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The Thin Film Polycaprolactone Device: A platform technology for biodegradable and tunable long 
acting drug delivery implants. 

By Erica B. Schlesinger 

December, 2015 

 

As healthcare costs rise, demand for reduced healthcare visits and improved efficacy, safety, and user 

acceptability grow. Among solutions, researchers seek to develop and commercialize long-acting 

controlled release drug delivery systems. The global revenue for these systems was estimated at 

$181.9 billion in 2013 with projected revenue growth to $212.8 billion by 2018. [1] Demand for such 

systems is broad and encompasses applications in the delivery of small molecule pharmaceuticals as 

well as biologics. Advancements in this area rely on the development of reproducible and controllable 

fabrication technologies and the availability of materials that are suitable for system duration and 

design. Such drug delivery systems benefit from an understanding of the underlying mechanisms of 

controlled release and from easily tunable release kinetics to accommodate pre-clinical through 

clinical development.  

 

Here we introduce the Thin-Film Polycaprolactone Device (TFPD), a tunable and biodegradable long-

acting implant platform technology. The platform is based on the use of porous and nonporous thin-

film (< 50 µm) Polycaprolactone (PCL), a bioresorbable and biocompatible polymer, as a membrane 

for controlled or sustained release of an API from a reservoir. The platform is highly versatile, allowing 

for delivery of small and large molecules alike, in sizes relevant to both ocular and subcutaneous 

implants. A deep understanding of the fundamental mechanisms related to both membrane and 

device design leads to the use of empirical models to easily design and tune devices for any given API 

and indication. As this delivery platform is so diverse in its potential applications, tunability and design 

models are key platform features and the focus of this dissertation. The following sections lay out 

practical approaches to tuning PCL degradation, the fabrication and characterization of various styles 

of PCL thin-film membranes, the design and tunability of membranes to control release and of 

reservoir devices according to target product profiles for specific indications. These concepts are then 

applied to the early development of three long-acting implant systems: an ocular implant for protein 

therapeutics, a subcutaneous implant for antiretroviral HIV pre-exposure prophylaxis, and a 

miniaturized subcutaneous contraceptive implant. 
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3. Introduction 

As healthcare costs rise, demand for reduced hospital or clinic visits and improved efficacy, safety, 

and user acceptability grow. Among solutions, companies and researchers seek to develop and 

commercialize long-acting controlled release drug delivery systems. The global revenue for these 

systems in 2013 is estimated at $181.9 billion with projected revenue growth to $212.8 billion by 

2018. [1] Enhanced drug uptake or permeability, advantageous pharmacokinetic profiles, and less 

frequent dosing aim to address issues of patient compliance, bioavailability, safety, and efficacy. 

Demand for such systems is broad and encompasses applications in the delivery of small molecules, 

peptides and proteins, and genetic material. The most common drug delivery routes of 

administration include oral, subcutaneous, ocular, and pulmonary. Therapeutic durations range from 

days to years, and systems may be comprised of inorganic materials or polymers, some of which are 

biodegradable. Advancements in this area rely on the development of reproducible and controllable 

fabrication technologies, and the availability of materials that are biocompatible and appropriate for 

system duration and design. Furthermore, novel long-acting drug delivery systems benefit from an 

understanding of the underlying mechanisms of controlled release and the capacity for tunable 

release to accommodate pre-clinical through clinical development. There are many examples of long 

acting drug delivery systems commercially available for indications ranging from heroin (Vivitrol®, 

Alkermes, Inc. Dublin, Ireland) or nicotine addiction (Nicoderm® CQ ®, GlaxoSmithKline Consumer 

Healthcare, LP Moon Township, PA) to uveitis (Retisert ®, Bausch & Lomb, Rochester, NY). 

 

Long acting drug delivery systems are typically characterized by controlled or sustained release of a 

therapeutic and can be in the form of an implant, patch, or injectable system, among others. 

Characterized by continuous dosing rather than regular bolus dosing as is experienced with oral 

doses, long acting drug delivery systems exhibit a preferable pharmacokinetic profile (Figure 1), 

avoiding peaks and troughs and minimizing both super- and sub-therapeutic concentrations. The 
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most favorable pharmacokinetic profile is achieved with constant rate continuous dosing tuned to 

achieve constant, steady-state plasma or tissue concentrations comfortably within the therapeutic 

window. (Figure 1)  

 

Figure 1 Pharmacokinetic profiles representative of different drug delivery profiles. Oral dosing shows peaks and 
troughs characterized by an exponential decay in plasma concentration between each bolus dose; 1st order release 
shows a similar exponential decay in plasma concentration but sustained over an extended period of time relative to 
regular oral dosing; constant rate release achieves a constant steady state plasma concentration throughout duration 
of administration. Constant rate dosing is the most efficient dosing strategy, avoiding high concentration peaks that 
can be associated with toxicity as well as sub-therapeutic concentrations.  

 

As they come in a variety of forms with different routes of administration, it is expected that long 

acting drug delivery systems are comprised of a range of materials. For example, while injectable 

depots may consist of active pharmaceutical ingredients (API) encapsulated within microparticles or 

simply of nanocrystal suspensions of the API, implants may be comprised of inorganic materials, non-

biodegradable polymers, or biodegradale polymers. Universal requirements for material choice in a 

long acting drug delivery system include biocompatibility as well as compatibility with the API. For 

biodegradable materials, compatibility is essential for both the starting material as well as the 

degradation products. Based on the breadth of products available commercially as well as those in 
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development, there are many acceptable materials and designs for long acting delivery systems, but 

from a safety perspective, and particularly relevant to implants, a system that is retrievable 

throughout the duration of administration, yet does not require removal, is ideal. Such a system 

would allow for removal in the case of adverse events, yet would not require follow-up visits nor an 

additional medical procedure for removal. 

 

A great example of long acting drug delivery, and perhaps the most commonly known example, is in 

contraceptives. For example, systemically administered hormonal contraceptives, traditionally 

administered as daily oral doses, are now available as long acting depot injections with durations up 

to 3-6 months or subdermal implants lasting up to 5 years. [2] Other long-acting contraceptive 

systems delivering hormones locally and systemically include intravaginal rings (NuvaRing ®, Merck & 

Co., Inc., Kenilworth, NJ) and intrauterine devices (IUD) (Mirena ® & Skyla ®, Bayer HealthCare 

Pharmaceuticals Inc., Whippany, NJ). The continued development and commercial success of multiple 

approaches to long acting contraception highlights the need for and benefit of such systems, 

including improved efficacy, user compliance and preference, and the potential for reduced side 

effects. These long-acting contraceptives, particularly those that are user-independent such as the 

implant or IUD are proven to be more effective in preventing unwanted pregnancies than the oral pill. 

[3] Furthermore, the variety in route of administration and product duration in contraceptive 

products demonstrates the importance of user preference on the relevance of a long acting drug 

delivery approach. Between 2007 and 2009, the Contraceptive CHOICE Project investigated women’s 

preferences for contraception, reporting that, when given the choice, 70% of women would choose a 

long-acting contraceptive over a short-acting method. [4] The challenges, successes, and lessons 

learned in the development of long acting contraceptives can be used to guide the development and 

commercialization of future long acting delivery systems for any indication. 
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Here we introduce a platform for a tunable and biodegradable long acting implant, called the Thin-

Film Polycaprolactone Device (TFPD). The platform is based on the use of porous and nonporous thin-

film (< 50 µm) Polycaprolactone (PCL), a bioresorbable and biocompatible polymer [5], as a 

membrane for controlled or sustained release of an API from a reservoir. The platform is highly 

versatile, allowing for delivery of small and large molecules alike in sizes relevant to both ocular and 

subcutaneous implants. A deep understanding of the fundamental mechanisms related to both 

membrane and device design leads to the use of empirical models to easily design and tune devices 

for any given API and indication. As this delivery platform is so diverse in its potential applications, 

this is a key platform feature and the focus of this thesis. The sections of this thesis lay out 

fundamental understanding and approaches to the tunability of PCL degradation, the fabrication and 

characterization of various styles of PCL thin-film membranes, the design and tunability of PCL 

membranes to control release of therapeutics, and the design and tunability of reservoir devices 

according to target product profiles for specific indications. These fundamentals and design concepts 

are then applied to the proof-of-concept and early development of three long acting implants for 

specific indications: an ocular implant for protein therapeutics, a subcutaneous implant for 

antiretroviral HIV pre-exposure prophylaxis, and a miniaturized subcutaneous contraceptive implant. 

4. Polycaprolactone the Polymer 

4.1. Introduction 

Polycaprolactone is a semi-crystalline aliphatic polyester commercially available at the lab-scale 

in molecular weights ranging from 2kDa – 80kDa. It is both bioresorbable and biocompatible 

and has been used in several FDA approved systems including sutures (Monocryl® by Ethicon, a 

part of the Johnson & Johnson family of companies) and root canal fillings (Resilon TM). [1] 

Additionally, PCL is reported in development for use in many biomedical applications in the 
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fields of tissue engineering and drug delivery. [2] [3] [4] PCL has a glass transition temperature 

of -60˚C and a melting temperature of 60˚C. While insoluble in water, PCL is readily soluble in 

many organic solvents. 

Due to its physical properties and tunable bulk degradation on the order of months to years, 

PCL is an ideal candidate for a thin film polymer membrane controlled drug delivery system. 

Thin film PCL membranes are semipermeable, allowing water and low molecular weight 

molecules to pass directly through the membrane while obstructing the passage of large 

molecules and undissolved particles. However, it is also possible to introduce porosity into PCL 

membranes, rendering the membrane permeable to large and small molecules alike.  

4.2. Polycaprolactone degradation 

Polycaprolactone is suitable for long acting biodegradable polymeric drug delivery systems 

because its degradation is tunable on the order of months to years. Based on numerous 

studies, both in vitro and in vivo, PCL is understood to degrade via bulk erosion through non-

enzymatic hydrolysis until a critical chain length of 3-5 kDa is reached, allowing for further 

intracellular degradation. [5] However, as has been reported for PCL films, fragmentation and 

loss of mechanical integrity occur when PCL molecular weight reaches 8-13 kDa. [5] [6]  A 

schematic illustrating the bulk degradation of PCL film on the macro and molecular scale is 

shown in Figure 2. Whereas many biodegradale or bioresorbable polymeric drug delivery 

systems utilize surface erosion as a mechanism to control drug release, the TFPD relies upon 

the bulk erosion of PCL to maintain an intact membrane throughout the duration of 

administration, after which the membrane fully degrades. The integrity of the membrane 

throughout administration is critical both for achieving consistent membrane controlled drug 

release, as well as for the retrievability of the TFPD implant. Therefore, the desired time frame 
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for PCL fragmentation and complete degradation in the TFPD depends on the specific 

application.  

 

Figure 2 Schematic of PCL Degradation. PCL undergoes bulk erosion; on the macro-scale, the bulk material 
maintains its mechanical integrity and exhibits no mass loss even as random chain scission occurs until the 
average chain length reaches a critical point (13kDa) upon which fragmentation occurs. 

  

According to results published in 1981 by Pitt, et. al., PCL hydrolysis is catalyzed by carboxylic 

acid end groups produced as a result of chain scission. Thus the rate of degradation is relative 

to the concentration of carboxylic acid, which is inversely proportional to chain length or 

molecular weight and can be described by the equation: 

𝑑[𝑀𝑛] 𝑑t⁄ = −k′[𝑀𝑛] 

Integrating this rate of degradation gives the following equation describing PCL molecular 

weight as a function of time: 

𝑀𝑛 = 𝑀𝑛
𝑜𝑒−𝑘′𝑡 

Based on experimental observations by Pitt, et. al., this equation holds true for an extended 

period of degradation until a critical point upon which it is hypothesized that an additional 

mechanism of degradation characterized by a loss of mass in addition to a decrease in 
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molecular weight becomes significant. Based on the equation above and the empirically 

derived rate constant for in vivo subdermal PCL degradation, the time to fragmentation (Mn = 

13kDa) and time to dissolution (Mn = 3-5 kDa) can be calculated and are dependent upon the 

starting molecular weight (Table 1).  

Table 1 Predicted PCL degradation time. 

 

The existing body of published work on PCL degradation provides a solid understanding of 

mechanism and empirical models for predicting PCL degradation in vivo. While in theory the 

dependence of PCL degradation time on starting molecular weight provides an easy method for 

tuning the degradation in a drug delivery system, the practical application of this concept 

results in some difficulties. Based on Table 1, a PCL system designed to maintain its physical 

integrity for one year should be comprised of PCL with a molecular weight of 36 kDa. However, 

36 kDa PCL is not commercially available for lab scale use without a custom order; while this is 

not necessarily a problem at larger scale where raw materials can be custom produced and 

could also be overcome by lab scale production of PCL, it increases the complexity and cost for 

basic research. The lack of availability of PCL at precise molecular weights poses logistical 

difficulties, but even more disrupting to tuning PCL degradation is the fact that as PCL 

molecular weight decreases, the ability to cast, handle, and fabricate TFPDs from PCL thin films 

also decreases. For example, solvent casting a 14 kDa PCL results in a thin film coating the 

surface upon which it is cast, but the film can not be removed from this surface intact. A 45 kDa 

PCL film 10-30 µm thick can be cast and handled, but as the film tends to be more brittle than 
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an 80 kDa film, there is often failure during sealing and subsequent handling of the device. This 

drastically limits the ability to tune degradation of the TFPD. 

 

All published work to date and the previous section of this report considers PCL degradation as 

a function of PCL molecular weight assuming a normal distribution. In light of the limitations in 

TFPD fabrication for low molecular weight PCL and the commercial availability of PCL in only a 

select few molecular weights, degradation and TFPD fabrication were investigated for bi- or tri-

modal distributions of PCL molecular weights. Interestingly, based on accelerated in vitro 

degradation studies, the rate of PCL degradation was unaffected by differences in molecular 

weight distribution and depended solely on the number average molecular weight (Figure 3).  

 

Figure 3 Accelerated degradation of PCL MW blends. Degradation profiles are comparable for PCL MW blends 
with the same number average molecular weight, regardless of molecular weight distribution.  

While only investigated under accelerated conditions in vitro, previously published correlations 

between accelerated in vitro, in vitro, and in vivo PCL degradation indicate that under 

appropriate conditions for which bulk erosion is observed (and not surface erosion as 

evidenced by a loss of mass in the bulk material rather than a decrease in molecular weight), 

the mechanisms and trends in PCL degradation are consistent between accelerated and non-
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accelerated conditions. Therefore, that no significant difference in degradation is observed 

under accelerated conditions for different molecular weight distributions, suggests that PCL 

degradation in vivo will also depend only on the average PCL molecular weight. As a result, PCL 

cast from blends of PCL with different molecular weights can be used to tune degradation. 

Table 2 describes some examples of how commercially available PCL can be blended together 

to tune degradation based on these principles. In vivo degradation times are predicted based 

on the average PCL molecular weight and the rate constant shown to be independent of 

molecular weight by Pitt et. al.; again, based on results from the in vitro accelerated studies, 

the molecular weight distribution is not expected to impact this rate constant.  

Table 2 Projected degradation time for PCL MW blends 

 

In addition to providing a practical solution for tuning PCL degradation, multi-modal 

distributions of PCL molecular weight also result in films suitable for TFPD fabrication with 

lower average molecular weights than possible with a normal distribution. For example, as 

previously described, a TFPD fabricated from 45 kDa PCL (normal distribution) has poor seal 

integrity and often results in device failure, yet a bi-modal distribution of 50% (w/w) 80kDa and 

50% (w/w) 10kDa PCL results in a film that is less fragile and TFPDs with better seal integrity. In 

a more extreme example, while casting a 14 kDa PCL (normal distribution) solution does not 

produce an intact film, a 10% 80kDa and 90% 10kDa PCL blend does.1  

                                                           
1 Work with this PCL blend (10:90 80kDa:10kDa) was completed by Jean Kim at UCSF.  
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While additional work to verify the use of multi-modal distributions of PCL to tune degradation 

in vivo and application of these blends to the fabrication and function of TFPD is needed, these 

early results demonstrate the possibility of this approach to tune degradation.  

 

4.3. Polycaprolactone membrane fabrication 

4.3.1.  Fabrication techniques 

4.3.1.1. Nonporous PCL membranes (nonporous PCL) 

Nonporous PCL membranes can be fabricated using a number of approaches including 

solvent casting and hot melt extrusion. For the work presented here, all membranes were 

fabricated using solvent casting methods. PCL can be solvent cast from solutions in organic 

solvents including but not limited to, 2,2,2-trifluoroethanol, dichloromethane, and toluene. 

Thin films can be solvent cast from these solutions using either a spin-coater, a square wet 

film applicator, or a wire-wound wet film applicator rod. Both the solvent choice, solution 

concentration, casting surface, and application parameters (i.e. spin-speed and duration, 

applicator clearance) impact the resulting membrane thickness. Devices can be successfully 

fabricated with membrane thicknesses down to 5 µm. 

4.3.1.2. Nanotemplated PCL membranes (nanoPCL) 

Nanotemplated PCL membranes are fabricated using a sacrificial ZnO nanorod template 

according to the protocol developed by Bernards, et. al. [7] 

4.3.1.3. Microporous PCL membranes (mpPCL) 

Microporous PCL membranes are fabricated via solvent casting through the addition of a 

water soluble porogen to the casting solution. After casting, films are submerged in 

deionized water to leach the PEG that is dispersed throughout the PCL film, leaving behind a 

tortuous network of pores. The concentration, size, and choice of porogen define the 
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resulting pore structure and size. Based on the work published by Bernards et. al. using PEG 

as a porogen to create a microporous backing layer to the nanotemplated PCL membranes, 

the work presented here only considers PEG as a porogen.  

4.3.2. Characterization 

There are several measurements that are critical to characterize when using polymer 

membranes for membrane controlled drug release. The first critical parameter is membrane 

thickness. The work presented here uses membranes no less than 5 µm and no greater than 50 

µm thick. Film thickness in this range, for porous and nonporous films alike, can be measured 

using either a profilometer or micrometer. When using a profilometer, it is important to flatly 

secure the film to a hard surface for an accurate measurement; this is easiest to achieve prior to 

removing the film from the surface on which it is cast. As the profilometer tip scores the surface 

of the film, it is not recommended to use the film for device fabrication after analyzing via 

profilometry. On the other hand, if film thickness is measured using a precision micrometer, 

there is no damage to the film (if the operator is careful not to twist or tear the film) and direct 

measurements of the films used to fabricate devices can be made.  

 

For porous films, it is important to characterize porosity. An SEM image of the film surface or 

cross section will provide a qualitative tool in evaluating pore structure and size. A bulk 

measurement of % porosity based on density can also be helpful in characterizing and 

comparing between films. By comparing the density of a porous film to the density of 

nonporous PCL, the void volume or overall pore volume can be calculated. A more detailed 

description of this calculation can be found in the Materials & Methods.  
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5. TFPD Membrane Design 

5.1. Introduction 

5.1.1.  TFPD schematics 

Figure 4 shows schematics for several TFPD systems including a matrix system in which the drug 

is dispersed throughout the polymer membrane and two reservoir systems, one with a 

nonporous PCL membrane and one with a porous membrane. The major focus of the work 

presented here is on the TFPD reservoir system. The thin film PCL reservoir device consists of a 

semi-permeable thin film membrane enclosing a solid core of drug substance. Upon 

implantation, or submersion in release media for in vitro experiments, biological fluid or release 

media permeate through the PCL membrane, hydrating the device reservoir and dissolving all or 

part of the reservoir contents. Dissolved drug is then able to diffuse through the PCL membrane 

for release into the surrounding bulk fluid. As discussed in section 4.3.1 on PCL membrane 

fabrication, there are several variations of PCL membrane that can be used to fabricate the 

TFPD. TFPDs to deliver small molecule pharmaceuticals can leverage both porous and 

nonporous PCL, but porous PCL is required for the release of biologics. The membrane choice 

and design effect the release rate and profile shape. 
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 Figure 4 TFPD system design schematics. (Left) A matrix in which drug (API, active pharmaceutical ingredient) 
is dispersed within the polymer matrix. For drug release in this system, drug must first partition from solid state 
in the polymer matrix to dissolve in release media, followed by diffusion through the matrix to be released into 
the bulk fluid. (Center) A nonporous thin film membrane controlled reservoir system in which drug (API) is 
loaded as a solid into the reservoir. Upon hydration, drug is dissolved within the reservoir and diffuses through 
the membrane into the surrounding bulk media. (Righ) A thin film membrane controlled release system with 
membrane porosity allows for release of macromolecules. Upon hydration, macromolecules are dissolved in the 
device reservoir and then diffuse through the porous membrane to be released into the surrounding fluid.  

 

5.1.2.  Principles of small molecule diffusion 

In all TFPD reservoir systems considered here, drug release through the PCL membrane is driven 

by the concentration gradient between the device reservoir and the surrounding bulk fluid in 

which drug concentration is negligible (as is typically the case in vivo).  Equation 1 describes 

concentration dependent diffusion through a membrane. [8] Flux, or in the case of the TFPD, 

drug release, is directly proportion to the membrane surface and inversely proportional to 

membrane thickness. Release of small molecules is also dependent upon effective diffusion and 

partition coefficients (D’ and k) which depend on both the physicochemical properties of the 

drug and membrane as well as membrane structure. In the case of a porous membrane, the 

effective diffusion coefficient depends on characteristics of the porous membrane such as  

porosity (void volume), tortuosity (effective path length), and constrictivity (inversely 

proportional to relative size of molecule to pore) and can be further described by Equation 2. [9] 

 

If sink conditions exist and the concentration of drug outside of the device reservoir is negligible, 

then release rate is also directly proportional to the concentration of drug in the device 
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reservoir. Constant rate release of small molecules can therefore be achieved by maintaining a 

saturated solution of drug within the device reservoir; this is achieved by loading significantly 

higher quantities of drug into the core of the device than are soluble within the reservoir 

volume. As long as solid drug remains, the reservoir solution remains saturated, and release is 

constant. When drug depletes below saturation, release is no longer linear and the release rate 

will decrease proportionally to reservoir concentration.  

5.1.2.1. Equation 1 Fickian diffusion through a membrane. (J) Flux; (A) membrane surface area; (D') effective 

diffusion coefficient; (k) partition coefficient; (CR) reservoir concentration; (CB) bulk concentration; (l) 

membrane thickness.  

 

 

5.1.2.2. Equation 2 Effective diffusion coefficient for a porous membrane. (ɛ) % porosity; (δ) constrictivity; (τ) 

tortuosity. 

 

5.1.3.  Principles of Macomolecule (protein) Diffusion 

In the case of protein release through porous membranes, the pore size relative to the 

hydrodynamic diameter of the molecule determines the type of diffusion that occurs and as a 

result the shape of the release profile. The three relevant diffusion regimes are discussed below 

and illustrated in Figure 5.  
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Figure 5 Macromolecule diffusion through porous membranes. In Fickian diffusion (A), pore size  does not 
inhibit diffusion and molecules diffuse in a concentration dependent manner resulting in a first order release 
profile. In Knudsen diffusion (B), pore size is restrictive and diffusing molecules interact with the pore walls as 
frequently or more frequently than with other molecules, leading to sustained release profile, less than first 
order, yet not necessarily constant rate. Actual diffusion kinetics depend on the ratio of pore size to the 
molecule’s hydrodynamic radius and mean free path for diffusion. In single file diffusion (C), pore size is less 
than 2-times the hydrodynamic diameter of the molecule, inhibiting multiple molecules to pass simultaneously. 
Single file diffusion results in concentration independent, constant-rate release.  

5.1.3.1. Fickian diffusion  

Fickian diffusion describes diffusion that is driven purely by the concentration gradient. 

Kinetic interactions between molecules in solution dominate, driving the dispersion of 

molecules from regions of high concentration to low. This typically occurs when the 

hydrodynamic diameter of the molecule is significantly smaller than the size of the pore or 

channel through which it is passing and the probability of a molecule encountering another 

molecule is significantly higher than the probability of a molecule interacting with another 

system feature, in this case the polymer. (Figure 5) This occurs when the mean free path of 

the molecule is significantly shorter than the diameter of the pore or space through which it 

is passing (Kn
2 < 0.01). [10] In Fickian diffusion, the release rate is directly proportional to 

concentration. When reservoir concentration is not constant and changes as drug depletes, 

the release profile for Fickian diffusion is expected to be 1st order.3 

                                                           
2 Kn = mean free path of molecule / pore diameter 
3 1st order diffusion in terms of the amount released is described by the equation: A = ATotal(1-e-kt) 
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5.1.3.2. Knudsen diffusion  

As pore or channel size decreases, the probability of a molecule in solution encountering the 

polymer surface increases. When the mean free path of a molecule in solution is 100 times 

greater than the diameter of the pore or channel (Kn > 100) [9], the interaction between 

molecule and polymer begins to define release kinetics. In this scenario, a single molecule is 

on average more likely to encounter the polymer than another molecule, creating a “ping-

pong” like effect as illustrated in Figure 5b. In this way, the porous network through the 

polymer impacts permeability by more than just increasing the path-length through which a 

molecule must pass to reach the other side of the membrane, but rather restricts the 

motion of the molecule within the pathway. The extent to which this motion is restricted is 

likely determined by both the Kn as well as physicochemical properties affecting interactions 

between the protein and polymer such as polar surface area, charge, or hydrogen bonding. 

All of these phenomena effect both the release profile shape and magnitude of release.  

 

5.1.3.3. Single file diffusion 

Single file diffusion occurs when the channel or pore diameter is less than twice the 

hydrodynamic diameter of the diffusing molecule. In this scenario, only a single molecule at 

a time may pass through the channel, thus restricting diffusion to “single file.”(Figure 5c) 

Constrained by the pore diameter, solute molecules are unable to pass by one another, 

restricting diffusion through the pore to a single molecule at a time regardless of the 

concentration gradient driving force [11] [12].  When applied to a reservoir device, 

membranes effecting single file diffusion not only result in a linear release profile, but also 

result in a release rate independent of reservoir concentration. This is in contrast to what is 
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observed in sustained release systems that may exhibit near linear release profiles but with 

release rates proportional to reservoir concentration.  

 

5.2. Membrane Design for Small Molecule Pharmaceuticals 

5.2.1.  Introduction 

A primary challenge in developing drug-delivery devices is to control the drug release rate and 

profile. There are a number of different mechanisms for controlling drug release depending on 

the delivery system, but these mechanisms depend on both device design and the drug's 

physical properties. [13] [14] [15] Understanding how the physical properties of a drug affect its 

release rate in a given system is crucial for tailoring the device design to achieve a target release 

profile. [13] [16] [14] [17] [18] [15] Therefore, we investigated the effect of drug properties 

(LogP, molecular weight, solubility, and pKa) on diffusion and release in monolithic dispersion 

matrix as well as membrane-controlled reservoir systems. In addition to developing empirical 

and predictive models describing drug release profiles, we identified key physicochemical 

properties of pharmaceuticals affecting partition into and diffusion through PCL membranes. 

Insight into how different drugs behave in these simple thin-film systems will aid in the design of 

multi-component drug-delivery systems and the easy translation of the technology for delivering 

new therapeutics 

 

5.2.2.  Theoretical and empirical equations describing matrix and reservoir designs [19] 

5.2.2.1. Matrix System 

Release of a drug from the matrix system is represented in two phases when drug loading 

results in a drug concentration in the solid dispersion matrix greater than the drug solubility 

in release buffer. A set of empirical equations was defined to fit experimental data for drug 
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release from a PCL matrix. The equation for the first phase, while drug loading remains high, 

is based on the Higuchi equation for drug dispersed in a solid matrix (Equation 3 Top). The 

second phase, when drug load is less, is based on an approximation of the non-steady state 

solution for a monolithic solution under sink conditions [15] (Equation 3 Bottom). The 

transition between these two phases can be determined empirically and will depend on 

initial drug loading and drug solubility. For this study, setting the transition point at 60% 

release resulted in an empirical fit suitable for all samples.  

Table 3 Physical properties and sources of pharmaceuticals 

 

Error! Reference source not found. contains a description of the variables used in these 

quations. Parameters A, L, fd, m and CA are design parameters and empirical parameters D 

and Y’ as well as solubility are drug-specific. In theoretical equations [18], Cs and D are the 

solubility and diffusion coefficient of the dissolved drug in release buffer within the polymer 

matrix. In the empirical equation, the aqueous solubility of the active pharmaceutical 

ingredient at 25°C is used for Cs. Y’ is an empirical correction factor to account for the 

difference between solubility in an aqueous solution at 25°C and solubility within the 

polymer matrix under experimental conditions as well as any other deviations from the 
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theoretical equation. For each matrix sample, all parameters except for D and Y were 

calculated or determined based on matrix characterization and system design. D and Y’ 

were then calculated empirically, using Equation 3, from plots of cumulative mass fraction 

released versus the square root of time and the natural log of cumulative mass fraction 

released versus time.  

Equation 3

 

Table 4 Matrix system equation variables (Equation 3) 

 

 

5.2.2.2. Reservoir System 

Based on the solution to diffusion equations describing mass transport through a slab from a 

constant activity source under sink conditions, the empirical Equation 4 describes the 

release rate of drug from a membrane-controlled reservoir system, in which solid drug 

remains in the reservoir. [18] Table 5 defines each variable contained in Equation 4. The 

empirical parameter “Dk” is calculated from the slope of a cumulative mass versus time plot 
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using measured design parameters (A,L) for each device and solubility measurements from 

literature (Table 3). 

Equation 4 Steady state flux through a membrane with a constant activity source and sink conditions. [19] 

 

Table 5 Reservoir system equation variables (Equation 4) 

 

 

5.2.2.3. Empirical Fits 

 

Figure 6 Example of release data and empirical fit. The cumulative release profile for reservoir devices is linear 
after an initial burst release (A, Diltiazem). Data fit is based on the equation M = A*Dk*CsDP*t / L and the 
combined parameter Dk is determined empirically. Release in the matrix system (B, Metoprolol) is described as 
fraction released and is fit with two equations  
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and two empirical parameters (D’, Y’). Data sets are from a single release experiment and fits are based on 
average empirical parameters from full data set (n=2-5) [19]. 

  

Figure 6 illustrates representative release profiles and empirical fits that describe matrix and 

reservoir systems. Data points represent typical release from a single device and the 

empirical fits represent average empirical values from triplicate devices. Empirical fits and 

parameters are defined in equations 3 and 4, for the matrix and reservoir systems 

respectively. Calculated empirical parameters for each system are tabulated in Table 4 and 

Table 5. Empirical values calculated from different device designs are averaged for each 

drug and represented in Figure 7 with error bars representing one standard deviation.  Dk, 

D’ and Y’ are independent of design parameters and differ between drugs as depicted in 

Figure 7, which compares these empirical parameters on a log scale. As shown in Figure 7, 

the empirical equations accurately model the release profiles from these systems, and the 

empirical parameters describe the diffusion characteristics of a drug within or through the 

PCL matrix normalized for device design.  
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Figure 7 : Empirical parameters describing transport of representative pharmaceuticals in a PCL reservoir 
system (A) and PCL matrix (B, C). Empirical parameters are drug specific and represent the diffusion and 
partition of drug through and into a PCL membrane. Release profiles from a given system depend on empirical 
parameters, drug solubility and device dimensions. [19] 

 

In the reservoir system, dissolved drug in the reservoir, driven by a concentration gradient 

between reservoir and bulk, partitions into the polymer membrane and then diffuses 

through the membrane into the bulk fluid. The diffusion coefficient (D) is a measure of the 

rate of diffusion of dissolved drug through the polymer matrix and the partition coefficient 

(k) is a measure of the molecules affinity for the polymer membrane relative to the aqueous 

bulk. In the empirical analysis for the reservoir system, D and k are calculated as a single 

parameter and cannot be determined independently.  In the matrix system, solid dispersed 

drug in the polymer matrix partitions and dissolves in the fluid permeating into the matrix, 

driven by the difference in concentration between drug in the solid matrix and the saturated 

drug concentration in the permeating fluid. The dissolved drug then diffuses through the 

polymer matrix and releases into the surrounding bulk fluid. A more thorough explanation 
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of the theoretical equations and solutions to diffusion equations in these systems can be 

found in a 2012 review by Siepmann and Siepmann in the Journal of Controlled Release [18]. 

The diffusion coefficient (D’), the same as in the reservoir system, is a measure of diffusion 

rate of dissolved drug through the polymer matrix. Y’ is included in the empirical equation 

for the matrix system as a scaling factor to adjust for using drug solubility in a bulk fluid 

rather than the actual saturated drug concentration in the polymer matrix.  

 

5.2.3.  Physicochemical properties impact diffusion [19] 

These empirical parameters differ for different drugs (Figure 7) and are related to the 

interaction between the drug molecule and the polymer. Correlations between empirical 

diffusion parameters and drug properties suggest the nature of these interactions and their 

relative impact on drug release. Figure 8 shows relevant correlations for both the matrix and 

reservoir systems. Diffusion coefficients are known to be dependent on molecular size, and as 

expected, in both the matrix and reservoir system, there is a similar trend of increasing D (i.e. 

faster diffusion) with decreasing molecular weight. D cannot be distinguished independent of k 

in the reservoir system, but as the empirical D in both systems describes the rate of diffusion for 

dissolved drug through PCL matrix, it is likely that the trend with MW observed for Dk is driven 

by the dependence of D on MW. There is also a strong logarithmic correlation (correlation 

coefficient = 0.79) between Dk in the reservoir system and LogP. This is attributed to the 

partition of drug from the reservoir into the membrane as described by k. Since PCL is a 

hydrophobic polymer, the drug must partition from a hydrophilic to hydrophobic environment. 

The P in LogP is also a measure of drug partition between a hydrophobic and hydrophilic phase, 

and thus a linear correlation between P and k is expected.  
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Figure 8 Correlations between drug properties and empirical diffusion parameters. Diffusion coefficient (D) shows a weak 
negative correlation to molecular weight in both systems (A,D). In the reservoir system (A,B,C), the combined empirical 
parameter Dk [𝑀 = 𝐴𝐷𝑘𝐶𝑆𝑡] is inversely correlated to API solubility (aq, 25°C) and proportional to the partition coefficient 
“P” as illustrated by the logarithmic correlation between LogP and Dk (B). D and k can not be independently determined 
from reservoir system release data. In the matrix system, described by the empirical equations 

[𝑀 𝑀𝑇
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0.6] Y’ shows similar yet opposite correlations to Dk in the reservoir system in that it is inversely correlated to drug 
solubility(F) and negatively proportional to the partition coefficient “P” (E).  [19] 
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Interestingly, in the matrix system, Y’ shows a negative logarithmic correlation with LogP. This 

can be explained due to solid drug in a matrix dispersion partitioning from the hydrophobic 

environment into the more hydrophilic environment of the permeating fluid.  Thus in the matrix 

system, molecules with larger LogP and a greater affinity for hydrophobic environments will 

have a smaller Y’, whereas in the reservoir, more hydrophobic drugs will have a larger Dk and 

more readily enter into the polymer membrane. Y’ appears to encompass an effective partition 

coefficient in the empirical model presented here to describe release from the PCL matrix 

system.  

Y’ in the matrix system and Dk in the reservoir system show opposite correlations with solubility. 

While these correlations are significant (correlation coefficient greater than 0.7), they are likely 

influenced by the inherent relationship between drug solubility and LogP. It should be noted 

that the correlation coefficient for Dk with MW in the reservoir system is only 0.6 and is weak 

compared to the correlation between Dk and LogP attributed to the partition coefficient (k). This 

suggests that in the PCL membrane controlled reservoir system, drug release is more strongly 

influenced by the partition of drug from hydrophilic aqueous bulk to hydrophobic polymer 

membrane than by the diffusion of drug within the membrane.   

 

5.2.4. Predictive models using physicochemical properties to estimate diffusion parameters [19] 

 

Dk = 6.0E − 11 ∗ exp(−0.85LogP) + ⁡7.0E − 15 ∗ CS
API + 1.0E − 11  

D′ = ⁡112 ∗ MW−3        

Y′ = 6.0E − 08
CS
API⁄ + 7.5E − 12 ∗ exp⁡(2.08 ∗ LogP)   

  

Equation 5 Predictive models for empirical diffusion parameters based on physicochemical properties of drug [19] 
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As described in our methods, we have developed a model to predict empirical parameters based 

on physicochemical properties of drugs. Equation 5 predicts empirical parameters D’ and Y’ in a 

PCL matrix system and Dk in a PCL reservoir system. Figure 9 compares the predicted empirical 

parameters to experimental empirical parameters in both the matrix and reservoir systems. The 

predictive models were built to minimize relative residual error (RRE). The average RRE in the 

reservoir system in the final model is 1.2, with Diltiazem-HCl as an outlier with an RRE of 8.1. 

Excluding Diltiazem-HCl, the RRE of the remaining 7 drugs falls to 0.2. The RREs for predicted 

parameters in the matrix system are 0.3 and 0.6 for D’ and Y’ respectively.  

 

Figure 9 Predicted and experimental values of empirical parameters [19] 
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The models presented here are useful in early system design as well as evaluation of a PCL thin-

film device for delivering a given drug at a target rate and dose. For example, we can use the 

predictive model to calculate Dk for Timolol [Solubility = 2.740 g/L [24], MW =316.42 [25], LogP 

= 1.83 [25], and pKa = 9.21 [25]; Dk = 4.18E-11mm2/hr] and Equation 4 to model release from a 

reservoir device loaded with Timolol Maleate [Solubility = 100 g/L, [26] MW = 432.49 [25]] to 

design a device with suitable dimensions and a target release rate of 10-30 µg/day [27] for long-

acting glaucoma treatment. Based on the predictive and empirical models, a 2x3mm rectangular 

device (12mm2 surface area) made with a 70 µm thick PCL membrane will achieve a release rate 

of 17 µg Timolol/day. The duration of drug release depends on the mass loaded into the device 

reservoir; here we demonstrate a 15 day device with a total drug load of 300 µg Timolol (410 µg 

Timolol Maleate). The predicted linear release rate and experimental results in Figure 10 

demonstrate that the models accurately predict the linear release rate from the reservoir 

device. As drug depletes and the total mass in the reservoir falls below the solubility limit, the 

release kinetics reflect 1st order Fickian diffusion. Due to the small reservoir volume, the mass 

released in this non-linear phase is small (< 40 µg).  
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Figure 8: Predicted and experimental release profile for Timolol from a Timolol-Maleate loaded PCL reservoir 
device. Device dimensions are 2x3mm rectangle with a 70um thick membrane and 0.4mg Timolol-Maleate 
(0.3mg Timolol) load. Device was designed using predictive modeling and empirical equations for a 17ug/day 
Timolol release rate with dimensions appropriate for front of the eye delivery. [19] 

 

In another example, we designed a PCL matrix system as a potential on-demand vaginal film 

releasing the contraceptive levonorgestrel. In this case, we use the predictive model to calculate 

D’, 3.69E-06 mm2/hr, and Y’, 5.03E-08, based on levonorgestrel drug properties (MW = 312, 

LogP = 3.8, pKa = 13, solubility = 2 mg/L). [25] To target a 1 to 2 day sustained-release profile 

with 5-10 µg of total drug release, we designed a 6 mm-diameter PCL film, 38 µm thick with 

0.8% drug loading by mass. Figure 11 shows the predicted and experimental release profile for 

this system. As previously described, the release profile for a matrix system is defined as a 

percent-released, therefore, the mass of levonorgestrel release from this film can be easily 

scaled with film diameter depending on desired dosing.   
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Figure 9 Predicted and experimental release profile for Levonorgestrel (LNG) from a PCL matrix film. Film 
dimensions are 6mm diameter, 38µm thick, with a 0.8% mass loading of LNG. Device was designed using 
predictive modeling and empirical equations for a 5-10ug sustained release for 1-2 days as a potential on-
demand vaginal film contraceptive.  [19] 

 

Finally, we applied the predictive and empirical models to design a PCL thin-film device for long-

acting malaria prophylaxis. Based on a basic pharmacokinetic model taking into account oral 

bioavailability, plasma half-life, volume of distribution and minimum and maximum plasma 

concentrations for steady-state oral dosing of primaquine bisphosphate [24], we estimated a 

target constant-rate release of 12-24 mg/day to achieve 50-100 ng/ml plasma concentration for 

effective malaria prophylaxis. Based on the properties of primaquine (MW = 259, LogP = 2.1, 

pKa = 10.2, API-solubility = 56.4 mg/L, drug product (primaquine bisphosphate) solubility = 

166.7g/L) [24] [21], Dk was predicted (2.05E-11 mm2/h) and the empirical model for release 

from a constant-activity reservoir device was used to design a PCL thin-film device targeting 16 

mg/day release with a 4 µm thick membrane, 800 mm2 (40 mmx10 mm rectangle) surface area, 

and 175 mg primaquine phosphate (99 mg primaquine) load for 10 days of drug release. Figure 

12 illustrates the predicted linear release rate and experimental data from this device.  
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Figure 10 Predicted and experimental release profile for Primaquine from a Primaquine bisphosphate loaded 
PCL reservoir device. Device dimensions are 10x40mm rectangle with a 4um thick membrane and 175mg 
primaquine bisposhpate (99mg primaquine) load. Device was designed using predictive modeling and empirical 
equations for a 16mg/day release rate. [19] 

 

The empirical models presented here describe a systematic approach to easily determine 

empirical parameters that define a drug’s release profile from a PCL thin-film matrix and a PCL 

thin-film reservoir device. These empirical parameters, D’ and Y’ for the matrix and Dk for the 

reservoir, are specific to the PCL system and to each drug. Once determined, these parameters 

allow for easy system design and scale-up or scale-down to achieve a target release rate and 

quantity for a given drug. Additionally, these parameters depend on a drug’s physicochemical 

properties, indicating that the mass transport of drug from the matrix system into the release 

buffer is not only affected by concentration gradients as described in the diffusion equation, but 

also by interactions between drug molecules and polymer. Diffusion rate of dissolved drug 

through the polymer in both the matrix and reservoir system depends on molecular weight, 

with larger molecules diffusing more slowly. In the reservoir system, the partition of drug into 

the polymer membrane depends on LogP and solubility, with more hydrophobic (larger LogP 

and lower solubility) drugs partitioning faster. Conversely, in the matrix system, drug partition 

from the solid polymer matrix to the permeating fluid depends on LogP and solubility with 
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opposite correlations to those observed in the reservoir system. In the matrix system, 

hydrophilic drugs partition more rapidly from the polymer matrix.  

 

5.2.5.  Effect of porosity on diffusion 

Small molecule pharmaceuticals have hydrodynamic radii on the order of 1 nm or less and thus 

are expected to diffuse with limited or negligible steric hindrance through the porous structure 

of mpPCL. As a result, the introduction of porosity to the PCL membrane is anticipated to 

increase release rate for a given surface area and membrane thickness as dissolved drug can 

diffuse via the porous pathway. As Figure 13 describes, there is a drastic increase in the 

membrane permeability of two representative small molecules, metoprolol and atenolol, for 

mpPCL relative to nonporous PCL. As is evidenced by the much larger increase in atenolol 

permeability relative to metoprolol permeability, the magnitude of the increase in permeability 

depends on the hydrophobicity of the molecule. This is attributed to the greater partition of the 

more lipophilic metoprolol (logP 1.88) into the PCL membrane compared to the more 

hydrophilic atenolol (logP 0.16). With a smaller partition and a greater fraction of drug 

remaining in the aqueous phase, atenolol appreciates a more significant boost in permeability 

from the aqueous pathway presented by the porous structure. Interestingly, and rather 

unexpectedly, for Rilpivirine HCl, a very hydrophobic molecule (logP 4.86) with limited solubility 

(< 1 µg/ml), permeability in the mpPCL membrane is actually less than the nonporous 

membrane (Figure 14). While consistently observed for Rilpivirine HCl with and without 

solubilizing formulation excipients, this phenomenon has not been observed for other molecules 

with high logP.    
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Figure 11 Membrane porosity increases permeability for model pharmaceuticals. Magnitude of increase in 
membrane permeability depends on molecular properties such as hydrophobicity; metoprolol (logP 1.88), with 
greater hydrophobicity than atenolol (logP 0.16), experiences a lesser increase in permeability with a porous 
membrane than atenolol as a greater fraction of metoprolol is expected to partition from the aqueous phase 
into the PCL.  

 

 

 

Figure 12 Membrane porosity decreases permeability for highly hydrophobic Rilpivirine HCl (logP 4.86, < 1 
µg/ml solubility).  
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5.2.6.  Impact of PCL molecular weight on diffusion 

As described in the section on tuning PCL degradation, blends of PCL with different molecular 

weights can be used to produce membranes that are suitable for device fabrication with average 

molecular weights that, when comprised of a normal molecular weight distribution, are not 

suitable for device fabrication (i.e. do not form intact films or do not have sufficient integrity for 

effective sealing and device handling). With respect to this approach for tuning PCL degradation, 

it is important to understand how differences in PCL molecular weight distributions impact 

membrane permeability. Evaluation of membrane permeability for two molecules 

representative of the standard pharmaceutical space, one with high LogP (metoprolol, logP 

1.88) and one with low LogP (atenolol, logP 0.16) illustrates no statistically significant difference 

(p=0.9 and p=0.29 respectively) in membrane permeability for devices fabricated from two 

different PCL molecular weight distributions, both resulting in an average molecular weight of 

45 kDa. (Figure 15) It is important to note that a PCL film cast from a normal distribution with 45 

kDa average molecular weight resulted in defective devices due to poor film and seal integrity.  

 

Figure 13 PCL molecular weight distribution does not affect membrane permeability. Atenolol permeability data 
collected by Jean Kim, UCSF. 
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5.3. Membrane Design for Macromolecules (Protein Therapeutics) 

5.3.1.  Introduction 

Macromolecules such as proteins require pores to pass through a PCL film. Two categories of 

porous PCL films are presented here: nanotemplated PCL (nanoPCL) and microporous PCL 

(mpPCL). The nanoPCL membrane is characterized by a layer of 20-nm channels roughly 500 

nm deep with a microporous backing layer 20-30 µm thick with a tortuous network of pores 1-2 

µm in diameter. (Figure 16) The development and fabrication of this nanoPCL membrane and 

its use in achieving single-file diffusion of protein molecules was described by Bernards et. al. in 

2010. [7] In short, the nano-channels are created by casting a submicron PCL film over a 

sacrificial ZnO nanorod template followed by a microporous backing layer. The diameter and 

density of the nanochannels are defined by the ZnO nanorod template. Leveraging similar 

recipes and procedures used to create the microporous backing layer that provides support to 

the nanochannel membrane, the mpPCL membrane is introduced here. The mpPCL membrane 

is fabricated by solvent casting a co-solution of PCL and PEG onto a glass surface. PEG, the 

porogen and a water soluble polymer, is then leached from the PCL membrane by submersion 

in deionized water, leaving behind a network of pores. Pore size, density, and structure are 

determined by the porogen, in this case 2.05 kDa PEG, the relative concentration of porogen to 

PCL, the solvent used for casting, and the casting surface. The standard protocol used for 

mpPCL films in this body of work is a 1:1 ratio PCL 80kDa to PEG 2.05 kDa cast in TFE onto a 

polished glass surface. As a cross-section of a typical mpPCL film depicts (Figure 16), pores are 

roughly 1 µm in diameter. While not directly observable or quantifiable, this suggests that 

inter-porous pathways are less than 1 µm. Differences in the pore structure and size observed 

in nanoPCL and mpPCL lead to different protein release kinetics from a porous TFPD.  
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Figure 14 Scanning Electron Microscope images of nanoPCL and mpPCL cross-sections. NanoPCL membranes (left) 
are characterized by a thin layer of nano-channel pores (20 nm in diameter) backed by a layer of larger pores (1-3 µm 
diameter) for structural support. In nanoPCL, molecular diffusion is limited by the length, diameter, and density of the 
nano-channels.  mpPCL (right) does not contain the nano-channel layer, but has a similar pore structure and size  to 
the backing layer on the nanoPCL membrane. In  mpPCL, molecular diffusion is limited by the size and extent of the 
connections between the large pores visualized in these cross-sectional images.   

 

5.3.2.  NanoPCL Membrane Design 

The hydrodynamic diameter of an antibody is on the order of 10 nm, and thus with pore sizes 

averaging 20 nm in diameter, the nanoPCL membrane exhibits single file diffusion. This results 

in linear release of protein from a nanoPCL device with release rates independent of reservoir 

concentration. [11] While independent of concentration, release rate will depend on the size of 

the protein and may also depend on other properties such as charge, polar surface area, or 

capacity for hydrogen bonding.4 (Figure 17) Protein release rates are on the order of 1µg/day 

per mm2 surface area of nanoPCL membrane. While these release rates are relevant for protein 

therapeutics requiring doses on the order of micrograms per day, these slow rates preclude 

proteins requiring higher doses. Furthermore, the achievable release rate will be determined 

by limitations in device size. For example, an ocular sized device may only have a surface area 

up to 50 mm2, whereas a subcutaneous sized device may be sized up to 250 mm2. 

                                                           
4 Dependence of protein release rates in nanoPCL membranes on molecular properties is suggested by results 
presented in Figure 17, but not explored further in the work presented here.  
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Figure 15 Protein release rate  from nanoPCL depends on molecule characteristics. Size alone does not account for 
differences in release rates observed for different protein molecules.  

 

As is discussed in more detail in the device design section (Section 6), protein stability is a 

common challenge in the design of long-acting delivery systems. While liquid protein 

formulations typically make use of small molecule excipients, one approach to protein 

formulation in the TFPD reservoir system is the use of macromolecule excipients that do not 

readily deplete through the PCL membrane. While this approach shows promise for improving 

protein stability, these macromolecule excipients limit protein release through the nanoPCL 

membrane to less than 0.1µg/day per mm2 surface area of nanoPCL membrane. (Figure 18) 

With such slow release rates, nanoPCL TFPDs utilizing macromolecular excipients are not likely 

to be feasible for achieving effective doses. 
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Figure 16 Protein release from nanoPCL TFPD is limited by macromolecule excipients. Upon addition of 
PEG3350 or Chitosan to the device reservoir, protein release is reduced by more than 5x. 

 

5.3.3.  mpPCL Membrane Design 

While not achieving single-file diffusion, the mpPCL membrane controls protein diffusion, 

resulting in a sustained release profile with kinetics falling between zero and first order, 

suggesting Knudsen diffusion. Figure 19 illustrates release profiles for two different therapeutic 

proteins5, demonstrating variations in the sustained release profile. Examining the release 

profiles closer shows that the therapeutic protein in Figure 20 has a near linear release profile 

up to about 80% followed by a second release phase with rates slowly decreasing (linear with 

respect to t0.28) until depletion. The therapeutic mAb demonstrates a sustained release profile 

linear with respect to the square root of time (Figure 21) until depletion.  

                                                           
5 Identification of therapeutic protein is redacted due to confidentiality. Therapeutic mAb is VRC01, a broadly 
neutralizing HIV antibody 
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Figure 17 Sustained protein release from mpPCL TFPD. Release profiles for therapeutic proteins from mpPCL 
TFPD are less than 1st order, but not constant-rate, with a slowing in release as reservoir concentration 
decreases. While both are sustained release, exact profile shape is molecule dependent.  

 

 

Figure 18 Characterizing release profile for therapeutic protein released from mpPCL TFPD. Release profile of a 
therapeutic protein from the mpPCL TFPD is bi-phasic, with an intial linear release up to 80% release, followed 
by a sustained release as the device depletes. 
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Figure 19 Characterizing release profile for therapeutic mAb sustained released from mpPCL TFPD. For this 
therapeutic mAb, release from the TFPD is linear with respect to the square root of time.  

 

While the mpPCL membrane does sustain protein release, it does not result in concentration 

independent release as the rate of diffusion is still dependent on the concentration gradient 

through the porous membrane. The impact of reservoir concentration on protein release rates 

is discussed in more detail in the section on device design. Even though release rates from the 

mpPCL membrane are not perfectly linear nor concentration independent, they are 

significantly faster than with the nanoPCL membranes (> 1 µg/day per mm2 surface area, 

depending on reservoir concentration), allowing for higher dosing and more flexibility in device 

design.  Furthermore, as is illustrated in Figure 22, while macromolecule excipients do reduce 

diffusion in mpPCL, release rates are high enough to be therapeutically relevant for a 

reasonably sized device.6 

                                                           
6 Additional information provided in Case Study I which further investigates protein formulation for an ocular 
implant.  
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Figure 20 Protein release from mpPCL TFPD in the presence of macromolecule excipients. Similar to the 
nanoPCL, release rates are reduced upon addition of excipients PEG3350 or Chitosan to the device reservoir. 
However, with the significantly faster release from the mpPCL TFPD compared to the nanoPCL TFPD, adequate 
release is achievable in the presence of these excipients.  

 

5.3.4.  Tuning Release (mpPCL membranes)  

As a platform technology for a range of drug delivery applications, it is desirable to be able to 

tune drug release from the TFPD. This was particularly important when replacing the nanoPCL 

membranes with mpPCL membranes for developing an ocular implant (Case Study I) as the 

mpPCL membranes have significantly faster release rates. While not an extensive investigation 

into altering membrane properties, two approaches to using membrane design to reduce 

release rate were tested. Based on the diffusion equations presented in Section 5.1.2, if 

diffusion through the tortuous pore structure of the mpPCL membrane is the limiting step for 

diffusion, release rates should be decrease as membrane thickness increases. However, as 

shown in Figure 23, increasing membrane thickness from 20 to 100 µm has no impact on protein 

release. This suggests that the bulk membrane and its porous structure are not the rate limiting 

step for diffusion. There are two hypothesized explanations for this, one is that, similar to the 

nanoPCL membranes, diffusion through the submicron pores connecting the micron sized pores 
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observed in the mpPCL cross section is rate-limiting or that the membrane surface is rate-

limiting.  

 

Figure 21 mpPCL membrane thickness does not impact protein release. 

 

Another approach to tuning release rate is to alter pore size and/or structure. Pore structure is 

defined by the choice of porogen, relative concentration between porogen and polymer in the 

casting solution, casting surface, and process control such as % humidity, temperature, etc. 

However, in the context of the work presented here, major changes to membrane pore 

structure were avoided to prevent loss of the desired sustained protein release profile. In a 

simple attempt to reduce pore density while maintaining a comparable pore structure, the 

concentration of porogen was reduced. While this resulted in porous films with decreased 

porosity (less than 10% compared to the typical 50% porosity in mpPCL films fabricated from the 

“standard” recipe), protein release from these films was negligible and further investigation into 

reduced porosity films was abandoned.  
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As will be discussed further in the device design section (Section 6.5.2), rather than altering 

membrane properties to tune release rates, devices were fabricated with a combined 

nonporous and mpPCL membrane design, allowing for the adjustment of porous surface area to 

tune release rates while maintaining the sustained release profiles characteristic of the mpPCL 

membranes presented here.  

 

6. TFPD Device Design 

6.1. Introduction 

Aside from the membrane, there are several aspects of TFPD design that are key for developing a 

system suitable for long-acting delivery of a therapeutic for a given indication. Device design is 

defined as membrane selection, device form, and reservoir formulation, all of which are dependent 

on the target indication and API. This section will generally describe how each of these components 

is considered in the development of a TFPD system for either small molecule pharmaceuticals or 

biologics; the proceeding case studies further illustrate the use of these concepts to design devices 

for specific indications.   

 

6.2. The Target Product Profile 

In designing a TFPD for a specific indication, it is critical to develop a target product profile for the 

system prior to starting device design. The target product profile should at a minimum consist of 

limitations or targets in device size and shape, API release rates, device duration, and acceptable 

storage conditions.  

 

The device size and shape will be defined by the route of administration and user acceptability; for 

example an ocular device must fit within the intraocular space, while a subcutaneous device can be 
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significantly larger. Additionally, device form may be limited by methods of insertion as both size 

and shape may determine if the implant can be inserted without the need for sutures or anesthesia. 

Depending on the indication and site of implantation, what is acceptable may differ.  

 

API release rates depend on the pharmacokinetic profile for the API delivered from a constant-rate 

implant as well as the drug efficacy. While for new and untested APIs this may be difficult to 

estimate, the development of TFPD systems is often relevant for molecules for which preclinical or 

clinical data are already available, albeit for a different route of administration or dosing regimen. 

Depending on what data are available, there are a number of different methods using very basic 

pharmacokinetic principles and models for estimating target release dosing, examples of which are 

given in Case Study II and Case Study III. There are two important concepts to remember in these 

evaluations. First, that when basing estimates on data from oral administration, that implants will 

likely by-pass the first-pass hepatic clearance. Second, that there is a pharmacokinetic benefit 

obtained from a constant rate release compared to a regular bolus or oral dosing regimen. While 

estimates at this stage may be very rough, it is critical to understand the range of dosing relevant to 

the target indication in order to develop a device capable of API release in this range. 

 

Targets for device duration as part of the target product profile are dependent upon the indication, 

the current standard of care, and user acceptability. Take contraceptive implants as an example, 

particularly with the availability of multiple contraceptive methods, contraceptive implants requiring 

multiple rods as large as 2mm in diameter by 40mm long may be acceptable for a 5 year duration, 

but not acceptable for only 3 months of contraception. Additionally, implants must be desirable 

relative to the current standard of care; if the available regimen is an oral dose once a week and the 

implant offers only a one month duration but must be inserted into the eye, all other things being 
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equal, this is not likely to be the general user’s preference. So based on these ideas and the clinical 

need, the target duration of the device should be defined in the target product profile before device 

development. 

 

Acceptable storage conditions depend on the indication and target patient population. For example, 

in Case Study II, the product profile for an HIV PrEP implant with a target patient population in Sub-

Saharan Africa is defined as storage conditions that do not require a cold chain. However, in Case 

Study I looking at the development of an ocular implant that will be administered in hospital clinics 

in the developed world, a cold chain requirement for storage is not an undue burden. While the 

testing of storage conditions may come well after the early device design, it is important to know 

the limitations on device design, API form, and reservoir formulation that may be defined by these 

storage conditions. 

 

6.3. Design Components 

6.3.1. Membrane selection 

Section 5 describes the different variations of PCL membranes and their resulting release 

profiles for pharmaceuticals or biologics. Based on the principles outlined in the membrane 

design section, a membrane should be selected that is suitable to deliver the API of interest with 

the desired release profile. Furthermore, a membrane should be developed that is most capable 

of releasing the API at release rates relevant to the given indication; as is discussed in the 

proceeding sections, achieving target release rates also depends on device form and reservoir 

formulation. 

 

6.3.2. Device form 
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The size and shape of the device, defined by the site of implantation and user acceptability, in 

turn defines the reservoir volume, device surface area, and the potential methods or protocols 

for insertion. The reservoir volume is a key device parameter for device design as it both defines 

the loading capacity as well as reservoir concentration which will be discussed further in the 

following sections. Release rates scale with membrane surface area; while the combination of 

membranes with different characteristics allows us to reduce the effective surface area for drug 

release, the upper limit for effective surface area and thus drug release rate is defined by the 

device form. As discussed in the target product profile, the device form may also dictate how 

and where the device may be inserted and whether or not the procedure requires anesthesia or 

surgery. 

 

Furthermore, device duration is dependent on both device form, release rates, and polymer 

degradation. Device form defines reservoir volume, and thus the API loading capacity. The 

maximum duration is therefore a function of API loading capacity and release rate as long as the 

polymer degradation does not result in fragmentation before drug depletion.  

 

6.3.3. Reservoir Formulation 

Formulation excipients may be added to the device reservoir for several reasons. In the case of 

pharmaceuticals, solubilizing excipients may be used to increase the rate of dissolution or to 

increase drug solubility in the device reservoir. If the rate of dissolution in the device reservoir 

for an API is not faster than the rate of release, dissolution will define the release profile. (Figure 

52) If this is the case, excipients that increase the rate of dissolution may be added to achieve 

membrane controlled release. As is illustrated in Case Study II, increasing the solubility of an API 

in the device reservoir increases the concentration gradient, the driving force for diffusion, thus 
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increasing release rates. (Figure 51) In some cases, the same excipients that increase solubility 

may also increase the rate of dissolution. For both pharmaceuticals as well as proteins, 

formulation excipients may be added to the device reservoir to increase API stability. This is 

particularly relevant for protein formulation as high concentrations in the device reservoir (> 

100 mg/ml in most cases) create an unstable environment for proteins in solution under 

physiological conditions. Two approaches to protein formulation in the device reservoir are 

discussed in Case Study I. As is highlighted by the case studies, it is important to remember in 

designing a TFPD that any change to reservoir formulation may impact release rates and thus 

the device design or membrane selection must be altered accordingly. (Figure 18) 

 

6.4. Device Design for Small Molecule Pharmaceuticals 

Case study II and III describe the application of the ideas presented in this section on device design 

to the development of TFPD systems for specific indications. The basic design for small molecule API 

TFPDs hinges upon the excess loading of API into the device reservoir, well above the solubility limit, 

maintaining a saturated solution in the reservoir throughout the majority of the duration of 

administration. With a constant concentration and driving force for diffusion, constant rate 

membrane controlled release is achieved until API depletes below the saturated concentration. This 

section will summarize the key tools used in device design for these systems. 

 

6.4.1.  Release rate is proportional to surface area 

As is shown in Figure 53 and Figure 54 and described in Equation 4 Steady state flux through a 

membrane with a constant activity source and sink conditions. , release rates are proportional 

to membrane surface area. This is one tool in device design used to tune release rate and is 

particularly useful when scaling devices for pre-clinical animal studies in which both the device 
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size and release rate need to be adjusted to accommodate the animals smaller size. 

Additionally, demonstrating the proportional relationship between membrane surface area and 

release rate also indicates that the TFPD exhibits membrane controlled release. A non-linear 

relationship between release rate and surface area may indicate a dissolution controlled 

release. (Figure 52) 

 

6.4.2.  Release rate is inversely proportion to membrane thickness 

As described by Equation 1 and Equation 4, release rate in a membrane controlled reservoir 

device is inversely proportional to membrane thickness. This provides a means of tuning release 

rate that is orthogonal to membrane surface area. For example, if a reduction in device size and 

thus membrane surface area is not desirable due to the loss in loading capacity, membrane 

thickness can be increased to effectively reduce drug release. However, there is a practical limit 

to reducing membrane thickness and membranes less than 5 µm are not practical for handling. 

Furthermore, it is important to validate the relationship between membrane thickness and 

release rate for a given range of membrane thickness; as is observed in Error! Reference source 

ot found., as membrane thickness is increased for this particular system, a critical point is 

reached after which increasing membrane thickness no longer reduces release rate. This 

suggests that at this point, membrane thickness is no longer the limiting factor for drug release. 

Such a phenomenon may be dependent on both the API and the film fabrication protocol and 

should be tested empirically.  

 

6.4.3.  Formulation excipients 

Common formulating excipients to increase drug solubility or dissolution can be used to 

formulate API in the device reservoir. Examples of such excipients include polyethylene glycols, 
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cyclodextrins, polysorbates, and co-polymers such as poloxamers. The impact of formulating 

with these excipient depends on both the excipient concentration as well as its interaction with 

the given API. There is a significant body of work and experience in the pharmaceutical field 

using such excipients as formulation components that can be used as a guide. [25] [26] 

However, the effect of these excipients on API release and stability in the context of the TFPD 

must be evaluated empirically as the impact of excipients in controlled release systems can be 

complex. [27] [28] For example, while in theory increase in reservoir solubility for an API should 

be directly proportional to an increase in release rate, this may not always be observed. 

Variations can be due to the formation of complexes between API and excipient resulting in 

larger effective hydrodynamic radii or a change in API partition between the aqueous phase and 

polymer membrane.  

 

6.5. Device Design for Biologics (proteins) 

As is the case with membrane design, device design for biologics compared to pharmaceuticals is 

more complex. As proteins have relatively high solubilities and tendencies to form gels rather than 

saturated solutions the way small molecules do, the TFPD design for protein APIs does not leverage 

a constant reservoir concentration from a saturated solution achieving constant rate release. 

Instead, as previously discussed, the membrane design achieves a constant-rate or sustained protein 

release. This section will describe the approach to device development for mpPCL devices which 

have the most flexibility and tunability as TFPDs for protein delivery. The development of device 

designs for the mpPCL TFPD release protein API depend on a series of empirical correlations that 

relate device design parameters, those aspects of the system that are directly controlled in 

fabrication, to system design parameters, system characteristics that define performance and are 

indirectly controlled through the device design parameters. The following sections describe the 
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device design model for a representative mAb therapeutic with no additional formulating excipients. 

Case Study I describes the development of a similar design model when formulation excipients are 

considered.  

 

6.5.1. Reservoir Concentration 

While the mpPCL membrane does sustain protein release, it does not result in concentration 

independent release as the rate of diffusion is still dependent on the concentration gradient 

through the porous membrane. This is evidenced by a linear dependence between the 

magnitude of the release rate and the protein reservoir concentration or the protein load as 

compared to similarly sized devices. (Figure 24) The release rate constant for the therapeutic 

mAb, which exhibits a sustained release profile that is linear with respect to the square root of 

time, is taken as the linear release rate relative to the square root of time (as illustrated by the 

trendlines in Figure 21). 

 

Figure 22 mAb release rate from mpPCLTFPD is proportional to reservoir loading concentration. Reservoir 
concentration is empirically determined and defined as the loading mass relative to reservoir hydration volume 
determined by mass change upon hydration.    
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The reservoir concentration is clearly a key factor in designing a device with a targeted release 

rate. The reservoir concentration as defined in the empirical correlation illustrated in Figure 24 

is the initial protein loading divided by the volume of water absorbed into the device reservoir 

upon hydration. Thus the reservoir concentration depends on both device loading as well as 

reservoir hydration. For a given formulation and API, the reservoir hydration volume correlates 

with device size. (Figure 25) Thus, knowing the device load and device volume, both device 

design parameters, the resulting reservoir concentration and rate constant can be predicted.  

 

Figure 23 Reservoir hydration volume depends on device size. Gray data points are outliers and not included in 
trendline. Error in empirical measurement is not unexpected due to small increases in mass upon hydration and 
presence of air bubbles due to under-loading or large devices. 

 

6.5.2.  Membrane surface area 

It should be noted that the empirical correlation presented in Figure 24 describes the rate 

constant as area normalized fraction released. As release rate and porous surface area are 

proportional to one another, membrane surface area can be used to tune the rate of protein 
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release. Proteins do not diffuse through a nonporous PCL membrane, and thus by combining the 

nonporous and mpPCL membrane, essentially creating a mpPCL “window” through which 

protein is released, protein release rates as a function of membrane surface area are decoupled 

from the overall device size. Instead of being dependent on device surface area, protein release 

is only dependent on the mpPCL membrane area, which can be as small as possible for 

fabrication (~ 3-5 mm2 with bench scale fabrication) and as large as the total surface area of the 

device.  

 

6.5.3.  Applying empirical correlations to a device design model 

The empirical correlations and device design principles presented here can be combined to 

produce a model for device design. The inputs are device design parameters (i.e. protein load, 

device volume, and membrane surface area) and the output is the release rate constant as 

fraction released per square root of time and a predicted release profile presented as 

cumulative mass released as a function of time. It should be noted that the translation of 

empirical correlations to a device design model takes into consideration the shape of the 

sustained release profile, which is molecule specific, as described in Section 5.0.  

 

Figure 26 details the device design and predicted release profile up to 100 days for a 

subcutaneous device 2mm in diameter and 40mm long with varied mpPCL surface areas to 

release the mAb investigated in this section.  The protein load for this device is estimated based 

on 90% of the theoretical loading capacity of a device this size with a protein particle density of 

1.4 mg/ml.  
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Figure 24 mpPCL window Device Design Model for mAb release from a representative TFPD designed for a 
subcutaneous implant. Predicted release profiles are illustrated for two different mpPCL “window” sizes.  

 

Based on the input for device volume and the empirical correlation in Figure 25, reservoir 

hydration volume is predicted. From the input for protein load and the predicted reservoir 

hydration volume, reservoir concentration is predicted. With the predicted reservoir 

concentration and the empirical correlation in Figure 24, the area normalized rate constant in 

terms of fraction released is calculated. The rate constant can then be used to calculate a 

cumulative release profile by taking into consideration the total protein load and the input for 

mpPCL surface area. While this is only one example of a device design using this model for the 

mAb considered here, device design inputs could be tuned to predict release profiles or 

determine necessary mpPCL membrane areas targeting specific release rates for devices of 

different sizes and loading. Variations in this approach to developing a model for device design 

based upon empirical modeling are presented in Case Study I for another protein therapeutic in 

the presence of formulation excipients.  
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7. Materials & Methods 

7.1. Definitions 

mpPCL – microporous PCL; nanoPCL – nanoporous PCL; npPCL – nonporous PCL; PEG – polyethylene 

glycol; PEG3350 – polyethylene glycol average m.w. 3350; hVLM - Human vitreous-like media; a 

phosphate buffered saline based media, pH 7.2 ; SE-UPLC/HPLC – Size exclusion ultra performance 

liquid chromatography / high performance liquid chromatography ; RP-UPLC/HPLC – Reverse phase 

ultra performance liquid chromatography / high performance liquid chromatography; WFI – water for 

injection; TFPD – thin film polymer device; PDMS – polydimethylsiloxane; HP-β-CD – hydroxypropyl 

beta cyclodextrin; PEG300 – polyethylene glycol with 300 average molecular weight; PS20 – 

polysorbate 20; UV – ultraviolet 

 

7.2. General Procedures 

7.2.1.  PCL Film Fabrication & Characterization – nonporous (npPCL) 

 Films were draw-cast onto a glass surface using a multiple clearance square applicator   (Paul N. 

Gardner Company, Inc., Pompano Beach, FL) from an 80 to 200 mg/ml solution of PCL (average 

Mn 80kDa, Cat#440744 Sigma, St. Louis, MO) in dichloromethane. After drying, PCL was 

annealed by heating to just past melting with a heat gun and cooling at room temperature. The 

solution concentration and height of the draw-casting rectangle were used to obtain films of 

varying thickness. npPCL films were characterized for film thickness using a micrometer.  

7.2.2. PCL Film Fabrication – nanoporous (nanoPCL) 

Films were fabricated by Dan Bernards according to the following method described in the 2012 

article “Nanostructured Thin Film Polymer Devices for Constant-Rate Protein Delivery” 

published in Nanoletters [7]: Onto a clean silicon substrate a zinc oxide seed layer is spin-cast 
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and nanorods, on average 20nm in diameter and 500-1000nm long, are grown hydrothermally. 

A thin PCL layer is spin-cast onto the ZnO template followed by a PCL and PEG mixture. 

Deionized water dissolves the PEG phase from a supporting layer, and sulfuric acid etches the 

ZnO template to generate a supported nanostructure PCL thin film.  

7.2.3. PCL Film Fabrication & Characterization – microporous (mpPCL) 

Films were draw-cast onto a glass surface using a multiple clearance square applicator   (Paul N. 

Gardner Company, Inc., Pompano Beach, FL) from a 200 mg/ml PCL (average Mn 80kDa, 

Cat#440744 Sigma, St. Louis, MO) and 200 mg/ml PEG (m.w. 2050 Da, Cat#295906 

LotBCBJ7635V, Sigma, St. Louis, MO)  in 2,2,2-trifluoroethanol. After drying, deionized water 

was used to dissolve the PEG phase from the PCL creating a porous structure. mpPCL films were 

characterized for % porosity and film thickness. Film thickness was measured using a 

micrometer, and % porosity was determined by film density compared to PCL density according 

to the following equation: 

%⁡𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 = 1 −
𝜌𝑓𝑖𝑙𝑚

𝜌𝑃𝐶𝐿
 

PCL density is 1.125 g/ml and PCL film density is calculated using the mass of a section of film 

with known dimensions.  
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7.2.4. Device fabrication (nonporous PCL/mpPCL combination devices) 

 

Figure 25 PCL thin film reservoir device fabrication schematic. For a mpPCL TFPD, the first step consists of 
splicing a mpPCL section between two nonporous PCL pieces using a heat-sealing apparatus. Next, for either a 
mpPCL TFPD or nonporous PCL TFPD, the film is rolled around a rod-shpaed mold with a diameter slightly 
smaller than the desired device diameter. The heat sealing apparatus is used to seal along the longitudinal axis 
of the rod. The rod is then removed (not shown) and one end of the device is sealed. Drug substance is then 
loaded into the open end of the tube, and the open end of the tube is then sealed. 

 

Figure 27 illustrates the general process flow for device fabrication of a combined nonporous 

and mpPCL PCL device. In short, a piece of mpPCL is spliced between two pieces of nonporous 

PCL using heat sealing. Heat sealing is accomplished by aligning the film above a nickel-

chromium wire embedded between two PDMS slabs. The wire is heated by passing a current 

through the wire. The film is then rolled around a cylindrical mold whose diameter is chosen 

based on the target device dimensions and heat sealed along the longitudinal axis of the 

cylinder and on one end to create a hollow cylinder with one open end. Drug substance is then 

loaded into the cylinder and a final seal made along the open end.  
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7.2.5. Device fabrication (nonporous PCL) 

The same general process is followed for fabrication of purely nonporous or mpPCL devices as 

described in Figure 27, skipping the first step combining mpPCL and nonporous PCL. In more 

detail, for each device, the PCL film thickness at multiple points (> 9) was measured using a 

micrometer. A Nickel-Chromium wire sandwiched between two thin slabs of PDMS and attached 

to a DC power supply constituted a heat-sealing apparatus through which controlled current 

was applied (1.2A) to heat the wire. PCL film was placed over the wire, and when the wire heats, 

the PCL melts.  To fabricate a rod-shaped device, the PCL thin film was reinforced on each end 

with thicker (>30um) pieces of PCL film to provide structural support to the thin-film cylinder 

during device loading and later sampling. This reinforcement was done by sealing the thicker 

piece of PCL along the edge of the membrane film, folding over the added piece of PCL and 

sealing again along the same line. The cylindrical device was fabricated by wrapping the PCL 

around a rod-shaped mold of the desired diameter and sealing the film together along the 

lengthwise axis first and then along one reinforced end to create a PCL tube with one end open. 

Empty devices were weighed prior to loading.  

 

7.2.6. Release Testing 

API concentrations in all samples were measured by either UV absorbance at their respective 

maximum wavelength using a SpectraMax M5 (Molecular Devices, Sunnyvale, CA) plate reader 

or by HPLC via use of a calibration curve. All release studies were done in , pH 7.4 at 37ºC in an 

incubator on an agitator at 120 rpm. Release buffer volume and time intervals between samples 

were chosen to fully submerge device and to maintain sink conditions in release buffer at less 



57 
 

than 1/5th of saturation. Volumes ranged from 0.5 – 10mL with sample time points ranging from 

1 hr -5 days, depending on the API and device size. At each time point, the device was 

transferred to an aliquot of fresh release buffer. For each sample API concentration was 

measured and mass of API released during the time interval was calculated. For each device a 

cumulative mass versus time profile was used to determine the linear release rate. Linear 

release profiles were normalized to membrane area by dividing the release rate (mg/day) by 

device surface area (mm2). 

7.3. Accelerated PCL Degradation Specific 

7.3.1.  Accelerated Degradation 

Films were cut into pieces roughly 1-3 in2 fully submerged in 5-10mL of 4N Formic Acid and 

incubated at room temperature on an agitator. At each time point, a PCL film sample was rinsed 

thoroughly in DI water, blotted dry with a tissue, and further dried at room temperature for at 

least 24 hours, weighed, and stored under ambient conditions until further analysis.  

 

7.3.2.  GPC Analysis 

PCL molecular weight distributions were determined via GPC. An isocratic method with THF as 

the running buffer was used with a series of three Styragel® GPC columns (HR5/WAT0554460, 

HR2/WAT044234, HR0.5/WAT044231)  and an RID detector. Molecular weight analysis was 

completed based on polystyrene standards.  

 

7.4. Pharmaceutical Membrane Design Specific 

7.4.1. Matrix system film fabrication 

Drug product was dissolved in TFE and once dissolved, 70-90 kDa PCL was added to solution at 

200 mg/ml. PCL was dissolved in drug/TFE solution overnight in either a 60°C water bath or in a 

37°C incubator on an orbital shaker. A drug-polymer thin-film matrix was cast onto a 3-inch 

diameter silicon wafer using a spin-coater (Specialty Coating Systems, Model P6700; 30s at 
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1500RPM, 30s at 2000RPM) at room temperature. The resulting film was dried under ambient 

conditions and film thickness was measured using a profilometer. Circular samples (28 mm 

diameter) were cut from films for in vitro release studies. For each drug and loading 

concentration, three films were cast and a sample was taken from each. See Table II below for a 

summary of analyzed samples.  

7.4.2.  Matrix system samples 

 

7.4.3.  Reservoir system samples 
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7.4.4.  Data analysis 

For both matrix and reservoir samples, concentration in each sample was determined using a UV 

calibration curve for the relevant drug. Based on the release volume, mass released in each time 

interval and cumulatively were calculated. Matrix system release data was further processed to 

determine the cumulative percentage of drug released based on the total drug released. Time 

courses for matrix system data were continued until cumulative drug release reached a clear 

plateau and release could no longer be detected.  

7.5. Ocular implant case-study specific: 

7.5.1. Film Fabrication & Characterization 

 All films are prepared as described in general procedures. Devices in all experiments presented 

in this section are comprised of at least one of the following: 

 nanoPCL films with 20nm average pore diameter 
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 nonporous PCL films 12-20 µm thick 

 mpPCL films with 45-65% porosity, 25-35 µm thick 

When combining mpPCL and nonporous PCL films in device fabrication, a nonporous PCL 

thickness is selected to be roughly the same mass of PCL in a given area relative to the mpPCL 

film. That is, for a 50% porosity mpPCL film 30 µm thick, a 15 µm nonporous PCL film is selected.  

7.5.2.  Device Fabrication & Characterization 

 To determine load, mass of each loaded device is compared to the mass of the empty device. 

Porous dimensions for a nonporous PCL / mpPCL device are measured using a caliper prior to 

device loading, assuming that any subsequent sealing does not affect the porous area. Overall 

device dimensions are determined using a caliper after loading and sealing. If final sealing steps 

impacted porous area, porous area is re-evaluated post-fabrication.  

Devices with “sucrose only” formulation are loaded with lyophilized protein and no additional 

excipients. PEG3350 formulation devices are loaded with lyophilized protein and crystalline 

PEG3350. For studies investigating chitosan load for the chitosan formulation, solid chitosan and 

lyophilized protein are physically combined in solid form and loaded into the device. For all 

other chitosan formulation studies, chitosan and protein are co-lyophilized.  

7.5.3.  Stability studies (nonPCL) 

Nonporous PCL devices are fabricated and loaded with protein and excipients. Devices are fully 

submerged in 0.5 - 1mL release media (hVLM, pH7.2) and incubated at 37˚C in polypropylene 

tubes.  While protein release from the npPCL devices is not expected nor measured, release 

media is changed regularly (1-3 days) to prevent bacterial and fungal contamination. At each 

time point for analysis, a device is transferred to a known volume of release media and cut 
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open. Gently vortexing or mixing ensure that all reservoir contents are released into the media 

and dissolved. Protein purity is analyzed via SE-HPLC or SE-UPLC.  

7.5.4.  Release studies 

NanoPCL or mpPCL devices are fabricated and loaded with protein and excipients. Release of 

protein from nanoPCL and mpPCL devices is evaluated by fully submerging devices in 0.5 – 1mL 

release media (hVLM, pH7.2) and incubating at 37˚C in polypropylene tubes. At each time point 

(1-3 days), devices are transferred into a fresh aliquot of release media; release media from the 

prior period of incubation is retained for analysis. Protein quantity and purity is determined in 

each sample via SE-HPLC or SE-UPLC, and mass of protein released for each time interval is 

determined. Release profiles are typically presented as cumulative release as a function of time; 

cumulative release is calculated by summing the quantity of protein released in each 

subsequent sample over a time course.  Release profiles are at times also presented as 

normalized to porous surface area; this is calculated by dividing the cumulative release at each 

time point by the porous surface area measured during device fabrication and characterization.  

7.5.5.  PEG3350 solubility studies 

 Studies are conducted in glass vials, not device reservoirs, to better understand this approach of 

using PEG3350 to limit protein solubility and thus improve protein stability. We investigate both 

the precipitation of protein from solution through the addition of PEG3350 solution (designated 

“liquid”) as well as the reconstitution of lyophilized protein combined with solid PEG3350 to 

recapitulate what occurs upon hydration of the reservoir device (designated “reconstituted”).  

7.5.5.1. Study 1 

To determine the reduction in protein solubility with the addition of PEG3350 in solution, 

concentrated PEG3350 solutions are added to multiple protein solutions of known 
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concentration to target a range of final PEG3350 concentrations. A total protein content of 5 

mg/ml is targeted in all final solutions. After mixing and a > 60 min equilibration period, 

solution is centrifuged to pellet any solid contents and supernatant is removed for analysis. 

Prior to SE-UPLC and RP-UPLC analysis to determine protein purity and concentration, 

supernatant is filtered through a 0.22 µm spin-filter.  

7.5.5.2. Study 2 

To determine the impact of total protein content on protein solubility with the addition of 

PEG3350 in solution. Study 1 protocol is repeated for protein solutions with total protein 

contents ranging between 10 – 45 mg/ml. For each protein concentration, four PEG3350 

concentrations are evaluated.  

7.5.5.3. Study 3 

To determine the impact of PEG3350 concentration on protein solubility when reconstituted 

from lyophilized protein and crystalline PEG3350. Total protein content in reconstituted 

solution is targeted to be 10 mg/ml and PEG3350 target concentration in reconstituted 

solution is varied by PEG3350 load. WFI is used for reconstitution. Analysis of protein purity 

and quantity is performed as described in Study 1.  

7.5.5.4. Study 4 

To determine the recovery and purity of protein excluded or precipitated from solution by 

PEG3350. Total protein content in starting solutions is 25 mg/ml and 5 mg/ml in final 

solutions. Starting with either protein precipitated from solution according to the protocol 

in Study 1 or protein excluded from solution as described in the protocol in Study 3, 

solutions are diluted 5x with WFI. After 5x dilution, protein solubility based on PEG3350 
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concentration as determined by results of Study 1-3 is higher than the total content of 

protein in the samples. Thus, PEG3350 no longer limits protein solubility in this system and 

all protein should be recovered in solution. Protein purity and concentration is determined 

by SE-UPLC and RP-UPLC.  

7.6. HIV PrEP Subcutaneous Implant Case-Study Specific  

7.6.1. Antiretroviral formulation and loading: 

7.6.1.1. Elvitegravir 

Elvitegravir was graciously provided by Gilead Sciences (Foster City, CA). Elvitegravir was 

loading into the TFPD as a dry powder. For the preliminary screening work presented here, 

elvitegravir was compressed slightly upon loading, but not compressed fully into a solid 

pellet. After loading, devices were laid flat on the PDMS of the heat sealing apparatus and 

sealed. Once sealed devices were weighed to determine the total payload and device 

dimensions were recorded. 

7.6.1.2. Rilpivirine HCl 

Rilpivirine HCl and nanosuspension formulations were graciously provided by Janssen 

Pharmaceuticals R&D, Pharmaceutical Development and Manufacturing Sciences (Beerse, 

Belgium). When formulated with PEG300 or PS20, rilpivirine HCl was added to the liquid 

formulation excipient to create a viscous slurry that could be loaded through a P100 

pipette tip into the device reservoir. When formulated with HP-β-CD, HP-β-CD was first 

dissolved at 60% w/w in deionized water. Rilpivirine HCl drug powder was then added to 

the solution to create a thick slurry to be loaded into the device reservoir in a similar 

manner to the PEG300 slurry formulation. While not represented in the data presented 

here, after loading the HP-β-CD slurry formulation into the device reservoir and prior to 
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making the final seal, the loaded device could be placed in a vacuum chamber overnight to 

dehydrate the reservoir contents leaving behind a solid dispersion of Rilpivirine HCl and HP-

β-CD. The liquid nanosuspension was loaded into the device reservoir with a P100 pipette, 

and the lyophilized nanosuspension was loaded as a solid powder, compressed slightly 

upon loading, but not fully compressed into a solid pellet. After loading, devices were laid 

flat on the PDMS of the heat sealing apparatus and sealed. Once sealed devices were 

weighed to determine the total payload and device dimensions were recorded. 

7.6.1.3. Tenofovir Alafenimide Fumarate 

TAF was graciously provided by Gilead Sciences (Foster City, CA). When formulated with 

PEG300, TAF was mixed with PEG300 at desired ratios (1:2, 1:1, or 2:1 w/w) immediately 

prior to device loading. Devices were loaded using either a 1mL insulin syringe with the 

needle removed or with a P100 pipette tip. After loading, devices were laid flat on the 

PDMS of the heat sealing apparatus and sealed. Once sealed devices were weighed to 

determine the total payload and device dimensions were recorded.  

7.6.2.  Antiretroviral quantification & stability analysis 

7.6.2.1. Elvitegravir 

Elvitegravir was quantified using a UV-based assay (λ = 260nm) on a 96-well plate using a 

calibration curve. Elvitegravir stability was not analyzed. For the UV assay, all samples and 

standards were run in triplicate. 

7.6.2.2. Rilpivirine 
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Rilpivirine was quantified using either a C18 RP-HPLC assay with two mobile phases and a 

linear gradient7 or using a UV-based assay (λ = 300nm) on a 96-well plate using a 

calibration curve. For the UV assay, all samples and standards were run in triplicate. 

Rilpivirine stability was not analyzed. 

7.6.2.3. Tenofovir Alafenimide Fumarate 

TAF was quantified using a UV-based assay (λ = 260nm) on a 96-well plate using a 

calibration curve. All samples and standards were run in triplicate.  

TAF stability in the device reservoir was evaluated by opening up a device with remaining 

TAF, dissolving the entire reservoir contents into release buffer, and measuring TAF purity 

using RP-HPLC.  This HPLC method separates TAF from process impurities associated with 

TAF production as well as TAF degradation products. TAF purity is calculated as % peak area 

associated with TAF relative to total peak area of TAF related degradation products and 

product impurities.8  

7.6.3.  Antiretroviral release studies 

All release studies were done in phosphate buffered saline (PBS), pH 7.4 at 37ºC in an incubator 

on an agitator at 120 rpm. For all rilpivirine release studies, 1% v/v PS20 was included in the 

release media to increase drug solubility and maintain sink conditions. Release buffer volume 

and time intervals between samples were chosen to fully submerge device and to maintain sink 

conditions in release buffer at less than 1/5th saturation. Volumes ranged from 1 – 50mL with 

sample time points ranging from 1 hr-5 days. At each time point, devices were transferred to 

fresh release buffer. For each sample, drug concentration was measured and mass of released 

                                                           
7 Full analytical HPLC method provided by Janssen Pharmaceuticals. 
8 Full analytical HPCL method for TAF purity adapted from Gilead Sciences STM-2013. 
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during the time interval was calculated. For each device a cumulative mass versus time profile 

was used to determine the linear release rate. Linear release profiles were normalized to 

membrane area by dividing the release rate (mg/day) by device surface area (mm2). 
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8. Case Study I: A TFPD as an Ocular Implant for Long-Acting Delivery of Protein Therapeutics 

8.1. Introduction 

Improving therapeutic delivery to the eye is both a challenging and lucrative endeavor. The size of 

the patient population and market are astounding. In 2010, 733 million people globally were 

affected by vision loss or blindness [29] . Fortunately, for many of the leading causes of vision loss 

there are treatments available to at least slow or halt disease progression, if not improve sight. In 

2014, the market for such ophthalmic therapeutics and devices reached 36 billion USD [29] and it’s 

only expected to grow. [30] 

When delivering therapeutics to the back of the eye, there are few options available. While small 

molecules can potentially be applied to the front of the eye with hopes of permeation through the 

eye’s multiple barriers, very little drug is expected to actually reach to the site of action at the back 

of the eye. Biologics typically do not permeate at all through the corneal epithelium. Therefore, 

most back of the eye therapeutics rely on direct injection. While this gets the drug where it needs to 

go in effective doses, it is undeniably unpleasant to receive an ocular injection and many treatments 

require patients to undergo this once or twice a month. As a result, patient compliance can be a 

major hurdle, leading to under-treatment in many cases. Additionally, ocular injections pose their 

own risk of complications resulting from the procedure itself, so minimizing the number of injections 

into the eye is critical for improving therapeutic delivery. Therefore, there is strong interest in long-

acting drug delivery systems to improve patient compliance, safety, and efficacy of posterior ocular 

therapeutics. [31] 
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In this section is considered the development of a PCL thin film reservoir device as a back of the eye 

ocular implant for long acting delivery of protein therapeutics.9 Currently on the market are several 

examples of protein therapeutics injected once or twice a month into the back of the eye to treat 

chronic diseases such as age related macular degeneration. Delivery of such therapeutics from a 

biodegradable implant such as the PCL thin film reservoir device with a 4-6 month duration would 

increase bioavailability and reduce the effective dose, improve patient compliance, and reduce the 

frequency of risky ocular injections and clinic visits. However, there are significant challenges to 

developing such a system, both in controlling release of the therapeutic and maintaining protein 

stability under physiological conditions within the device reservoir.  

 

When developing a back of the eye implant for the controlled release delivery of a protein 

therapeutic, several key factors must be considered. First, the device must be reasonably sized to 

both fit within the intravitreal space and to be inserted without major surgery. In a human, the 

maximum size of such a rod shaped implant is expected to be 1mm or less in diameter and 8mm or 

less in length. In the context of early pre-clinical development and device design, particularly while 

devices are fabricated individually by hand, larger devices are used. However, as the scale down of 

such devices will be paramount to their future success, a thorough understanding of the 

fundamental principles of the device design, performance, and scaling are critical. Related to the 

device size are the loading capacity and duration of administration from a single device. Based on 

the protein therapeutics commercially available for back of the eye, doses of less than 100 µg per 

day are reasonable for therapeutic effect from a long acting implant. Therefore, loading capacities 

for 4-6 months duration will be on the order of several milligrams. For the system presented here, 

                                                           
9 Due to the confidential and proprietary nature of our collaboration on this project with an industry partner, 
molecule names and sensitive information have been redacted from this section.  
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the target loading capacity is 3 mg of protein. The third factor for consideration is protein stability. 

As the following section describes in more detail, there are many challenges associated with 

maintaining the physical stability of protein in a long acting reservoir device implant. For early 

preclinical development of the protein therapeutic considered here, there is a minimum criteria of 

75 % protein monomer after 90 days. The final key factor in device design is the target release rate 

and release profile. A linear or near linear release profile with minimal burst release is ideal, and 

release rates must be tuned to specific targets for a given therapeutic.  

 

The research presented here describes the early development and design of an intraocular back of 

the eye PCL implant for long acting delivery of a protein therapeutic. In addition to introducing novel 

formulation techniques suitable for high concentration long acting reservoir devices, scalable and 

tunable device designs specific to these formulations are presented.  

All experiments and devices presented in this section use a recombinant protein therapeutic 

relevant to ocular drug delivery. Further information regarding molecular properties and 

identification are proprietary and therefore redacted. The protein therapeutic will simply be 

referred to as "protein" throughout the section. It should be noted that fundamental principles and 

underlying approaches presented in this section to device design and protein formulation are 

relevant to and could be applied to any protein molecule. 

8.2. Protein Formulation 

8.2.1.  Introduction 

In a reservoir device loaded with a 4-6 month’s supply of protein, protein concentrations upon 

reservoir hydration will be at least 100 mg/ml, if not significantly more. Furthermore, the 

protein must remain stable at these high concentrations in a fully hydrated environment at 37˚C 
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throughout the duration of administration. This is a challenge in protein formulation in itself, but 

making it even more challenging is the exclusion of small molecules as formulation excipients 

due to their rapid depletion from the device reservoir.  

While there are many mechanisms of instability for protein therapeutics, the one of greatest 

concern for the therapeutic considered here is aggregation. While in some cases protein dimer 

may still be active with reduced efficacy, higher molecular weight aggregates are potentially 

immunogenic and typically have little or no efficacy.  When in solution, proteins are susceptible 

to aggregation, which can either be due to non-covalent hydrophobic interactions between 

protein molecules or to covalent interactions such as cross-linking of disulfide bonds between 

intermolecular residues. High concentrations and temperatures both increase the frequency of 

collisions and thus interactions between molecules as well and increase protein unfolding that 

exposes hydrophobic regions that promote aggregation. [32] Therefore, there is typically a 

direct correlation between the concentration and temperature of a protein solution and its 

physical stability. Protein therapeutics are therefore often stored at low temperatures or as 

lyophilized powders. Unfortunately, when considering protein stability throughout the duration 

of administration of an ocular implant, temperature is defined by physiology, and protein 

concentration in the device reservoir is unavoidably high as it is directly related to device size 

and duration. 

 

In addition to low temperatures and concentrations, excipients are often used in protein 

therapeutic formulations to improve stability. While excipients serve a range of purposes in 

stabilizing proteins in solutions, the most common approach for reducing aggregation in protein 

solutions relies on the principle of preferential interactions and solute exclusion [33] [34], which 
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is typically achieved using small molecule carbohydrates such as sucrose, trehalose, or mannitol. 

These molecules may also serve as cryoprotectants upon lyophilization to create a protein 

powder; in fact, the lyophilized protein therapeutic used in this research consists of 25% 

sucrose, which constitutes our “standard” formulation. [35] 

 

While the use of these small molecule carbohydrates may be an effective formulation technique 

to reduce aggregation, in the case of a protein releasing reservoir device, the small molecule is 

expected to deplete at a significantly faster rate than the protein therapeutic as its small size will 

allow it to pass unhindered through the porous membrane. The impact of this is illustrated in 

Figure 28, which compares stability profiles for protein in a nonporous PCL reservoir device and 

for protein in a porous PCL reservoir device from which both protein and sucrose are released. 

The results presented in this figure were obtained by sampling the reservoir contents at each 

time point for the nonporous device and sampling the released material for the porous device. 

These results suggest that while sucrose may protect the protein from aggregation when it is 

retained in the device reservoir, the effect is lost in the porous device.   
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Figure 26 Protein stability in PCL thin film reservoir device. In nonporous PCL device, release of sucrose from device 
reservoir is limited and protein purity remains >80% after 30 days. In nanoPCL device, protein is less stable, likely due 
to the release of sucrose from the device reservoir.  

 

In order to prevent rapid depletion of excipients and to achieve effective formulation within the 

device reservoir, two large molecule excipients were considered: polyethylene glycol, m.w. 3350 

(PEG3350) and chitosan. The formulation approach for each of these excipients utilizes different 

principles for reducing aggregation; while chitosan offers protein stability through the formation 

of polyionic interactions and possible immobilization of proteins within a matrix [36], PEG3350 is 

used to reduce protein solubility [37], protecting the bulk of the protein by keeping it out of 

solution. The following sections will consider each formulation approach independently, 

describing in more detail the theoretical mechanism of stabilization and summarizing the 

observed results on protein stability in the device reservoir for each formulation.  

8.2.2.  Formulation Approach 1: Chitosan 

8.2.2.1. Introduction 
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Chitosan is a linear polysaccharide with amino, hydroxyl, and acetyl functional groups and a 

net negative charge. [38] Chitosan is available from a variety of sources such as the 

breakdown of chitin from shellfish or from bioengineered fungal producers. Depending on 

the source and the processing, chitosan comes in a range of molecular weights and degrees 

of acetylation which affect its physicochemical properties such as solubility and viscosity. At 

low concentrations and physiological pH, chitosan is fully soluble, but at higher 

concentrations it forms a hydrogel matrix. Under either condition, proteins form polyionic 

interactions which have the potential to stabilize the protein by reducing protein-protein 

interactions and/or immobilizing the protein within a hydrogel matrix. [36] [39]  For 

formulation of therapeutic protein within the reservoir of a thin film PCL reservoir device, 

chitosan is co-formulated in solution with protein, sucrose as a cryoprotectant, and acetate 

to maintain solubility and then lyophilized.  

8.2.2.2. Chitosan load: 

Chitosan and protein are prepared at two levels, a 0.05:1 mass ratio and a 1:1 mass ratio of 

chitosan to protein. Upon reconstitution in the device reservoir, the lower level of chitosan 

appears fully soluble while the higher chitosan content material forms a solid hydrogel. As is 

illustrated in Figure 29, the 1:1 mass ratio of chitosan to protein results in a greater than 

80% purity by UP-SEC of protein in a nonporous device reservoir after more than 80 days 

while the lower level of chitosan drops to around 60% purity within 15 days. Based on these 

results, all further chitosan formulation development for the PCL reservoir device is 

conducted with a 1:1 mass ratio of chitosan to protein. These experiments are conducted 

with Ultrapure Chitosan MW 150-400 kDa 75 – 90% deacetylated.  
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Figure 27 Protein stability of chitosan:protein formulations in PCL thin film reservoir device. 1:1 mass ratio of 
chitosan to protein results in improved protein stability while 0.05:1 mass ratio of chitosan:protein fails to 
reduce protein aggregation, resulting in significant loss of protein purity within one week.  

 

8.2.2.3. Chitosan molecular weight: 

Two experiments are used to determine the impact of chitosan molecular weight on protein 

stability. In all cases, lyophilized chitosan, protein, sucrose and acetate are prepared with a 

1:1 mass ratio of chitosan to protein. Three different molecular weights of ultrapure 

chitosan are investigated10, 14cP, 26cP, 32cP (Synolyne Pharma, Herstal, Belgium) under two 

conditions, dry at 50˚C, and in a hydrated device reservoir at 37˚C submerged in release 

media at pH 7.2. Protein stability under both conditions is evaluated as % purity by UP-SEC. 

As Figure 30 shows, there is no significant impact of chitosan molecular weight and protein 

degradation over a 1 month period. Figure 31, capturing the purity of protein released from 

reservoir devices for up to a month further supports that there is no difference in protein 

stability as a function of chitosan molecular weight. Both data sets demonstrate that there is 

no significant impact of chitosan molecular weight on protein stability, but it is additional 

important to verify that there chitosan molecular weight does not impact protein release 

                                                           
10 Chitosan molecular weights from Synolyne are represented with viscosity, a common practice for polymers. The 
corresponding molecular weight is not provided.  
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from the reservoir device. Figure 32 illustrates that there is no significant difference in area 

normalized release rates of protein from an mpPCL reservoir device as a function of chitosan 

molecular weight.  

 

Figure 28 Impact of Chitosan MW on Protein Stability. Under dry, accelerated degradation conditions, chitosan 
molecular weight in a 1:1 mass ratio formulation with protein does not impact protein stability.  

 

Figure 29 Stability profile for protein released from mpPCL thin film device. Chitosan molecular weight in a 1:1 
mass ratio formulation with protein does not impact protein stability in mpPCL device. 
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Figure 30 Impact of chitosan molecular weight on protein release from mpPCL thin film reservoir device. In a 1:1 
mass ratio with protein, chitosan molecular weight does not impact protein release rates from the mpPCL 
device. 

8.2.2.4. Protein stability with chitosan formulation  

Protein stability in a mpPCL device reservoir with a 1:1 chitosan to protein formulation is 

highly dependent on the protein reservoir concentration. Protein reservoir concentration is 

estimated as protein load, calculated from a mass difference between the empty and loaded 

device, divided by the volume of water in the hydrated device reservoir, calculated from a 

mass difference between the hydrated device after > 12 hour incubation in release media 

and the dry device. The reservoir concentration therefore depends on device loading and 

size. Figure 33 shows the stability profile of protein released from the device reservoir for 

three different groups of devices with different protein reservoir concentrations. The rate of 

decrease in protein purity, due to aggregation, is greater for Group III with a 271 mg/ml 

average concentration than the rate of decrease in purity for Group I with a 103 mg/ml 

average concentration. While the use of high levels of chitosan as a formulation excipient 

has potential to improve protein stability, it is highly dependent on device loading and size.   
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Figure 31 Stability profiles of protein released from mpPCL reservoir devices (1:1 w/w formulation with 
chitosan). Protein stability is inversely dependent on protein reservoir concentration. 

 

8.2.2.5. Conclusion 

A chitosan hydrogel matrix formed with a 1:1 mass ratio of chitosan to protein improves 

protein stability in a mpPCL reservoir device for long-acting delivery under physiological 

conditions. Chitosan as a charged biomolecule may stabilize the protein to reduce 

aggregation through the formation of polyionic interactions and immobilization of protein 

molecules within a hydrogel matrix. However, the utility of this formulation approach 

depends strongly on the protein reservoir concentration. Additionally, while chitosan can be 

produced from non-shellfish based sources and is used in a number of biomedical and drug 

delivery systems, concerns around biocompatibility and immunogenicity are a 



78 
 

consideration. In ocular drug delivery, chitosan has been used in topical formulations but 

not intra-ocularly. 

8.2.3. Formulation Approach 2: Polyethylene Glycol (PEG) 

8.2.3.1. Introduction 

Polyethylene glycol (PEG) is an uncharged linear polyether available in a wide range of 

molecular weights. For the purposes of the experiments presented here, all work is done 

with a 3350 kDa molecular weight PEG (PEG3350). At low concentrations (< 10000 ppm or 

10 mg/ml), PEG is used as a protein stabilizing excipient. [40] At higher concentrations, PEG 

is often used to precipitate proteins from solution for x-ray crystallography. [37]  As a 

formulation approach to reduce aggregation in a device reservoir, PEG is used at high 

concentrations to limit protein solubility. As protein aggregation is typically correlated with 

protein concentration, reducing protein solubility in the hydrated device reservoir is 

hypothesized to reduce protein aggregation. The utility of this approach depends on the 

stability of the protein excluded from solution in the device reservoir. 

8.2.3.2. PEG3350 Load (concentration) 

The first step in developing a formulation approach using PEG3350 in the device reservoir is 

to determine the protein’s solubility as a function of PEG3350 concentration. Figure 34 

illustrates this relationship. Data presented in Figure 34 consists of two data series, one 

describing the precipitation of protein from solution upon addition of a PEG3350, also in 

solution; no sucrose is present in these solutions. The other data series describes protein 

solubility when lyophilized protein containing sucrose as a cryoprotectant and PEG3350 as a 

solid are reconstituted together; this scenario recapitulates hydration of the device 

reservoir. The difference in solubility observed between these data series is likely due to the 
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presence of sucrose. There is no loss of purity for the soluble protein in either case. In 

addition to evaluating the purity of protein in solution, it is also important to consider the 

stability of the insoluble protein. This is done by starting with a solution of high PEG3350 

concentration and low protein solubility with an excess of protein. This solution is then 

diluted to a concentration of PEG3350 that does not limit full dissolution of the protein load, 

followed by analysis of the % recovery of protein that solubilizes upon dilution and the 

purity of protein in solution. Figure 34C tabulates these results which indicate full recovery 

of protein and no loss of purity.  

 

Figure 32 Limiting protein solubility with PEG3350. (A) Protein solubility decreases exponentially with increasing 
PEG3350 concentration. There is no observed loss of purity for protein remaining in solution. (B) Data from 
chart (A) depicted on a log-scale highlights the exponential trend as well as the difference between the liquid 
formulation (no sucrose) and the reconstituted formulation (with sucrose). (C) Protein either precipitated or 
excluded from solution by PEG3350 is fully recoverable with no loss of purity upon dilution of PEG3350 from 
solution.  

 

The correlation between protein solubility and PEG3350 concentration shown in Figure 34 is 

used to determine a target range for PEG3350 concentration resulting in protein solubility 

greater than 2 mg/ml and less than 10 mg/ml; because protein concentration is the driving 
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force for diffusion from the device reservoir, it is undesirable in the overall system design to 

limit the protein concentration to negligible. As is discussed further in the device design 

section, controlling the concentration of PEG3350 in the device reservoir is critical for this 

formulation approach. As it is the concentration of PEG3350 that is important and not the 

absolute load or ratio to protein, both the PEG3350 load and volume of reservoir hydration 

are key parameters. 

8.2.3.3. Protein stability with PEG3350 formulation 

Figure 35 illustrates the impact of PEG3350 on protein stability in the device reservoir. Both 

series in Figure 35 represent data collected from protein that is released from the device 

reservoir. In the PEG3350 devices, protein solubility is limited to less than 10 mg/ml based 

on the estimated PEG3350 concentration. After 60 days, protein purity is greater than 80%. 

Based on these stability results, PEG3350 shows great promise as a formulation approach 

for the thin film reservoir device.  

 

Figure 33 Stability profiles of protein release from PCL devices. PEG3350 formulation improves protein stability.  
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8.2.3.4. Conclusion 

PEG3350 effectively reduces the solubility of a protein, decreasing the concentration of 

protein in solution and thus leading to a decrease in protein aggregation. With this 

formulation approach, protein stability depends on PEG3350 concentration, and thus 

protein solubility, but is otherwise independent of total protein load. PEG is a commonly 

used and biocompatible formulation excipient both in a variety of indications. While the 

work presented here only considers PEG3350, the same approach could be applied to other 

PEG molecules or to other nonionic polymers that effectively reduce protein solubility.  

8.2.4. Conclusion 

Both a chitosan hydrogel matrix and PEG3350 are potential formulations for therapeutic protein 

within the reservoir of a thin film PCL reservoir device. With either formulation, it is important 

to consider how the presence of formulation excipient will impact protein release and what 

additional parameters will be critical to the device design to implement the formulation 

approach. For example, with the chitosan hydrogel, protein stability depends on reservoir 

concentration, meaning that protein load and reservoir volume are key parameters in device 

design that will effect protein stability. With the PEG3350 formulation, protein solubility 

depends on PEG3350 reservoir concentration, so PEG load and reservoir volume are key device 

design parameters. These parameters and their role in overall device design will be discussed 

further in the section on device design.  

8.3. Release Rates & Membrane Design 

8.3.1. Introduction 

In addition to protein stability, another key criteria in a long acting ocular implant is the protein 

release rate. It is important that the device be capable of achieving relevant release rates (not 
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too slow and not too fast) for device dimensions that are appropriate for the given indication. In 

the case of an ocular implant to deliver the protein therapeutic under consideration here, 

release rates need to be between 10 and 100 µg/day for a device no bigger than 1-1.5 mm 

diameter and 10 mm long. Ideally, the release rate will be as close to constant as possible.  

 

As discussed in Section 5 on membrane design, a porous membrane is required for protein 

diffusion and a nanoPCL membrane is known to result in a concentration independent, constant 

rate release of protein. Due to this desirable release profile, a nanoPCL membrane is the ideal 

choice for this device. However, as shown in Figure 36, the use of either PEG3350 or chitosan as 

formulation excipients inhibits protein release through a nanoPCL membrane, resulting in 

release rates that are too slow to achieve 10 µg/day – 100 µg/day in an ocular sized device. In 

fact, based on the results presented in Figure 36, to release 10 µg/day with the PEG3350 

formulation, a 1mm diameter device would need to be 40mm long.  Therefore, the nano-

channel membranes are not suitable for use with these formulation approaches.  

 

Figure 34 Protein release from nanoPCL devices. Presence of large molecule formulation excipients limits 
protein release. 
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As described in Section 5.3.3, while not truly concentration independent, mpPCL membranes 

restrict protein release from a device reservoir to result in a near linear release profile. With 

mpPCL membranes, even though PEG3350 and chitosan as formulation excipients still inhibit 

protein release compared to the sucrose only formulation, release is an order of magnitude 

faster than with the nanoPCL membranes (Figure 37). Relevant release rates (> 10 µg/day) for all 

formulations are therefore achievable in ocular sized mpPCL devices.  

 

Figure 35 Protein release from mpPCL devices. Release rates are an order of magnitude faster than from 
nanoPCL devices. Large molecule excipients still reduce protein release, yet it is still possible to achieve relevant 
release rates with reasonably sized devices.  

 

While the primary criteria is to achieve protein release within the target range, it is also 

desirable to develop a device platform with a tunable release rate. In the case of protein release 

through a mpPCL membrane, membrane thickness does not impact release rate (Section 5.3.4) 

and thus the most practical way to tune release rate is through surface area. In order to 

decouple device size from surface area for release, devices are fabricated from a combination of 

mpPCL and nonporous PCL. Because nonporous PCL is impermeable to large molecules such as 
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proteins, release rates are dependent only on the porous surface area. The schematic in Figure 

37 illustrates the fabrication process to produce such devices.  

8.3.2.  Device Design 

For successful design and fabrication of devices that meet specified design attributes, both 

protein formulation, release rate, and device size must be taken into consideration 

simultaneously. Dependent factors that are controlled during fabrication such as device size, 

porous area, and protein and formulation excipient load, are designated as design parameters. 

Design attributes are criteria specified as a target product profiles. For the case of the ocular 

implant under consideration in this section, the specified design attributes are:  

Design Attribute Target 

Device Size 1-1.5mm D x 10mm L 

Protein load > 3 mg 

Release Rate 10-100 µg/day (confidential info redacted) 

Protein Stability > 75% after 90 days under physiological conditions 

System parameters are empirically measured characteristics of the system, indirectly controlled 

by the design parameters, on which the critical design attributes depend. This section presents 

models for flexible device design based on empirical correlations between system parameters 

and design parameters; these models allow for easy scaling of devices to meet specified criteria 

and are specific to the formulation.  
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8.3.2.1. Device Design: PEG3350 Formulation 

Critical design and system parameters for mpPCL devices utilizing PEG3350 formulation are 

listed in Table 6. The device design flow-chart in Figure 38 illustrates how these critical 

parameters are used in an overall device design model. The numbers 1-4 in the flow chart 

represent the use of empirically derived correlations describing relationships between key 

parameters. These empirical correlations are shown in Figure 39. 

Table 6 Key parameters for device design utilizing PEG3350 formulation 

Design Attributes Design Parameters System Parameters 

Device size Device size Reservoir hydration volume 

Duration of administration 
(protein load) 

Protein load PEG3350 reservoir concentration 

Release rate PEG3350 load Protein reservoir solubility 

Protein stability Porous Area  

 

 

Figure 36 Device design flow-chart for mpPCL protein devices with PEG3350 formulation 
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Figure 37 Empirical correlations relating critical device parameters to critical system parameters for mpPCL 
protein devices with PEG3350 formulation. 

 

As previously discussed, PEG3350 formulation improves protein stability by limiting protein 

solubility in the device reservoir and protein solubility is a function of PEG3350 

concentration. Furthermore, as protein release from the mpPCL device is dependent on the 

initial reservoir concentration (Figure 24, Section 5.3.3), release rate will therefore depend 

indirectly on PEG3350 concentration as a function of protein reservoir solubility (Figure 

39C). Therefore, PEG3350 reservoir concentration is a key parameter defining both protein 

release and stability. PEG3350 load is easily controlled during device fabrication, but in 

order to target a PEG3350 reservoir concentration, it is necessary to know the reservoir 

hydration volume. The reservoir hydration volume for a given formulation depends on 

device size; therefore, by defining the device size and correlating this to a reservoir 
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hydration volume using the relationship in Figure 39A, the necessary PEG3350 loading can 

be determined to target a specific reservoir concentration. If the PEG3350 reservoir 

concentration is known, the protein reservoir solubility can be calculated based on the 

relationship presented in Figure 39B. Based on the protein reservoir solubility, the porous 

area normalized release rate can be calculated (Figure 39C) and the porous area can be 

adjusted to target a specific release rate.  

8.3.2.2. Device Design: Chitosan Formulation 

Critical design and system parameters for mpPCL devices utilizing a chitosan formulation 

(1:1 w/w ratio with protein) are listed in Table 7. The device design flow-chart in Figure 40 

illustrates how these critical parameters are used in an overall device design model. The 

numbers 1-3 in the flow chart represent the use of empirically derived correlations 

describing relationships between key parameters. These empirical correlations are shown in 

Figure 41. 

Table 7 Key parameters for device design utilizing chitosan formulation (1:1 w/w with 
protein) 

Design Attributes Design Parameters System Parameters 

Device size Device size Reservoir hydration volume 

Duration of administration 
(protein load) 

Protein load Protein reservoir 
concentration 

Release rate Porous Area  

Protein stability   
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Figure 38 Device design flow-chart for mpPCL protein devices with chitosan formulation 

 

Figure 39 Empirical correlations relating critical device parameters to critical system parameters for mpPCL 
protein devices with chitosan formulation 
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For chitosan formulated devices, both protein stability and release rate are directly 

correlated to protein reservoir concentration. In turn, protein reservoir concentration 

depends on both protein load and reservoir hydration volume, which is proportional to 

device size. Therefore, for a given device size and protein load, a reservoir concentration can 

be estimated and an area normalized release rate predicted. The porous area can then be 

adjusted to achieve a target release rate.  

The lyophilized protein-chitosan formulation contains acetate which is readily released from 

the device upon hydration. In in vitro studies, the release of acetate into release media 

lowers the pH which results in an increased release rate. This is evidenced by a correlation 

between release media pH and release rate in the first 5-10 days of sampling (Figure 42). 

While an important consideration for in vitro testing, the impact of this level of acetate 

released into the intra-ocular space is not expected to be significant. 

 

Figure 40 Impact of pH on protein release from mpPCL protein device with chitosan formulation. Release of 
acetate contained in lyophilized protein-chitosan formulation within first week of release study decreases pH 
of release media. Shape of protein release profile within first week reflects the shape observed in the release 
media pH profile, suggesting that pH impacts protein release. 
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8.4. Prototype Devices 

Prototype devices serve a three-fold purpose: to demonstrate the use of the device design models, 

to evaluate protein stability, and to evaluate release profiles.  

8.4.1. Prototype Devices: PEG3350 

Table 8Table describes the key design parameters for five PEG3350 prototype devices. Figure 43 

illustrates how the empirical correlations are used to determine critical system parameters for 

PEG3350 prototype devices from key design parameters. And Figure 44 shows both the stability 

and release profiles for the prototype devices. The release profile demonstrates near linear 

release for up to 60 days and about 50% release with protein stability >80% at 60 days.11  

Table 8  PEG3350 formulation prototype device design parameters 

Key Design Parameters (n=5) 

Device Size  Protein Load PEG3350 Load Porous Area 

79 mm2 +/- 10 3.2 mg +/- 0.4 2.6 mg +/- 0.9 40 mm2 +/- 5  

 

 

Figure 41 Comparison of prototype mpPCL protein device and system parameters to empirical correlations for 
PEG3350 formulation. 

                                                           
11 The evaluation of these devices will continue until depletion unless contaminated. 
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Figure 42 Evaluation of mpPCL protein prototypes devices with PEG3350 formulation.  

 

8.4.2.  Prototype Devices: Chitosan 

Three groups of chitosan prototype devices are evaluated. Groups I (n=2) and II (n=3) are 

selected based on protein reservoir concentrations from devices fabricated to develop empirical 

correlations and are thus representative of protein release an stability for the corresponding 

protein reservoir concentrations, but do not demonstrate use of the design model. Group III 

(n=6) devices are fabricated to target specifications using the device design model. Table 9 

contains the key design parameters for Group III prototype devices and Figure 45 illustrates how 

the empirical correlations are used to determine critical system parameters from key design 

parameters. Figure 46 shows both the release (A) and stability (B) profiles for the three groups 

of chitosan formulation prototype devices. Release rate and stability are dependent on protein 
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reservoir concentration. As release rate is proportional to both porous surface area and protein 

reservoir concentration, the porous surface area is reduced as reservoir protein concentration 

increases in order to achieve comparable release rates between groups of devices.   

Table 9 Key design parameters of chitosan prototype devices 

Key Design Parameters (n=6) 

Device Size  Protein Load Porous Area 

19 mm3 +/- 3.5 3.4 mg +/- 0.4  7.0 mm2 +/- 1.1 

 

 

 

Figure 43 Comparing critical device and system parameters for mpPCL protein prototype devices with chitosan 
formulation (Group III) to empirical correlations 
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Figure 44 Evaluation of mpPCL protein prototype devices with chitosan formulation. Three groups represent 
different reservoir concentrations as described in (C). 

 

8.5. Conclusion 

In this section the fundamentals of membrane and device design for PCL thin film reservoir devices 

outlined in the early chapters of this thesis are applied to the early development of a long-acting 

biodegradable implant for intraocular delivery of a protein therapeutic. To address the general 

challenge of stable protein formulation under physiological conditions in a long-acting implant, two 

approaches leveraging large molecule excipients are described. For both, methodology for device 

design resulting in targeted design attributes is presented based on empirical correlations between 

design parameters and critical system parameters.  

 

The designs & formulations presented in this section are developed and tested with a specific 

protein relevant to intraocular drug delivery. However, the underlying principles for formulation and 

device design based on empirical correlations are broadly applicable and could be leveraged for the 

development of mpPCL implants to deliver any protein therapeutic at any device size, indication, or 
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route of administration. To apply this methodology to other proteins and device sizes, one must 

simply acquire the relevant empirical correlations relating system parameters to device parameters 

in the relevant ranges.  
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9. Case Study II: A TFPD as a Subcutaneous Implant for HIV PrEP 

9.1. Introduction 

 

Antiretroviral (ARV) effectiveness for HIV pre-exposure prophylaxis (PrEP) is proven, but hinges on 

correct and consistent use. For example, when taken daily as an oral dose, tenofovir (TFV)-based 

antiretrovirals show high efficacy for HIV pre-exposure prophylaxis (HIV PrEP) in men and women, 

but poor adherence to the regimen drastically decreases effectiveness. [41] Clinical studies with 

tenofovir disoproxil fumarate (TDF)/emtricitabine (FTC) and TDF alone have highlighted a strong 

correlation between the level of HIV PrEP effectiveness and product adherence. [42] [43] The iPrEx 

[44] and Partners PrEP [45] studies investigated the prophylactic effectiveness of orally administered 

Truvada in gay/bisexual men and heterosexual discordant couples, respectively. In these studies, 

Truvada reduced the risk of infection by at least 90% when taken regularly, but this level of 

protection declined to only 44% and 75%, respectively, when lower product adherence resulting in 

sub-prophylactic dosing regimens were taken into consideration. Outcomes from the VOICE and 

FemPrEP trials in Sub-Saharan Africa [46] [47] [48] investigating the effectiveness of TDF or TDF/FTC 

oral dosing regimens -further demonstrated that poor adherence to the product regimen stands as a 

barrier to an otherwise efficacious HIV PrEP strategy.  In light of these outcomes, there is a strong 

interest in the development of alternative delivery strategies for antiretrovirals as HIV PrEP, that are 

less burdensome to the user and do not depend on user compliance.  

 

When poor adherence is the major hurdle to an otherwise efficacious prevention approach, 

sustained release delivery systems can offer an alternative solution. The first long-acting pre-

exposure prophylaxis (LA-PrEP) antiretroviral treatments for HIV to enter into clinical trials are both 

nanocrystal depot injections targeting a minimum dosing frequency of once every 2-3 months. [49] 
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While this approach significantly decreases dosing frequency and is user independent, neither of the 

two products currently in Phase II trials for an HIV PrEP indication, cabotegravir (an integrase 

inhibitor) and rilpivirine (a non-nucleoside reverse transcriptase inhibitor (NNRTI)), have yet been 

proven to be efficacious for HIV PrEP in humans. These depot formulations also have a first order 

dissolution profile, resulting in a pharmacokinetic profile with the potential for a significant sub-

therapeutic tail. [50] [51] Additionally, as a nanocrystal solution, there is no potential for retrieval 

after administration in the event of adverse reactions or seroconversion. This is a particularly 

relevant consideration in the case of HIV where low doses of antiretroviral monotherapies given to 

infected individuals may result in the development of viral resistance. [52] 

 

A thin film polycaprolactone reservoir device (TFPD) as a tunable biodegradable subcutaneous 

implant for long-acting constant rate delivery of antiretrovirals provides a viable solution for user 

independent HIV PrEP that improves on the effectiveness, acceptability, usage, and accessibility of 

existing microbicide systems. A simple target product profile pertaining to the technical 

development of such a device is described in Table 10. Acceptable size and geometry for this 

subcutaneous implant are based on existing subdermal contraceptive implants such as Jadelle ® 

(Bayer Group, Germany) or Implanon ® (Merck & Co., Inc., NJ, USA).  

Table 7 Target Product Profile 

Item Target 

Administration route Subcutaneous / Subdermal 

Dosage form and schedule Single insertion every 3 months 

Stability Stable under physiological 

conditions for 90+ days & shelf-

life >24 months without cold-

chain requirement  

Size / geometry Rod-shaped, < 2.5mm diameter, 

<40mm length 
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While a thin film polycaprolactone subcutaneous device confers many of the benefits desired in 

long-acting HIV PrEP, the success of such a device hinges on the ability to deliver effective doses of 

an ARV for at least 90 days. Most antiretrovirals used for treatment have the potential to act as PrEP 

agents, but only the most potent will be compatible with delivery with the TFPD. Compatibility with 

the TFPD depends on dosing requirements, which are important both in regards to loading capacity 

and release rate. ARVs requiring high dosing, on the order of tens of milligrams per day or more, can 

immediately be rejected for compatibility with the TFPD as the loading capacity of a single 

subcutaneous device is not large enough for a 90 day drug load. For the more potent ARVs, 

compatibility with the TFPD must still be evaluated in regards to achievable release rates, which 

depend on the drug’s physico-chemical properties and formulation. It should be noted that as most 

ARVs are developed for oral administration, relevant release rates for subcutaneous delivery of 

ARVs for PrEP must be estimated from available pharmacokinetic parameters. While these 

estimates may serve as a basis for evaluating ARV compatibility with the TFPD, pre-clinical studies 

identifying effective dosing targets from a subcutaneous implant will be necessary. Because a 

precise dosing target is unknown, a tunable device design is highly desirable to facilitate pre-clinical 

and clinical development requiring multiple animal species and doses. 

 

This section presents the evaluation and technical development of three ARV loaded TFPDs for HIV 

PrEP. Elvitegravir, Rilpivirine and Tenofovir Alafenimide Fumarate, the three small-molecule ARVs 

evaluated, represent three different ARV drug classes, integrase inhibitors, Non-Nucleoside Reverse 

Transcriptase Inhibitors and Nucleoside Reverse Transcriptase Inhibitors, respectively. Each ARV will 

be evaluated for the following (in order): 

 Is estimated dose compatible with loading capacity?  

 Is drug release from the TFPD membrane controlled with a linear release profile? 
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 Are estimated maximum doses achieved in a maximum sized device? 

 If no, can release rate be increased through ARV formulation development? 

 Can release rate be tuned accurately based on empirical models? 

Also presented is additional device design and development for TAF, the only ARV evaluated thus far 

that fulfills all requirements for compatibility with the TFPD. The ability to accurately and 

reproducibly produce prototype devices targeting specific and relevant release rates based on the 

results of small scale studies for preliminary ARV-TFPD compatibility evaluation is demonstrated 

with the design, fabrication, and in vitro evaluation of relevant prototype devices. Linear release and 

stability of TAF in these prototype devices is demonstrated up to 90 days.  
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9.2. Elvitegravir 

9.2.1. Background  

Elvitegravir (Figure 47) is an integrase inhibitor developed as first-line treatment for HIV. [53] It 

is prescribed for HAART as part of a fixed-dose combination daily oral pill. However, as a CYP3A 

substrate, elvitegravir is highly susceptible to extensive intestinal and first pass hepatic 

clearance. Co-administration with a CYP3A inhibitor (a “booster”) such as ritonavir or cobicistat 

drastically increases absorption and extends plasma half-life from 3.5 to 9.5 hours. [54] [55] 

Elvitegravir efficacy as an antiretroviral depends on maintenance of effective trough 

concentrations in plasma defined as greater than ten times the IC95 value of 45 ng/ml. [56] [54] 

Thus, if not taken according to the prescribed daily regimen, Elvitegravir efficacy is 

compromised. In addition to being on the market as an HAART component, Elvitegravir is 

currently being developed as a topical gel for HIV post-exposure prophylaxis (PEP). [57]  

 

Figure 45 Elvitegravir chemical structure [53] 

 

9.2.2. Elvitegravir dosing 

The estimation of effective elvitegravir subcutaneous dosing based on oral pharmacokinetic 

data is complicated by the effect of co-administered boosters in the majority of elvitegravir 

clinical studies. As CYP3A inhibitors, these boosters not only increase intestinal absorption by 
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reduceing first pass hepatic clearance of elvitegravir, but they also act to extend half-life. 

Without booster, elvitegravir bioavailability as determined in animal models is estimated to be 

only about 30%. [54] With a booster, an increase in AUC up to 20-fold is observed accompanied 

by an increase in half-life from 3.5 to 9.5 hours. [54] Standard dosing for elvitegravir as part of 

an oral HAART regimen is 85 or 150 mg once daily, and with boosting, this dose and regimen 

result in maintenance of elvitegravir trough concentrations 6-10 times the IC95 value of 45 

ng/ml. [54]  

 

Elvitegravir delivered through a long-acting subcutaneous TFPD will not be subjected to limited 

intestinal absorption nor first pass hepatic clearance. While the booster is therefore not need to 

improve these pharmacokinetic parameters, the lack of a co-administered booster results in a 

3.5 hour half-life instead of the 9.5 hour half-life expected with the booster. With the available 

information from clinical studies investigating elvitegravir pharmacokinetics, two approaches to 

estimating effective subcutaneous dosing are used.  

 

While elvitegravir is not intended to be co-administered with a booster from the TFPD, 

estimating the required constant rate subcutaneous dose for elvitegravir based on 

pharmacokinetic parameters derived from oral dosing with a booster will indicate a dosing value 

less than required elvitegravir subcutaneous dosing without a booster. The pharmacokinetic 

parameter, CL/F (clearance divided by bioavailability), can be used to calculate a constant-rate 

steady state dose (ko) to achieve a target plasma concentration (Ctarget) according to the 

following equation: 

Equation 6  
𝑘𝑜 = 𝐶𝑡𝑎𝑟𝑔𝑒𝑡 ∗

𝐶𝐿
𝐹⁄                               Equation 1  Constant Rate Dosing 
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For elvitegravir antiviral efficacy in treatment regimens, Ctarget is determined at greater than 450 

ng/ml, or ten times the IC95. However, recent results for HIV PrEP from GSK744, an integrase 

inhibitor, suggest that 3 times the IC90 value are effective for PrEP. [58] Therefore, to target a 

plasma concentration of 135 ng/ml, or 3 times the IC95, a constant-rate subcutaneous dose of 

16 mg/day is required, whereas a dose of 52 mg/day is required to target a plasma 

concentration of 450 ng/ml. Based on this analysis, subcutaneous dosing of elvitegravir without 

a booster will need to be at least greater than 16 mg/day and potentially much greater.   

 

In a second approach for estimating elvitegravir subcutaneous dosing without a booster, a basic 

two-compartment model is used with a half-life of 3.5 hours, a volume of distribution of 67L 

[54], and 100% bioavailability. Based on this model, a constant-rate dose of 9 mg/day is needed 

to maintain a 135 ng/ml plasma concentration and 30 mg/day is necessary for 450 ng/ml. 

 

Based on either estimate, the required dosing for effective HIV PrEP from subcutaneous 

constant rate delivery of elvitegravir is incompatible with the loading capacity of the TFPD. With 

a minimum dosing estimate of 9 mg/day, a 90 day device must hold 890 mg of elvitegravir. 

Based on the estimated density of elvitegravir (1.4 mg/mm3) [59] and the volume of the 

maximum sized subcutaneous TFPD (126 mm3), the maximum elvitegravir loading capacity is 

176 mg.  

 

However, while not yet tested clinically, a recent report investigating elvitegravir concentrations 

in rectal and vaginal secretions in macaques suggests that relatively low levels of elvitegravir in 

plasma may correlate with significantly higher concentrations in the rectal and vaginal tracts, an 

important finding for the use of elvitegravir for systemic PrEP. [60] A single unboosted oral dose 
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of 50 mg/kg in macaques resulted in equivalent plasma concentrations observed for humans 

receiving 800 mg of unboosted elvitegravir, but lower concentrations than observed for the 

standard 150 mg dose of elvitegravir with cobicistat as a booster. Based on 24 hour AUC 

measurements, the ratio of elvitegravir exposure the rectal and vaginal tract (determined by 

measurements in mucosal secretions) compared to plasma was 694 and 114 times higher. These 

results suggest that significantly lower plasma concentrations of unboosted elvitegravir may 

result in vaginal and rectal tissue concentrations high enough for effective PrEP. Based on this 

information, Table 8 shows estimates of subcutaneous doses, predicted plasma concentrations, 

and estimated vaginal tract concentrations based on a 114 fold increase in vaginal tissue 

concentration relative to plasma. In light of this, subcutaneous constant rate doses as low as 

0.15 mg/day may result in protective concentrations (3x IC95) in the vaginal tract. A more 

conservative estimate of effective concentration based on 10 x IC95 (450 ng/ml) is achieved in 

the vaginal tract with just 0.5 mg/day. 

Table 8 Elvitegravir dosing estimates 

SubQ Dose 

(mg/day) 

Estimated Plasma 

Concentration (ng/ml) 

Estimated Vaginal Secretion 

Concentration (ng/ml) 

0.15 1.3 148 

0.5 4.5 513 

1 9 1026 

16 135 15390 

 

9.2.3. Elvitegravir release from TFPD 

While estimated dosing of elvitegravir based on clinical data for HAART treatment is not 

compatible with device loading capacity, a preliminary evaluation of release from the TFPD was 

conducted. Release studies were conducted for elvitegravir with no additional formulation 

excipients released from devices with 6 µm thick nonPCL membranes at three different device 

sizes (n = 3 or 4 for each size). Figure 48 illustrates the expected linear correlation between 
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elvitegravir release and device surface area, indicating membrane controlled release. 

Furthermore, based on the correlation in Figure 48, a maximum sized device with 250 mm2 

surface area and a 6 µm thick membrane will release 4.4 mg/day elvitegravir.  

 

 

Figure 46 Elvitegravir release rate from TFPD is proportional to device surface area. Based on correlation, a 
maximum sized device with 250 mm2 surface area will release elvitegravir at a rate of 4.4 mg/day. Each data 
point represents average release rate for 3 or 4 devices and error bars represent one standard deviation.  

 

9.2.4. Conclusions 

While elvitegravir exhibits membrane controlled release can be released from the TFPD at rates 

up to 4.4 mg/day with a 6 µm thick membrane, dosing estimates for subcutaneous constant rate 

delivery of elvitegravir for HIV PrEP based on plasma concentrations alone are, at a minimum, 9 

mg/day and potentially as high as 50 mg/day. Not only are release rates not compatible with 

this dosing range, but the loading capacity for a maximum sized elvitegravir-TFPD is almost an 

order of magnitude too small. However, based on recent results suggesting a preferential 

distribution and possible sequestration into rectal and vaginal tissues resulting in a significantly 

higher elvitegravir exposure in these tissues compared to plasma, drastically lower doses of 

unboosted elvitegravir may be effective for HIV PrEP. Additional studies in animal models 
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investigating tissue distribution and protection against viral infection at steady state for 

unboosted elvitegravir delivered subcutaneously are needed to draw further conclusions 

regarding effective subcutaneous elvitegravir dosing for HIV PrEP.  
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9.3. Rilpivirine 

9.3.1. Background  

Rilpivirine (Figure 49), is a non-nucleoside analog reverse transcriptase inhibitor (NNRTI) 

developed originally for HIV treatment as an oral tablet and currently in clinical development as 

a long-acting injectable nanosuspension for HIV PrEP (Rilpivirine-LA). [61] As a result of these 

efforts to develop rilpivirine as both an oral tablet and nanosuspension, rilpivirine is available in 

several forms. Rilpivirine is highly insoluble and was thus developed as an HCl salt for improved 

solubility for oral dosing compared to the free base. While there may be a marked improvement 

in solubility in a pH range relevant to the gastrointestinal tract, the solubility of the HCl salt at a 

subcutaneously relevant pH of 7.4 remains drastically low (< 1 µg/ml).  Standard dosing for 

rilpivirine as part of a combination therapy for HIV treatment is a 25mg daily oral dose.  As a 

nanosuspension for long-acting HIV PrEP, rilpivirine HCl is wet-milled to produce crystal sizes 

less than 1 µm. [62] The nanosuspension used in clinical development is formulated as a liquid 

suspension with a cold-chain requirement to maintain particle size and chemical stability, but 

was additionally available in a lyophilized form. Doses ranging from 400 – 1200mg are currently 

under evaluation for rilpivirine-LA. Relatively high efficacy and low oral dosing of rilpivirine in 

HIV treatment make it a good candidate for a long-acting formulation if its extremely low 

solubility and hydrophobicity can be overcome.  

 

Figure 47 Rilpivirine chemical structure [75] 
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9.3.2. Rilpivirine dosing  

Effective rilpivirine constant-rate dosing from a subcutaneous implant targeting is estimated 

based on pharmacokinetic data obtained from pre-clinical and clinical studies of Rilpivirine-LA 

[63] [64] [50] [61] and Equation 6.  A target plasma concentration of 40 ng/ml is used based on 

recommendations from experts in the field, results from Rilpivirine-LA clinical studies, and it is 

just over 3 times the IC90 value of 12 ng/ml. Table 9 contains the relevant pharmacokinetic data 

used in Equation 1 and estimates of rilpirivine constant rate subcutaneous dosing required to 

achieve a range of target plasma concentrations. Based on these calculations, a 5.5 mg/day 

constant rate dose is needed to achieve a 40 ng/ml steady-state plasma concentration.  

Table 9 Rilpivirine-LA subcutaneous injection PK data and constant-rate subcutaneous dosing estimates. 

Rilpivirine PK data [63] 

Dose 400 mg 

AUC 70007 ng*hr/ml 

CL/F (= Dose/AUC) 5700 ml/hr 

Rilpivirine Constant-Rate Dosing Estimates 

Constant Release Rate Plasma Concentration 

1 mg/day 8 ng/ml 

2 mg/day 15 ng/ml 

5.5 mg/day 40 ng/ml 

8 mg/day 59 ng/ml 

 

9.3.3. Rilpirivine release from TFPD 

 Initially the HCl salt form of rilpivirine was selected for evaluation of release from the TFPD as 

the solubility was expected to be higher than that of the free base form. However, at pH 7.4, 

rilpivirine HCl solubility remains extremely low at < 1 µg/ml. Low solubility combined with a high 

LogP results in very slow release of rilpivirine from the TFPD. In an effort to increase release 

rates, additional forms and formulations of rilpivirine are explored. In the TFPD, reservoir 

concentration which is dictated by drug solubility, is the driving force of release. In 
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pharmaceutical formulation it is a common practice to use solubilizing excipients to increase 

drug solubility; in the TFPD, it is hypothesized that solubilizing excipients to increase drug 

solubility will increase release rate. 

9.3.3.1. Rilpivirine HCl 

Rilpivirine HCl was loaded as a dry powder into TFPDs with 6 µm thick membranes, and 

release rates under simulated physiological conditions were evaluated (n=3).  An average 

area normalized release rate of 7E-04 mg/day-mm2 was measured, which translates to 0.2 

mg/day in a maximum sized device. Based on a target release rate around 5 mg/day, a 

greater than 10-fold increase is needed. As this drastic increase in release is not achievable 

by adjusting PCL membrane properties alone12, re-formulation of the drug substance was 

considered and Rilpivirine HCl drug powder was not evaluated further in this form.  

 

                                                           
12 Use of a microporous PCL membrane to release Rilpivirine HCl as both a powder and a PEG300 slurry indicate 
a decrease in release rate with the introduction of porosity. This is attributed to Rilpivirine’s high LogP. (

 

Figure 12 Membrane porosity decreases permeability for highly hydrophobic Rilpivirine HCl (logP 4.86, < 1 µg/ml 
solubility).) 
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9.3.3.2. Rilpivirine HCl + PEG300 

PEG300 is a known solubilizing excipient for pharmaceutical formulation. Rilpivirine HCl was 

suspended in PEG300, liquid at room temperature, to create a suspension. PEG300 when 

dissolved in an aqueous medium may increase Rilpivirine HCl solubility; additionally, 

Rilpivirine HCl has a significantly higher solubility in PEG300 than in water. [65]These 

properties may increase rilpivirine solubility and thus reservoir concentration to increase the 

rate of release.  

Rilpivirine HCl as a PEG300 slurry was loaded into TFPDs with 10 or 11 µm thick membranes, 

and release rates under simulated physiological conditions were evaluated (n=6). 

Formulation of Rilpivirine HCl as a PEG300 slurry resulted in increased release rates on 

average 2.7 times higher than those of the unformulated HCl salt, resulting in an achievable 

release rate in a maximum sized device with a 6 µm thick membrane of 0.6 mg/day. 

Furthermore, Rilpivirine HCl with PEG300 formulation demonstrated membrane-controlled 

release indicated by release rates scaling with device surface area and membrane thickness 

(Figure 50). 

 

Figure 48 Membrane controlled release of Rilpivirine HCl + PEG300. 
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9.3.3.3. Rilpivirine + Hydroxypropyl β Cyclodextrin (HP-β-CD) 

HP-β-CD is a known solubilizing excipient for pharmaceutical formulation. It is a powder at 

room temperature and was evaluated for formulation with Rilpivirine HCl by both physically 

mixing together the two powders as solids as well as by creating a Rilpivirine HCl slurry in a 

60% HP-β-CD solution. Better results were obtained with the slurry and are presented here.  

Rilpivirine HCl as a slurry in 60% HP-β-CD (aq) was loaded into TFPDs with 7 µm thick 

membranes, and release rates under simulated physiological conditions were evaluated 

(n=3). Formulation of Rilpivirine HCl as a slurry in 60% HP-β-CD (aq) resulted in increased 

release rates on average 2.4 times higher than those of the unformulated HCl salt, resulting 

in achievable release rate in a maximum sized device with a 6 µm thick membrane of 0.5 

mg/day. There was no improvement with HP-β-CD formulation over PEG300 formulation.  

With a semi-permeable membrane allowing for the evaporation of water under ambient 

storage conditions, an aqueous formulation for the device reservoir is not suitable. While a 

simple physical mixture of HP-β-CD and Rilpivirine HCl did not result in increased release 

rates, a dehydrated solution of Rilpivirine HCl and 30 or 60% HP-β-CD (aq) did. This suggests 

that either a spray-dried or lyophilized formulation of Rilpivirine HCl with HP-β-CD would be 

needed for an appropriate TFPD core formulation. This would add an additional process 

step, and is not ideal. There are additional concerns with potential toxicity with high levels 

of HP-β-CD. With no improvement over the PEG300 formulation and with this consideration 

in mind, device performance with Rilpivirine HCl + HP-β-CD was not investigated further.  
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9.3.3.4. Rilpivirine + Polysorbate-20 (PS20) 

PS20 is a common formulation excipient and is added in low concentrations (1 %) to release 

media for in vitro Rilpivirine release studies to increase solubility and maintain sink 

conditions. Knowing that PS20 increases Rilpivirine solubility in release media, the use of 

PS20 as a formulation excipient within the TFPD reservoir was explored. 

Rilpivirine HCL as a slurry in PS20, which is a liquid at room temperature, was loaded into 

TFPDS with 6 µm or 16 µm thick membranes (n=4).  While successfully increasing release 

rates 2.7 times those of the unformulated HCl salt, evaluation of PS20 as a formulation 

excipient was not carried further, but could be considered as an alternative to PEG300 in 

future work.  

 

9.3.3.5. Rilpivirine-LA Nanosuspension 

Janssen Pharmaceuticals has developed a long-acting rilpivirine nanosuspension for intra-

muscular or subcutaneous injection. This formulation leverages a reduction in particle size 

to increase and control the solubility and dissolution rate. [62] While not an ideal candidate 

for formulation in the TFPD due to high cost and known cold-chain requirements, two 

variations of the rilpivirine-LA nanosuspension were evaluated in the TFPD to determine if 

pursuing a reduction in particle size to achieve increased release was worthwhile.  

Two forms of the rilpivirine-LA nanosuspension were evaluated in TFPDs with 5 µm thick 

membranes, the liquid suspension at a concentration of 300 mg/ml (n=3) and a lyophilized 

nanosuspension loaded as a powder (n=5). Both formulations resulted in increased release 

rates compared to the unformulated HCl salt; the lyophilized nanosuspension showed an 

average 3.8-fold increase in release and the liquid suspension a 2.6-fold increase. While the 
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lyophilized nanosuspension achieves up to almost 1 mg/day release, release rates obtained 

for devices loaded with the lyophilized nanosuspension were highly variable and may reflect 

difficulties in device loading or heterogeneity in lyophilized material. While not investigated 

further within this evaluation due to considerations of processing complexities, intellectual 

property, and stability, this preliminary evaluation suggests that a reduction in particle size 

will effectively increase release rates for rilpivirine HCl from the TFPD.  

 

9.3.4. Conclusion 

The highest achievable release rates in a maximum sized TFPD with a 6 µm thick membrane for 

each Rilpivirine HCl formulation investigated are displayed in Figure 51. Adding solubilizing 

formulation excipients such as PEG300, HP-β-CD, or PS20 to the core reservoir formulation and 

reducing particle size to the nanometer scale increase release rates up to 3.8 times what is 

observed with the unformulated microionized rilpivirine HCl powder. However, achievable 

release rates still fall well short of the estimated 5.5 mg/day needed to maintain effective 

plasma concentrations for HIV PrEP. The work presented here provides a foundation for 

understanding the impact of formulation excipients and particle size on release rates from the 

TFPD as well as a basis for designing rilpivirine devices. While not compatible with the 5.5 

mg/day estimates, if future results suggest that rilpivirine plasma concentrations below 40 

ng/ml result in effective PrEP or that in vivo constant-rate subcutaneous dosing of rilpivirine 

results in higher than estimated plasma concentrations, the plausibility of achieving effective 

release rates of rilpivirine from the TFPD may be reconsidered.  
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Figure 49 Rilpivirine HCl release rates from TFPD. Release rates are normalized based on surface area to the 
highest achievable release rate in a maximum sized device with a 6 µm thick membrane. All data sets represent 
≥ 3 replicates. Addition of solubilizing excipients and reduction in particle size increase release rates.  

9.4. Tenofovir Alafenimide Fumarate 

9.4.1. Background 

When taken daily as an oral dose, tenofovir (TFV)-based antiretrovirals show high efficacy for 

HIV pre-exposure prophylaxis (HIV PrEP) in men and women, but poor adherence to the regimen 

drastically decreases effectiveness. [41] Clinical studies with tenofovir disoproxil fumarate 

(TDF)/emtricitabine (FTC) and TDF alone have highlighted a strong correlation between the level 

of HIV PrEP effectiveness and product adherence. [42] [43] The iPrEx [44] and Partners PrEP [45] 

studies investigated the prophylactic effectiveness of orally administered Truvada in 

gay/bisexual men and heterosexual discordant couples, respectively. In these studies, Truvada 

reduced the risk of infection by at least 90% when taken regularly, but this level of protection 

declined to only 44% and 75%, respectively, when lower product adherence resulting in sub-

prophylactic dosing regimens were taken into consideration. Outcomes from the VOICE and 

FemPrEP trials in Sub-Saharan Africa [46] [47] [48] investigating the effectiveness of TDF or 

TDF/FTC oral dosing regimens -further demonstrated that poor adherence to the product 
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regimen stands as a barrier to an otherwise efficacious HIV PrEP strategy.  In light of these 

outcomes, there is a strong interest in the development of alternative delivery strategies for 

antiretrovirals as HIV PrEP, that are less burdensome to the user and do not depend on user 

compliance.  

Here we introduce a tunable biodegradable subcutaneous implant for long-acting constant rate 

delivery of tenofovir alafenamide fumarate (TAF) for HIV PrEP. TAF, like TDF, is a tenofovir pro-

drug (Gilead Sciences, Foster City, CA), but unlike TDF which is converted to TFV upon 

absorption into the blood stream, TAF is primarily converted to TFV intracellularly, resulting in 

significantly more potency and lower systemic concentrations of TFV which, when taken 

systemically and chronically, can have side effects such as reduction in bone demineralization or 

renal toxicity [66] [67]. Since efficacy of tenofovir-based ARV for HIV PrEP has been confirmed 

and approved through the oral route [68] [44] it is highly likely that another tenofovir pro-drug, 

TAF will also be efficacious for HIV PrEP and is currently investigated in clinical studies. [69] 

9.4.2. TAF Dosing 

In clinical development as an alternative tenofovir antiretroviral for HIV treatment, results show 

that only 8mg of TAF taken orally is equivalent in the AUC (area under the curve) of intracellular 

tenofovir as well as in antiviral activity, to 300mg of TDF, the dose commercially available as a 

standalone and as a TDF/FDC combination product [70]. However, as constant-rate 

subcutaneous delivery for HIV PrEP has not yet been explored in humans for tenofovir derived 

APIs, the efficacious dose of TAF from this novel route of administration is as yet unknown. 

Simply taking into consideration the bioavailability of TAF (35%) [71] and comparing oral TAF 

efficacy to TDF efficacy, subcutaneous delivery of 2.8 mg/day TAF is estimated as an upper 

bound for effective PrEP. However, this estimate does not take into consideration the 

pharmacokinetic benefits of constant rate release nor potential differences in distribution and 



114 
 

tissue sequestration between TDF and TAF.  Recently published results for subdermal delivery of 

TAF delivered from a non-biodegradable constant-rate implant in beagle dogs suggest that 

human doses as low as 0.15 mg/day may be sufficient to maintain effective concentrations of 

TFV-diphosphate in peripheral blood mononuclear cells. [72] In order to support device 

development and testing in pre-clinical models as well as later clinical dose escalation studies, a 

highly tunable subcutaneous TAF implant with release rates up to 3 mg/day is desired. 

9.4.3. TAF release from TFPD 

Short term, small scale studies are used to develop an appropriate formulation for overcoming 

dissolution-limited release and to increase the rate of release. Additionally, these studies 

investigate the relationships between TAF release and device design parameters, providing an 

understanding of the achievable range of release and the necessary information to design 

implants with target specifications. The ability to accurately and reproducibly produce prototype 

devices targeting specific and relevant release rates based on the results of these small scale 

studies is demonstrated with the design, fabrication, and in vitro evaluation of relevant 

prototype devices. Linear release and stability of TAF in these prototype devices is 

demonstrated up to 90 days. With a simple and flexible fabrication protocol and multiple 

approaches to tuning release, this implant can be easily tuned to achieve release rates up to 4.4 

mg/day in a device comparable in size to commercially available contraceptive implants.  

9.4.3.1. Short-term screening studies 

In these small-scale studies, release data was collected over 5-10 days. Linear release rates 

were obtained while solid drug remained in the device reservoir and were compared to 

device parameters to verify membrane controlled release, to demonstrate the relationship 

between device parameters and TAF release, to explore the achievable range of release 

rates, and to develop an empirical model to design devices targeting specific release rates.  
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9.4.3.1.1. TAF Release  

TAF release from 8 different devices was evaluated. In each of these devices TAF was 

loaded in solid form with no additional excipients into the device reservoir. At the end of 

the study, all devices still visibly contained solid TAF in the device reservoir and 

cumulative release profiles appeared linear. Figure 52 illustrates the relationships 

between release rate and surface area. 

 

Figure 50 TAF release vs surface area. Linear release rate of TAF from PCL reservoir device has a non-linear 
dependence on surface area. This is not characteristic of membrane controlled release. Release rates are 
normalized for membrane thickness and each data point represents an individual device. 

 

For membrane-controlled release, release rates are expected to increase proportionally 

with membrane surface area. The non-linear relationship between surface area and 

release rate shown in Figure 52 suggests that membrane controlled release is not 

achieved and TAF release from the device may be dependent on the rate of TAF 

dissolution in the device reservoir. Furthermore, based on these preliminary 

observations, a maximum device area of 250mm2 and a minimum membrane thickness 
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of 6um will result in TAF release rates around 1 mg/day. In attempts to achieve 

membrane controlled release and a broader range of release rates, TAF was formulated 

in the device reservoir with excipients known to increase solubility and dissolution rate. 

9.4.3.1.2. TAF Formulation with PEG300 

To investigate the effect of adding PEG300 to the device reservoir and to determine the 

relationship between TAF release and membrane surface area, TAF release from 

triplicate rod-shaped devices in three sizes (57 mm2 +/- 6, 109 mm2 +/- 18, 260mm2 +/-

62) loaded with a 2:1 TAF to PEG mass ratio was evaluated for up to 5 days. All devices 

had a membrane thickness of 8.5µm. Figure 53AA shows the average cumulative release 

profile for each device size. The average cumulative release profile is only calculated 

while solid drug remains in all three device reservoirs and the release profile is linear. As 

expected for membrane controlled release, the rate of TAF release scales proportionally 

with increasing membrane surface area (Figure 53B).  

 

Figure 51 Membrane controlled release of TAF with PEG300 formulation. (A) Cumulative release profile of TAF 
from polycaprolactone thin-film devices loaded with TAF-PEG300 (2:1 w/w ratio). All devices had an 8.5µm 
thick membrane. Solid trendlines and large data points represent average of triplicate devices with error bars 
representing 1 standard deviation. Average values are only calculated for time points while all devices retain 
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solid TAF in device reservoir and release profile is linear. (B) TAF linear release rates taken from the data shown 
in (A) scale linearly with membrane surface area. Error bars represent 1 standard deviation.  

 

To further investigate the relationship between device design and TAF release, TAF 

release from triplicate rod-shaped devices, 294 mm2 +/- 36 surface area, with three 

different membrane thicknesses (9,15,26 µm) loaded with a 2:1 TAF to PEG ratio was 

evaluated for up to 7 days. Figure 54A shows the average cumulative release profile for 

each membrane thickness. The average cumulative release profile is only calculated 

while solid drug remains in the reservoir of all three devices and the release profile is 

linear. Figure 54B illustrates the relationship between linear release rate normalized for 

surface area and membrane thickness, including data represented in A as well as three 

additional data points taken from the prototype device studies described later in this 

manuscript (Figure 57). Additionally, release rates fro

membranes loaded with mass ratios of TAF to PEG (2:1 (n=3), 1:1 (n=3) and 1:2 (n=6)) 

were evaluated to determine if TAF release depends on excipient content within this 

range. (Figure 54) 
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Figure 52 Membrane controlled release of TAF with PEG300 formulation. (A) Cumulative release profile of TAF 
from polycaprolactone thin-film devices loaded with TAF-PEG300 (2:1 w/w ratio). Solid trendlines and large 
data points represent average of triplicate devices with error bars representing 1 standard deviation. Average 
values are only calculated for time points while all devices retain solid TAF in device reservoir and release profile 
is linear. All devices are roughly 2-2.5mm diameter x 40mm long rods (294 mm2 +/- 26 surface area). (B) TAF 
linear release rates taken from the data shown in (A) and from prototype devices in Figure 57 

 

PEG300, a commonly used solubilizing excipient, was evaluated to increase dissolution 

and solubility of TAF in the device reservoir with the goals of achieving membrane 

controlled release and of increasing TAF release up to 3 mg/day for a maximum sized 

(260 mm2) device. When formulated with PEG300 in a 2:1 mass ratio, we achieved TAF 

release rates up to 4.4 mg/day in a rod shaped device 2mm in diameter and 4.1cm long 

with a 260 mm2 surface area (Figure 53). Furthermore, when formulated with PEG300, 

we observed membrane controlled release of TAF from the device as exhibited by a 

proportional relationship between release rat and membrane surface area (Figure 53B). 

As Figure 54B shows, there was an inverse linear correlation between release rate and 

membrane thickness until the membrane reaches a critical thickness (0.015 mm) at 

which point increasing membrane thickness no longer impacts release rate. These results 

demonstrate that membrane thickness can be used to control the rate of TAF release in a 

range of 1.6-4.4 mg/day for a maximum sized device. 

Release rates for different mass ratios of TAF to PEG300 were explored in order to 

determine the impact of these different formulations on release rate. While a 2:1 mass 

ratio is ideal in order to maximize TAF loading capacity, the thick paste is challenging to 

load by hand into a maximum sized device when loading to full capacity. We therefore 

explored the use of formulations with more PEG300 which results in a more fluid 

formulation that is easier to load by hand. Results demonstrate that release rates for 
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TAF-PEG300 formulations with 2:1, 1:1, and 1:2 mass ratios were not significantly 

different (p=0.16). (Figure 55)  

 

 

Figure 53 Impact of PEG300 on TAF release from TFPD. Surface area normalized release rates for TAF from PCL 
TFPD (8.5 µm membrane) with a range of w/w ratios of TAF to PEG300. No statistically significant difference in 
release rates (p=0.16).  

 

 

9.4.3.2. Prototype Studies 

Using the empirical correlations obtained in the short-term screening studies, three groups 

of triplicate prototype devices were designed to target three different release rates relevant 

to the estimated range for effective TAF dosing in humans (2.5 mg/day, 1.4 mg/day, 0.4 

mg/day). These devices were fabricated by hand at a lab-scale as previously described. All 

devices were evaluated for TAF release until device depletion, demonstrating linear release 

profiles, reproducibility between replicate devices, and accuracy in device designs targeting 
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specific release rates. Additionally, the chemical stability of TAF remaining in the device 

reservoir was evaluated at 0, 27, 49, and 89 days.  

 

 

9.4.3.2.1. Prototype devices targeting specific release rates 

 

Figure 54 TAF TFPD Prototypes. (A) 2.5mm diameter, 40mm long prototypes loaded with 230mg 1:1 
TAF:PEG300 (w/w). (B) 0.6mm diameter, 20mm long prototype loaded with 26mg 1:1 TAF:PEG300 (w/w).  

Three groups of triplicate rod-shaped devices were fabricated according to different 

device designs targeting three release rates. Images of Group II devices and a 

representative device from Group III are shown in Figure 56. Figure 57A contains the 

device parameters for each group and the target release rates based on these 

parameters (2.5 mg/day, 1.4 mg/day, 0.4 mg/day). Devices were loaded with a 1:1 w/w 

TAF and PEG300 paste and total TAF the total TAF load for each device is presented in 

Figure 57A. Based on the target release rate and TAF loading, the expected device 

duration was calculated and provided in Figure 57A. Figure 57B shows the linear release 

profiles for all three groups of prototype devices until the device approaches depletion. 

Prototype release rates for Groups I and II are within 15% of target and within 25% of 

target for Group III. Variability in release rates within each group is less than 10%.  
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Figure 55 TAF TFPD Prototype Results. (A) Device parameters and predicted release rates for TAF TFPD 
prototype devices. Each group consists of n=3 devices and measurements represent average values +/- 1 
standard deviation. (B) Cumulative release profiles for prototype device groups. Prototype devices are loaded 
with a 1:1 TAF:PEG300 (w/w) formulation. Release profile is linear (solid data points) until device nears 
depletion (outlined data points). Linear regression determines average release rate for each prototype group 
(mg/day). (C) Purity of TAF remaining in device reservoir after incubation under physiological conditions (PBS 
pH 7.4, 37˚C). 

 

Release profiles from prototype devices demonstrate the potential of this system to 

deliver relevant constant-rate doses of TAF. TAF release is linear until devices near 

depletion. When TAF depletes from the device to levels below the solubility of TAF in 

the device reservoir, there is no longer a constant TAF concentration in the device 

reservoir and TAF release is proportional to TAF reservoir concentration. This results in 

the non-linear region of the release profiles represented by open data points in Figure 

57B. The mass of TAF released in this non-linear phase will depend on the device size 

and volume of the device reservoir; larger reservoir volumes will result in larger 

quantities of soluble TAF. Group I and II prototype devices are maximum sized devices 

and release on average a total of 10 mg of TAF in the non-linear phase.   
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All devices presented in this manuscript are fabricated and loaded by hand at a lab-

scale. This leads to leads to error in both the accuracy and precision of device 

fabrication relative to device design. To account for error in the accuracy of device 

fabrication, target release rates are calculated from the actual device parameters of 

fabricated devices. This is why target release rates are 2.5 mg/day, 1.4 mg/day, and 0.4 

mg/day rather than say 2.5 mg/day, 1.5 mg/day, and 0.5 mg/day. Error in the precision 

of device fabrication is reported in Figure 57A as +/- 1 standard deviation. Additionally, 

all prototype devices are loaded with a 1:1 mass ratio of TAF to PEG300 rather than the 

2:1 mass ratio used in the screening studies. This is due to the difficulty of fully loading a 

40mm long device with the 2:1 formulation due to the high viscosity of the formulation. 

As the TFPD system is translated from lab scale fabrication to a manufacturing process, 

accuracy, precision and loading are expected to be improved. In addition to improving 

accuracy and precision in device fabrication, a manufacturing process with the capacity 

to fully load devices with a 2:1 mass ratio of TAF to PEG300 will result in significantly 

higher loading capacities for TAF in the device reservoir. In the prototype devices 

presented here, the duration of release for each group of devices is dependent on the 

loading capacity of TAF into the device reservoir. With a 1:1 mass ratio of TAF to 

PEG300, a fully loaded maximum sized device release 1.2 mg/day has a linear release 

profile out to 75 days with full device depletion at around 100 days. With a higher 

loading capacity, the duration of linear release from these devices will be longer.  

9.4.3.2.2. TAF Stability in Device Reservoir 

A single device from Group I or Group II was sacrificed for analysis of TAF remaining in 

the device reservoir at 27, 49, and 89 days. Figure 57C shows the purity of TAF 

remaining in the device reservoir over the course of the in vitro release study out to 89 
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days. TAF purity remains unchanged within the device reservoir with up to 49 days. 

Between days 49 and 89, TAF purity decreases by 19% with TFV and monophenyl TFV 

being the major degradation products.  

Results from the analysis of TAF chemical stability in the device reservoir indicate that 

under physiological conditions in a hydrated device, solid TAF contained in the device 

reservoir remains stable. (Figure 57) The loss of chemical purity between days 49 and 89 

is likely due to the depletion of TAF solid from the device reservoir.  The decrease in TAF 

purity is due to degradation of TAF via hydrolysis to mono-phenyl TFV, a form of TFV 

that may still be metabolized into active TFV-DP in vivo. Future studies will further 

investigate the in vivo activity of TAF released from the TFPD. 

9.4.3.2.3. Pre-clinical Prototype Devices 

While the in vitro prototypes with dimensions and release rates relevant to humans 

serve as a proof-of-concept, scaled-down devices are necessary for pre-clinical 

development. One of the benefits of the TFPD system is that it is highly tunable, 

allowing for easy scale down based on the empirical correlations presented earlier in the 

short term screening studies. This section discusses device design for a pre-clinical rat 

study to investigate TAF pharmacokinetics for constant-rate subcutaneous delivery at 

three different doses.  

Using body surface area (BSA) based allometric scaling, target doses for a rat were 

calculated based on the human equivalent doses (HED) of interest. Assuming a standard 

70 kg human and a 0.5 kg rat and a Km scaling factor of 6.2 (relating human equivalent 

dose to a rat equivalent dose), a 0.045, 0.135, and 0.445 mg/day dose in a rat is 

equivalent to a 3, 10 and 30 mg/day equivalent dose in a human. Device designs based 
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on empirical correlations (Figure 53, Figure 54) targeting these rat doses are described 

in Table 14. Table 11 describes the actual device parameters and observed release rates 

for prototype devices (n=3 per group). Comparing the actual device parameters to 

target parameters represents the ability to fabricate devices at lab-scale accurately and 

reproducibly according to a device design; this is dependent on the user and with an 

improved manufacturing process accuracy and precision are expected to improve 

drastically. The accuracy in the empirical model is evaluated by comparing the area 

normalized release rate for all devices is to the predicted value for a 15 µm thick film 

(Figure 58). No significant difference between the targeted and actual area normalized 

release rates indicates accuracy in the model. Comparison of the actual release rates in 

Table 11 to target release rates in Table 13, gives an overall evaluation of the accuracy 

and precision of both the empirical model and lab scale fabrication capabilities to 

produce small scale devices relevant for pre-clinical studies in rats. While groups I and II 

show good correlation between target and actual release rates, the actual release rates 

in group III are significantly lower than target. This is attributed to large air bubbles in 

the hydrated devices that can be difficult to avoid when under-loading a device. Based 

on this observation, it is recommended to fully load devices for pre-clinical studies, even 

if the full loading capacity is not required for the delivery throughout the study duration. 

Table 10 Device designs for pre-clinical rat prototypes. 
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Table 11 Device characterization and performance for pre-clinical rat prototypes. 

 

 

 

 

Figure 56 TAF Release from pre-clinical rat prototypes. Target area normalized release for TAF with a PEG300 
formulation was calculated for a 15 µm thick film using the empirical correlation presented in Figure 54. Actual 
area normalized release rates for rat prototype devices (n=9) demonstrate accuracy in the empirical 
correlation to predict release based on membrane thickness.  

 

9.4.4.  Shipping & Terminal (gamma) Sterilization 

There are two approaches to producing sterile devices. One is to fabricate and handle devices 

under aseptic conditions; the other is terminal sterilization. Where permitted, terminal 

sterilization is the preferred approach as it allows for easier and cheaper fabrication at both the 

lab and manufacturing scale. However, in order to use terminal sterilization, a sterilization 

Group

Membrane 

Thickness 

(mm)

Diameter 

(mm) SD

Length 

(mm) SD

Area 

(mm2) SD

ARV Load 

(mg) SD

Release 

Rate 

(mg/day) SD

I 0.015 0.6 0.0 3.0 0.0 6 0.0 3.7 1.0 0.06 0.00

II 0.015 1.5 0.4 4.7 0.6 22 7.2 4.5 2.4 0.12 0.03

III 0.015 1.1 0.2 12.0 0.0 42 6.0 9.7 2.6 0.16 0.02

Actual
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method must be compatible with both the PCL membrane as well as the drug and excipients 

contained in the device core. Sterilization must not significantly degrade the polymer membrane 

nor impact the chemical stability of the API. Additionally sterilization must not affect device 

performance and integrity. While more in depth studies would be necessary for future 

development, preliminary shipping and sterilization studies confirm that ambient shipping 

conditions and terminal sterilization by gamma-irradiation are suitable for pre-clinical studies.  

Table 12 Shipping & Gamma Sterilization Study Design 

Study Design 

Formulation Condition Analytical Plan / Replicates 

TAF-TFPD (powder) Shipping only Mass change (n=4); TAF purity (n=1) 

Shipping + Sterilization Mass change (n=4); TAF purity (n=1) 

TAF/PEG300-TFPD 

(1:1 w/w) 

Shipping only Mass change (n=4); TAF purity (n=1); 

TAF release (n=3); PCL MW (n=1) 

Shipping + Sterilization Mass change (n=4); TAF purity (n=1); 

TAF release (n=3); PCL MW (n=1) 

TFPD (empty) Shipping only Mass change (n=4); PCL MW (n=1) 

Shipping + Sterilization Mass change (n=4); PCL MW (n=1) 

 

Table 12 describes the study design to investigate the impact of ambient shipping 

(transcontinental during the month of June) and gamma-irradiation on polymer and drug 

stability as well as device performance. Table 16 contains device parameters, physical changes 

observed upon shipping & sterilization, and TAF purity as measured by RP-HPLC. All devices in 

both shipping and shipping & sterilization groups, including empty devices, gain on average 11 

mg. While not confirmed, this is likely due to moisture uptake by the PCL membrane during 
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shipping and could be avoided in the future with packaging techniques such as vacuum sealing. 

Neither this uptake in moisture nor the shipping and sterilization procedure impacted the 

chemical purity of TAF loaded into the TFPD as either a dry powder or as a PEG300 slurry.  

Table 13 Shipping & Sterilization Study Results 

Shipping & Sterilization Study Results 

  
Surface Area 

(mm
2

) (n=4) 

Membrane 

Thickness 

(mm) (n=4)   

Change in 

Mass (mg)  

(n=4) 
Purity (n=1) 

 (starting purity, 96%) 
Formulation Average SD Average Condition Average SD % TAF 

TAF 115 6 0.01 Shipping 10 2 97 

TAF 129 11 0.01 
Shipping + 

Sterilization 11 4 96 
TAF/PEG300 

(1:1 w/w) 125 6 0.01 Shipping 9 0 93 
TAF/PEG300 

(1:1 w/w) 118 5 0.01 
Shipping + 

Sterilization 12 0 95 

Empty 205 40 0.01 
Shipping + 

Sterilization 15 2 
  
  Empty 121 15 0.02 

Shipping + 

Sterilization 9 1 
 

Gamma-irradiation is expected to degrade PCL, but as Figure 59 illustrates, the PCL molecular 

weight distribution shifts perceptibly, but only slightly, to lower molecular weight species and 

average values are not significantly different after shipping or sterilization. Therefore, there is 

no concern that PCL degradation from this gamma sterilization protocol will impact device 

performance or integrity.  
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Figure 57 Impact of shipping & sterilization on PCL molecular weight distribution.  

 

As a final evaluation of the impact of shipping and sterilization on the TAF TFPD, device 

performance was evaluated by comparing in vitro release rates and profiles for each group of 

devices loaded with TAF and PEG300 to a control group that was not subjected to shipping, 

sterilization, nor storage. Figure 60A shows no significant difference in area normalized release 

rates between these groups and Figure 60B illustrates the expected linear release profile (until 

device depletion) for all groups.  

 

Figure 58 Impact of shipping & sterilization on device performance 
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9.4.5. Conclusion 

Exhibiting membrane controlled release up to 3 months, release rates from the TAF TFPD are 

highly tunable with membrane surface area and membrane thickness. The device development 

work here presents a thorough analysis of the relationships between device design and TAF 

release rates which provides the basis for designing devices to accurately target specific release 

rates. These results show that without additional solubilizing excipients, TAF release from the 

TFPD is dissolution limited. However, with PEG300 as a solubilizing excipient, TAF exhibits 

membrane controlled release and increased release rates.  

With this TAF-PEG300 formulation, we demonstrate the ability to target a range of release rates 

relevant to the estimated effective rates for TAF HIV PrEP subcutaneous delivery based on 

clinical pharmacokinetic data from oral TAF studies for HIV treatment. The tunability of this 

device is key to its success in pre-clinical and clinical development. Being able to tune release 

with both surface area and membrane thickness within this target range allows us to decouple 

release rate from reservoir volume and thus loading capacity. As a result, we have the potential 

to maximize our loading capacity and the implant duration or the option to limit the implant 

duration and loading capacity, but to create a smaller and more desirable implant, all while 

maintaining the same release rate. Furthermore, we are able to leverage the empirical 

correlations presented here between device design and TAF release to tune devices for use in 

future in vivo studies to be appropriate for the selected species as well as to consider dose 

escalation studies. Additionally, ambient shipping and terminal gamma-sterilization were 

demonstrated to have no deleterious effect on TAF stability nor device integrity and 

performance. 
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9.5. Conclusion 

Development and in-vitro testing of a TFPD is presented here as a subcutaneous implant for delivery 

of the ARVs TAF, Elvitegravir and Rilpivirine for HIV PrEP. As a reservoir device with a thin-film 

membrane made from PCL, a biocompatible and biodegradable polymer [73] [74], this system 

should be retrievable throughout the duration of administration if needed, but will not require 

removal upon drug depletion. This is a highly desirable feature for HIV PrEP in particular due to the 

possibility of seroconversion after device implantation and the potential for developing resistance 

with low doses of a single ARV post-seroconversion.  

The biodegradable and subcutaneous implant described here offers great potential for user-

independent and long-acting delivery of HIV PrEP. With such flexibility in design and potential to 

tune the device for a broad range of release rates, the device is well suited for use throughout pre-

clinical and clinical trials for an API such as TAF, Elvitegravir, or Rilpivirine for which the efficacious 

constant-rate subcutaneous dose for HIV PrEP has not yet been confirmed in humans.  

Based on estimates of target dosing made from available pre-clinical and clinical pharmacokinetic 

data, TAF, of the three ARVs evaluated, is the most compatible for subcutaneous delivery with the 

TFPD. While elvitegravir may be suitable pending results of further studies investigating effective 

HIV PrEP with low elvitegravir plasma concentrations, release rates based on effective dosing for 

treatment are unattainable with a reasonably sized device. With extremely low solubility, relevant 

release rates from the TFPD with Rilpivirine are not achieved even with additional formulation 

efforts. With appropriate formulation, TAF release rates above the estimated upper range of 

subcutaneous constant rate dosing, based on effective antiretroviral treatment, are achievable in a 

maximum sized device. Additional studies demonstrated the accuracy and precision of device design 

and tunability for both human relevant devices and rat sized devices to achieve relevant human 
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equivalent doses, long-term release profiles and stability of TAF in human sized prototype devices, 

and stability of TAF loaded TFPD during shipping and terminal sterilization. 
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10. Case Study III: A TFPD as a Subcutaneous Implant for Contraception 

10.1. Introduction 

There are a variety of long-acting hormonal contraceptive options commercially available. These 

contraceptive options have the potential to increase user compliance while also reducing side 

effects. [76] Multiple routes of administration including transdermal patches, depot injections, sub-

dermal implants, and intravaginal rings offer contraception for one month up to a five years. Depot 

injections and implants are available for users who prefer a long-acting and user-independent 

systemic option. Commercially available depot injections include Sayana ® Press and Depo-Provera 

®, both made by Pfizer, Inc., and Noristerat by Bayer. These injections last 13, 12, and 8 weeks 

respectively and do not require follow-up for removal. While reversible after the duration of 

administration, these contraceptive injections cannot be retrieved or removed after administration. 

In contrast to the injections that are not retrievable and last only a few months, implants are 

retrievable and are significantly longer in their duration. Two contraceptive implants are currently 

available: Jadelle® by Bayer, and Implanon ® by Merck. Both implants are delivered subdermal and 

are non-biodegradable, and thus require follow-up appointments and removal. Jadelle® requires 

implantation of two rods, both 2.5 mm in diameter and 43 mm long, while Implanon ® is only a 

single rod, 2 mm in diameter and 40 mm long. Both provide contraception for up to 5 years. One of 

the major challenges for these contraceptive implants is device retrieval which can be problematic 

due to difficulties in locating the implant when inserted too deep in the arm (subcutaneously rather 

than subdermally) or upon weight gain. [76]  

 

There is a gap in the contraceptive market for a systemic user-independent hormonal contraceptive 

with a mid-range duration of 1 to 2 years. While the concept of contraceptive implants based on 

similar principles is not novel [77] [78], in fact several examples of polymer-based contraceptive 
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systems have been explored [79] [80], the thin film membrane and reservoir design of the TFPD 

platform offers a contraceptive implant alternative delivering levenorgestrel, the same active 

ingredient in the Jadelle implant, that is biodegradable, significantly smaller than other available 

implants, and could be designed for durations in the 6-month to 2-year range. This case-study 

presents a proof-of-principle study describing a levonorgestrel biodegradable TFPD implant based 

on the fundamentals of TFPD design described previously. 

10.2. LNG Dosing 

An estimate of effective levenorgestrel dosing from an implant can be made based on clinical 

pharmacokinetic and drug release profiles from Norplant ®, the precursor to Jadelle ®. Drug 

release from the Norplant implant is not constant, and decreases over time. Based on the 

pharmacokinetic profile for Norplant, between 18-24 months after implantation, the average 

plasma concentration of levonorgestrel is 300 pg/ml. [81] The corresponding average release 

rate from the Norplant system during this same time frame is 30 µg/day. [82] Furthermore, 

based on a basic one compartment pharmacokinetic model utilizing parameters from oral 

dosing of levonorgestrel (t1/2 = 25 h, Vss = 100 L, CLss = 0.7 ml/min/kg) [83] and assuming a 100% 

bioavailability, a 10 µg/day constant rate release will result in a 300 pg/ml plasma 

concentration and a 30 µg/day release in 800 pg/ml plasma concentration. Therefore, effective 

constant-rate dosing of levonorgestrel from an implant is estimated between 10-30 µg/day. 

10.3. LNG release from TFPD 

10.3.1. Short term screening studies 

Short term and screening studies, comparable to those described in Case Study II for TAF and 

Rilpivirine TFPD development were conducted to: 

a) Determine if LNG release from TFPD is membrane controlled 

b) Determine correlation between membrane thickness and  LNG release 
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c) Determine correlation between surface area and LNG release 

d) Determine device size required to achieve target release rate 

Figure 61 and Figure 62 show the results of these screening studies. Figure 61 illustrates the 

proportional relationship between LNG release and membrane surface area for membranes 

with all the same thickness (7 µm). Figure 62 shows the area normalized release profiles for two 

sets of devices with different membrane thicknesses. The inversely proportional relationship 

between membrane thickness and release is evident as the release rate nearly doubles (1.9-fold 

increase) as the membrane thickness is cut roughly in half (0.6-fold decrease). The expected 

linear correlations between membrane surface area and thickness and release rates indicate 

that in the TFPD, LNG release is membrane controlled. Furthermore, as illustrated in Figure 61, 

devices with 7 µm thick membranes and surface areas around 100 mm2 result in release rates 

roughly 10-fold higher than required for effective contraception. This suggests that significantly 

smaller devices are suitable as contraceptive implants.  

 

Figure 59 Levonorgestrel release from TFPD is proportional to membrane surface area. All devices described in 
this figure have 7 µm thick membranes.  (A) Individual release profiles for devices with varied surface areas. (B) 
Release rates calculated from slopes of each series in (A) compared to surface areas illustrate linear correlation. 
Release rate and surface area for long term prototype devices also displayed, demonstrating accuracy of 
correlation even at smaller surface areas.  
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Figure 60 Levonorgestrel release from TFPD is inversely proportional to membrane thickness. When membrane 
thickness doubles, release rate halves.  

 

Figure 61 Co-formulation of levonorgestrel with PEG300 (2:1 w/w) slightly decreases release rate from TFPD. 
Co-formulation is used to facilitate loading of small TFPDs at bench scale.  

 

10.3.2.  Prototype studies 

Based on the empirical correlations in Figure 61 and Figure 62, proof-of-concept prototype 

devices (n=2) were designed to target 15 µg/day release rates of LNG. PEG300, in a 2:1 w/w 

slurry with LNG, was used to facilitate loading of these small devices. As Figure 63 shows, the co-
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formulation of LNG with PEG300 slightly decreases release rates; however, use of this excipient 

is necessary to load these small devices at the bench scale and is thus included in these 

prototype studies. Figure 64A describes the details of these prototype devices, Figure 64B 

captures an image of the devices, highlighting the small size, and Figure 64C shows the 

cumulative release profile for LNG out to 80 days; based on LNG loading into these devices, they 

are expected to continue releasing in a linear fashion until device depletion at around 170 

days.13 

 

 

Figure 62 Levonorgestrel TFPD contraceptive implant prototypes. (A) Device parameters; (B) Images of 
prototype devices highlighting small size; (C) In vitro release profile demonstrating 13 ug/day constant rate 
release.  

 

  

                                                           
13 Experiment on-going. 
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10.4. Conclusion 

The preliminary work presented here demonstrates the potential to develop a contraceptive 

implant based on the TFPD platform. Benefits of this system over existing contraceptive implants 

include that it is biodegradable, much smaller than existing implants, exhibits constant rate release, 

and can be tuned to accommodate target release rates and implant durations. For example, the 

prototype devices presented here are only 1-2mm in diameter and 6-7 mm long and contain enough 

LNG for roughly a 6 month duration, a device could be designed with higher drug loading resulting in 

longer duration of contraception. Such a device could be comparable in size to the prototypes with a 

higher drug loading achieved with more refined fabrication techniques, or a slightly longer device 

with a larger reservoir and thus loading capacity could be designed with a thicker membrane to 

achieve the same target release rates. Additionally, the dimensions of a LNG TFPD contraceptive 

could be adjusted to be compatible for co-insertion with the ARV TFPD presented in Case Study II to 

achieve a multipurpose technology implant. The work presented here simply illustrates the potential 

for developing such systems, but significant work in manufacturing and pre-clinical evaluation would 

be needed to bring such a system to fruition.  
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