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OBJECTIVES AND SCOPE 

The objective of this research is to establish causality in the interrelationships 

among household travel time expenditures by mode and car ownership, conditional upon 

exogenous changes in factors such as income, the numbers of household workers and 

drivers, and stage in the family life cycle. Panel data with extended travel diary periods 

(of, say, a week's duration) provide a unique opportunity to understand how households 

balance their levels of time expenditures and car ownership, and how they adjust these 

levels in response to exogenous changes. Such an opportunity is provided by the Dutch 

National Mobility Panel (1984-1988), and in the Netherlands an appropriate breakdown 

of travel modes is: car (driver and passenger), public transport (including bus, tram, 

subway, and train), and nonmotorized modes (including bicycle and walking). 

A basic tenet of this research is that travel time expenditures by mode are 

mutually interdependent with car ownership. It is obvious that car household travel time, 

and consequently travel time by competing modes, is a function of the level of household 

car ownership. However, on a longer-term basis, car ownership is quite possibly a 

function of travel time expenditures, conditional on the exogenous influences of income, 

number of drivers and workers, and other household characteristics. This "reverse" 

causality is an important principle in the UMOT Model of Zahavi (1979b; 1982) and has 

been supported by utility theory models of travel demand (Golob, et al., 1981; Zahavi and 

Mclynn, 1983; Downes and Emmerson, 1985). The postulate is that households with 

high levels of travel time expenditures will be motivated to decrease their time 



expenditures by switching some travel to a higher speed, but costlier, mode. This 

amounts to trading off time and money expenditures; it does not imply constant time or 

money "budgets." The trade-off of travel time and money expenditures has also been 

recognized in certain models of car ownership and usage (e.g., Beckmann, et al., 1973; 

Burns, et al., 1976; Fowkes and Button, 1977; Button, et al., 1982; Mogridge, 1989). 

If some travel decisions are made in a manner that is consistent with a 

household utility-maximizing process subject to constraints associated with time or money 

budgets, then households will react to changing exogenous conditions in predictable 

ways. Invoking such reactions would be exogenous changes in income, levels of service 

of transport modes, and compulsory travel requirements (caused by changes in factors 

such as the employment status of household members). Travel time and money 

expenditures can be adjusted by modifying trip rates, trip distances (destination choices), 

and choice of mode for each trip. As an example of travel adjustments that might be 

made by households, suppose that money available for transportation is increased by 

either a decrease in the real costs of travel or an increase in disposable income. A 

household might react to such a change in the short term by: (1) making more of the 

same type of trips (to similarly located destinations by the same mode), (2) substituting 

trips to further (more desirable) locations, or (3) switching some travel to a more 

expensive (and presumably faster) mode, or by various combinations of these and other 

actions. In the intermediate term, the switch to a more expensive mode would typically 

involve an increase in the level of car ownership; and in the long term, adjustments might 

be made in residential location. Which, if any, of these changes are made depends on 

the household's values, particularly leisure time versus money, current expenditure levels, 
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and environmental conditions, including transport levels of service and the locations of 

activity sites. 

The testing of alternative hypotheses of cause and effect among these variables 

is accomplished using longitudinal structural equation models. A simultaneous equations 

approach is called for because multiple endogenous variables are likely to be affected by 

any exogenous change, and there are inherent interrelationships among the endogenous 

variables. The advent of longitudinal structural equation models -- structural equations 

applied to panel data -- has made it possible to test competing hypotheses of cause and 

effect without relying on assumptions that effect is instantaneous in time. Hypothesis 

tests can include both contemporaneous relationships, in which the cause and its effect 

occur synchronously within the same year, and lagged relationships, in which a significant 

portion of the effect is manifested in the year or years following the change in the causal 

variable. Moreover, recent methodological advances in structural equation modeling can 

lead to the reduction of estimation biases associated with non-normally distributed 

dependent variables; and longitudinal structural equations can be tailored to account for 

panel conditioning effects, period effects, and certain misspecification errors. Some of 

these advances are applied here in the specification and testing of mutual 

interdependencies among travel time expenditures and car ownership. 
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DATA SOURCE AND SAMPLE FORMATION 

The source of the data is the ongoing Dutch National Mobility Panel (J. Golob, 

et al., 1985; van Wissen and Meurs, 1989). This panel, instituting in 1984, involves 

weekly travel diaries, household, and personal questionnaires collected at biannual and 

annual intervals, with travel diaries completed by all household members over eleven 

years of age. The refreshed sample consists of approximately 1,800 households stratified 

by life-cycle group, income category, and community type. The travel time expenditure 

variables are computed as household weekly totals of travel times calculated from the 

diaries, with correction procedures applied to estimate times associated with missing 

diary entries. 

The data used in the present study are from waves 3, 5, 7, and 9 of the panel, 

collected in the spring of each of the years 1985, 1986, 1987, and 1988. These data 

were organized as a pooled wave-pair sample. the configuration of this pooled wave­

pair sample is shown in Table 1. There are three wave-pair subsamples, each 

representing observations at two points in time one year apart: 1985-86, with 1,334 

households; 1986-87, with 1,393 households; and 1987-88, with 1,689 households. The 

breakdowns of each of these three subsamples by the number of years each household 

participated in the panel, up to and including the second year of the wave pair (panel 

tenure) is given in Table 1. Also shown is a breakdown of the entire pooled wave-pair 

sample by the year in which the household was introduced into the panel, given by the 

diagonal totals of the panel tenure by wave-pair cross tabulation. 
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TABLE 1 

COMPOSITION OF THE POOLED WAVE-PAIR SAMPLE 

WAVE-PAIR SUBSAMPLE DIAGONAL TOTALS 

YEARS 
IN 

PANEL 1985-86 1986-87 1987-88 

1 475 343 401 Year Initiated 

2 859 355 305 401 1987 

3 684 327 648 1986 

4 656 1,168 1985 

2,199 1984 
Wave-Pair 1,334 
Subsample 1,393 
Totals 1,689 

GRAND TOTAL: 4,416 

The 4,416 total household wave-pair observations represent 2, 119 separate 

households; 782 households (36.9%) are observed for only one of the year pairs; 381 

households (18.0%) are observed for two of the year pairs; and 956 (45.1%) are 

observed for all three year pairs. The first panel wave (1984) was excluded from the 

pooled sample, because it is important to separate panel conditioning (tenure) and period 
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effects, and these effects are confounded for the 1984-85 period. This is a manifestation 

of the initial conditions problem in panel analysis. 

The alternative to pooled wave-pair samples for panels with more than two 

waves is to restrict the sample to only those households (or other units of observation) 

which participate in all waves spanning the time frame of analysis. For the Dutch Mobility 

Panel for the period 1985-1988, such a pure "stayers" sample would include in the 1987-

1988 wave-pair only the 656 households in Table 1 which have four years' tenure in the 

panel. These households represent only 23.4% of the 2,805 different households that 

participated in any of the 1985-1988 panel waves (van Wissen and Meurs, 1989). In 

comparison, the 2, 119 separate households in the pooled wave-pair sample represent 

75.5% of all 1985-1988 panel households. The "stayers" sample is the most widely used 

approach in panel-based travel demand analyses, and was employed by, among others, 

Golob and Meurs, (1987), Kitamura (1987), Golob (1988), Hensher (1988), and Meurs 

(1989a). The use of pooled wave-pair sampling is less common in travel demand 

analysis, but it was advocated by van der Eijk (1987) and was used by Golob and van 

Wissen (1989). 

There are advantages and disadvantages in using a pooled wave-pair sample 

compared to a sample of stayers. There are at least three major advantages: First, the 

effects of panel attrition bias are minimized because households that drop out after their 

second and subsequent waves of participation are included in the sample, as are multi­

wave households added to the panel as refreshment after each wave; such households 

are excluded from a "stayers" sample. This is a substantive advantage if drop-out or 

refreshment households are different from households that participate in all panel waves 
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under study. Kitamura and Bovy (1987) and Meurs, et al. (1989) reported that, in the 

case of the Dutch Mobility Panel, drop-out and refreshment differences are associated 

with levels of mobility. These results argue for the use of pooled wave-pair samples, 

which reduces but does not eliminate attrition and refreshment bias. 

A second advantage lies in the ability to separate panel conditioning effects from 

period effects, which uniformly affect all observational units at the same point in time 

(panel wave). A pooled wave-pair sample constructed from at least three waves 

(excluding the initial wave) of a panel with attrition and refreshment will provide a variance 

of panel tenure over time. This allows a separate accounting of panel conditioning and 

period effects, as was attempted in the present study. Meurs, et al. (1989) has shown 

that the Dutch Mobility Panel is characterized by such substantial conditioning effects with 

regard to mobility levels. 

A third advantage of a pooled wave-pair sample is in increasing the 

observational frequency of rare events. Events such as the formation of new households, 

residential relocation across community types, changes in the number of adults in the 

household, or other "life cycle shocks" provide information on behavioral adaptation and 

change that is extremely valuable for long-term travel demand forecasting (Clark and Dix, 

1982; Clark, et al., 1982; Goodwin, et al., 1987). Sample sizes can be crucial in the 

analyses of the consequences of such events: an event occurring with the probability of 

.01 in one year has an expectation of 19 times on the "stayers" sample of 656 Dutch 

Panel households observed over four years (1985-1988); while the same event is likely 

to be observed 44 times in the pooled wave-pair sample of 4,416 household-year pairs. 
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There is also a major disadvantage of wave-pair pooling: There is redundant 

information in the repeated measurements of the same observational units over 

successive wave pairs, and this redundancy is not easily compensated for in statistical 

tests. It is possible to deflate the number of cases by a repetition factor (in the present 

study: 2,119 households, divided by 4,416 wave-pair observations = 0.48), but this is in 

general only a lower bound on sample size, reflecting perfect autocorrelation of the 

repeated measurements (van der Eijk, 1987). Alternatively, it may be possible to separate 

error terms into within-observation and between-observation components, but the 

statistical methodology to accomplish this becomes cumbersome when extended beyond 

the case of single-equation models with a normally-distributed dependent variable. Given 

the objective in the present study of determining causal structure, there is no known 

evidence that the repeated measurements problem will bias model coefficients 

representing strength of effect in a systematic way, but the unweighted standard errors 

of estimates will be underestimated due to the inflated sample size. 

The actual sample size of the pooled wave-pair sample used was approximately 

4,000 (4,002). An even breakdown of sample size by wave pair facilitates the comparison 

of period effects for the three years, accomplished by including variables comparing each 

of the latter years (1987 and 1988) to the base year (1986). Consequently, random 

subsamples of 1,334 households were drawn from each of the two wave-pairs with the 

larger sample sizes (Table 1), resulting in a total wave-pair sample of 4,002. Due to the 

repeated-measurements overestimation of sample size, the sample of approximately 4,000 

was considered to be an effective sample of only 3,000 for upward adjustment of 

standard errors of the estimates (or downward adjustment of the t-scores or z-scores). 
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This represents a mid-point correction between the bounds of an effective sample size 

of approximately 2,000 (assuming perfect autocorrelation or complete redundancy in the 

repeated measurements on the same households) and the pooled wave-pair total of 

4,000 (assuming no redundancy in the repeated measurements). 

PRELIMINARY DESCRIPTIVE ANALYSES 

A descriptive dynamic analysis was performed by investigating the travel time 

expenditures at two points in time (designated at t 1 and t 2 , one year apart) of seven 

household dynamic car ownership segments. These segments are defined according to 

car ownership levels at t 1 and t 2 , as described in Table 2. The use of a pooled wave­

pair sample results in segment sample sizes sufficient to support these descriptive 

analyses. 

The mean weekly car travel time expenditures for t 1 and t 2 are plotted for the 

dynamic car ownership segments as a function of car ownership level (0, 1, or 2 cars) 

in Figure 1. For each of the four segments with changes in car ownership, the lines in 

Figure 1 connect the means for the same segment at the two points in time; for the 

segments that are temporally stable in terms of car ownership levels, the lines connect 

the three ownership levels at each point in time. 

The means for the three segments with temporal stability are nearly identical for 

t 1 and t 2 • However, the segment that increases from 0 cars at t 1 to 1 car at t 2 (segment 

"0 to 1 Car") exhibits a higher level of car travel time (presumably mostly car passenger 

time) at t 1 (3.60 hours/week) than does the remainder of zero-car households 
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TABLE 2 

THE DYNAMIC CAR OWNERSHIP SEGMENTS 

CAR OWNERSHIP NUMBER OF PERCENT OF POOLED 
HOUSEHOLD WAVE-PAIR SAMPLE OF 

t 1 t2 OBSERVATIONS 4,416 OBSERVATIONS 

0 0 945 21.4 
0 1 112 2.5 
1 0 87 2.0 
1 1 2,658 60.2 
1 2 148 3.4 
2 1 98 2.2 
2 2 357 8.1 

Any other combination 11 0.3 
(not included) 

(1.62 hours/week). That is, prior to owning a car, these households stand out from 

other households in the same cross-sectional state. Moreover, this "O to 1 Car" segment 

reaches a time expenditure level at t 2 , after purchasing a car, that is less than that of 

households that were stable one-car owners at both t 1 and t 2 (6.82 hours/week versus 

8.21 hours/week), indicating a lagged effect of car ownership on car travel time. This is 

evidence of dynamic phenomena not detectable in cross-sectional analyses. The reverse 

change exhibited by the "1 to O Car" segment is almost a pure reflection, with only slight 

(statistically insignificant) differences between the segments at their one-car state. 

Changes between one and two cars reveal similar dynamic phenomena: The 

initial and final states are statistically different than, and numerically bounded by, the 
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corresponding state values of the temporally stable segments (non-changers). Moreover, 

there is asymmetry in the changes between one and two cars. The reduction from two 

to one cars results in the same change in car travel time as does the increase from one 

to two cars, but the levels are different (the lines in Figure 1 are parallel but displaced). 

Households that increase from one car to two cars start from, and change to, higher 

levels of car travel time, compared to households that decrease from two cars to one car. 

Thus, Figure 1 displays path dependency and asymmetry (irreversibility) (Goodwin, 1987; 

Kitamura, 1986, 1987), as well as lagged effects (Golob and van Wissen, 1989). 
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HOUSEHOLD PUBLIC TRANSPORT TRAVEL TIMES BY 
DYNAMIC CAR OWNERSHIP SEGMENT 

A similar plot of public transport times by dynamic car ownership segment is 

provided in Figure 2. Here, the "O to 1 Car" and the "1 to O Car" segments exhibit equal 

changes in public transport times, but the amounts of change are significantly less than 

the differences between the stable "O Car" and "1 Car" segments, revealing a lagged 

effect. The "2 to 1 Car" segment exhibits no change over time in public transport travel 

time, which is identical to the cross-sectional comparison of stable "1 Car" and "2 Car" 

segments at time t , (the slight difference at time t 2 being potentially due to nonrandom 

panel conditioning bias, as found in the results of the structural equation model). 

However, the "1 to 2 Car" segment exhibits a significant reduction in public transport time 
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from a high base level. This is entirely consistent with trade-offs of time and money 

expenditures. Cross-sectional models based on these data would underestimate the 

reduction in public transport travel time that accompanies a change in car ownership from 

one to two cars. (All cited differences in Figures 1 and 2 are statistically at the p = .05 

level). 

Plotted in Figure 3 is the temporal change in public transport travel time versus 

the temporal change in car travel time for the seven dynamic car ownership segments. 

The three segments with stable ownership levels are located in the vicinity of the origin 
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of the plot. The segments defined by changes between zero and one car are at the 

extremes of the plot, and the "2 to 1 Car" segment is the only one not located on a 

regression line through the origin. The equation of this regression is: 

APT = -0.253 AGAR (R 2 = 0.75) (1) 

where APT denotes change in public transport time, and AGAR denotes change in car 

travel time. This regression result does not change significantly if an intercept term is 

allowed. 

Similarly, temporal change in travel time by nonmotorized modes is plotted 

against temporal change in car travel time in Figure 4. In this case, there is somewhat 

less alignment of the segments, but the "2 to 1 Car" segment is still the most atypical. 

There also appears to be a panel conditioning bias displayed in terms of a uniform 

reduction in reported travel time by nonmotorized modes by all segments. The 

regression equation is 

ANMOT = -0.857 - 0.316 AGAR (R 2 = 0.58) (2) 

where ANMOT denotes change in time by nonmotorized modes. 

Finally, a complementary relationship between public transport and 

nonmotorized travel time expenditures is shown by the plot of their changes, in Figure 5. 

The linear regression equation between the two change variables is 

AN MOT = -0. 725 + 1.4 APT (R 2 = 0.90) (3) 

14 



).,! 
w 
w 
~ 

..... 
(f) 
a: 
:::, 

~ 
0 
w 
~ 
a: 
~ 
~ 
0 
z 
z -
w 
~ 
~ 
u 

1 

• 1 -> 0 

0.5 -
0 

-0.5 
STAYERS .. 

-1 
2 -> 1 • • 

-1.5 
I . .,. "' 0 -> 1 

• • 
-2 

-2 ,5 -I I I I I I 
-3 -1 3 

-2 0 2 4 

CHANGE IN CAR TRAVEL HOURS / WEEK 

FIGURE 4 

TEMPORAL CHANGES IN 
HOUSEHOLD CAR AND NONMOTORIZED TIMES 

BY DYNAMIC OWNERSHIP SEGMENT 

The three-way interrelationship among the changes in modal travel time expenditure 

(Figures 3, 4, 5) indicates that nonmotorized time is more sensitive to car travel time than 

is public transport time. Another consistent result is that the changes between zero and 

one car dominates the scale, while the changes between one and two cars are smaller 

in magnitude and less consistent. This is evidence in support of a nonlinear treatment 

of car ownership level in modeling its causal interrelationships with travel times. 

It is also possible to describe lagged and path-dependent relationships among 

exogenous household characteristics and travel time expenditures and car ownership. 
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TEMPORAL CHANGES IN 
HOUSEHOLD PUBLIC TRANSPORT AND NONMOTORIZED MODE TIMES 

BY DYNAMIC OWNERSHIP SEGMENT 

Some examples are documented elsewhere (e.g., Goodwin, 1987; Kitamura and van der 

Hoorn, 1987). An important relationship for the present research objectives is that 

between the number of drivers in the household (license holding) and the level of car 

ownership. The dynamic phenomena involved in this relationship is apparent in a 

comparison of car ownership breakdowns at two points in time for the seven dynamic 

license-holding segments defined in Table 3. Breakdowns of car ownership by segment 

are given in Figure 6a for time t 1 and in Figure 6b for time t 2 one year later. 
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TABLE 3 

THE DYNAMIC LICENSE HOLDING SEGMENTS 

NUMBER OF DRIVERS NUMBER OF PERCENT OF POOLED 
HOUSEHOLD WAVE-PAIR SAMPLE OF 

t, t2 OBSERVATIONS 4,416 OBSERVATIONS 

0 0 572 13.0 

0 1 62 1.4 

1 1 1,329 30.1 

1 2 146 3.3 

2 2 1,847 41.8 

2 3 49 1.1 

3 3 104 2.4 

Any other combination 307 7.0 
(not included) 

Three of the four segments with temporal stability in license holding (zero, one, 

and two drivers) exhibit nearly identical breakdowns by car ownership level at times t, 

(Figure 6a) and time t 2 (Figure 6b). The fourth temporally stable segment (three drivers) 

exhibits an increase in car ownership, from 51.1 percent two-car households to 62.8 

percent two-car households, an indication of where some of the growth in car ownership 
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in the Netherlands might be concentrated. However, the most important evidence in 

Figures 6a and 6b concerns a leading influence of the number of drivers on car 

ownership: For the "Oto 1 Driver" segment, 37.5 percent of households own a car prior 

to obtaining a driver's license; this increases to 46.4 percent at time t 2 , which is short of 

the 77.4 percent of stable "1 Driver" households (representing a potential time lag in 

adjustment). For the "1 to 2 Driver" segment, the same lead is evident in that 11.4 

percent of these households own two cars in the "before" period, compared to only 1. 7% 

of stable "1 Driver" households; there is also a lag in the eventual elimination of the zero­

car state for these households. Finally, for households with increases from two to three 

drivers, the same lead and lags are apparent in the breakdown of one versus two cars 

when comparisons are made to the stable "2 Driver" segment in the "before" period and 

the stable "3 Driver" segment in the "after" period. 

These and other results from dynamic descriptive analyses were used to guide 

the specification of structural model hypotheses. 

METHODOLOGY 

The method used to model the dynamics of travel time expenditures was one 

which satisfied eight requirements: (1) The model must accommodate multiple 

endogenous variables that are potentially interrelated in terms of causal structure. (2) 

There must be the capability of testing alternative directions of causality between any two 

endogenous variables. (3) The model must accommodate two types of exogenous 
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variables: dynamic variables that exhibit significant yearly changes for the sample, and 

static variables that tend to remain the same over the one-year horizon for the vast 

majority of the sample. (4) In addition to contemporaneous causal relationships, the 

model must accommodate temporal lags and leads in causality. (5) The model must 

accommodate period effects that account for the influences of factors such as nationwide 

fuel prices and public transport fares that are uniform cross-sectionally. (6) 

Compensation for biases resulting from panel conditioning must be explicitly included in 

the model. (7) There must be the potential for a dynamic structure among disturbance 

terms (i.e., autocorrelated error terms). Finally, (8) the model must account for biases in 

estimation resulting from non-normal distributional properties of the endogenous variables. 

There is at least one modeling method that appears to satisfy these eight 

requirements: longitudinal structural equations with limited and categorical dependent 

variables. The method can be implemented by adapting a procedure developed by 

Muthen (1979, 1983, 1984), which is an extension of linear structural equations modeling 

with unlimited continuous variables (Joreskog, 1973) to situations in which the dependent 

variables are non-normal in any or all of four ways: (1) truncated, (2) censored, (3) 

ordered polytomous (ordered and categorical), or, as a special case of ordered 

polytomous, (4) dichotomous. Closely related methods are provided by Bentler (1985) 

and Joreskog and Sorbom (1987). 

Longitudinal structural equations modeling with limited and categorical variables 

has been applied in travel demand modeling by Golob (1988) and by Golob and van 

Wissen (1989). In the special case of dichotomous variables, van Wissen and Golob 
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(1988) compare this method to the conditional logit model in an investigation of 

simultaneous equation systems involving binary choice variables. 

Structural equations modeling is defined for the purposes of the present 

application, where there are p limited and categorical dependent variables, as a p­

equation system: 

y* = By* + rx + r (4) 

where y* is a (p x 1) vector of endogenous latent variables, B is a (p x p) matrix of 

structural (causal) effects among they* variables (with a main diagonal of zeros), r is a 

(p x m) matrix of regression effects of the (m x 1) exogenous x variables, and r is a 

(p x 1) vector of disturbance or residual terms with variance-covariance matrix w = r(. 

In limited and categorical variable modeling, there are additional equations specifying the 

relationship between each endogenous latent variable y1* and its corresponding non­

normal observed variable, yi . In the present application, there are two types of non­

normal y1 variables: censored variables and ordered polytomous variables. 

Travel time expenditures are assumed to be censored endogenous variables in 

the present application. For each such travel time variable, y1 , it is presumed that there 

is a latent variable y1* which measures the true propensity of a household to expend time 

on the mode in question. If this latent variable is greater than zero, the actual time 

expended is observed; if it is zero or less, no time is observed: 

= 

= 

Yt if Yi* > 0 

O otherwise. 
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These latent time expenditure variables y1* are conditional on the exogenous 

x variables in the equation system, representing background household characteristics 

and period effects: 

= 1r' X + u I (6) 

where 1r is a vector of reduced-form regression coefficients and u I is normally-distributed 

residual with mean zero and unknown variance a u2
• The problem at this stage of the 

estimation is to determine 1r and au 2 when the only available information concerning an 

observation j for which y It _::;_ 0 is y iJ = 0: 

p (y ij = 0) = P (y it_::;_ 0) 

= p (1r Xi _::;_ -U iJ) (7) 

apparent from substituting (6) into (5). A maximum-likelihood solution to the problem of 

estimating 1r and a u
2 was first proposed by Tobin (1958) and was subsequently refined 

by Amemiya (1973) and Fair (1977). It is known as the tobit model, or as Tobin's probit 

(Goldberger, 1964; Maddala, 1983) and is used to establish the variances and 

covariances of the latent time expenditure variables in the first stages of the structural 

equations estimation. The appropriate maximum likelihood estimation procedures are 

described in Maddala (1983). 

The remaining endogenous variables -- car ownership levels measured at two 

points in time and the number of years a household participates in the panel, the latter 

used to control for panel conditioning bias -- are assumed to be ordered polytomous 
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(i.e., categorical, with an unknown ordinal scale relating the categories). For each of 

these variables, it is presumed that there is a latent variable that is translated into the 

categorical observations through an unknown set of thresholds k 1 1 , k 1 2 , . . . k 
O 

• 1 

(Muthen, 1984; Golob and van Wissen, 1989): 

c-1 if k < u* 
c-2 if klc-1 < '* ~ klc-1 i c-2 U I 

Y1 = (8) 

1 if k, < u* < k12 
0 if I* < k1, Y1 

For the car ownership variables, there are c = 3 categories (corresponding to O, 1, and 

2 cars, as there are very few households with more than two cars in the Dutch Mobility 

Panel); for the panel tenure variable, there are c = 4 categories (corresponding to 1 

through 4 years of panel participation). 

The unknown parameters in (8) are estimated using the ordered-response probit 

model of Aitchison and Silvey (1957) and Ashford (1959): 

= 

= (9) 

where {p is the standard cumulative normal distribution function, and 1r and x are as in (6). 

The parameters in (9) can be estimated using a maximum likelihood technique (Maddala, 

1983). 

The entire model, consisting of equation system (4) and the tobit and probit 

submodels for the non-normal endogenous variables, is estimated using a multi-stage 
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procedure outlined in Golob and van Wissen (1989). It was developed by Muthen (1983, 

1984, 1987). In the first stage of the procedure, the first- and second-order sample 

statistics of the non-normal endogenous variables are estimated using the conventional 

maximum-likelihood tobit and ordered probit techniques, followed by a limited-information 

maximum-likelihood technique to estimate the covariances between all pairs of these 

endogenous variables. In this way, the probabilities that the endogenous variables are 

multivariate normally-distributed are maximized conditional on the exogenous variables 

in system (4). In the second stage of the procedure, a generalized least-squares (GLS) 

iterative technique is used to estimate the structural parameters of the beta, gamma, and 

psi (t/J = r r') matrices of system (4) using the estimated second-order sample statistics 

as weights. It has been shown that these GLS estimators are asymptotically distribution 

free (Browne, 1974, 1984; Bentler, 1983a, 1983b). 

MODEL SPECIFICATION 

The Endogenous Behavioral Variables 

There are eight endogenous behavioral variables, comprised of four variables 

measured on the same households at two points in time one year apart. The four 

variables, their scale properties, and model treatments are listed in Table 4. 

The postulated causal structure among these eight endogenous variables is 

depicted in the flow diagram of Figure 7. There are sixteen causal relationships in this 

structure, each relationship denoted by an arrow in Figure 7. Fourteen of these sixteen 

relationships are contemporaneous, implying that one variable influences another variable 
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TABLE 4 

THE BEHAVIORAL ENDOGENOUS VARIABLES, 
EACH MEASURED ON HOUSEHOLDS 

AT TWO POINTS IN TIME 

ABBRE-
VARIABLE VIATION SCALE TREATMENT 

Travel time/week by car T CAR Ratio Continuous, censored at O 

Travel time/week by public transport T P.T. Ratio Continuous, censored at O 

Travel time/week by nonmotorized modes T NMOT Ratio Continuous, censored at o 

Number of cars NCARS Ordinal Ordered Probit 

at the same point in time (synchronously). Such relationships are analogous to those in 

cross-sectional models (Golob and Meurs, 1987; Kitamura, 1987). 

The fourteen contemporaneous relationships represent the identical seven 

relationships at two points in time. They can be interpreted as four sets of relationships: 

The level of household car ownership has a positive direct effect on travel time 

expenditures by car and negative direct effects on travel time expenditures by 

public transport and by nonmotorized modes (accounting for three of the seven 

contemporaneous relationships). 
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TllvE T
1 TIME T 2 

TYPES OF CAUSAL EFFECTS 

----------------------------
CROSS LAGGED 

CONTEMPORAN::OUS 

FIGURE 7 

FLOW DIAGRAM OF CAUSAL LINKAGES 
BETWEEN ENDOGENOUS BEHAVIORAL VARIABLES 

Car travel time has a further negative effect on both public transport and 

nonmotorized times. That is, conditional upon the level of car ownership, higher 

car use also implies less use of the competing modes (accounting for two more 

of the relationships). 

Public transport travel time has a positive influence on car travel time. This 

relationship is postulated as a contemporaneous manifestation of the principle 
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of travel time and money trade-offs (Zahavi, 1979b; Golob, et al., 1981; Zahavi 

and Mclynn, 1983): households expending higher levels of travel time by a 

slower, less expensive mode (public transport) are likely to switch some travel 

to a faster, more expensive mode (car) in order to reduce travel time 

expenditures at the cost of increasing travel money expenditures. This 

contemporaneous relationship is likely to be relatively weak, because it is 

conditional on a given level of car ownership. 

The final contemporaneous relationship implies that public transport travel time 

has a positive influence on nonmotorized time. This specifies a hierarchical 

complementarity between these modes (Golob and Meurs, 1987). 

Two important lagged relationships are postulated in addition to these 

contemporaneous relationships. These lagged relationships imply that travel time 

expenditures in the base year affect car ownership in the following year: 

Public transport travel time expenditures have a positive lagged influence on 

future car ownership. This is a dynamic manifestation of the principle of time 

and money trade-offs involving comparative speeds and costs of travel by mode. 

Car travel time expenditures also have a positive influence on future car 

ownership; extensive use implies the need for more cars, as evidenced in the 

descriptive analyses documented above as part of the present study. 
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The causal structure depicted in Figure 7 is implemented in the model in terms 

of free and constrained nonzero elements of the beta matrix of equation system (4). 

The sixteen relationships lead to nine free model parameters, because the seven 

contemporaneous relationships are constrained to be equal in the two points in time. 

Thus, there are seven free contemporaneous parameters, plus two lagged diachronal 

parameters. 

Corrections for Panel Conditioning 

The influence of panel conditioning bias is accounted for by introducing an 

ordered polytomous variable measuring the number of years each household had 

participated in the panel at each point in time. This variable, labeled "tenure," takes on 

the integer values 1 through 4 and is treated as an ordered probit (expression (9)). In 

this way the ordinal observed variable is transformed into a continuous latent variable with 

the ability to capture the expected nonlinear effects of diminishing marginal conditioning 

over panel waves. Furthermore, the specification of panel tenure as an endogenous 

variable allows the inclusion of ordered probit regression effects from the exogenous 

variables to tenure; allowing identification of differences in attrition by household 

characteristic. 

It is postulated that the tenure variable has a causal influence on each of the 

three travel time expenditure variables at each of the two points in time. These influences, 

expected to all be negative in sign, partially control for the increase over time in reporting 

errors and omissions in the travel diaries documented by Meurs, et al. (1989). No panel 

conditioning effects are expected on the car ownership variables due to the much simpler 
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reporting requirements, and this absence of panel bias on the car ownership variable is 

confirmed by Hensher (1988). 

These six additional causal effects complete the structural relationships among 

the endogenous variables expressed in the beta matrix of equation system (4). There 

are nine endogenous variables, eight of which are the behavioral variables described in 

the previous section (travel time expenditures by three modes plus car ownership at each 

of two points in time), the ninth variable being tenure, accounting for panel conditioning 

biases. 

The Explanatory Variables 

The explanatory background household characteristics were divided into two 

types: dynamic characteristics which change over the course of a year for a substantial 

proportion of households, and static characteristics which are relatively stable over time. 

To qualify as a dynamic exogenous variable, at least five percent of the observations had 

to exhibit temporal change, corresponding to an autocorrelation of a value no greater 

than 0.89, depending on the variable distribution. High autocorrelations must be avoided 

because they lead to estimation problems due to near-singular matrices. 

The exogenous variables are listed in Table 5. There are nine dynamic 

variables, which account for eighteen exogenous variables through their measurement 

at two points in time. In addition, there are four static variables, making a total of 22 

exogenous background variables. These variables were chosen according to conceptual 

arguments and empirical evidence concerning the relationships between household 

characteristics and travel time "budgets" (cf., Szalai, 1972; Zahavi, 1979a, 1979b, 1982) 
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TABLE 5 

THE EXOGENOUS BACKGROUND VARIABLES 

TYPE VARIABLE DEFINITION ABBREVIATION SCALE 

Dynamic Household income in highest category INCHIGH Dummy 
Household income in lowest category INCLOW Dummy 

Number of persons 18 or older in household NADULTS Continuous 

Number of persons 12-17 in household NKIDS12 Continuous 

Household composed of 2 adults COUPLES Dummy 

Presence of children less than 12 years old W/KIDS Dummy 

Number of household drivers NDRIVERS Continuous 

Presence of 3 or more drivers 3+DRIVERS Dummy 

Number of household workers NWORKERS Continuous 

Static Residence located in either of the 2 largest 

metropolitan areas LOCBIG Dummy 

Residence located in regional center LOCREGCEN Dummy 

Residence located in suburb with 

commuter rail service LOCSUB Dummy 

Residence located in rural area LOCRURAL Dummy 

and the relationships between household characteristics and car ownership (cf., Golob 

and Burns, 1978; Heggie, 1979; Button, et al., 1982). 

The levels of temporal change in the dynamic household characteristics are 

reflected in comparisons of the variables at the two points in time. Among the continuous 

variables, 17.2% of the households exhibited changes in the number of workers; 12.5% 

had changes in the number of adults; and 12.1 % had changes in the number of drivers. 
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Among the dummy variables, 13.3% of households changed states with respect to high 

income; 6. 7% changed states with respect to low income; and 6.0% changed states 

regarding their life-cycle classification as couples. 

The static variables capture four of the six categories of residential location used 

in the panel cluster sampling (J. Golob, et al., 1985). Residential location reflects 

differences in densities of population and activity sites and public transport levels of 

service, and these differences have been shown to be important in explaining both travel 

time expenditures (e.g., Chapin, 1974; van der Hoorn, 1979; Golob, et al., 1981) and car 

ownership levels (e.g., Beckmann, et al., 1973; Fowkes and Button, 1977). These 

residential location variables are treated as static because most residential relocations 

occur within the same community type; an average of only about 0.5% of households 

change classification on these four dummy variables. 

The regression structure linking these exogenous background variables and the 

endogenous variables is specified in terms of nonzero elements in the gamma matrix of 

equation system (4). This specification was guided by results of previous studies and 

by results of regressions conducted separately for each dependent variable. As in the 

case of the structure among the endogenous variables, these parameters are constrained 

to be equal in the two time periods. In addition, diachronal effects representing temporal 

lags and leads were specified for the causal influences of income and number of drivers 

on car ownership; the importance of these dynamic influences is evaluated in the 

discussion of the results. 
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Exogenous Period Effects 

It is probable that there are temporal changes in travel time expenditures and 

car ownership levels that are due to factors affecting all panel households uniformly. 

Such factors could include fuel prices, public transport fares, general levels-of-service 

(e.g., congestion effects on travel times), and influences on disposable income from tax 

rates and costs of living. 

These factors, here called "period effects," are accounted for by introducing 

dummy variables for two of the three wave-pair time periods. Regression effects (free 

parameters in the gamma matrix of equation (4)) are then specified from each of the two 

period dummy variables to each of the four time period t 2 behavioral endogenous 

variables. These effects thus represent period effects for the two latter years in the last 

two wave pairs, 1987 and 1988, and relative to the latter year of first (base) wave pair, 

1986. These period effects are conditional on the effects of static and dynamic household 

characteristics and are also conditional on the panel bias effects captured by the tenure 

variable. These two period effects bring the total number of exogenous variables to 24. 

Disturbance Term Dynamics 

The covariances of the r error terms in the structural equation system (4) 

comprise an important part of the model because the eight behavioral endogenous 

variables represent four travel demand variables measured at two points in time. The 

autocorrelations between these four pairs of endogenous variables are accommodated 

in the model by allowing the corresponding covariances in the w = r r' variance-
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covariance matrix to be freely estimated. This and other means of accounting for 

repeated measurement structure in longitudinal data are discussed in Joreskog (1979). 

The full specification of the w disturbance-term variance-covariance matrix 

involves these four off-diagonal autocovariance parameters, plus six free diagonal 

(variance) parameters for the continuous endogenous variables: travel time expenditures 

by the three modes at two points in time. The variances of the ordered polytomous 

variables -- car ownership at two points in time and the panel tenure variable reflecting 

panel conditioning -- are not identified and are standardized to unity, which is a 

consequence of the probit model (Maddala, 1983). 

INTERPRETATION OF RESULTS 

Overview of Model Fit 

The model is extremely parsimonious due to the limited number of effects and 

the restrictions involving equal contemporaneous effects at the two points in time (given 

the number of x and y variables, it is possible to have up to 180 more free parameters 

than are specified in the model.) In light of this parsimony, the fit of the model was 

judged to be very good. The parameter estimates corresponding to the postulated 

structure among the endogenous variables, depicted in the flow diagram of Figure 7, were 

all of the correct sign and were, with a single exception, significantly different from zero 

at the p = .05 one-tailed level. The constraints that the seven contemporaneous 

relationships among the behavioral endogenous variables are equal at the two points in 
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time were found to be realistic because subsequent releases of each constraint did not 

lead to substantially better fitting models. 

The structure of the exogenous effects on the endogenous variables was also 

largely as expected: The 18 dynamic (nine variables at two points time) and four static 

background variables (or 22 exogenous variables in total) had 66 significant effects on 

the endogenous behavioral variables, an average of three effects per variable. As in the 

case of the endogenous contemporaneous structure, the simplification of equivalent 

relationships at the two points in time was successful; and the postulated lag and lead 

effects were all statistically significant, as described in the next section. 

The structure capturing the influences of panel conditioning biases yielded 

results that were entirely consistent with expectation and with previous results (Meurs, et 

al., 1989; van Wissen and Meurs, 1989; Kitamura and Bovy, 1987). Also, the separation 

of period effects from panel conditioning biases led to estimates of period effects that 

appear to be consistent with increased levels of car ownership and mobility in the 

Netherlands in recent years. 

The success of the model structure in replicating the variance-covariance 

matrices S 1 = y* x' and S 2 = y* y*' is measured by a x 2 statistic calculated as a 

product of the sample size and objective function of the GLS estimation (Browne, 1974; 

Bentler and Bonett, 1980), with degrees of freedom equal to the difference of the number 

of free elements in the S 1 and S 2 matrices and the number of free parameters in the 

model. For the present model, x 2 = 488.9 with 181 degrees of freedom. This indicates 

that the model can be rejected at the p = .05 level. However, this statistic is not 

trustworthy in the evaluation of large problems, as discussed by Bentler and Bonett 
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{1980). One problem with all x 2 statistics is inflation with large sample sizes, and the 

repeated measurements aspect of the pooled wave-pair sampling scheme used here 

exacerbates the problem by an artificially large sample size. {If the statistic were based 

on the number of separate households in the sample, rather that the number of wave­

pair observations on households, the model would be associated with a probability in the 

neighborhood of p = .01 . ) The model x 2 statistic can be improved by releasing 

parameter equalities at the two points in time, but this would be at too great a cost in 

terms of interpretability. 

There are two aspects to the interpretation of the model results: First, the direct 

causal effects of each endogenous and exogenous variable on each endogenous variable 

are represented by the estimated parameters of the structural equation system (4). 

Second, the total effect of each exogenous variable on each endogenous variable are 

represented by the estimated coefficients of the reduced-form equations. These two 

aspects are examined in the next two sections. 

Direct Effects 

The estimated parameters of the beta and gamma matrices of equation system 

(4) represent all direct causal effects in the model. The parameters of all matrices 

{including the psi residual term variance-covariance matrix) are estimated simultaneously, 

but are presented here separately for purposes of clarity. 

The estimated structural parameters interrelating the endogenous variables (i.e., 

beta matrix parameters) are listed together with their z-statistics (estimate/standard error 

ratios) in Table 6. All of the relationships linking pairs of behavioral variables are 
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TENURE 

T CAR 1 

T PT 1 

T NM0T 1 

NCARS 1 

T CAR 2 

T PT 2 

T NM0T 2 

NCARS 2 

TABLE 6 

ESTIMATED STRUCTURAL PARAMETERS LINKING ENDOGENOUS VARIABLES 
(BETA MATRIX ESTIMATES) 

WITH CORRESPONDING Z-STATISTICS IN PARENTHESES 

TENURE T CAR 1 T PT 1 T NHOT 1 NCARS 1 T CAR 2 T PT 2 T NHOT 2 NCARS 2 

0 0 0 0 0 0 0 0 0 
- - - - - - - - -

-0.130 0 0.120 0 2.29 0 0 0 0 
(-1. 52) - (2.04) - (21.6) - - - -

-0.160 -0.047 0 0 -1.30 0 0 0 0 
(-1.71) (-1.11) - - (-11.0) - - - -

-0.300 -0.062 0.062 0 -1.17 0 0 0 0 
(-3.86) (-6.53) (5.06) - (-18.4) - - - -

0 0 0 0 0 0 0 0 0 
- - - - - - - - -

-0.100 0 0 0 0 0 0.120 0 2.29 
(-0.94) - - - - - (2.04) - (21.5) 

-0.110 0 0 0 0 -0.047 0 0 -1.30 
(-1.08) - - - - (-1.11) - - (-11.0) 

-0.020 0 0 0 0 -0.062 0.062 0 -1. 76 
(-0.22) - - - - (-6.53) (5.06) - (-18.4) 

0 0.012 0.005 0 0 0 0 0 0 
- (6.02) (1. 66) - - - - - -

significant, with the exception of the (negative) direct effect from time by car to time by 

public transport, which is significant only at p > .10 . Importantly, the (positive) lagged 

effects of car travel time and public transport travel time on future car ownership are both 

statistically significant. This confirms the hypothesis that, controlling for exogenous 

influences, excess motorized travel times at time t 1 lead to an increase in car ownership 

demand at time t 2 • 

Another important estimation result is that the tenure variable accounting for 

panel conditioning (through an ordered probit formulation) has the expected effects: The 
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variable most subject to panel conditioning bias is travel time by nonmotorized modes, 

with the biases on travel by the two motorized modes being relatively similar, but stronger 

on public transport. Furthermore, the levels of bias are stronger on time period t 1 than 

on time period t 2 , indicating diminishing effects over time for a given panel tenure, 

particularly for the reporting of travel by nonmotorized modes (bicycle and walking). The 

estimated thresholds (k 11 in expression (9)) in the probit translation of the number of 

years of panel participation also indicate a diminishing marginal panel-conditioning effect 

by tenure. 

The standardized structural parameters interrelating the endogenous variables 

are listed in Table 7. Each of these parameters relates two variables with unit variance, 

TENURE 

T CAR 1 

T PT 1 

T NMOT 1 

NCARS 1 

T CAR 2 

T PT 2 

T NMOT 2 

NCARS 2 

TABLE 7 

ESTIMATED STANDARDIZED STRUCTURAL PARAMETERS 
LINKING ENDOGENOUS VARIABLES 

(BETA MATRIX ESTIMATES FOR STANDARDIZED VARIABLES) 

TENURE T CAR 1 T PT 1 T NHOT 1 NCARS 1 T CAR 2 T PT 2 T NHOT 2 NCARS 2 

0 0 0 0 0 0 0 0 0 

-0.023 0 0.104 0 0.399 0 0 0 0 

-0.032 -0.054 0 0 -0.262 0 0 0 0 

-0.061 -0.072 0.063 0 -0.238 0 0 0 0 

0 0 0 0 0 0 0 0 0 

-0.017 0 0 0 0 0 0.101 0 0.389 

-0.022 0 0 0 0 -0.056 0 0 -0.263 

-0.004 0 0 0 0 -0.079 0.066 0 -0.252 

0 0.070 0.025 0 0 0 0 0 0 
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which removes scale differences in their comparison. The strongest relationships are 

those from car ownership to travel times. The next strongest relationship is the (positive) 

influence of public transport travel time on car travel time, followed by the (negative) 

influence of car travel time on nonmotorized time and the lagged influence of car travel 

time on future car ownership. The influences of car and public transport travel times on 

nonmotorized time are similar in importance to the influence of panel conditioning biases 

on nonmotorized time, emphasizing the need to include such bias effects. 

The estimated structural regression parameters relating the endogenous 

variables to the exogenous variables are listed in Table Ba (exogenous variables of time 

period t, ), Table 8b (variables of time period t 2 ), and Table Be (static and period effect 

variables). All parameters are statistically significant at the p = .05 one-tailed level, with 

the exception of some of the period effects. Importantly, the lagged effects of the high 

income dummy variable and number of drivers on future car ownership are both 

significant (Table Ba), as are the lead effects of future high income and future number of 

drivers on present car ownership. Regarding exogenous influences on the panel tenure 

variable, only three significant effects were found: panel attrition is less for households 

located in rural villages and towns and for households with a greater number of drivers; 

panel attrition is higher for households located in the two largest cities (Amsterdam and 

Rotterdam). The relationships between panel tenure and the period variables merely 

account for time expiration. The most important regression effects, determined through 

a comparison of standardized coefficients (not shown) are: from number of adults and 

number of kids aged 12-17 to car ownership; and from number of adults and residential 

location in the two largest cities to time by public transport. 
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TENURE 

T CAR 1 

T PT 1 

T NMOT 1 

NCARS 1 

T CAR 2 

T PT 2 

T NMOT 2 

NCARS 2 

TENURE 

T CAR 1 

T PT 1 

T NMOT 1 

NCARS 1 

T CAR 2 

T PT 2 

T NMOT 2 

NCARS 2 

TABLE Sa 

ESTIMATED STRUCTURAL PARAMETERS LINKING DYNAMIC EXOGENOUS VARIABLES 
OF TIME PERIOD t 1 TO THE ENDOGENOUS VARIABLES 

(certain gamma matrix estimates) 
WITH Z-STATISTICS IN PARENTHESES 

----------------------------------- TIME PERIOD 1 ---------------------------------------
INC HIGH INC LOW NADULTS HKIDS12 COUPLES W/KIDS NDRIVERS 3+DRVRS NWORKERS 

0 0 0 0 0 0 0 0 
- - - - - - - -
0 0 0.66 0.91 0 0 0.88 0 
- - (3.65) (6.63) - - (6.35) -

0.97 0 1.84 0.79 1.07 1. 53 -0.39 1.98 
(5.22) - (12.9) (3.62) (4.67) (4.36) (-2.29) (5.30) 

0 0 3.29 4.26 0 0 0 0 
- - (28.9) (37.3) - - - -

0.41 -0.32 0 -0.11 0.17 0.18 0.66 0 
(5.94) (-5.47) - (-2.93) (3.43) (2.61) (12.5) -

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 
- - - - - - - -
0 0 0 0 0 0 0 0 
- - - - - - - -

0.21 0 0 0 0 0 0.34 0 
(3.21) - - - - - (6.83) -

TABLE Sb 

ESTIMATED STRUCTURAL PARAMETERS LINKING DYNAMIC EXOGENOUS VARIABLES 
OF TIME PERIOD t 2 TO THE ENDOGENOUS VARIABLES 

(certain gamma matrix estimates) 
WITH Z-STATISTICS IN PARENTHESES 

0 
-

0.55 
(4.69) 

0.39 
(2.96) 

0.39 
(4.23) 

0.11 
(3.90) 

0 

0 
-
0 
-
0 
-

----------------------------------- TIME PERIOD 2 ----------------------------------------
INC HIGH INC LOW NADULTS NKIDS12 COUPLES W/KIOS NDRIVERS 3+DRVRS NWORKERS 

0 0 0 0 0 0 0.076 0 0 
- - - - - - (3.27) - -

0 0 0 0 0 0 0 0 0 
- - - - - - - - -
0 0 0 0 0 0 0 0 0 
- - - - - - - - -

0 0 0 0 0 0 0 0 0 
- - - - - - - - -

0.12 0 0 0 0 0 0.42 0 0 
( 1. 79) - - - - - (7.89) - -

0 0 0.66 0.91 0 0 0.88 0 0.55 
- - (3.65) (6.63) - - (6.35) - (4.69) 

0.97 0 1.84 0.79 1.07 1. 53 -0.39 1.98 0.39 
(5.22) - (12.9) (3.62) (4.67) (4.36) (-2.29) (5.30) (2.96) 

0 0 3.06 3.86 0 0 0 0 0.39 
- - (28.5) (35.6) - - - - (4.23) 

0.24 -0.32 0 -0.11 0.17 0.18 0.71 0 0.11 
(3.43) (-5.47) - (-2.93) (3.43) (2.61) (14.0) - (3.90) 
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TABLE Sc 

ESTIMATED STRUCTURAL PARAMETERS LINKING STATIC AND PERIOD EFFECT 
EXOGENOUS VARIABLES TO ENDOGENOUS VARIABLES 

TENURE 

T CAR 1 

T PT 1 

T NMOT 1 

NCARS 1 

T CAR 2 

T PT 2 

T NMOT 2 

NCARS 2 

(certain gamma matrix estimates) 
WITH Z-STATISTICS IN PARENTHESES 

----------------STATIC--------------- -- PERIOD EFFECTS --

LOC BIG LOC MID LOC SUB LOC RURL I 1987 1988 

-0.34 0 0 0.13 0.74 1.357 
(-5.04) - - (2.98) (10.5) (20. 7) 

0 0 0.94 0. 76 0 0 
- - (3.64) (3.49) - -

3.25 1. 23 1.14 -0.65 0 0 
(9.85) (4.52) (4.08) (-2.69) - -

0 0 0 -0.67 0 0 
- - - (-4.17) - -
0 -0.36 0 0.27 0 0 
- (-5.35) - (5.33) - -

0 0.00 0.94 0. 76 0.11 0.46 
- - (3.64) (3.49) (0.48) (1. 72) 

3.25 1. 23 1.14 -0.65 -0.04 0.42 
(9.85) (4.52) (4.08) (-2.69) (-0.19) ( 1. 60 f 

0 0 0 -0.67 -0.31 -0.1 
- - - (-4.17) (-1.82) (-0.90) 
0 -0.36 0 0.27 0.07 0.08 
- (-5.35) - (5.33) (1. 62) ( 1. 90) 

Focusing on the period effects, there is a uniform increase in both car ownership 

and travel time in 1988, relative to 1986. The increase in car ownership is also indicated 

by a marginally significant increase in 1987 which, together with the significant effects for 

the 1988 period, indicates a steady increase from 1986 through 1987 and 1988 in car 

ownership in the Netherlands. This increase is over and above that explained by changes 

in household characteristics. The increase in car travel time is relatively more 

concentrated in 1988, compared to 1987, possibly indicating a lagged effect of car 

ownership. Also detected in the period effects is a marginally significant increase in public 

transport travel time in 1988, following essentially no change between 1986 and 1987. 
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Further interpretation of results is facilitated by investigating the total effects on 

the endogenous variables. 

Total Effects 

The total effect of one variable on another variable might be different than the 

direct effect of the first variable on the second if the first variable also affects other 

variables that in turn, directly or indirectly, affect the second variable. There also might 

be total effects between variables when there is no direct effect, but only indirect "paths" 

through intermediate variables. The total effects are the coefficients of the reduced-form 

equations of structural equation system (4): 

y* = (I - 8)- 1 r X (10) 

so the total effects of x on y* are given in the matrix (I - B)- 1 r. The total effects of y* 

on y* are given by (I - B) -1 
- r. 

The total effects on each of the four endogenous variables at the second point 

in time are graphed in Figures 8 through 11. In each figure, total effects are displayed 

for explanatory variables grouped into five categories: (1) dynamic exogenous t 1 (lagged) 

variables, (2) dynamic exogenous t 2 (contemporaneous) variables, (3) exogenous static 

variables, (4) exogenous period effects, and (5) endogenous panel conditioning bias. 

This last explanatory variable is endogenous, rather than exogenous, but is included in 

the graphs for comparison purposes. Shown are the total effects of the standardized 
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solution (unit variance variables), allowing comparisons to be made free of scale 

differences. A variable-by-variable interpretation of these results follows. 

Car ownership at time t 2 , the second point in time (Figure 8): The dominant 

explanatory variable is the number of household drivers at the same point in time. There 

is also an important lagged effect from the number of drivers in the previous year. The 

high income dummy has both contemporaneous and lagged effects, but the low income 
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dummy has only a contemporaneous effect. The income effects, while important, are no 

greater than the effects from two of the residential location dummy variables: households 

located in rural towns and villages have higher car ownership levels, while those located 

in cities which are regional centers (principally the cities of Groningen and Nijmegen, due 

to the clustering of the Dutch Panel sample) have lower car ownership, ceteris paribus. 

At the next level of importance are four additional household composition variables, 

followed by the period effects. These period effects indicate that there are increases in 

car ownership in 1987 and (with a slight acceleration) in 1988, relative to 1986, that are 

uniform across all panel households. Finally, there are a few minor lagged effects that 

are channeled through the direct lagged travel time influences on car ownership (i.e., 

through the lagged causal effects between the endogenous variables). 

These results indicate that in forecasting car ownership, it is most important to 

predict license holding, followed by income, labor force participation, and household 

composition (in terms of the number of children 12 to 17 years of age and a breakdown 

of households by life-cycle categories). Residential location is also important. Beyond 

these influences, there is an upward trend in car ownership over the 1986-1988 period 

that can be traced to factors affecting the household population uniformly. 

The total effects on car travel time at time t 2 are graphed in Figure 9. The 

number of household drivers at the same point in time plays a dominant role, as in the 

case of car ownership, but there is a greater contribution from other household 

composition variables. Particularly, both the number of workers and the number of adults 

are major contributors to the explanation of car travel time expenditures; and the number 

of children 12 to 17 years of age has a positive effect on car travel time. The influences 

of residential location are also different than for car ownership: households located in 
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rural areas expend greater car travel time, but so do households located in suburban 

cities and towns, and to a less er extent, so do households located in the largest cities 

(Amsterdam and Rotterdam) (the reference group being location in either nonsuburban 

medium-sized cities or in suburbs without rail service). 

The period effects exhibit an increase in car travel time that is accelerating over 

the 1986-1988 period. However, panel conditioning has a negative total effect on car 
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travel time. Consequently, analyses in which period and conditioning effects are 

confounded are likely to display little or no systematic change in car travel time across 

the sample, due to the opposing period and panel conditioning influences. 

These results for car ownership and car travel time expenditures reveal that the 

two endogenous variables have both common and unique explanations. The number of 

household drivers is the most important explanator of both variables. Moreover, this 

explanatory variable has both contemporaneous and dynamic influences on both 

endogenous variables; and the dynamic influences involve both lags and leads (Tables 

Sa and Sb). The dynamic influences are stronger for car ownership than for car travel 

time, which is logical considering the longer-term nature of car ownership decisions. 

Income also exhibits both contemporaneous and dynamic influences on both variables. 

Both variables demonstrate period effects, but car travel time increases at an increasing 

rate over the 1986-1988 period, while car ownership increases at a constant or 

diminishing rate. 

The principal differences in the explanation of car ownership and car travel time 

expenditures are with regard to household composition and residential location. Car 

travel time is more sensitive to both of these sets of explanatory variables. In particular, 

the number of adults, conditional on the number of drivers and the number of workers, 

has an influence on car travel time but not on car ownership. The number of children 

aged 12 to 17 actually has a negative influence on car ownership (presumably through 

a reduced car purchasing power) and a positive influence on car travel time (possibly 

through increased household car passenger time and increased car driver time for serve­

passenger purposes), ceteris paribus. 
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Regarding residential location, the relationship between car travel time and 

community type is more pervasive than the relationship between car ownership and 

community type. For instance, suburban locations imply higher car usage in terms of 

travel times but not higher car ownership, ceteris paribus. These differences can be 

important in policy evaluations. 

The total effects on travel time by public transport at time t 2 are graphed in 

Figure 10. The two most important explanators are the number of adults and the number 
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of drivers, with the (negative) influence of number of drivers being both direct and indirect. 

The indirect effects are through the positive effect of drivers on car ownership and use 

and through negative effects of these two endogenous variables, particularly car 

ownership, on public transport travel time. Number of drivers also has a lagged effect on 

public transport time. Residential location variables are also very important in explaining 

public transport time, there being a direct relationship between city size and public 

transport use. Finally, there are dynamics in the relationship between the high income 

dummy variable and public transport time: The contemporaneous relationship is positive, 

indicating that public transport is a superior economic good; but the lagged relationship 

is negative as a consequence of adjustments in car ownership. This is a clarification of 

the results cited in Golob (1989). Public transport time also exhibits a negative panel 

conditioning effect and period effects that indicate a decrease in. public transport usage 

from 1986 to 1987, followed by an increase in 1988 compared to both previous years. 

Finally, the total effects on nonmotorized mode time are graphed in Figure 11. 

The two critical explanatory variables are the number of adults and the number of children 

aged 12 to 17, which together add to the total number of diary keepers, a variable used 

in several other studies (e.g., Kitamura, 1987; Golob, 1989; Meurs, 1989a). This effect 

of number of diary keepers is entirely contemporaneous, but the negative effect of the 

number of drivers includes both contemporaneous and lagged dynamic components. 

Income also has a lagged dynamic effect. There is also a substantial panel conditioning 

bias effect and an apparent real period decline in nonmotorized mode time. 
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CONCLUSIONS AND A DIRECTION FOR FURTHER RESEARCH 

One main conclusion is that the three household travel demand variables -- car 

ownership and total travel times by car and by public transport -- are mutually 

interdependent. A demand model that specifies any one of these variables as a function 

of one or more of the others (say, car usage as a function of car ownership) without 

additional "feedback" equations is subject to endogeneity bias; the error term will be 

correlated with an explanatory variable. The mutual causality among these variables is 

consistent with the principle of travel time and money trade-offs: households expending 

high levels of travel time are likely to expend more money in order to reduce this travel 

time. 

Another main conclusion is that the interrelationships among car ownership and 

travel times by mode and the relationships between exogenous household characteristics 

and car ownership are not all contemporaneous. There are important dynamic effects. 

These are important dynamic effects. These involve lagged effects of travel times on car 

ownership and lagged effects of income and number of household drivers on car 

ownership. There are also anticipatory effects of the future income and number of drivers 

on present car ownership. Furthermore, there are dynamic effects on travel times 

manifested through causal chains. For instance, high income implies higher public 

transport at the same point in time, ceteris paribus, but the same variable implies lower 

public transport use one year later due to adjustments in car ownership and use. 

A third conclusion is that it is possible to control for panel conditioning biases, 

so that period effects, capturing the influences of factors such as fuel prices that are 
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uniform across the sample cross-sectionally can be estimated. For the Netherlands, it 

was estimated that there was a period increase in car ownership and use in 1987 

compared to 1986, followed by an increase in public transport use and an accelerated 

increase in car use in 1988. The separation of panel bias and period effects is important 

because, in such a situation of positive period effects, panel bias and period effects 

counteract each other, leading to potentially misleading conclusions. 

A fourth conclusion is that there are important similarities and differences in the 

explanations of car ownership and mode use in terms of household characteristics. 

Particularly, car ownership and car use are shown to have both common and unique 

predictors: for instance, the number of adults in the household, conditional on the 

number of drivers and the number of workers, explains car usage, but not car ownership; 

also, households located in suburban communities exhibit higher levels of car use, but 

not car ownership, ceteris paribus. Such comparisons are facilitated by the simultaneous 

equations approach. 

Further conclusions can be drawn regarding methodology. Longitudinal 

structural equation models appear to be capable of handling travel behavior variables that 

involve either ordered discrete choices or continuous positive measurements with a high 

proportion of observations at the value zero. The models can also be used to impose 

dynamic causal effects and disturbance term autorelationships. There certainly appear 

to be further capabilities not taken advantage of in the present research. A fruitful 

direction for further research lies in the marriage of approaches to dynamic travel behavior 

analysis that are rich in causal structure with those that are sophisticated in the handling 

of error terms and their influences on parameter estimation. The present research is of 

the former type, with a minimum of endogeneity assumptions and a built-in ability to test 
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alternative cause and effect relationships. The latter type of approach, overviewed by 

Maddala (1987} and represented by Hensher (1988} and Meurs (1989a; 1989b}, can 

account for the effects of disruptions such as individual-specific disturbances, but at the 

expense of dealing with limitations on presumed cause and effect; in fact, the models are 

usually limited to a single dependent variable. Clearly, future research will glean important 

material from both types of approaches. The result should be improved methods for 

travel demand forecasting. 
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