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Background—In clinical genetics, establishing an accurate nosology requires analysis of 

variations in both etiology and the resulting phenotypes. At the phenotypic level, recognizing 

typical facial gestalts has long supported clinical and molecular diagnosis; however, the objective 

analysis of facial phenotypic variation remains underdeveloped. In this work we propose 

exploratory strategies for assessing facial phenotypic variation within and among clinical and 

molecular disease entities and deploy these techniques on cross-sectional samples of four 

RASopathies: Costello syndrome (CS), Noonan syndrome (NS), cardiofaciocutaneous syndrome 

(CFC), and neurofibromatosis type 1 (NF1).

Methods—From 3D dense surface scans, we model the typical phenotypes of the four 

RASopathies as average ‘facial signatures’ and assess individual variation in terms of direction 

(what parts of the face are affected and in what ways) and severity of the facial effects. We also 

derive a metric of phenotypic agreement between the syndromes and a metric of differences in 

severity along similar phenotypes.

Results—CFC shows a relatively consistent facial phenotype in terms of both direction and 

severity that is similar to CS and NS, consistent with the known difficulty in discriminating CFC 

from NS based on the face. CS shows a consistent directional phenotype that varies in severity. 

Although NF1 is highly variable, on average it shows a similar phenotype to CS.

Conclusions—We established an approach that can be used in the future to quantify variations 

in facial phenotypes between and within clinical and molecular diagnoses to objectively define and 

support clinical nosologies.

Keywords

Phenotype; methods; diagnosis

Introduction

Nosology concerns the definition and delineation of diseases. It requires a balance between 

‘lumping’ similar diseases together and ‘splitting’ others into separate entities [1]. In 

clinical genetics, this process requires consideration of both etiology and the resulting 

phenotype [2]. At the etiological level, next generation sequencing has greatly informed 

our understanding of the genetics underlying many syndromes. This includes genotype-first 

approaches, which have revealed that many monogenic syndromes, previously thought to be 

well-defined, exhibit a much broader phenotypic spectrum than previously realized [3, 4]. 

These findings have forced the definitions of certain syndromes and syndrome families to be 

revised [e.g. 5-7].

At the phenotypic level, inter- and intra- syndrome variation can be difficult to define 

objectively. Facial phenotyping in clinical genetics usually relies on recognition of a 

facial gestalt that is considered typical for a given clinical or molecular diagnosis and the 

translation of observations into standardized terminology [8]. In recent years this has been 

augmented with computer software, such as ‘Face2Gene’ [9, 10], for automated recognition 

of facial gestalts typical of various syndromes. Nevertheless, recognizing facial gestalts 

does not yield straightforward measures of phenotypic variation and similarity. So-called 

‘clinical face phenotype spaces’ [11, 12] are high-dimensional spaces derived from patient 
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images, wherein distances correspond to facial similarities such that similar patients and 

phenotypically similar disorders are positioned together. Despite the potential to inform 

nosological discussions, it remains unclear how phenotypic variation and similarity should 

be assessed within such a space. Different molecular or clinical entities can exhibit similar 

facial changes to the same parts of the face, but with different severity [13]. Alternatively, 

different parts of the face may be affected, or the same parts may be affected in different 

ways. In this work we develop an exploratory strategy for quantitatively describing the 

variation within, and similarities and differences among, facial phenotypes using dense 3D 

surface scans. We deploy this approach to analyze four RASopathies. RASopathies are a 

family of well-studied disorders of the RAS/MAPK pathway, comprising Costello syndrome 

(CS), Noonan syndrome (NS), cardiofaciocutaneous syndrome (CFC) and neurofibromatosis 

type I (NF1), among others. Facial similarity and variation are well-understood clinically 

within this family of disorders, making them an interesting test case for the proposed 

methodology.

Materials and methods

Sample

The RASopathy patient sample is derived from three established resources: 1) the FaceBase 

repository (www.facebase.org; FB00000861) [14]; 2) the database of the Western Australian 

Health Department; and 3) Peter Hammond’s legacy 3D dysmorphology dataset hosted at 

KU Leuven, Belgium. Data ascertainment is described in Supplementary Text 1. The study 

used all available data after excluding participants who 1) had no image of acceptable 

quality; 2) did not have necessary demographic data (age, sex and ancestry) reported; 3) 

failed image registration (see below) 4) were a second image of a patient already included 

in the analysis; or 5) were of non-European ancestry, This last criterion was applied because 

each patient is assessed relative to an openly available normative reference for 3D facial 

shape (see below), which is based only on participants of European ancestry. The final 

dataset comprised patients with a diagnosis of NS (N=129; 57 female), NF1 (N=42; 23 

female), CFC (N=51, 28 female), or CS (N=46; 30 female). Supplementary Table 1 shows 

numbers of participants remaining after each exclusion criterion was applied. Figure 1 

illustrates the final dataset broken down by age, sex, clinical diagnosis and molecular 

diagnosis at the level of the affected gene. Supplementary Table 2 reports further details of 

the molecular diagnosis per participant.

Image pre-processing

Image processing—To obtain standard facial representations, each 3D facial photograph 

was non-rigidly registered with a standard template using the ‘MeshMonk’ MATLAB 

toolbox [15, 16], resulting in a representation of each face as a standard set of 7160 points. 

Images were visually inspected and were excluded if the registration had failed.

Each standardized point configuration was then converted into a ‘facial signature’ [17] 

which codes the deviations of each point on each patient from an age and sex matched 

normative reference face as z-scores. This essentially removes variation due to normal 

growth and sex differences on the face. This was done using the open-source 3D Growth 
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Curves and Facial Assessment Toolbox in MATLAB, a normative reference for 3D facial 

shape based on a sample with European ancestry [18]. Facial signatures were calculated 

along the x (lateral-medial), y (inferior-superior), and z (anterior-posterior) direction as 

well as the direction normal to the facial surface at each quasi-landmark. Facial signatures 

in the x, y and z directions were concatenated to define a single feature vector for each 

patient, which was used for all subsequent computation. These procedures essentially define 

a position for each patient in a high-dimensional space where each element of the feature 

vector is an axis and distance corresponds to facial similarity. The signatures along the 

surface normal were only used in visualizations. Furthermore, for visualization, an age- and 

sex-normalized facial shape of each patient was created by subtracting the coordinates of the 

age and sex-specific expected face from the coordinates of the patient and adding back on 

the coordinates of the overall average face of the 3D Growth Curve training data.

Assessing phenotypic consistency within the RASopathies

We assessed phenotypic consistency in terms of variation in direction (what parts of the face 

are affected and in what ways) and severity (to what degree is the face affected in a manner 

that is typical of the syndrome). The foregoing calculations can be interpreted geometrically 

as illustrated in Figure 2. The aggregate phenotype of each RASopathy was defined as 

the mean feature vector (mean signature) of all patients with the syndrome. Directional 

similarity of the ith individual to the jth syndrome mean signature was calculated as the 

cosine distance between the individual and group feature vectors:

xij = 1 −
ai ⋅ μj

‖ai‖ ⋅ μj

where ai is the feature vector of the individual and μj is the average feature vector of the jth 

syndrome. This defined the typical phenotype of each syndrome as a transformation away 

from normal. Geometrically speaking, this was a direction or vector and similarity to it was 

measured as an angle (Figure 2). Anatomically, an example direction might, for instance, 

be loosely verbally described as the distance between the eyes widening in conjunction 

with a shrinking chin. Patients displaying this pattern (irrespective of severity) will have a 

small cosine distance to the mean. In the example, a patient with severe hypertelorism and 

micrognathia will have a low cosine distance, as will a patient with less severe hypertelorism 

and micrognathia, as well as a patient that is within normal range but has relatively widely 

spaced eyes and a small chin. A patient with the inverse difference (e.g., hypotelorism and 

macrognathia) will have a high cosine distance. The cosine distance is readily interpretable 

as it is on a normalized scale from 0-2. Values greater than 1 indicate the patient is better 

described displaying the inverse of the typical pattern than the typical pattern.

For the ith individual, their severity on the jth mean signature was:

pij =
ai ⋅ μj

μj

Matthews et al. Page 4

J Med Genet. Author manuscript; available in PMC 2024 January 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Geometrically, this was a projection onto the average signature and was a scalar measure of 

the magnitude of the facial effect in the direction of the average signature. In the example 

introduced above, a patient with more extreme micrognathia and hypertelorism will have a 

higher severity score than one with these features to a lesser degree. Variation in direction 

within a syndrome was measured as the root mean squared cosine distance from their 

average signature; we call this the ‘directional variation statistic’. Variation in severity 

was measured by the standard deviation of their severity scores; we call this the ‘severity 

variation statistic’.

Assessing phenotypic variation among the RASopathies

Two clinical or molecular entities may drive variation along similar or different directions. 

We assess this for each pair of disorders using the cosine of the angle between the mean 

signatures of the two disorders μI and μj:

cij =
μi ⋅ μj

‖μi‖ ⋅ μj

We call this this the ‘phenotype agreement score’. This ranges from 1 indicating the two 

signatures are collinear and point in the same direction to −1, indicating the two signatures 

are collinear and point in opposite directions.

Clinical or molecular disease entities may produce similar directional phenotypes but 

differ in severity. Therefore, we suggest a complementary measure: the ‘severity difference 

score’. For each pair of syndromes, we compute the mean of the two average signatures 

and compute the severity scores of patients along this combined phenotype. We then 

compare the distributions of severity scores between the two syndromes using Cohen’s d 

statistic, which is the difference between the syndrome means divided by the average of 

the standard deviations of the two groups. Throughout we use a leave-one-out approach, 

where the patient being scored is excluded from the estimation of the average signature. 

To estimate confidence intervals of each statistic observations within each syndrome were 

randomly resampled 1000 times and the cosine distances, severity and derived statistics were 

recalculated.

Interpreting the magnitude of the statistics

To estimate what constitutes moderate, strong and very strong consistency, we computed 

the two variation statistics on a sample of 39 syndromes and craniofacial malformations. 

We defined values indicating 'moderate’, ‘strong’, and ‘very strong’ consistency as those 

lower than the 20th, 10th and 5th percentiles, respectively, of the distributions of these 

statistics. Similarly, to determine what is a ‘moderate’, ‘strong’, or ‘very strong’ phenotype 

agreement or severity difference we computed these statistics for all pairs of syndromes 

in the expanded dataset and used thresholds corresponding to the 80th, 90th, and 95th 

percentiles, respectively. These thresholds are arbitrary but quite conservative compared 

to common guidelines for interpreting other effect sizes. For comparison commonly used 

thresholds for Cohen’s d (small=0.3, mod=0.5, large=0.8) indicate the mean of the second 

sample is positioned at the 62nd 69th and 79th percentiles of the first sample, respectively. 
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The data used are described in Supplementary Table 3, and the distributions of the statistics 

are reported in Supplementary Figure 1 and Supplementary Table 4.

Results

Average Signatures

In this section we assess the typical facial phenotypes of each RASopathy. Figure 3 

illustrates the average signature of each of the RASopathies. The signatures in the left panel 

describe the transformation visually in the horizontal (blue indicates lateral displacement, 

red indicates medial displacement), vertical (blue indicates inferior displacement, red 

indicates superior displacement), and depth (blue indicates posterior displacement, red 

indicates anterior displacement) directions as well as the directions locally perpendicular 

to the surface (blue indicates locally inward displacement, red indicates locally outward 

displacement). Many dysmorphic features typically used in clinical genetics can be inferred 

from particular color patterns in these signatures: anterior and locally outward displacement 

of the points on the lips is consistent with full lips; posterior and inward displacement of the 

zygomatic region is consistent with malar hypoplasia; superior and posterior displacement of 

the points of the nose is consistent with a short, depressed nose; and inward and posterior 

displacement of points on the chin, together with a medial displacement of the left and right 

sides of the chin, indicate a retruded chin and narrow jaw consistent with micrognathia. 

These four clinical features, while most pronounced in CS, are present to some degree in all 

four of the RASopathy syndromes. Anterior displacement of the forehead indicates forehead 

prominence, which occurs to differing degrees in CFC, CS and NF1. Complex changes in 

all three dimensions, although also coded in the facial signatures, are most easily visually 

appreciated by inspecting the average and exaggerated faces. For example, the eyes in CFC 

and NS are prominent and wide-spaced with down-slanting palpebral fissures.

Phenotypic consistency within the RASopathies

In this section we assess the consistency of the facial phenotypes displayed within the 

samples of each of the four RASopathies. As described in the methods, similarity to the 

average signature and severity was measured for each individual. Kernel densities, fitted to 

the distributions of these statistics for each syndrome, are shown in Figure 4a. Syndromes 

in which the face is typically affected in the same direction (the same facial features are 

transformed in the same way, though potentially to different degrees) will have generally 

low cosine distances. This is indicated by the central tendency of these distributions and is 

summarized for each syndrome in the directional variation statistic (Figure 4b). Individuals 

may also vary in the degree of this transformation (‘severity’), and syndromes may vary 

in how much individuals within the syndrome vary in severity. This is captured in the 

dispersion of the distributions of severity scores (Figure 4a) which is measured for each 

syndrome in the severity variation statistic (Figure 4b). The central tendency of the severity 

distributions also partially reflects the average magnitude of the effect on the face; however, 

only in the direction modelled by the average signature; for example, faces exhibiting an 

extreme phenotype that is dissimilar to the average signature could have a low severity 

score. To put the two variation statistics into context, the estimated cut-offs indicating 

moderate, strong and very strong consistency are plotted as vertical and horizontal lines 
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on Figure 4b. To visually illustrate the breadth of the phenotypes observed within each 

syndrome Figure 4c shows average faces and signatures of the five patients that are most 

and the five patients that are least similar to the average signature (left). The phenotypes 

in CS and CFC show moderate to strong consistency in direction. NS shows slightly lower 

consistency and NF1 shows very low consistency. CS and NF1 shows low consistency in 

severity whereas CFC and NS are more consistent. This indicates that within CS and within 

CFC, and to a lesser extent within NS, the face is usually affected in similar directions 

(facial features are affected in similar ways). CS stands out because the direction of the 

effect is very consistent, though with variable severity (facial features may be affected to 

a greater or lesser degree). The phenotype of NF1 shows low consistency in terms of both 

direction and severity.

Phenotype agreement and severity differences among the RASopathies

In this section we assess similarities and differences, in terms of direction and severity, 

among the RASopathy phenotypes. The relationship among the four syndrome phenotypes 

is summarized graphically in Figure 5. Part (a) plots the phenotype agreement and severity 

difference statistics for each pair of syndromes. In terms of phenotype agreement, CFC is 

very strongly similar to NS and to CS, while CS is less similar (in the strongly-very strongly 

range) to NS. This indicates that CFC phenotype is intermediate between NS and CS. NF1 is 

very strongly similar to CS.

To assess differences in severity between two syndromes along a single direction, the 

average signatures of both syndromes were averaged and the two groups were ordinated and 

compared along this combined signature. This assessment is less meaningful when there is 

less agreement between the average signatures of both groups. NF1 shows a strong to very 

strong severity difference to CS and CFC, with NF1 being less severe, and is very strongly 

similar to CS. CFC paired with NS show less than moderate severity difference, as does 

CFC paired with CS, CS paired with NS, and NF1 paired with NS.

The overall relationship among the average signatures is also approximated graphically on 

the first two axes of an uncentered PCA of the average signatures and a signature that is 

all zeros (Figure 5b). Here, the similarity between NF1 and CS is shown by their position 

along a similar vector from the origin, but at different distances, reflecting the difference in 

severity.

Discussion

Over the past two decades, discovery of the molecular bases of many disorders has revealed 

unsuspected biological relationships among disorders that were previously thought to be 

unrelated [4]. At the same time, it has become clear that, for many Mendelian disorders, the 

range of associated phenotypes is considerably broader than was realized initially [3, 4]. In 

many cases this has resulted in substantial revision of syndrome nosology [e.g. 5-7]. The 

recognition of typical facial gestalts has long supported clinical delineation of craniofacial 

syndromes. However, as the range of associated phenotypes for a given syndrome has 

broadened, the facial phenotypic gestalt often has become unclear.
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Clinical face phenotype spaces [11, 12] position individuals within a continuous high-

dimensional space, where informative image-based features, derived for all patients, are 

axes. Facially similar individuals and groups of individuals are positioned closely together 

in the space. Despite their potential for informing syndrome nosology no established 

framework exists for establishing how syndromes are interrelated within such a space and 

how syndromes vary internally. In this work we establish a CFPS from dense 3D surface 

scans, modelling variation in four RASopathies and develop a framework for exploring 

phenotypic variation within and among them.

An intuitively appealing approach to appreciate variation in a clinical face phenotype 

space is to visualize the high-dimensional space as projections onto a low-dimensional 

space, via a dimension reduction technique such as principal components analysis [19, 20], 

t-SNE [12, 21] or signature graph analysis [17]. Any low-dimensional projection of a high-

dimensional space will lose some aspects of the high-dimensional variation and a weakness 

of the aforementioned approaches is that the axes of the low-dimensional space are not 

necessarily biologically informative. Here, we began by modelling each syndrome group as 

a vector from average to the average signature of the syndrome. Projections onto this vector 

correspond to the degree to which an individual displays this combination of features. This 

differs from and complements other metrics of overall severity such as distance from the 

origin or the ‘signature weight’ [22] as it measures only variation that is most typical of 

the syndrome and has previously been shown to represent a biologically meaningful axis of 

‘severity’. For example position along similarly-estimated axis was shown to correlate with 

the size of the causal deletion in Wolf-Hirschhorn syndrome [13]. The natural complement 

to this is angular variation with respect to the average signature vector, which corresponds 

to deviation from the typical facial transformation. To assess consistency of the facial 

phenotype, we use two univariate variation statistics based on angular similarity to and 

variation in the projection onto the average signature. These differ from other metrics of 

overall variation such as the trace of the within-class covariance matrix [23] in that they 

partition the variation into two separate components with different meanings. To investigate 

similarities and differences between facial phenotypes we measure directional similarity 

between each pair of average signatures and differences in severity between each pair of 

syndromes along a joint average signature. To interpret the magnitude of these statistics 

and to ascertain what are biologically meaningful values, we defined cut-offs based on 

distributions of similarly computed statistics from a larger sample of 39 genetic syndromes 

and craniofacial malformations. This constitutes a stronger approach than statistical 

hypthesis testing, which would only demostrate that the values of the statistics are non-zero 

in the population. However, this is limited by the particular constitution of this larger sample 

of syndromes, which cannot be assumed to be wholly representative of the population of 

all relevant conditions. Our particular choice of thresholds is conservative relative to most 

guidelines for interpreting effect sizes, although remains essentially arbitrary. More work 

is needed to understand fully how the magnitude of these statistics should be interpreted. 

Particularly how the variation statistics present in genetically homogeneous, as opposed to 

heterogeneous conditions can be investigated. Furthermore, it should be established how 

the statistics relate to measures of biological relatedness between syndromes, such as DNA 

methylation epi-signature similarity [24].
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While acknowledging the above limitation these statistics can be interpreted in combination 

to more fully assess phenotypic variation among patient groupings, both within and between 

syndromes. Here we highlight some key findings in the context of clinical knowledge about 

the four RASopathies analysed in the study. CFC shows a relatively consistent phenotype 

in terms of both direction and severity. This is unexpected from a clinical point of view, as 

CFC is usually difficult to discriminate from CS and NS based on the face. This finding 

is more understandable when one also considers the phenotypic similarity among CS, CFC 

and NS. CFC is very strongly similar to CS and to NS. The average signatures illustrate 

that the phenotype of CFC entails a strong component of orbital hypertelorism as in NS 

while also displaying a more prominent forehead and full lips and cheeks, similar to CS. 

The face of CS is usually easy to recognize clinically, consistent with strong directional 

consistency of the phenotype, which comprises full-lips, malar hypoplasia, depressed 

nose, protruding forehead, and retrognathia. More surprising is the low consistency (high 

variation) in severity for CS. As CS is genetically relatively homogeneous and is, with very 

few exceptions, caused by variants in the HRAS gene, the biological underpinnings of this 

variation are an important avenue for future research. NF1 shows a generally mild but highly 

variable phenotype in terms of both direction and severity, consistent with clinical lore that 

NF1 does not have a distinctive facial phenotype. Nevertheless, the average signature of NF1 

is very strongly similar to that of CS, albeit with a strong severity difference between the 

two syndromes, indicating that the phenotype of NF1 is to some extent a milder version 

of that of CS. While some cases of NF1 have previously been found to be similar to NS 

[25], the similarity between NF1 and NS is weaker than between NF1 and CS. Age-related 

changes to the statistics are investigated in Supplementary Text 1. Directional variation 

declines with age for both NS and CS. CFC and CS increase in severity with increasing 

age but variation in severity remains constant. Phenotype agreement between all pairs of 

syndromes, except NF1 paired with CS, declines with age. Severity difference increases with 

age for syndrome pairs CFC-NF1, CS-NF1 and NS-NF1.

The four RASopathies considered in this study are clinically defined entities which we 

treated as unified groups. It is possible that this may inflate variation and obscure interesting 

subtypes as these disorders are, to different degrees, genetically heterogeneous. CFC and 

NS can each be caused by variants in several genes including some genes (e.g., BRAF) that 

can cause both. NF1 is caused exclusively by variants in the NF1 gene, however patients 

with microdeletions show relatively severe NF1 phenotypes [26]. CS is almost exclusively 

caused by a small number of variants affecting various codons in the HRAS gene. Analysis 

of molecularly defined categories is not feasible given the small sample sizes of patients 

with less-common pathogenic variants available to us but is an important avenue for future 

work. Another possible effect of our reliance on clinical categorization may be to reduce 

variation. In the absence of molecular confirmation, or in cases where the pathogenic variant 

does not uniquely specify the clinical diagnosis, the facial phenotype may have already been 

factored into the diagnosis. This could have reinforced the facial differences between the 

groups. This may be especially the case for NS and CS where the face is commonly used 

as part of diagnosis. This is likely to have had little influence on NF1 where the presence 

of particular facial features is not a diagnostic criterion [27, 28]. Another possible impact 
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of reliance on clinical diagnosis is the possible presence of misdiagnoses in the dataset, 

especially for patients where the diagnosis is not confirmed molecularly.

The application of next-generation sequencing in clinical genetics has rapidly expanded our 

understanding of the etiology of many disorders; however, the complementary development 

of deep phenotyping technology has lagged far behind. Here, we have developed an 

approach to quantitatively measure both within and between-syndrome phenotypic variation, 

consistency, and severity, and we apply these techniques to characterize both similarity 

and differences of both phenotype and severity. We applied these techniques to analyze a 

clinically well-studied group of related disorders characterized by variants in genes encoding 

protein components of the RAS/MAPK pathway, and we show how this approach can 

highlight phenotypic relationships among these related clinical entities. In the future, we 

anticipate that these techniques can contribute to developing a more objective nosology in 

clinical genetics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key messages:

What is already known on this topic?

Nosology in clinical genetics requires consideration of both etiology and the resulting 

phenotype. While next generation sequencing has advanced our understanding of the 

etiology of many genetic conditions, methods for analyzing facial phenotypic variation 

are underdeveloped.

What this study adds?

This study describes a method for analyzing variation in the facial phenotype 

within and among related conditions and applies the methods to samples of four 

RASopathies: Costello syndrome, Noonan syndrome, cardiofaciocutaneous syndrome 

and neurofibromatosis type 1.

How this study might affect research, practice or policy?

This study facilitates the objective study of variation in facial phenotypes with a view to 

the development of more objective nosologies in clinical genetics.
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Figure 1. 
The RASopathy sample. Left shows the distribution of ages for each sex per group and 

the proportion of subjects coming from each of the three databases. Right shows numbers 

of molecularly confirmed (broken down by the affected gene) and unconfirmed cases. FB, 

the FaceBase repository; PH, Peter Hammond’s legacy three-dimensional dysmorphology 

collection; WAHD, the Western Australian Department of Health.
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Figure 2. 
Description of cosine distance and severity measures. Each patient (A, B and C) is 

represented by their facial signature. The facial signature is shown graphically as a colour-

coded map where red indicates the point on the face of the patient is displaced outwardly 

relative to normal and blue indicates it is displaced inwardly. The average signatures of 

all patients with Noonan syndrome and all patients with Costello syndrome are shown 

by the larger colour maps. Geometrically, each signature can be interpreted as a vector. 

Anatomically each signature can be interpreted as a particular transformation of facial shape 

away from average (blank signature), for example, eyes widening (red) in combination with 

a shrinking (blue) chin. Similarity, in terms of what parts of the face are affected in what 

ways is measured by the angle between two vectors. For example, patients A and B have 

small angles (low cosine distance) to the Noonan phenotype, indicating they are affected in a 

way that is characteristic of Noonan syndrome.
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Figure 3. 
Average facial signatures in the horizontal direction (medial displacement=red; 

lateral displacement=blue); vertical direction (inferior displacement=blue, superior 

displacement=red); and depth (posterior displacement=blue, anterior displacement=red) and 

the direction locally perpendicular to the face (locally inward displacement=blue, locally 

outward displacement=red). The middle panel shows the average age and sex normalised 

face of each group, and the final panel shows an exaggerated version of theage and sex 

normalised average face.
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Figure 4. 
Consistency of the phenotypes of the four RASopathies. Figure part A plots fitted kernel 

densities to distributions of severity scores and cosine distance for each of the four 

syndromes. Figure part B plots the directional and severity variation statistics along with 

the defined cut-offs for mod, strong and very strong consistency. Error bars indicate the 95% 

CIs of the statistics estimated by resampling (see Materials and methods). Figure part C 

shows the average age-normalised and sex-normalised faces and of the five patients that are 

most and the five patients that are least similar (in terms of cosine distance) to the average 

signatures for each of the four groups as well as their average facial signatures, computed 

along the surface normals (red indicates locally outward displacement; blue indicates locally 

inward displacement).
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Figure 5. 
Phenotype agreement and severity difference among the RASopathies. Figure part A plots 

the phenotype agreement and severity difference statistics for each pair of RASopathies. The 

sign of the severity difference indicates whether the first syndrome was more severe than the 

second (positive) or the opposite (negative). Error bars indicate the 95% CIs of the statistics. 

Figure part B plots the average signatures on the first two PCs of an uncentred principal 

components analysis of the average signatures and a signature that is all zeros (the blank 

face at the origin). The facial signatures shown here are computed along the surface normals 

(red indicates locally outward displacement; blue indicates locally inward displacement).
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