥gstan − (λij)
−2(Φi

j)
∗g(T i)

∥∥
C[δ−1(Ti)](Mstan(δ−1(T i)))

< δ(T i).

(4) For every such Di
j, the points on the boundary of U i

− in M(T i−) corre-

sponding to ∂Di
j are centers of strong δ(T i)-necks.

(5) For every Di
j for which the boundary component of ∂U i

+ corresponding

to the sphere ∂Di
j bounds a 3-disk component (D′)ij of M i \ U i

− (i.e. a
“trivial surgery”, see below), the following holds: For every χ > 0, there
is some tχ < T i such that for all t ∈ (tχ, T

i) there is a (1 + χ)-Lipschitz
map ξ : (D′)ij → Di

j which corresponds to the identity on the boundary.

(6) For every surgery time T i, the components of M(T i−) \ U i
− are either

diffeomorphic to S2× I, D3, RP 3 \B3, a spherical space form, S1×S2 or
RP 3#RP 3.

We will speak of each Di
j as a surgery and if Di

j satisfies the property described
in (5), we call it a trivial surgery.
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Observe that we have phrased the Definition so that if M is a Ricci flow with
surgery that is performed by δ(t)-precise cutoff, then it is also performed by δ′(t)-
precise cutoff whenever δ′(t) ≥ δ(t) for all t. Note also that trivial surgeries don’t
change the topology of the respective component at which they are performed.

3. Existence of Ricci flows with surgery

Ricci flows with surgery and precise cutoff as introduced in Definition 2.9 can
indeed be constructed from any given initial metric. We will make this more
precise below. To simplify things, we restrict the geometries which we want to
consider as initial conditions.

Definition 3.1 (Normalized initial conditions). We say that a Riemannian 3-
manifold (M, g) is normalized if

(1) M is compact and orientable,
(2) |Rm| < 1 everywhere and
(3) volB(x, 1) > ω3

2
for all x ∈ M where ω3 is the volume of a standard

Euclidean 3-ball.

We say that a Ricci flow with surgery M has normalized initial conditions, if
M(0) is normalized.

Obviously, any Riemannian metric on a compact and orientable 3-manifold can
be rescaled to be normalized. Moreover, recall

Definition 3.2 (κ-noncollapsedness). LetM be a Ricci flow with surgery, (x, t) ∈
M (possibly a presurgery point) and κ, ρ > 0. We say thatM is κ-noncollapsed
in (x, t) on scales less than ρ if voltB(x, t, r) ≥ κr3 for all 0 < r < ρ for which

(1) the ball B(x, t, r) is relatively compact in M(t),
(2) the parabolic neighborhood P (x, t, r,−r2) is nonsingular and
(3) |Rm| < r−2 on P (x, t, r,−r2).

In order to construct a Ricci flow with surgery, we need the following charac-
terization of regions of high curvature (see [24, 5.1], [14, sec 77], [20, Propositions
16.1, 17.1], [2, sec 5.3, Propositions B, C], [1, Theorem 7.5.1]). The power of
the this proposition lies in the fact that none of the parameters depends on the
number or the preciseness of the preceding surgeries. Hence, it provides a tool to
perform surgeries in a controlled way.

Proposition 3.3 (Canonical Neighborhood Theorem, Ricci flows with surgery).
There are constants C0 < ∞ and κ0 > 0 and for every surgery model (Mstan,
gstan, Dstan) and every ε > 0 there are a constant E <∞ and continuous positive
functions r, δ, κ : [0,∞)→ R+ such that the following holds:

Let M be a Ricci flow with surgery on some time interval [0, T ) which has
normalized initial conditions and which is performed by δ(t)-precise cutoff. Then

(a) At every time t ∈ [0, T ) the flowM is κ(t)-noncollapsed on scale less than√
t.

(b) If (x, t) ∈M is a non-presurgery point with R(x, t) ≥ r−2(t), then
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(1) (x, t) is either the center of a strong ε-neck or an (ε, E)-cap U ⊂
M(t).

If U ≈ RP 3 \ B3
, then there is a time t1 < t such that all points on

U survive until time t1 and such that the flow on U × [t1, t] lifted to
its double cover contains strong ε-necks for which either lift of (x, t)
is a center.

(2) |∇|Rm |−1/2|(x, t) < C0 and |∂t|Rm |−1(x, t)| < C0,
(3) M is κ0-noncollapsed in (x, t),

or property (2) holds and the time-t sectional curvatures on the component
of M(t) in which x lies are positive and E-pinched, i.e. they lie in an
interval of the form (λ,Eλ) for some λ > 0 (hence that component of
M(t) is diffeomorphic to a spherical space form).

Note that, for future purposes, we have added a more detailed description
of the local geometry in the case in which the (ε, E)-cap U is diffeomorphic

to RP 3 \ B3
. This additional assertion follows from the popular proofs of the

Canonical Neighborhood Theorem, along with the fact that κ-solutions, which
serve as models for the geometry around points of high curvature, are isometric

to a quotient of round S2 × R if they are diffeomorphic to RP 3 \B3
.

Using Proposition 3.3, it is possible to give an existence result for Ricci flows
with surgery. For a proof see again the sources indicated above.

Proposition 3.4. Given a surgery model (Mstan, gstan, Dstan), there is a contin-
uous function δ : [0,∞) → R+ such that if δ′ : [0,∞) → R+ is a continuous
function with δ′(t) ≤ δ(t) for all t ∈ [0,∞) and (M, g) is a normalized Riemann-
ian manifold, then there is a Ricci flow with surgery M defined for times [0,∞)
such thatM(0) = (M, g) and which is performed by δ′(t)-precise cutoff. (Observe
that we can possibly have M(t) = ∅ for large t.)

Moreover, if M is a Ricci flow with surgery on some time interval [0, T ) that
has normalized initial conditions and that is performed by δ(t)-precise cutoff, then
M can be extended to a Ricci flow on the time interval [0,∞) that has δ′(t)-precise
cutoff on the time interval [T,∞).

We point out that the parameters δ(t) and ε in Proposition 3.3 and δ(t) in
Proposition 3.4 depend on the choice of the surgery model.

From now on we will fix a surgery model (Mstan, gstan, Dstan)
for the rest of this paper and we will not mention this
dependence anymore.

4. Perelman’s longtime analysis result

Consider a Ricci flow with surgery M. For any non-presurgery point (x, t) ∈
M, we define

ρ(x, t) = max{r > 0 : sect ≥ −r−2 on B(x, t, r)}.
If sect ≥ 0 onM(t), then we set ρ(x, t) =∞. For any r0 > 0, we moreover define

ρr0(x, t) = min{ρ(x, t), r0}.
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The following Proposition is a consequence of [24, 6.3, 6.8, 7.3]:

Proposition 4.1. There is a continuous positive function δ : [0,∞)→ R+ such
that for every w > 0 there are constants ρ(w), r(w) > 0 and T = T (w), K =
K(w) <∞ such that:

LetM be a Ricci flow with surgery on the time interval [0,∞) with normalized
initial conditions that is performed by δ(t)-precise cutoff. Let t > T and x ∈
M(t). Then

(a) If 0 < r ≤ min{ρ(x, t), r
√
t} and voltB(x, t, r) ≥ wr3, then |Rm| < Kr−2

on B(x, t, r).
(b) If voltB(x, t, ρ(x, t)) ≥ wρ3(x, t), then ρ(x, t) > ρ

√
t and |Rm| < Kt−1 on

B(x, t, ρ
√
t).

Note that assertion (a) is only a direct consequence of [24, 6.3, 6.8] in the
case in which r ≥ θ−1(w)h, where θ(w) is a universal positive constant that only
depends on w and h is the maximal cutoff radius on the time interval [1

2
t, t].

In the case in which r < θ−1(w)h it is possible to conclude r � r(t), for an
appropriate choice of δ(t), where r(t) is the canonical neighborhood scale from
Proposition 3.3. Then the desired bound follows from the fact that regions of
high curvature below the canonical neighborhood scale look sufficiently “neck-
like” and are hence sufficiently collapsed. We omit the proof in this case since
both Proposition 4.1(a) and its consequence, Proposition 4.2(a), are only stated
for completeness and neither statement will be used in the rest of the paper.
Assertion (b) of Proposition 4.1, which will be important for us later on, is indeed
a direct consequence of [24, 7.3].

We can generalize this Proposition by passing to the universal cover: Consider
a non-presurgery point (x, t) ∈ M and r > 0. Lift x ∈ M(t) to the universal

cover M̃(t) of M(t) to obtain x̃. Then we call volt B̃(x̃, t, r) the volume of the

r-ball around x̃ in M̃(t). Obviously, volt B̃(x̃, t, r) ≥ voltB(x, t, r).
We can now state the following more general Proposition, which will be crucial

for the proof of Theorem 1.1:

Proposition 4.2. Under the same assumptions as in Proposition 4.1, we have:

(a) If 0 < r ≤ min{ρ(x, t), r
√
t} and volt B̃(x̃, t, r) ≥ wr3, then |Rm| < Kr−2

on B(x, t, r).

(b) If volt B̃(x̃, t, ρ(x, t)) ≥ wρ3(x, t), then ρ(x, t) > ρ
√
t and |Rm| < Kt−1 on

B(x, t, ρ
√
t).

Proof. We first need to define the universal covering flow M̃ of M. Recall that
M = ((T i), (M i × I i, gi), (Ωi), (U i

±), (Φi)) where each gi is a Ricci flow on the
closed 3-manifold M i defined for times I i. We can lift each of these flows to the
universal cover M̃ i of M i. Its lift g̃i still satisfies the Ricci flow equation. More-
over, all its time slices are complete Riemannian metrics and we have bounded

curvature on compact subintervals of I i. Denote by Ω̃i the preimage of Ωi under
the universal covering projection for each i.
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We will now assemble the flows (M̃ i × I i, g̃it) to a Ricci flow with surgery.
Observe first that for every i, the subset U i

− ⊂M i is bounded by pairwise disjoint,
embedded 2-spheres. So for every point p ∈ U i

−, the natural map π1(U i
−, p) →

π1(M i, p) is an injection. Now let Ũ i
+ ⊂ M̃ i+1 be the preimage of U i

+ under the
universal covering projection. The complement of this subset is still a collection

of pairwise disjoint, embedded 3-disks and hence each component of Ũ i
+ is simply

connected. Via (Φi)−1 : U i
+ → U i

− there is a covering map Ũ i
+ → U i

+ → U i
− ⊂M i.

Since every component of Ũ i
+ is simply-connected, we find a lift φi : Ũ i

+ → M̃ i.
Using the fact that U i

− → M i is π1-injective, we conclude that φi is injective.

Denote by Ũ i
− ⊂ M̃ i the image of φi and let Φ̃i : Ũ i

− → Ũ i
+ be its inverse. Then

M̃ = ((T i), (M̃ i×I i, g̃it), (Ω̃i), (Ũ i
±), (Φ̃i)) is a Ricci flow with surgery that satisfies

all properties of Definition 2.9 (“δ(t)-precise cutoff”) except for (6) if we allow
countably many disks Di

1, D
i
2, . . . at each surgery time T i in property (2).

We now argue that the proof of Proposition 4.1, as presented in [24], can still

be carried out in the universal covering flow M̃. For this, observe first that

the time slices of M̃ might be non-compact, but they are still complete and the
curvature is bounded on compact time intervals away from surgery times. So all
arguments in the proof of Proposition 4.1 that involve picking points in M at
which certain geometric quantities are maximal, can still be carried out in the

universal covering flow M̃. Also all arguments in this proof that make use of the

existence of minimizing L-geodesics, stay valid in M̃.
Secondly, note that at several points the proof of Proposition 4.1 uses the

assertions of the Canonical Neighborhood Theorem, Proposition 3.3. Since these
assertions are satisfied forM, and they are stable under taking covers, they must

also hold for the universal covering flow M̃.
Finally, let us recapitulate the proof of Proposition 4.1 as presented in Perel-

man’s paper [24]. The first ingredient in Perelman’s proof of Proposition 4.1 is
[24, 6.3(c)], which is a bounded curvature at bounded distance result. The meth-
ods used in the proof of this result involve point-picking, L-geometry and the
maximum principle applied to functions whose support is contained in balls of

a definite radius. All these methods can still be carried out in M̃. The second
and third ingredients are [24, 6.5 and 6.6]. These Lemmas are statements about
smooth Ricci flows that are defined on a parabolic neighborhood or about smooth
Riemannian balls and hence don’t have to be modified for our purposes. Eventu-
ally, in [24, 6.7], these three ingredients are combined to prove Proposition 4.2(a).
The arguments used in this proof only involve point-picking and an open-closed

argument and can hence also be carried out in M̃. Proposition 4.2(b) is a direct
consequence of part (a) and the t−1-positivity of the curvature, see [24, 7.3]. �

5. The thick-thin decomposition

We now describe how in the longtime picture Ricci flows with surgery de-
compose the manifold into a thick and a thin part. In this process, the thick
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part approaches a hyperbolic metric while the thin part collapses on local scales.
Compare this Proposition with [24, 7.3] and [14, Proposition 90.1].

Proposition 5.1. There is a function δ : [0,∞) → R+ such that given a Ricci
flow with surgery and δ(t)-precise cutoff M with normalized initial conditions
defined on the interval [0,∞), we can find a constant T0 < ∞, a function w :
[T0,∞) → R+ with w(t) → 0 as t → ∞ and a collection of orientable finite
volume hyperbolic manifolds (H ′1, ghyp,1), . . . , (H ′k, ghyp,k) such that:
There are finitely many embedded 2-tori T1,t, . . . , Tm,t ⊂ M(t) for t ∈ [T0,∞)
which move by isotopies and don’t hit any surgery points and which separate
M(t) into two (possibly empty) closed subsets Mthick(t),Mthin(t) ⊂ M(t) such
that

(a) Mthick(t) does not contain surgery points for all t ∈ [T0,∞).
(b) The Ti,t are incompressible in M(t) and t−1/2 diamt Ti,t < w(t).
(c) The topology of Mthick(t) stays constant in t and Mthick(t) is a disjoint

union of components H1,t, . . . , Hk,t ⊂ Mthick(t) such that the interior of
each Hi,t is diffeomorphic to H ′i.

(d) We can find an embedded cross-sectional torus T ′j,t in each cusp of the H ′i
which moves by isotopies such that the following holds: Chop off the ends
of the H ′i along the T ′j,t and call the remaining open manifolds H ′′i,t. Then

each H ′′i,t contains a w−1(t)-tubular neighborhood of the thick part1 of H ′i
and there are smooth families of diffeomorphisms Ψi,t : H ′′i,t → Hi which
become closer and closer to being isometries, i.e.∥∥ 1

4t
Ψ∗i,tg(t)− ghyp,i

∥∥
C[w−1(t)](H′′i,t)

< w(t)

and which move slower and slower in time, i.e.

sup
H′′i,t

t1/2|∂tΨi,t| < w(t)

for all t ∈ [T0,∞) and i = 1, . . . , k.
(e) A large neighborhood of the part Mthin(t) is better and better collapsed,

i.e. for every t ≥ T0 and x ∈M(t) with

distt(x,Mthin(t)) < w−1(t)
√
t

we have

voltB(x, t, ρ√t(x, t)) < w(t)ρ3√
t
(x, t).

6. Analysis of the thin part

Based on property (e) of Proposition 5.1 we can analyze the thin partMthin(t)
for large t and recover its graph structure geometrically. The following result,
Proposition 6.1, follows from the work of Morgan and Tian ([21]). We have
altered its phrasing to include more geometric information. We explain below

1On the hyperbolic manifolds H ′i the thick part denotes the part in which the injectivity
radius is larger than the Margulis constant.
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where to find each of the following conclusions in their paper. Similar results can
also be found in [15], [3], [6] and [8].

We first summarize the content of Proposition 6.1. Consider a Riemannian
3-manifold (M, g) with boundary. We will impose assumptions on (M, g) that
are satisfied by the rescaled metric on the thin part (Mthin(t), t−1g(t)). The first
assumption is that (M, g) is locally collapsed at scale ρ1(x), i.e. for some small
w0 > 0 and for all x ∈M for which B(x, ρ1(x)) ⊂ IntM we have

volB(x, ρ1(x)) < w0ρ
3
1(x).

Secondly, we assume that the curvature of (M, g) is bounded if we pass to smaller
scales on which (M, g) is non-collapsed. In a few words, this means that for any
point x ∈M and every r � ρ1(x) for which B(x, r) ⊂ IntM and

volB(x, r) > wr3

for some w > w0, we have |Rmt| < K(w)r−2 on B(x, r). Thirdly, we impose
geometric conditions on collar neighborhoods of the boundary components of
(M, g), which are natural to the setting of Proposition 5.1.

The conclusions of Proposition 6.1 help us understand both the global topolog-
ical structure of the collapse on (M, g) as well as its approximate local geometry.
Before explaining these conclusions, it is helpful to first consider the case in which
(M, g) is collapsed with a global lower bound on the sectional curvature. In this
case (M, g) is collapsed to either a point, a 1-dimensional or a 2-dimensional
space. The following examples illustrate different collapsing behaviors in this
setting:

(0) In the case in which (M, g) is collapsed to a point, M has to be closed
and we speak of a total collapse. Examples for such a behavior would be
a small 3-sphere, a small 3-torus or a small nilmanifold.

(1) A collapse to a 1-dimensional space generically occurs along 2-dimensional
fibers, which can be either spheres or tori. For example, the Cartesian
products S2×R (collapse along spheres) and T 2×R (collapse along tori)
with very small first factor are each collapsed to a line. The Z2 quotients
of these examples, RP 2×̃R and Klein ×̃R, are each collapsed along spheres
or tori to a ray. Note that in these examples, M is only fibered by spheres
or tori on a generic subset, away from an embedded RP 2 or Klein bottle,
where the fibration degenerates.

Such a fibration by spheres or tori does not always degenerate along
an embedded hypersurface, as the next example illustrates: Consider a
2-dimensional, rotationally symmetric surface of positive curvature that
has only one end and that is asymptotic to a thin cylinder. The Cartesian
product of this surface with a small S1-factor is collapsed along tori to
a ray. These tori are products of concentric circles around the tip of the
surface with the S1-factor, and they degenerate to a circle over the tip
of the surface. Note that in this example M is diffeomorphic to an open
solid torus S1×B2. In a similar way we can construct metrics on B3 that
are collapsed to a ray along 2-spheres which degenerate to a point.
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Figure 1. A decomposition of M into V1, V2 and V ′2 along embed-
ded 2-tori ΣT

1 , . . . ,Σ
T
8 and embedded 2-spheres ΣS

1 , . . . ,Σ
S
4 . In our

proposition, we impose geometric conditions on the collar neigh-
borhood U ′T around the boundary torus of M .

(2) A collapse to a 2-dimensional space generically occurs along S1-fibers.
Basic examples for such a collapse would be Cartesian products S1 ×R2,
with small S1-factor, or S1 × Σ, where the S1-factor is small and Σ is a
surface whose curvature is bounded from below. More generally, we can
construct collapsing metrics on S1-fibrations over such surfaces.

Note that similarly as in the previous case, M might only be fibered by
S1-fibers on a generic subset of M . For example if (M, g) is the quotient
of S1×R2 by a cyclic subgroup that acts as non-trivial rotations around 0
on R2 and as rotations on S1, then M only posseses such a fibration away
from the quotient of S1 × {0}, which is a singular fiber. In this example
(M, g) is collapsed to a cone and the tip of this cone corresponds to the
quotient of S1 × {0}.

We point out another example in which the fibration on M is degener-
ate. Consider again a thin 2-dimensional, rotationally symmetric surface
of positive curvature that is asymptotic to a thin cylinder and take a
Cartesian product with R. This space is collapsed along S1-fibers to a
half plane. The S1-fibers correspond to concentric circles on the surface.
Hence the S1-fibration only exists away from an embedded line or an
embedded solid cylinder.

In the setting of Proposition 6.1, (M, g) is only locally collapsed at scale ρ1(x)
around every point x ∈ M . So the examples given above for the case of the
global collapse now only serve as models for these local collapses. One of the
main difficulties in the proof of Proposition 6.1 is to understand the transition
between those different models, which possibly describe the metric at different
scales, and to patch together the induced topological structures on their overlaps.
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We now outline the statement of this proposition. If M is locally collapsed
to a point, then M must be closed and the collapse must be global. This case
is very well understood. So assume that M is not collapsed to a point. In this
case we decompose M into three subsets V1, V2 and V ′2 (see Figure 1). The subset
V1 roughly consists of all points around which we observe a local collapse to a
1-dimensional space, i.e. V1 is the set of those points whose local models are for
example mentioned in (1) of the preceding list. On the subset V2 we observe
local collapses to 2-dimensional spaces and the geometry is locally modeled, for
example, by spaces mentioned in (2) of the preceding list. The subset V ′2 has the
following properties: On a neighborhood around each point x ∈ V ′2 we observe a
local collapse to a half-open interval at scale ρ1(x), but there is a scale r � ρ1(x)
at which we observe a collapse to a 2-dimensional space. The difference between
V2 and V ′2 will not be important for us in this paper. The subsets V1, V2, V

′
2 are

separated from one another by embedded 2-tori denoted by ΣT
i and embedded

2-spheres denoted by ΣS
i .

The decomposition of M into the subsets V1, V2, V
′

2 depends on a parameter
µ > 0 that governs how well (M, g) is approximated by these local models. Note
that, even after fixing µ, this decomposition is still not unique. For example, if
around some point x ∈M the manifold (M, g) looks like S1 × S1 ×R, with very
small first and barely small enough second factor, then it is not clear whether we
observe a collapse along S1-fibers or along 2-tori. Therefore, x could potentially
belong to V1, V2 or V ′2 . On the other hand, this ambiguity allows us to smoothly
pass from one collapsing model to another.

The topology of the components of V1 and V ′2 is very restricted and can be
classified easily. In order to understand the topology and local geometry of V2,
we decompose V2 into three subsets V2,reg, V2,cone and V2,∂ (see Figure 2). Roughly
speaking, V2,reg is the set of all points where the collapse is modeled on the example
S1 ×R2 from (2) of the preceding list. Hence this subset admits an S1-fibration.
The set V2,cone consists of approximately all points whose local model is a finite
quotient of S1×B2 as described in (2) of the above list. Around the points of this
subset, the manifold is collapsed to a cone. Note that since a cone is regular away
from its tip, the components of V2,cone have bounded diameter and are adjacent to
V2,reg. It can moreover be shown that the components of V2,cone are diffeomorphic
to a solid torus D2 × S1 and hence bounded by 2-tori, which we will denote by
ΞT
i .
The set V2,∂ consists of all points whose neighborhoods are collapsed towards

a 2-dimensional space with boundary. An example for a local model around such
points would be the one involving the surface that is asymptotic to a thin cylinder
in (2) of the preceding list (recall that this model is collapsed to a half plane). It
is possible to choose V2,∂ such that its components are either diffeomorphic to a
solid cylinder D2 × I or a solid torus D2 × S1 in such a way that the boundary
circles of the D2-factors correspond to the S1-fibers of V2,reg. The components
that are diffeomorphic to a solid torus are bounded by 2-tori, which we denote by
ΞO
i . Each component that is diffeomorphic to a solid cylinder is positioned within
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Figure 2. An example for a component of V2. This component has
6 boundary components: one toroidal component ΣT

1 and 5 spher-
ical components ΣS

1 , . . . ,Σ
S
5 . The spherical boundary components

are connected by 5 components of V2,∂, which are diffeomorphic to
solid cylinders D2 × I. Their annular boundary parts are denoted
by ΞA

1 , . . . ,Ξ
A
5 . The boundary circles of each of these annuli lie in

the ΣS
i and bound equatorial annuli ΞE

1 ⊂ ΣS
1 , . . . ,Ξ

E
5 ⊂ ΣS

5 within
these boundary spheres. The subset V2,∂ also contains a component
that is diffeomorphic to a solid torus and bounded by a 2-torus ΞO

1 .
The subset V2,cone consists of a single solid torus which is bounded
by a 2-torus ΞT

1 . The closure of the complement of V2,cone ∪ V2,∂ is
denoted by V2,reg and carries an S1-fibration. Thin grey circles il-
lustrate the behavior of this fibration on the boundary components
of V2,reg.

V2 in such a way that its two diskal boundary parts are contained in spherical
boundary components ΣS

i of V2. That means that if we denote their annular
boundary components by ΞA

i , then the boundary circles of each ΞA
i lie in the

spherical boundary components of V2. Each spherical boundary component ΣS
i′

of V2 contains exactly two diskal boundary parts of components of V2,∂ or, in other
words, two boundary circles of the annuli ΞA

i . These two boundary circles bound
an annulus within ΣS

i′ , denoted by ΞE
i . The S1-fibration on V2,reg restricts to the

standard S1-fibration of this annulus. Summarizing our discussion, we conclude
that the boundary of V2,reg consists of the 2-tori ΣT

i that are contained in V2, the
2-tori ΞT

i and ΞO
i and the union of the annuli ΞA

i and ΞE
i .

We now state the precise result in Proposition 6.1. The structure of this propo-
sition is as follows: After stating the assumptions (i)-(iii), we explain what hap-
pens in the case in which the manifold is collapsed to a point. If this case does not
occur, then the proposition asserts the decomposition of M into subsets V1, V2, V

′
2 .

The topological structure of this decomposition is explained in assertions (a1)-
(a4). Next, we explain the decomposition of V2 into V2,reg, V2,cone, V2,∂ and list its
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topological properties in (b1)-(b4). Finally, in (c1)-(c4), we describe the local
collapsing behavior in the different subsets V1, V2, V2,reg and V2,cone.

Proposition 6.1. For every two continuous functions r,K : (0, 1)→ (0,∞) and
every µ > 0 there are constants w0 = w0(µ, r,K) > 0, 0 < s(µ, r,K) < 1

10
and

a(µ) > 0, monotonically increasing in µ, such that:
Let (M, g) be a compact manifold with boundary such that:

(i) Each component T of ∂M is an incompressible torus and for each such
T there is a closed subset U ′T ⊂ M that is diffeomorphic to T 2 × I such
that T ⊂ ∂U ′T and such that the boundary components of U ′T have distance
of at least 2. Moreover, there is a fibration pT : U ′T → I such that the
T 2-fiber through every x ∈ U ′T has diameter < w0ρ1(x).

(ii) For all x ∈M for which B(x, ρ1(x)) ⊂ IntM we have

volB(x, ρ1(x)) < w0ρ
3
1(x).

(iii) For all w ∈ (w0, 1), r < r(w) and x ∈ M we have: if B(x, r) ⊂ IntM
and volB(x, r) > wr3 and r < ρ(x), then |Rm|, r|∇Rm |, r2|∇2 Rm | <
K(w)r−2 on B(x, r).

Then either M is closed and diffeomorphic to an infra-nilmanifold or a manifold
that also carries a metric of non-negative sectional curvature, and diamM <
µρ1(x) for all x ∈M , or the following holds:

There are finitely many embedded 2-tori ΣT
i and 2-spheres ΣS

i ⊂M , which are
pairwise disjoint and disjoint from ∂M , as well as closed subsets V1, V2, V

′
2 ⊂ M

such that (see Figure 1 for an illustration)

(a1) M = V1 ∪ V2 ∪ V ′2 , the interiors of the sets V1, V2 and V ′2 are pairwise
disjoint and ∂V1 ∪ ∂V2 ∪ ∂V ′2 = ∂M ∪

⋃
i Σ

T
i ∪

⋃
i Σ

S
i . Obviously, no two

components of the same set share a common boundary component.
(a2) ∂V1 = ∂M ∪

⋃
i Σ

T
i ∪

⋃
i Σ

S
i . In particular, V2 ∩ V ′2 = ∅ and V2 ∪ V ′2 is

disjoint from ∂M .
(a3) V1 consists of components diffeomorphic to one of the following manifolds:

T 2 × I, S2 × I, Klein2 ×̃I, RP 2×̃I, D2 × S1, D3,

a T 2 bundle over S1, S2 × S1 or the union of two (possibly different)
components listed above along their T 2- or S2-boundary.

(a4) Every component of V ′2 has exactly one boundary component and this com-
ponent borders V1 on the other side. Moreover, every component of V ′2 is
diffeomorphic to

D2 × S1, D3, L(p, q) \B3, Klein2 ×̃I.
We can further characterize the components of V2 (see Figure 2 for an illustra-

tion): In V2 we find embedded 2-tori ΞT
i and ΞO

i which are pairwise disjoint and
disjoint from the boundary ∂V2. Furthermore, there are embedded closed 2-annuli
ΞA
i ⊂ V2 whose interior is disjoint from the ΞT

i , ΞO
i and ∂V2 and whose boundary

components lie in the components of ∂V2 that are spheres. Each spherical com-
ponent of ∂V2 contains exactly two such boundary components, which separate
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the sphere into two (polar) disks and one (equatorial) annulus ΞE
i . We also find

closed subsets V2,reg, V2,cone, V2,∂ ⊂ V2 such that

(b1) V2,reg ∪ V2,cone ∪ V2,∂ = V2 and the interiors of these subsets are pairwise
disjoint. Moreover, ∂V2,reg is the union of

⋃
i Ξ

T
i ∪

⋃
ΞO
i ∪

⋃
i Ξ

A
i

⋃
i Ξ

E
i

and the components of ∂V2 which are diffeomorphic to tori.
(b2) V2,reg carries an S1-fibration which is compatible with its boundary com-

ponents and all its annular regions.
(b3) The components of V2,cone are diffeomorphic to solid tori (≈ D2×S1) and

bounded by the ΞT
i such that the fibers of V2,reg on their boundaries are not

nullhomotopic inside V2,cone.
(b4) The components of V2,∂ are either solid tori (≈ D2 × S1) and bounded by

the ΞO
i such that the S1-fibers of V2,reg on the ΞO

i are nullhomotopic inside
the V2,∂ or they are solid cylinders (≈ D2 × I) such that their two diskal
boundary components are polar disks on ∂V2 and their annular boundary
component is one of the ΞA

i . Every polar disk and every ΞA
i bounds such

a component on exactly one side.

We now explain the geometric properties of this decomposition:

(c1) For every x ∈ V1, the ball (B(x, ρ1(x)), ρ−2
1 (x)g, x) is µ-close (in the

Gromov-Hausdorff sense) to a 1-dimensional interval (J, geucl, x) or an
S1 of length > a(µ).

Consider the case in which x lies in a component of V1 that is diffeomor-
phic to T 2 × I. Then (J, x) can be chosen to be ((−b, 1), 0) for some 0 ≤
b ≤ 1, depending on how close x is to ∂M . If y ∈ B(x, ρ1(x)) is a point
that is at least 1

25
away from the endpoints of J via this identification, then

we can find an open subset U with B(y, 1
50
ρ1(x)) ⊂ U ⊂ B(y, 1

25
ρ1(x)), a

subinterval J ′ ⊂ (−b, 1) and a map p : (U, ρ−2
1 (x)g)→ (J ′, geucl) such that

(α) p is 1-Lipschitz and its differential has an eigenvalue > 1− µ every-
where,

(β) U is diffeomorphic to S2× J ′ or T 2× J ′ such that p is the projection
map onto the interval,

(γ) the fibers of p have diameter at most µ with respect to the metric
ρ−2

1 (x)g.
(c2) For every x ∈ V2, the ball (B(x, ρ1(x)), ρ−2

1 (x)g, x) is µ-close to a 2-
dimensional pointed Alexandrov space (X, x) of area > a.

(c3) For every x ∈ V2,reg, the ball (B(x, sρ1(x)), s−2ρ−2
1 (x)g, x) is µ-close to a

standard 2-dimensional Euclidean ball (B = B1(0), geucl, x = 0).
Moreover, there is an open subset U with B(x, 1

2
sρ1(x)) ⊂ U ⊂ B(x,

sρ1(x)), a smooth map p : U → R2 such that:
(α) there are vector fields X1, X2 on U such that dp(Xi) = ∂

∂xi
and X1, X2

are almost orthonomal, i.e. |〈Xi, Xj〉 − δij| < µ for all i, j = 1, 2,
(β) U is diffeomorphic to B2×S1 such that p : U → p(U) corresponds to

the projection onto B2 and the S1-fibers of p are isotopic in U to the
fiber of the fibration on V2,reg that passes through x.
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(γ) the fibers of p as well as the fibers of V2,reg, belonging to the fibration
mentioned in assertion (b2), that are contained in U , have diameter
at most µ and both families of fibers enclose an angle < µ with each
other whenever they intersect.

(c4) For every x ∈ V2,cone, the ball B(x, 1
10
ρ1(x)) covers the component of V2,cone

in which x lies.

Proof. Our proposition is a consequence of the arguments used for the proof
of Theorem 0.2 in Morgan-Tian ([21]). In the following, we will point out the
intermediate steps in this proof that imply the assertions of our proposition and
we will explain how some of its arguments have to be modified slightly to fit our
assumptions.

First note that our proposition and Theorem 0.2 use different philosophies.
Our proposition asserts that there is a small w0 > 0 with the property that every
“w0-collapsed” manifold (M, g) satisfies the desired topological and geometric as-
sertions while Theorem 0.2 claims that whenever we have a sequence of manifolds
(Mn, gn) that are “wn-collapsed” with limn→∞wn = 0, then these assertions hold
for sufficiently large n. These two philosophies are equivalent, similarly as the
ε-δ-criterion for continuity is in general equivalent to the sequence criterion. Un-
der this equivalence, assumption (ii) of our proposition implies assumption 1. of
Theorem 0.2, which reads

1. For each point x ∈Mn there exists a radius ρ = ρn(x) such that
the ball Bgn(x, ρ) has volume at most wnρ

3 and all the sectional
curvatures of the restriction of gn to this ball are all at least −ρ−2.

Except for the higher derivative bounds, which are not really needed in the proof
of Theorem 0.2, assumption (iii) of our proposition implies assumption 3. of
Theorem 0.2, which reads

3. For every w′ > 0 there exist r = r(w′) > 0 and constants Km =
Km(w′) < ∞ for m = 0, 1, 2, . . ., such that for all n sufficiently
large, and any 0 < r ≤ r, if the ball Bgn(x, r) has volume at least
w′r3 and sectional curvatures at least −r−2, then the curvature and
its mth-order covariant derivatives at x, m = 1, 2, . . ., are bounded
by K0r

−2 and Kmr
−m−2, respectively.

Lastly, assumption (i) of our proposition translates to the following condition (we
use “[. . . ]” to indicate repetition):

Each component T of ∂Mn is an incompressible torus [. . . ] such
that the T 2-fiber through every x ∈ U ′T has diameter < wnρ1(x).

This condition does not imply assumption 2. of Theorem 0.2:

2. Each component of the boundary of Mn is an incompressible
torus of diameter at most wn and with a topologically trivial collar
containing all points withinin distance 1 of the boundary on which
the sectional curvatures are between −5/16 and −3/16.

It will become evident later, however, that either condition is sufficient for our
purposes.
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Next, Morgan and Tian make the following simplifying assumption:

Assumption 1. For each n, no connected, closed component of Mn

admits a Riemannian metric of non-negative sectional curvature.

In our proposition we don’t want to make this assumption. So we have to find
alternative arguments whenever this assumption is used. Assumption 1 is es-
sentially used at two places in the proof of Theorem 0.2. Firstly, it is used to
rule out certain topologies in the description of the geometric decomposition of
(M, g). This issue can be resolved by adding these topologies to the list of pos-
sible topologies, e.g. in assertion (a3). Secondly, it is used in the proof of [21,
Lemma 1.5] to show that the function ρn(x) can be rechosen to be sufficiently
regular and ≤ 1

2
diamM . The regularity assumption is automatically satisfied by

our choice ρ1(x) = min{ρ(x), 1} and by any multiple λρ1(x) for 0 < λ ≤ 1. We
will now argue that, nevertheless, we can add the simplifying assumption that

ρ1(x) ≤ max{C, µ−1} diamM for all x ∈M
for some universal constant C <∞. This bound will be enough for our purposes,
because we can choose λ = 1

2
min{C−1, µ} to ensure that the function ρn(x) in

[21] is bounded by 1
2

diamM .
So assume for the moment that ρ1(x) > max{C, µ−1} diamM for some x ∈M

and some constant C <∞ that we will determine later. Since M ⊂ B(x, ρ1(x)),
this inequality holds for all x ∈M and it implies

diamM < min{C−1, µ}ρ1(x) ≤ µρ1(x).

By condition (i), M must be closed. It now follows from [9, Corollary 0.13] that we
can choose C uniformly such that the lower sectional curvature bound of −ρ−2

1 (x)
on (M, g) together with the diameter bound imply that M either supports a
metric of non-negative sectional curvature or is infranil. This implies that the
assertion in the paragraph immediately after condition (iii) is satisfied and we
are done. So we may assume from now on that ρ1(x) ≤ max{C, µ−1} diamM for
all x ∈M or, equivalently, that the function ρn(x) in [21], being equal to λρ1(x),
is bounded from above by 1

2
diamM .

Next, we have to construct the sets V1, V2, V
′

2 as well as V2,reg, V2,cone, V2,∂. These
sets will arise from the construction of the sets Vn,1 and Vn,2 in [21]. Note that the
construction of Vn,1 and Vn,2 is carried out in several steps. In the following we
provide an overview over this construction and point out the necessary changes
for the proof of our proposition.

In [21, Proposition 5.2], Morgan-Tian define Xn,1 ⊂ Mn to be the set of all
points at which (Mn, gn) is locally collapsed to an open interval. The statement
of Proposition 5.2 is that Xn,1 can be extended to a subset Xn,1 ⊂ Un,1 ⊂ Mn

such that the components of Un,1 are diffeomorphic to S2 × (0, 1), T 2 × (0, 1) or
a 2-torus bundle over the circle and such that the ends of Un,1 are geometrically
controlled. It follows from the proof of this proposition, that all points x ∈ Un,1
satisfy the geometric characterization of assertion (c1) in our proposition. Note
that in our setting, due to the lack of Assumption 1, we have to include 2-sphere
bundles over the circle to the list of possible topologies of Un,1.
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Next, Morgan-Tian analyze the components of A ⊂Mn \ Un,1. In [21, Lemma
5.3] they conclude that for each such A there are three possibilities:

(1) (Mn, gn) is locally collapsed in A to a 2-dimensional space of area bounded
from below.

(2) (Mn, gn) is globally collapsed in A to a half-open interval such that one of
its endpoints corresponds to a point in A. In this case A is diffeomorphic
to T 2 × I and adjacent to the boundary of Mn or A is diffeomorphic to
D2 × S1, Klein2 ×̃I, D2 or RP 2×̃I.

(3) A is “a component which is close to an interval but which expands to
be close to a standard 2-dimensional ball” (compare with [21, Definition
5.4]). This means roughly that after decreasing ρn(x) by a small factor,
A satisfies the conditions of (1).

At this point we need to recall that in our setting we are using a different char-
acterization of the metric around the boundary of M . So we have to be careful
with arguments that involve points close to the boundary of M . It can how-
ever be shown that, for sufficiently small w0, every component A that is adjacent
to ∂M satisfies (2). Using their conclusion, Morgan-Tian define U ′n,1 to be the
union of Un,1 with all such components A that satisfy (2). Note that, again all
points x ∈ U ′n,1 satisfy the geometric characterization of assertion (c1) in our
proposition, since the important part of this assertion involves points y that are
sufficiently far away from the endpoints of the interval towards which we observe
the local collapse. We will later choose V1 to be a subset of U ′n,1. This will then
establish assertion (c1).

After constructing U ′n,1, Morgan-Tian remove a small bit of each open end of
U ′n,1 and call the new (closed) subset Wn,2 and the closure of its complement Wn,1

(see [21, subsec 5.3]). The reason for doing this is that this way the ends of Wn,2

are equipped with fibrations by 2-tori or 2-spheres that are compatible with the
boundary components of Wn,2 and the fibrations of the adjacent components of
Wn,1. For every component A ⊂Mn\U ′n,1, Morgan-Tian denote the corresponding

component of Wn,2 by Â ⊃ A. Note that the change between A and Â is generally
negligible. So if A belongs to case (1) in the preceding list, then we will still

interpret Â to be locally collapsed to a 2-dimensional space; analogously for case
(3). We will later choose the subset V2 ⊂M such that for each of its components

C ⊂ V2 there is some component A from case (1) such that A ⊂ C ⊂ Â. The
same is true for V ′2 , with case (3) instead of case (1). Hence, using the arguments
in [21, subsec 5.3], assertion (c2) follows.

Next, Morgan-Tian analyze the geometry of the subset Wn,2 in [21, subsec
5.4]. In order to do this, they use the following intuition: Around every point x ∈
Wn,2 the Riemannian manifold (Mn, gn) is locally collapsed to some 2-dimensional
Alexandrov space (X, d), which depends on x. Every point y ∈ X satisfies one
of the following characterizations, which depend on certain parameters (compare
with [21, Theorem 3.22]):
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(1) y is regular, i.e. after enlarging (X, d) by some uniform factor, the geom-
etry around y is close to a 2-dimensional Euclidean ball.

(2) y is conical, i.e. after rescaling, the geometry around y looks like a subset
of a 2-dimensional cone.

(3) y is close to a regular boundary point, i.e. the local geometry around y is
close to a half plane.

(4) y is close to a corner, i.e. the local geometry around y is close to a 2-
dimensional sector.

Based on this classification of the points of the spaces that Wn,2 is locally collapsed
to, Morgan-Tian derive an induced classification of the points of Wn,2. As a result,
they obtain a covering of Wn,2 by subsets U2,generic (case (1)), finitely many “ε′-
solid tori near interior cone points” (case (2)), Ucyl, being the union of “ε′-solid
cylinders near flat 2-dimensional boundary points” (case (3)) and finitely many
“3-balls near 2-dimensional boundary corners” (case (4)). The subset U2,generic

carries an S1-fibration along which the collapse occurs. For the exact statements
see [21, Lemmas 5.7, 5.9]. Finally, Morgan-Tian define the subsets W ′

n,1,W
′
n,2

by removing the “3-balls near 2-dimensional boundary corners” from Wn,2 and
adding their closures to Wn,1.

Eventually, in [21, subsec 5.5] Morgan-Tian construct the subset Vn,1. In this
construction, they first slightly deform the boundary between W ′

n,1 and W ′
n,2

such that the S1-fibration on W ′
n,2 ∩ U2,generic is compatible with each boundary

component. After redefining W ′
n,1 in that way, they set Vn,1 := W ′

n,1. For our
proposition, we define V1 ⊂ M to be the union of this new subset W ′

n,1 minus
the components that were added as deformations of “3-balls near 2-dimensional
boundary corners” when we passed from Wn,1 to W ′

n,1. We define the subsets
V2, V

′
2 to be the unions of components in the closure of M \ V1 depending on

whether the corresponding component A belonged to case (1) or (3) in the list
before the previous list. The surfaces ΣT

i and ΣS
i are defined to be the boundary

components of V2 ∪V ′2 . Assertions (a1)-(a3) follow immediately. The topology of
the components of V ′2 , as asserted in (a4), can be deduced using a better lower
bound on the sectional curvature at the local scale. We omit the proof of this
assertion, since it has only been stated for completeness. For our purposes it will
just be important that each component of V ′2 has only one boundary component.

It remains to construct the subsets V2,reg, V2,cone and V2,∂. For this we look
at the construction of V2,n in [21]. The subset V2,n arises from W ′

2,n by remov-
ing deformations of certain “ε′-solid tori near interior cone points” and “ε′-solid
cylinders near flat 2-dimensional boundary points”. For our proposition we de-
note by V2,cone the union of all these deformations of “ε′-solid cylinders near flat
2-dimensional boundary points” within V2 and by V2,∂ the union of all these defor-
mations of “ε′-solid cylinders near flat 2-dimensional boundary points” together
with the deformations of “3-balls near 2-dimensional boundary corners”. So the
components of V2,cone are solid tori; we denote their boundaries by ΞT

i . Note
that for each deformed “3-balls near 2-dimensional boundary corners” and every
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spherical boundary component of V2 there are exactly two diskal boundary com-
ponents of deformed “ε′-solid cylinders near flat 2-dimensional boundary points”
that are contained in the boundary of this deformed 3-ball or spherical boundary
component. So the deformations of the “ε′-solid cylinders near flat 2-dimensional
boundary points” and the “3-balls near 2-dimensional boundary corners” form
chains, which may or may not close up. Chains that do not close up are home-
omorphic to solid cylinders ≈ D2 × I whose diskal boundary components are
contained in spherical boundary components of V2. After smoothing out the
corners equivariantly with respect to the adjacent S1-fibration, the boundaries
of these solid cylinders are smooth annuli; we denote them by ΞA

i . Note that
∂ΞA

i ⊂ ∂V2 and every spherical boundary component of V2 contains exactly two
circles of

⋃
i ∂ΞA

i , which enclose an annulus ΞE
i ⊂ ∂V2. A chain that does close up

is homeomorphic to a solid torus ≈ D2 × S1 and after smoothing equivariantly,
its boundary 2-torus is denoted by ΞO

i . This establishes assertions (b1)-(b4).
Assertions (c4) follows from the construction process and assertion (c3) fol-

lows from the construction process together with the statement and proof of [21,
Proposition 4.4].

Finally, we make a remark on the choice of the parameters µ, w0, s and a(µ).
The constants in [21] that determine the preciseness of the collapse or the closeness
with respect to the Gromov-Hausdorff distance are mainly assumed to be fixed
during the construction process of the subsets V1,n and V2,n. This is due to the
fact that the purpose of [21] was to establish a purely topological theorem. Our
proposition, however, also contains a geometric characterization of the collapse, as
presented in assertions (c1)-(c4). These assertions involve a degree of preciseness
µ, which can be chosen arbitrarily in the beginning of our proposition. Our
geometric characterization is more or less a byproduct of the proof in [21] and
the Lemmas and Propositions asserting the desired geometric statements, which
can mainly be found in section 4 of [21], do allow the choice of arbitrarily small
preciseness parameters. Allowing these parameters to depend on µ will however
entail a µ-dependence of the collapsing degree w0 and the lower bound a on
the diameters or areas of 1 or 2-dimensional collapsing models. The constant s,
which also depends on µ, roughly characterizes at which scale we can distinguish
local models of 2-dimensional Alexandrov spaces with preciseness µ. Due to this
dependence and the dependence of the area bound, s also depends on µ. �

7. Further geometric properties of the thin part

In this section we will identify parts in the decomposition of Proposition 6.1
that become non-collapsed when we pass to the universal cover.

Lemma 7.1. There are constants µ0, w1 > 0, where w1 only depends on s(ε, µ0,
r,K), such that: Consider the situation of Proposition 6.1 and assume µ ≤ µ0.
Assume moreover that (M, g) can be extended to a complete Riemannian manifold
(M0, g0) without boundary. Let x ∈M and consider one of the following cases:

(i) x ∈ C where C is a component of V2 with the property that the S1-fiber of
C ∩ V2,reg has infinite order in π1(M0) or
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(ii) x ∈ C where C is a component of V1 that is diffeomorphic to T 2 × I, is
not adjacent to any component of V ′2 and whose cross-sectional tori are
incompressible in M0.

Then vol B̃(x̃, r) ≥ w1r
3 for all r ≤ ρ1(x) where B̃(x̃, r) denotes the r-ball around

a lift x̃ of x in the universal cover M̃0 of M0.

We remark that the Lemma stays true if in (ii) we consider all components of
V1 whose generic fibers are incompressible tori.

The proof of the Lemma uses comparison geometry. For any three points
x0, x1, x1 in a metric space (X, d) we can construct a triangle4x0x1x2 ⊂ H2 in the
hyperbolic plane with the property that dist(xi, xj) = d(xi, xj) for all i, j = 0, 1, 2.
Its angles do not depend on the choice of the xi and are called comparison angles.
We will write ˜̂x1x0x2 := ^x1xix2. Note that this construction can be carried
out in any model space of constant curvature, but in this paper we will only be
interested in the model space of constant curvature −1. Using this notion, we
define the notion of strainers as follows:

Definition 7.2 ((m, δ)-strainer). Let δ > 0 and m ≥ 1. A 2m-tuple (a1, b1, . . . ,
am, bm) of points in a metric space (X, d) is called an (m, δ)-strainer around a
point x ∈ X if˜̂aixbj, ˜̂aixaj, ˜̂bixbj > π

2
− δ for all i 6= j, i, j = 1, . . . ,m

and ˜̂aixbi > π − δ for all i = 1, . . . ,m.

The strainer is said to have size r if d(x, ai) = d(x, bi) = r for all i = 1, . . . ,m or
size > r if d(x, ai), d(x, bi) > r for all i = 1, . . . ,m.

We will also need the following

Definition 7.3 ((m + 1
2
, δ)-strainer). Let δ > 0 and m ≥ 1. A 2m + 1-tuple

(a1, b1, . . . , am, bm, am+1) of points in a metric space (X, d) is called an (m+ 1
2
, δ)-

strainer around a point x ∈ X if˜̂aixbj > π
2
− δ for all i 6= j, i = 1, . . . ,m+ 1, j = 1, . . . ,m,˜̂aixaj > π

2
− δ for all i 6= j, i, j = 1, . . . ,m+ 1,˜̂bixbj > π

2
− δ for all i 6= j, i, j = 1, . . . ,m

and ˜̂aixbi > π − δ for all i = 1, . . . ,m.

The strainer is said to have size r if d(x, ai) = d(x, bi) = r for all i = 1, . . . ,m or
m+ 1 or size > r if d(x, ai), d(x, bi) > r for all i = 1, . . . ,m or m+ 1.

Proof. By volume comparison, it suffices to prove the desired inequality only for
r = ρ1(x).

Consider first case (i): Since the fibers on C ∩ V2,reg are non-contractible, we
conclude that C is disjoint from V2,∂. So either x ∈ V2,reg or x ∈ V2,cone. In the
second case we can apply Proposition 6.1(c4) and find an x′ ∈ B(x, 1

10
ρ1(x))∩V2,reg
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and ρ1(x′) > 1
2
ρ1(x). Let x̃ be a lift of x in the universal cover π : M̃0 → M0.

Since B̃(x̃′, 1
2
ρ1(x)) ⊂ B̃(x̃, ρ1(x)), for some lift x̃′ of x′, we can replace x by x′.

So assume without loss of generality that x ∈ V2,reg.
Consider now the map p : U → R2 and the metric g′ = s−2ρ−2

1 (x)g0 on M0.
For the rest of the proof of case (i) we will only work with the metric g′ on M0

as opposed to g, and we will bound the g′-volume of a 1-ball in the universal
cover from below by a universal constant. Observe that the sectional curvatures
of the metric g′ are bounded from below by −1 on this ball. In the following we
will denote by δk(µ0) a positive constant that depends on µ0 > 0 and that goes
to zero as µ0 goes to zero. We will then later choose µ0 small enough so that
all constants δk are sufficiently small. In the following paragraphs we carry out
concepts that can also be found in [4] or [5].

By the properties of x, we can find a (2, δ1(µ0))-strainer (a1, b1, a2, b2) of size
1
2

around x (here δ1(µ0) is a suitable constant as mentioned above). Recall that

this entails that dist(ai, x) = dist(bi, x) = 1
2

for all i = 1, 2. In the universal

cover M̃0, we can now choose lifts x̃, ãi, b̃i such that dist(ãi, x̃) = dist(ai, x) = 1
2

and dist(̃bi, x̃) = dist(bi, x) = 1
2
. Since the universal covering map is 1-Lipschitz,

we obtain furthermore dist(ãi, b̃j) ≥ dist(ai, bj), dist(ã1, ã2) ≥ dist(a1, a2) and

dist(̃b1, b̃2) ≥ dist(b1, b2). So all the comparison angles in the universal cover are

at least as large as those on M0 and hence we conclude that (ã1, b̃1, ã2, b̃2) is a
(2, δ1(µ0))-strainer around x̃ of size 1

2
.

Next, we extend this strainer to a 21
2
-strainer around x̃. To do this, observe

that by the property of the map p there is a sequence x̃n of lifts of x in M̃0 which
is unbounded and whose consecutive distance is at most 2µ0. So for sufficiently
small µ0, we can find an n such that with ỹ = x̃n we have

|dist(x̃, ỹ)− 2
√
µ0| ≤ 2µ0.

Note that x̃ and ỹ both project to x under the universal covering projection

π : M̃0 →M0. It follows that for i = 1, 2

dist(ỹ, ãi) ≥ dist(x, ai) = 1
2

and dist(ỹ, b̃i) ≥ 1
2
.

So in the triangle 4ỹx̃ãi, the segment |ỹãi| is the longest, which means that it
must be opposite to the largest comparison angle, i.e.˜̂ ãix̃ỹ ≥ ˜̂x̃ỹãi.
Since dist(x̃, ỹ)→ 0 as µ0 → 0, we find using hyperbolic trigonometry that

(7.1) ˜̂ ãix̃ỹ + ˜̂x̃ỹãi + ˜̂ ỹãix̃ > π − δ2(µ0)

and

(7.2) ˜̂ ỹãix̃ < δ2(µ0).

The last three inequalities imply

2˜̂ ãix̃ỹ > π − 2δ2(µ0).
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The same is true with ãi replaced by b̃i. So

(7.3) ˜̂ ãix̃ỹ > π
2
− δ2(µ0) and ˜̂ b̃ix̃ỹ > π

2
− δ2(µ0).

Hence (ã1, b̃1, ã2, b̃2, ỹ) is a (21
2
, δ(µ0))-strainer around x̃.

Since | dist(ỹ, ãi) − dist(x̃, ãi)| < 2
√
µ0 + 2µ0 and | dist(ỹ, b̃i) − dist(x̃, b̃i)| <

2
√
µ0 + 2µ0, we conclude that (ã1, b̃1, ã2, b̃2) is a (2, δ3(µ0))-strainer around ỹ of

size ≥ 1
2
− 2
√
µ0 − 2µ0. We now show that, symmetrically, (ã1, b̃1, ã2, b̃2, x̃) is a

21
2
-strainer around ỹ of arbitrarily good precision: By comparison geometry˜̂ ãix̃ỹ + ˜̂ b̃ix̃ỹ + ˜̂ ãix̃b̃i ≤ 2π.

Together with (7.3) and the strainer inequality at x̃, this yields˜̂ ãix̃ỹ < π
2

+ δ1(µ0) + δ2(µ0).

Combining this bound with (7.1) and (7.2) yields˜̂x̃ỹãi > π
2
− δ1(µ0)− 3δ2(µ0) = π

2
− δ3(µ0).

The same estimate holds for ˜̂x̃ỹb̃i.
Let m̃ be the midpoint of a minimizing segment joining x̃ and ỹ. We will

now show that (ã1, b̃1, ã2, b̃2, ỹ, x̃) is a 3-strainer around m̃ of arbitrarily good

precision. Since the distances of ãi and b̃i to m̃ differ from the distances to x̃ by

at most
√
µ0 + µ0, we can conclude that (ã1, b̃1, ã2, b̃2) is a (2, δ4(µ0))-strainer of

size ≥ 1
2
−√µ0−µ0 around m̃. It remains to bound comparison angles involving

the points x̃, ỹ: By the monotonicity of comparison angles, we have˜̂m̃x̃ãi ≥ ˜̂ ỹx̃ãi > π
2
− δ2(µ0) and ˜̂m̃x̃b̃i ≥ ˜̂ ỹx̃b̃i > π

2
− δ2(µ0).

Now, if we apply the same argument as in the last paragraph, replacing ỹ by m̃,

we obtain ˜̂x̃m̃ãi, ˜̂x̃m̃b̃i > π
2
− δ4(µ0). For analogous estimates on the opposing

angles, we then interchange the roles of x̃ and ỹ. Finally, ˜̂x̃m̃ỹ = π is trivially
true.

Set ã3 = ỹ and b̃3 = x̃. We have shown that (ã1, b̃1, ã2, b̃2, ã3, b̃3) is a (3, δ5(µ))-
strainer around m̃ of size ≥ √µ0 − µ0 >

1
2

√
µ0 (for µ0 <

1
4
) for a suitable δ5(µ0).

We will now use this fact to estimate the volume of the λ
√
µ0-ball around m̃ from

below for sufficiently small λ and µ0. We follow here the ideas of the proof of [4,
Theorem 10.8.18]. Define the function

f : B̃(m̃, λ
√
µ0) −→ R3 z 7−→ (dist(ã1, z)− dist(ã1, m̃),

dist(ã2, z)− dist(ã2, m̃), dist(ã3, z)− dist(ã3, m̃)).

We will show that f is 100-bilipschitz for sufficiently small µ0 and λ. Obviously, f
is 3-Lipschitz, so it remains to establish the lower bound 1

100
. Assume that this was

false, i.e. that there are z1, z2 ∈ B̃(m̃, λ
√
µ0) with dist(z1, z2) > 100|f(z1)−f(z2)|.

Then for all i = 1, 2, 3

(7.4) dist(z1, z2) > 100|dist(ai, z1)− dist(ai, z2)|.
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By the previous conclusions and the fact that comparison angles can be computed
in terms of the distance function, we find that given any δ > 0, we can choose

λ > 0 and µ0 > 0 sufficiently small, to ensure that (ã1, b̃1, ã2, b̃2, ã3, b̃3) is a
(3, δ)-strainer around z1 and around z2. Now look at the comparison triangle
corresponding to the points z1, z2, ãi. By (7.4), it is almost isosceles and hence
by elementary hyperbolic trigonometry we conclude for λ sufficiently small

9
10
π
2
< ˜̂z2z1ãi, ˜̂z1z2ãi <

11
10
π
2
.

Using comparison geometry˜̂z1z2b̃i ≤ 2π − ˜̂ ãiz2b̃i − ˜̂z1z2ãi <
11
10
π
2

+ δ.

For λ sufficiently small, we obtain furthermore by hyperbolic trigonometry˜̂ b̃iz1z2 + ˜̂z1z2b̃i + ˜̂z2b̃iz1 > π − δ and ˜̂z2b̃iz1 < δ.

So ˜̂ b̃iz1z2 >
9
10
π
2
− 3δ.

Analogously, we obtain ˜̂ ãiz1z2 >
9
10
π
2
− 3δ.

Now join z1 with ã1, b̃1, ã2, b̃2, ã3 by minimizing geodesics. By comparison ge-
ometry, these geodesics enclose angles of at least π

2
− δ or π − δ, depending on

geodesics, between each other. So their unit direction vectors approximate the
negative and positive directions of an orthonormal basis. By the same argument,
the minimizing geodesic that connects z1 with z2 however encloses an angle of
at least 9

10
π
2
− 3δ with each of these geodesics. For sufficiently small δ this con-

tradicts the fact that the tangent space at z1 is 3-dimensional. So f is indeed
100-bilipschitz for sufficiently small λ and µ0.

From the bilipschitz property we can conclude that

vol B̃(m̃, λ
√
µ0) > c(λ

√
µ0)3

for some universal c > 0. Fixing µ0 <
1
4

and λ < 1 such that the argument above
can be carried out, we obtain

vol B̃(x̃, 1) > vol B̃(m̃, λ
√
µ0) > c(λ

√
µ0)3 = c′ > 0.

By rescaling, this implies the desired inequality for the metric g0.
Now consider case (ii): By Proposition 6.1 we know that (B(x, ρ1(x)), ρ−2

1 (x)g0,
x) is µ-close to ((−b, 1), geucl, 0) where 0 ≤ b ≤ 1. Let y ∈ B(x, ρ1(x)) be a point
that is at least 1

25
away from the endpoints of (−b, 1) with respect to this closeness

and choose B(y, 1
50
ρ1(x)) ⊂ U ⊂ B(y, 1

25
ρ1(x)) and p : U → J ′ ⊂ (−b, 1) as in

Proposition 6.1(c1).
Choose q ∈ π1(M0) corresponding to a nontrivial simple loop in one of the cross-

sectional tori and denote by M̂0 the covering of M0 corresponding to the cyclic
subgroup generated by q, i.e. if we also denote by q the deck-transformation

of M̃0 corresponding to q, then M̂0 = M̃0/q. So we have a tower of coverings

M̃0 → M̂0 →M0.
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Consider first the rescaled metric g′ = ρ−2
1 (x)g0. Using the same arguments as

in case (i), we can construct a (1, δ1(µ0)) strainer (a1, b1) around y on M0 of size
1
50

for a suitable δ1(µ0). Furthermore, using the covering M̂0 → M0, we can find

a point m̂ ∈ M̂0 within
√
µ0-distance away from a lift ŷ of y and a (2, δ2(µ0))

strainer (â1, b̂1, â2, b̂2) around m̂ of size ≥ √µ0. Connect the points âi and b̂i with

m̂ by minimizing geodesics and choose points â′i and b̂′i of distance
√
µ0 from m̂.

By monotonicity of comparison angles, (â′1, b̂
′
1, â
′
2, b̂
′
2) is a (2, δ2(µ0))-strainer of

size
√
µ0.

Let g′′ = 1
4
µ−1

0 g′. Then (â′1, b̂
′
1, â
′
2, b̂
′
2) has size 1

2
with respect to g′′. Using

this strainer, the metric g′′ and the covering M̃0 → M̂0, we can apply the same

argument from case (i) again and obtain a (3, δ3(µ0)) strainer (ã1, b̃1, ã2, b̃2, ã3, b̃3)

around a point m̃′ ∈ M̃0 which is
√
µ0-close to a lift m̃ of m̂ in M̃0.

As in case (i), for a sufficiently small µ0 we can deduce a lower volume bound

volg′′ B̃(m̃′, 1) > c′. With respect to g′, the point m̃′ is within a distance of
µ0 +

√
µ

0
of a lift x̃ of x̂. Hence

volg′ B̃(x̃, 1) > volg′ B̃(ỹ, 1
50

) > volg′ B̃(m̃′, 2
√
µ0) > c′(2

√
µ0)3 = c′′ > 0.

The desired inequality follows by rescaling. �

Definition 7.4. We call a component C of V2 resp. V1 good if it suffices the
conditions in assumption (i) or (ii) of Lemma 7.1.

8. Evolution of areas of minimal surfaces

Lemma 8.1. LetM be a Ricci flow with surgery and precise cutoff, defined on the
time interval [T1, T2] (T1 > 0), assume that the surgeries are all trivial and that
π2(M(t)) 6= 0 for all t ∈ [T1, T2]. For every time t ∈ [T1, T2] denote by A(t) the
infimum of the areas of all homotopically nontrivial, immersed 2-spheres. Then
for all t ∈ [T1, T2] we have A(t) > 0 and the quantity

t1/4
(
t−1A(t) + 16π

)
is monotonically non-increasing in t.

Proof. Compare also with [20, Lemma 18.10 and 18.11]. Let t0 ∈ [T1, T2). By
[26] and [10] or [22], there is a noncontractible, conformal, minimal immersion
f : S2 →M(t0) with areaS2 f ∗(g(t0)) = A(t0). Call Σ = f(S2) ⊂M(t). We can
estimate the infinitesimal change of its area while we vary the metric in positive
time direction (and keep f constant!). In the case in which Σ is an RP 2, we count
the area twice. Using the fact that the interior sectional curvatures are not larger
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than the ambient ones as well as Gauß-Bonnet, we conclude:

d

dt+

∣∣∣
t=t0

areat(Σ) = −
∫

Σ

trt0(Rict0 |TΣ)dvolt0

= −1

2

∫
Σ

Rt0dvolt0 −
∫

Σ

sec
M(t0)
t0 (TΣ)dvolt0 ≤

3

4t0
areat0(Σ)−

∫
Σ

secΣ dvolt0

≤ 3

4t0
areat0(Σ)− 2πχ(Σ) =

3

4t0
A(t0)− 4π.

Here, sec
M(t0)
t0 (TΣ) denotes the ambient sectional curvature of M(t0) tangential

to Σ and secΣ
t0

denotes the interior sectional curvature of Σ. We conclude from

this calculation that d
dt+
|t=t0(t1/4(t−1A(t) + 16π)) ≤ 0 in the barrier sense and

hence, the quantity t1/4(t−1A(t) + 16π) is monotonically non-increasing in t away
from the singular times.

We will now show that A(t) is lower semi-continuous. We can restrict ourselves
to the case in which t0 is a surgery time. Let tk ↗ t0 be a sequence converging
to t0 and choose minimal 2-spheres Σk ⊂ M(tk) with areatk Σk = A(tk). By
property (5) of Definition 2.9, we find diffeomorphisms ξk : M(tk) → M(t0)
which are (1 + χk)-Lipschitz for χk → 0. So A(t0) ≤ lim infk→∞(1 + χk)

2A(tk) =
lim infk→∞A(tk). This proves the desired result. �

Lemma 8.2. Let M be a Ricci flow with surgery and precise cutoff, defined on
the time interval [T1,∞) (T1 ≥ 0) and assume that the surgeries are all trivial.
Let γ1,t, γ2,t ⊂ M(t) be two families of smoothly embedded noncontractible loops
which are homotopic to each other and move by isotopies for all t ∈ [T1,∞). For
every t ∈ [T1,∞) let A(t) be the infimum over the areas of all smooth homotopies
S1 × I →M(t) connecting γ1,t with γ2,t.

Assume that for the geodesic curvatures we have the bound κ(γ1,t), κ(γ2,t) <
Ct−1/2 for all t ∈ [T1,∞) and assume that the normalized lengths t−1/2`(γ1,t),
t−1/2`(γ2,t) converge to 0 as t → ∞. Moreover, assume that the velocity by
which the given loops move, is bounded in the appropriate rescaling, i.e. |∂tγ1,t|,
|∂tγ2,t| < Ct−1/2 for all t ∈ [T1,∞).

Then t−1A(t)→ 0 as t→∞.

Proof. Let t0 ∈ [T1,∞). By [19], we can find an area minimizing homotopy be-
tween γ1,t0 and γ2,t0 . More precisely, there is an 0 < r < 1 such that if we
denote by Ar,1 = B1(0) \Br(0) ⊂ C the closed (r, 1)-annulus, then we can find a
continuous map f : Ar,1 →M(t0) with the following properties: f restricted to
the boundary components of Ar,1 are parameterizations of γ1,t0 and γ2,t0 . More-
over, f is smooth, conformal and harmonic on the interior of Ar,1 and we have
A(t0) = area f ∗(g(t0)). By [13], f is even smooth up to the boundary.
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Analogously to the proof of Lemma 8.1, we can compute the infinitesimal
change of the area of f as we vary the metric only:

d

dt

∣∣∣
t=t0

area f ∗(g(t)) = −
∫
Ar,1

tr f ∗(Ric
M(t0)
t0 )

≤ 3

4t0
A(t0)−

∫
Ar,1

secM(t0)(df)dvolf∗(g(t0)),

where secM(t0)(df) denotes the sectional curvature in the normalized tangential
direction of f . Observe that the last integrand is a continuous function on Ar,1
since the volume form vanishes wherever this tangential sectional curvature is not
defined.

In order to avoid issues arising from possible branch points (especially on the
boundary of Ar,1), we employ the following trick (compare with [25]): Let ε > 0 be
a small constant and consider the flat cylinder (Nε = S1× [log r, 0]), ε(gS1 +geucl))
of size ε. Then hε : Ar,1 → Nε, z 7→ (log |z|, z|z|−1) is a conformal and harmonic
diffeomorphism. We conclude that the map fε = (f, hε) : Ar,1 →M(t0) × Nε is
a conformal and harmonic embedding. Denote its image by Σε = fε(Ar,1). Since
the sectional curvatures on the target manifold M(t0) × Nε arise from pulling
back the sectional curvatures on M(t0) via the projection onto the first factor,
we have

lim
ε→0

∫
Σε

secM(t0)×Nε(TΣε)dvolt0 =

∫
Ar,1

secM(t0)(df)dvolf∗(g(t0)).

We can now proceed as in the proof of Lemma 8.1, using the fact that the interior
sectional curvatures of Σε are not larger than the corresponding ambient ones as
well as the Theorem of Gauß-Bonnet:∫

Σε

secM(t0)×Nε(TΣε)dvolt0 ≥
∫

Σε

secΣε(TΣε)dvolt0 = 2πχ(Σε) +

∫
∂Σε

κΣε
∂Σε

dst0 .

In our case χ(Σε) = 0. We now estimate the last integral. Let γi,t0,ε : S1(li,t0,ε)→
∂Σε be unit-speed parameterizations of the boundary of Σε (i = 1, 2). Denote by

γ
M(t0)
i,t0,ε

(s) and γNεi,t0,ε(s) their component functions in M(t0) and Nε, respectively.
Furthermore, let νi,t0,ε(s) be the outward-pointing unit-normal field along γi,t0,ε(s)

which is tangent to Σε. As before, denote by ν
M(t0)
i,t0,ε

and νNεi,t0,ε the components in
the direction of M(t0) and Nε, respectively. Note that

0 =
〈
γ′i,t0,ε(s), νi,t0,ε(s)

〉
=
〈(
γ
M(t0)
i,t0,ε

)′
(s), ν

M(t0)
i,t0,ε

(s)
〉

+
〈(
γNεi,t0,ε

)′
(s), νNεi,t0,ε(s)

〉
Since hε is conformal, the first summand on the right hand side is a non-negative
multiple of the second summand. So both summands cannot have opposite signs
and hence

(8.1)
〈(
γ
M(t0)
i,t0,ε

)′
(s), ν

M(t0)
i,t0,ε

(s)
〉

= 0.
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Thus since the boundary of Nε is geodesic and since the γ
M(t0)
i,t0,ε

(s) parameterize

the loops γi,t0 whose geodesic curvatures are bounded by Ct
−1/2
0 , we can compute

−
∫
∂Σε

κΣε
∂Σε

dst0 = −
∑
i=1,2

∫ li,t0,ε

0

〈D
ds

( d
ds
γ
M(t0)
i,t0,ε

(s)
)
, ν
M(t0)
i,t0,ε

(s)
〉
ds

≤
∑
i=1,2

∫ li,t0,ε

0

Ct
−1/2
0

∣∣(γM(t0)
i,t0,ε

)′
(s)
∣∣2∣∣νM(t0)

i,t0,ε
(s)
∣∣ds

≤ Ct
−1/2
0

∑
i=1,2

∫ li,t0,ε

0

∣∣(γM(t0)
i,t0,ε

)′
(s)
∣∣ds = Ct

−1/2
0

(
`(γ1,t0) + `(γ2,t0)

)
.

Note that in the first inequality, the terms involving the second derivative of

γ
M(t0)
i,t0,ε

(s) in tangential direction to γi,t0,ε vanish due to (8.1). Putting everything
together and passing to the limit ε→ 0, we hence obtain

d

dt

∣∣∣
t=t0

area f ∗(g(t)) ≤ 3

4t0
A(t0) + Ct

−1/2
0

(
`(γ1,t0) + `(γ2,t0)

)
.

In order to bound the derivative of A(t) in the barrier sense, we have to account
for the fact that the boundary curves move by isotopies. The maximal additional
infinitesimal increase is then

`(γ1,t0) sup
γ1,t0

|∂tγ1,t0 |+ `(γ2,t0) sup
γ2,t0

|∂tγ2,t0| ≤ Ct
−1/2
0

(
`(γ1,t0) + `(γ2,t0)

)
.

So in the barrier sense
d

dt+

∣∣∣
t=t0

A(t) ≤ 3

4t0
A(t0) + 2Ct

−1/2
0

(
`(γ1,t0) + `(γ2,t0)

)
.

Thus

(8.2)
d

dt+
(
t−1A(t)

)
≤ −1

t

(
1
4

(
t−1A(t)

)
− 2Ct−1/2

(
`(γ1,t) + `(γ2,t)

))
.

Analogously as in the proof of Lemma 8.1, we conclude that A(t) is lower
semi-continuous. So since the last summand in (8.2) goes to 0 for t → ∞, we
conclude that for every a > 0 there is some time t1 such that whenever t ≥ t1
and t−1A(t) ≥ a, then d

dt+
(t−1A(t)) < −1

8
t−1a. Since t−1 is not integrable, this

implies that t−1A(t) < a for large t. It follows that t−1A(t)→ 0 as t→∞. �

9. Proof of Theorem 1.1

In order to finish the proof of the main theorem, we will need the following
topological statement, which will help us to ensure that minimal annuli pass
through certain thin parts of the manifold.

Lemma 9.1. Let M be a smooth closed 3-manifold and U1, . . . , Um ⊂M pairwise
disjoint embedded copies of T 2 × I such that the components of M ′′ = M \ (U1 ∪
. . .∪Um) are hyperbolic (i.e. they carry hyperbolic metrics of finite volume). Let
σ1, σ2 : S1 → ∂U1 be two non-contractible loops that lie in different boundary
components of U1 and that are freely homotopic to each other within U1.
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Then the image of every homotopy f : S1 × I → M between σ1 and σ2 has to
intersect every loop γ ⊂ U1 which is not homotopic to a multiple of σ1 or σ2 in
U1.

Proof. Assume that some γ ⊂ U1 does not intersect f(S1× I). By a perturbation
argument, we can assume that f is also transverse to the boundaries of all the Ui.
So f−1(∂U1 ∪ . . . ∪ ∂Um) is a collection of disjoint circles C1, . . . , Ck ⊂ S1 × I. If
one of these circles is contractible in S1 × I, then pick an innermost contractible
circle Cj. It bounds a disk Dj. The image of its interior has to be contained in
one of the components of M ′′ or in one of the Ui. In either case, this implies that
f |Cj is homotopically trivial in the corresponding boundary torus and hence, we
can replace f by a transverse f ′ which intersects the boundaries of the Ui in one
circle fewer and whose image still does not meet γ.

So after a finite number of reduction steps, we can assume that all the Cj are
non-contractible in S1 × I, which implies that they cut this annulus into k − 1
nested topological annuli. Assume that one of these annuli is bounded by loops
Cj1 and Cj2 such that the image of Cj1 is contained in ∂U1, but the image of Cj2 is
contained in some ∂Ui with i 6= 1. This means that two cuspidal homotopy classes
of M ′′ that correspond to different cusps are conjugate to each other. However,
this is impossible by elementary hyperbolic geometry.

It follows that the images of all Cj must be contained in ∂U1. By elementary
hyperbolic geometry again, we conclude that f |Cj is homotopic to σ1 or σ2 in ∂U1.
So if we restrict f to a certain sub-annulus, we obtain a homotopy f ′′ : S1× I →
U1 ≈ T 2 × I between loops in each boundary torus which are each homotopic to
σ1 or σ2 in ∂U1.

By a simple intersection number argument, the image of f ′′ has to intersect
γ. �

We now prove that after some large time, all time slices are irreducible and all
surgeries are trivial (see also [20, Proposition 18.9]).

Proposition 9.2. Let M be a Ricci flow with surgery and precise cutoff, defined
on the time interval [T,∞) (T ≥ 0). Then there is some T1 ∈ [T,∞) such all
surgeries on [T1,∞) are trivial. Moreover, the following holds: For each t ≥ 0
let M′(t) be the union of all components of M(t) that are not diffeomorphic to
spherical space forms. Then M′(t) is irreducible and M′(t) ≈ M′(T1) for all
t ≥ T1.

Finally, if there is a time T ∗ ≥ T1 such that there are no surgeries on M′ past
time T ∗, then M is non-singular past time T ∗ and there is some time T ∗∗ ≥ T ∗

such that M′(t) ≈M(t) for all t ≥ T ∗∗.

Proof. By definition of Ricci flows with surgery, for any two times t2 > t1 ≥ T ,
the topological manifold M(t1) can be obtained from M(t2) by possibly adding
spherical space forms or copies of S2 × S1 to the components of M(t2) and then
performing connected sums between some components. So by the existence and
uniqueness of the prime decomposition (see e.g. [12, Theorem 1.5]), there are
only finitely many times when the topology of M′(t) can change. This implies
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that there is some T1 ∈ [T,∞) such all surgeries on [T1,∞) are trivial and hence
the time slices M′(t) are diffeomorphic to each other for all t ∈ [T1,∞).

Assume that M′(T1) was not irreducible. Then by [12, Proposition 3.10] and
the solution of the Poincaré Conjecture, we find that π2(N) 6= 0 for some com-
ponent N of M′(t). We can now use Lemma 8.1 and conclude that t−1A(t) goes
to zero in finite time. This is a contradiction to the fact that A(t) > 0.

In order to establish the last part of the Proposition, note that by assumption
the complement M \M′ restricted to the time-interval [T ∗,∞) is a Ricci flow
with surgery which is performed by precise cutoff. So by finite time extinction
of spherical components (see [25], [7]), we find that M(t) \M′(t) = ∅ for large
t. �

Proof of Theorem 1.1. First, by Proposition 9.2 and the assumption of the The-
orem we conclude that for all t ≥ T1 the (topological) manifoldM′(t) consists of
components that are irreducible and only contain hyperbolic pieces in their torus
decomposition. Moreover, all surgeries on [T1,∞) are trivial.

Next, we apply Proposition 5.1 (here we need to assume that M is performed
by sufficiently precise cutoff). This yields, amongst others, a time T2 > T1,
a splitting M(t) = Mthick(t) ∪ Mthin(t) for all t ∈ [T2,∞) and a function
w : [T2,∞) → R+ with w(t) → 0 as t → ∞. Set M′

thick(t) = M′(t) ∩Mthick(t)
and M′

thin(t) = M′(t) ∩Mthin(t). The interiors of the components of M′
thick(t)

are diffeomorphic to the hyperbolic manifolds H ′1, . . . , H
′
k and M′

thin(t) satisfies
the collapsing condition described in Proposition 5.1(e). Moreover, the compo-
nents of M′

thick(t) and M′
thin(t) are separated by embedded, incompressible tori

T1,t, . . . , Tm,t ⊂M′(t).
Choose µ = µ0 from Lemma 7.1 and then w0 = w0(µ, r,K) from Proposition

6.1, where r and K are the functions from Proposition 4.1 (in order to apply this
Proposition, we again have to assume that the surgeries of M are performed by
sufficiently precise cutoff). We can find some time T3 > T2 such that w(t) < w0

for all t ∈ [T3,∞) and hence Proposition 6.1 can be applied to M′
thin(t) for

µ = µ0, which gives us a decomposition of the thin part.
We now need to prove that for all t ∈ [T3,∞), all components of M′

thin(t)
are diffeomorphic to T 2 × I: By [21, Theorem 0.2] (observe that this Theorem
is a direct consequence of Proposition 6.1), we can choose additional embedded,
incompressible tori T ′1,t, . . . , T

′
m′,t ⊂M′

thin(t) that cutM′
thin(t) into Seifert pieces.

Using the uniqueness of the torus decomposition (see [12, Theorem 1.9]) and the
topological assumption on M′(t), we conclude that a subset T ⊂ T0 = {T1,t,
. . . , Tm,t, T

′
1,t, . . . , T

′
m′,t} cuts M′(t) into pieces that are hyperbolic. Let H ⊂

M′(t) \ T be such a hyperbolic piece and consider a torus T ∈ T0 \ T that is
contained in H. Since hyperbolic manifolds are atoroidal, there is a boundary
torus T ′′ ∈ T of H such that T and T ′′ bound an embedded copy of T 2 × I. We
conclude that the tori of T0 that are contained in H cut H into pieces which are
diffeomorphic to T 2 × I except for one piece which is diffeomorphic to H. Since
H cannot carry a Seifert structure, this piece cannot be contained in M′

thin(t).
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So M′
thin(t) \ T0 is a disjoint union of copies of T 2 × I. Piecing these together,

implies that all components of M′
thin(t) are diffeomorphic to T 2 × I.

Having established the topological description, we will now bound the geometry
of the thin part using a minimal surface argument. In order to do that, we choose
smooth isotopies of loops σ′11,t, σ

′2
1,t, . . . , σ

′1
m,t, σ

′2
m,t : S1 → H ′1 ∪ . . . ∪ H ′k in the

model hyperbolic manifolds, defined for times t ∈ [T3,∞) such that there is a
function ε : [T3,∞)→ R+ with ε(t)→ 0 as t→∞ and:

(1) The lengths of the loops go to zero: `(σ′ji,t) < ε(t) for all t ∈ [T3,∞) and
their geodesic curvature is everywhere equal to 1.

(2) For all t, the loops σ′ji,t are contained in H ′′1,t ∪ . . . ∪H ′′k,t ⊂ H ′1 ∪ . . . ∪H ′k
(compare with Proposition 5.1(d)).

(3) The velocity by which the loops move, is bounded appropriately: |∂tσ′ji,t| <
t−1.

(4) For every hyperbolic cusp N ′ ⊂ H ′1 ∪ . . . ∪ H ′k, consider the torus Ti,t ⊂
M′(t) that borders the corresponding almost hyperbolic cusp N ′ ⊂M(t).
Then σ′1i,t, σ

′2
i,t are contained in N ′ and for all t ∈ [T3,∞) and represent

two nondivisible and linearly independent homotopy classes in π1(N ′) ∼=
π1(T 2 × I) ∼= Z2.

(5) Let σji,t : S1 → M′(t) be the loops corresponding to the σ′ji,t under the

diffeomorphisms Ψl,t : H ′′l,t → Hl,t, i.e. σji,t = Ψl,t ◦σ′ji,t for the appropriate
l (see Proposition 5.1(d)). We now demand that for every component
C ⊂ M′

thin(t) the following is true: let N1, N2 ⊂ H1 ∪ . . . ∪ Hk be the
two cusps that are adjacent to C and let σ1

i1,t
, σ2

i2,t
be the loops in N1 and

σ1
i2,t
, σ2

i2,t
the loops in N2. Then σ1

i1,t
and σ1

i2,t
as well as σ2

i1,t
and σ2

i2,t
are

freely homotopic in N1 ∪ C ∪N2.

It is clear that we can find such σji,t, e.g. by choosing the loops as geodesics of
horospherical tori in the cusps, d(t)-far away from the thick part, where d(t) is
an interpolation of min{w−1(t), log t}.

For each time t ∈ [T3,∞) and component C ⊂ Mthin(t) denote by AC,j(t) the
infimum over the areas of all smooth homotopies S1 × I → M(t) connecting
σji1,t and σji2,t from property (5). By Lemma 8.2 and conditions (1)-(3) above, we

conclude that t−1AC,j(t)→ 0 as t→∞. So there are time-dependent homotopies

f jC,t : S1 × I →M(t) such that

(9.1) t−1 areat f
j
C,t −→ 0 as t −→∞

for all components C of Mthin(t) and j = 1, 2. (Note that the components C
change in time. However, the combinatorics of the thick-thin decomposition stay
the same on [T3,∞).)

Now look at the decomposition of a component C ⊂ M′
thin(t) into sets V1, V2,

V ′2 as given in Proposition 6.1 (applied to the metric t−1g(t)). The two boundary
tori of C have to border components of V1. So either C = V1 or the boundary
components of C border components C1, C2 ⊂ V1 which are diffeomorphic to T 2×I
(see conclusion (a3)). In the second case, there is a component C3 of V2 or V ′2
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adjacent to C1. Since components of V ′2 have only one boundary component and
C 6= C1∪C3, we must have C3 ⊂ V2. The generic S1-fibers of C3 are homotopic to a
nontrivial curve in the boundary torus of C1 adjacent to C3. This torus is isotopic
to one of the Ti,t that are incompressible in M′(t) (see Proposition 5.1(b)). So
the generic S1-fibers of C3 generate an infinite cyclic subgroup in the fundamental
group of the corresponding component of M′(t).

Hence, we can apply Lemma 7.1 and obtain that for any x ∈ C (if C = V1) or for

any x ∈ C1∪C2∪C3 (if C 6= V1), we have volt B̃(x̃, ρ√t(x, t)) ≥ w1ρ
3√
t
(x, t) in M̃(t).

We can now use Proposition 4.2, to deduce that there is some T4 ∈ [T3,∞) and
constants ρ > 0 and K < ∞ such that for all t ∈ [T4,∞) we have ρ(x, t) > ρ

√
t

and |Rm| < Kt−1 on C (if C = V1) resp. C1 ∪ C2 ∪ C3 (if C 6= V1).
Assume that the second case occurs for some t ∈ [T4,∞). Let x ∈ C3. Then by

Proposition 6.1(c3), we can find an open set U with B(x, t, 1
2
sρ√t(x, t)) ⊂ U ⊂

B(x, t, sρ√t(x, t)) and a 2-Lipschitz map p : U → R2 whose image must contain

B(0, 1
4
sρ√t(x, t)) ⊂ R2 and whose fibers are homotopic to the fibers on C3 and

hence non-contractible in M(t). So by Lemma 9.1 applied twice, we conclude
that each fiber of p has to intersect the images of one of the homotopies f 1

C,t, f
2
C,t.

This implies that

areat f
1
C,t + areat f

2
C,t > cs2ρ2√

t
(x, t) > cs2ρ2t

for some universal c > 0. If t is sufficiently large, this however contradicts (9.1).
Hence we conclude that there is some T5 ∈ [T4,∞) such that for all t ∈ [T5,∞),

we have M′
thin(t) = V1 and |Rm| < Kt−1 on M′

thin(t). The curvature bound on
Mthick(t) follows directly from Proposition 5.1(d). By Definition 2.9(3), surgeries
can only appear when the curvature is comparable to δ−2(t), where δ(t) is the
preciseness parameter. So if we assume thatM is performed by sufficiently precise
cutoff, then there cannot be any surgeries for large t on M′. The Theorem now
follows using the last part of Proposition 9.2. �
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