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ABSTRACT OF THE DISSERTATION 

 

Improving Empiric Antibiotic Coverage for Gram-Negative Rod Infections Using 

Available Clinical Data 

 

by 

 

Stefan Eisen Richter, MD 

Doctor of Philosophy in Health Policy and Management 

University of California, Los Angeles, 2018 

Professor Jack Needleman, Chair 

 

 

Infections due to antibiotic-resistant Gram-negative rods (GNRs) result in high 

associated mortality and frequently have poor treatment options. To determine risk 

factors for recovery on culture of antibiotic resistant GNRs, cases were retrospectively 

analyzed at a major academic hospital system from 2011-2016. Three separate classes 

of antibiotics were studied - colistin (analyzed separately for GNRs and for Klebsiella 

Pneumoniae), carbapenems (analyzed separately for ertapenem and anti-Pseudomonal 

carbapenems), and aminoglycosides (analyzed separately for gentamicin/tobramycin 

and amikacin). In each case, bivariate associations were determined and used to 

develop multivariate models predicting the presence of resistance to the chosen 

antibiotic. Models had c-statistics ranging from 0.63 to 0.89. Common predictors 

included male gender, medical comorbidities, transfer from another healthcare facility, 

indicators of mechanical ventilation or tracheostomy, and recent antibiotic exposure. We 

then compared two strategies of treating empirically with either meropenem or colistin 
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and performed sensitivity analyses to determine which strategy was preferable in terms 

of cost (low acuity) and avoidance of mortality (high acuity strategy) under several 

willingness-to-pay thresholds. Under base case assumptions, the meropenem-first 

strategy dominated in low acuity patients at a meropenem resistance rate of up to 

10.9%. In high acuity patients, the colistin strategy was preferable with a willingness-to-

pay per avoided death as low as $46,231; at $468,750 per avoided death, the colistin-

first strategy was preferable with meropenem resistance rates as low as 5.5%. The 

model predicting likelihood of resistance to anti-Pseudomonal carbapenems can provide 

critical information in determining the optimal initial empiric antibiotic strategy. 
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Chapter 1 - Introduction 

 The objective of this research is to improve antibiotic prescribing patterns in the 

inpatient setting by modeling risk for infections in which broad spectrum antibiotic use is 

warranted. In the US there are currently approximately 2 million annual cases of 

infections with multi-drug resistant organisms (MDROs), with ~23,000 attributable deaths 

and $50 million in directly attributable costs.1 In 2013 the CDC released a report on 

antibiotic resistance threats outlining the urgency of the problem of MDROs in our 

healthcare system, and recommending four specific courses of action: (1) preventing 

infections and the spread of resistance, (2) tracking resistant bacteria, (3) improving the 

use of antibiotics, and (4) promoting the development of new antibiotics and tests.2 This 

project aims to address goals two and three, tracking MDRO infections within hospital 

systems and predicting the risk for MDROs in a patient presenting to medical care. By 

addressing these goals, we seek to improve the likelihood that the initial choice of 

antibiotic for empiric treatment appropriately treats the most likely infection. 

 Initial antibiotic selection for patients remains a challenge. Appropriate initial 

antibiotic therapy can decrease mortality3-9 and hospital length of stay,6,10-14 while 

overuse of broad-spectrum antibiotics has been linked with increased prevalence of 

MDROs.15-19  Prior modeling of risk for MDRO infection has typically focused on risks for 

specific organisms, such as methicillin-resistant Staphylococcus aureus (MRSA),20,21 

extended-spectrum beta lactamase-producing (ESBL) E. coli or Klebsiella species,22-24 

MDR Pseudomonas aeruginosa,25,26 carbapenem-resistant Enterobacteriaceae 

(CRE),18,27,28 or vancomycin-resistant enterococcus (VRE),29 or has focused on specific 

patient populations, such as stem cell transplant recipients30 or ICU patients.31 

 The most frequently used current decision rules for initial antibiotic therapy for a 

specific condition are the guidelines for treatment of pneumonia, which breaks patients 
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into either community acquired pneumonia (CAP) or healthcare associated pneumonia 

(HCAP); this categorization has been criticized as insufficiently sensitive and specific for 

guiding clinical decisions.32-36 A recent study with a derivation cohort of only 200 patients 

presenting with pneumonia demonstrated that the implementation of a human-usable 

scoring system based on their data would have improved the accuracy of the initial 

antibiotic choice substantially over the existing rule (AUROC 0.88 vs. 0.72).37 

 Aside from pneumonia, very few studies have attempted to create an integrated 

algorithm for determining antibiotic choice on the basis of a general condition as 

opposed to a specific organism. After a culture is drawn, information regarding the 

morphological characteristics of the infectious organism (gram negativity vs. positivity, 

shape of the bacterium) are typically available fairly rapidly, typically within 48 hours. 

Identification of the species will follow after that, and then sensitivities to specific 

antibiotic classes afterwards. In some cases, full information regarding antibiotic 

sensitivities is not available for nearly a week after cultures are first drawn, and choice of 

antibiotics is made in the absence of full information. This work aims to improve the 

process of antibiotic selection for gram negative rod (GNR) infections, focusing primarily 

on empiric treatment for undifferentiated infections. Better-informed decision making at 

this point can decrease the time to initiation of appropriate antibiotic therapy, and 

thereby potentially improve outcomes.8,9 

 The work of this thesis comprises two distinct and related projects. The first 

project, “Identification of risk factors for development of resistance to specific antibiotics”, 

focuses on modeling the probability that the organism of interest (whether an 

undifferentiated GNR or a specific bacterial species) is non-susceptible to a chosen 

antibiotic. Three classes of antibiotics have been chosen for this step - colistin 

(polymyxin E), carbapenems, and aminoglycosides. While these are not exhaustive of 

the classes of antibiotics used to treat GNR infections, they are second- and third-line 
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agents for the treatment of GNR infections, and development of resistance to any one of 

these agents is a clinically significant event. In the cases of colistin and carbapenems, 

prior papers have attempted to determine risk factors for the development of resistance 

to these agents but have not created a clinically meaningful scoring system; colistin is 

significantly less studied than carbapenems, and very few studies have looked at 

aminoglycosides. A summary of the selection process for the multivariate models for 

these three antibiotic classes is provided in the relevant papers; a more in-depth 

explanation of the selection process can be found for colistin, carbapenems, and 

aminoglycosides in Appendices A, B, and C, respectively. 

 The second project, “The cost-effectiveness of meropenem versus colistin in the 

initial empiric treatment of low and high acuity patients presenting with undifferentiated 

infections”, integrates information from Project 1 with information regarding cost and 

outcomes to attempt to create an algorithm guiding treatment of GNRs prior to final 

determination of antibiotic sensitivities. This single paper describes the analysis of a 

decision regarding initial antibiotic therapy made in the absence of culture data, 

specifically whether meropenem or colistin is a better first-line choice of antibiotic. The 

paper examines two scenarios, corresponding to low and high acuity patients. In the low 

acuity scenario there is no substantially increased risk for mortality, and the analysis 

focuses exclusively on determination of the lower-cost option. In the high acuity scenario 

there is a substantial increase in mortality risk associated with inappropriate initial 

antibiotic therapy, and a cost-effectiveness analysis is performed looking at the cost per 

avoided death. In both cases, the analysis supports the use of the algorithms developed 

in Project 1 to determine the pre-test probability of resistance to various antibiotics. 
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Chapter 2 - Overview of Project 1 

Dataset 

 The dataset for this project includes all patients with positive cultures from any 

source over a six-year period at both UCLA Hospitals. Ronald Reagan UCLA Medical 

Center is a 520-bed tertiary care center with five adult intensive care units totaling 109 

beds, Santa Monica-UCLA Medical Center has 266 beds total with 22 mixed intensive 

care beds in a single unit. Both are part of UCLA Health and service patients with solid 

organ and bone marrow transplants, cancer, and various medical and surgical 

conditions. The Integrated Clinical and Research Data Repository (xDR) serves as a 

warehouse for all clinical data in the UCLA system since the implementation of the 

electronic health record (EHR) in 2006. The original dataset contains information from all 

admissions with start dates from January 2006 through November 2016 to either 

hospital with patients ≥18 years of age and at least one positive culture from any source 

(blood, urine, sputum, wound cultures, or other fluids). However, the majority of 

information is incomplete prior to 2011, as additional fields were added to the EHR over 

time, and certain key variables are not available for earlier cases. As such, the analysis 

for these studies focuses on patients admitted in 2011 and beyond. 

 Routine microbiology susceptibility testing was performed by the Clinical and 

Laboratory Standards Institute (CLSI) reference broth microdilution method (MD), using 

panels prepared in-house.  

 Predictor variables were chosen on the basis of prior studies, as well as those 

with biologic plausibility that were easily obtainable from the medical record. Data 

collected for each patient included admission hospital, days since start of admission, 

location prior to admission (home vs. long-term care facility), demographic information, 

medical comorbidities (grouped into categories based on Elixhauser score 
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designations),27 laboratory results from the date of the culture, vital signs on the date of 

the culture (maximum temperature, heart rate, and respiratory rate, and minimum blood 

pressure), vital signs from initial hospital presentation, oxygen/ventilation method, 

presence of a tracheostomy and urinary catheter, infection source, and prior infection 

with carbapenem-resistant GNRs. Administration of antibiotics and other selected 

medications (pressors, probiotics, blood products, hematopoetic agents, inhalers, acid 

suppressants, and TPN) was coded as the number of days since last receipt of the 

medication, Winsorized to a maximum value of 100 (received within 24 hours of the time 

of culture = 0, never received was coded as 100 days since receipt). The variable 

“antipseudomonal carbapenem” refers to receipt of meropenem, imipenem, or 

doripenem. “Anti-MRSA” agents includes any agent with specific activity against MRSA, 

including vancomycin, linezolid, and daptomycin. The construct of advanced ventilatory 

support includes patients receiving either non-invasive or invasive mechanical 

ventilation. 

 In cases where laboratory tests were not performed before cultures were sent 

(typically at the beginning of a patient’s admission), the first set of laboratory results 

were used for that patient, provided they were performed on specimens collected within 

24 hours of culture positivity. For laboratory tests not typically performed daily (e.g., liver 

function tests, measures of coagulation, and protein/prealbumin), the most recent result 

within a 48-hour period was used. 
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Conceptual Model 

Figure 2-1: Conceptual Model for Project 1 
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Model Overview 

 There are two pathways for acquisition of drug-resistant bacteria - infection with 

an isolate with pre-existing resistance, or development of resistance in pre-existing high-

risk bacterium. Typically these high-risk bacteria (e.g. Pseudomonas, Klebsiella, and 

Acinetobacter species) colonize patients who are chronically ill and either have 

indwelling devices such as tracheostomies or urinary catheters, or abnormal 

physiologies, such as bronchiectasis (or other chronic lung diseases) or vascular 

abnormalities; however, in some cases, patients may develop colonizing high-risk 

bacteria in an absence of extraordinary risk factors. In order to develop resistance 

among colonizing bacteria, the patient must have both infection with high-risk bacteria 

and exposure to antibiotics capable of leading to resistance. Exposure to and infection 

with bacteria that are already resistant typically occurs through contact with the medical 

system, more frequently in long-term care than acute care. As such, susceptibility to 

infection and amount of contact with the medical system are key risk factors for both 

pathways leading to acquisition of resistant bacteria. Chronic medical illness drives both 

susceptibility to infection and contact with the medical system, and it also can lead to 

receipt of antibiotics even in the absence of prior clinically significant infections, 

particularly in the case of empiric antibiotic therapy for unexplained clinical 

decompensation. Chronic medical illness is the most common cause for increased 

susceptibility to infection, typically through use of immunosuppressive medications, 

chronic inflammatory states, or depletion of host defenses through malnutrition. Chronic 

medical illness is typically preceded by susceptibility to such illness, such as 

demographic risk factors or use of harmful substances such as tobacco and alcohol. 

 An explanation of the constructs and associated data fields follows. 

 

Susceptibility to chronic illness 
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Associated data fields: Date of birth/age, Gender, Race/ethnicity, Social history 

 Susceptibility to chronic illness is the construct that is likely least-directly related 

to the ultimate outcome, because its effect is mediated by so many intermediate 

constructs. However, many of those intermediate constructs are not easily proxied by 

the available data, so there is still some role for demographic information and other basic 

risk factors in the model. 

Chronic medical illness 

Associated data fields: Location prior to admission, Location within hospital, Comorbidity 

list, Vital signs, Laboratory values, Indwelling devices, Medications received 

 Chronic medical illness is a complicated construct, in part because it is 

downstream of essentially every other construct in the model. Some information 

regarding chronic medical illness is directly accessible from the medical record in the 

form of listed medical comorbidities and recently received medications, but these do not 

fully capture a patient’s clinical state, as two patients with identical comorbidity lists can 

be in very different states of health. Several other pieces of information inform a patient’s 

general health state, many of which are related to acute illness; after controlling for 

comorbidities and infection type, the severity of an acute illness can serve as a proxy for 

a patient’s general debility, as healthier patients will get less sick from similar illnesses. 

As such, most of the data associated with severity of the current episode of illness can 

be used to gain information regarding a patient’s state of chronic medical illness. 

Weakened host defenses 

Associated data fields: Medications received 

 While the majority of weakened host defenses stem directly from medical 

comorbidities, some patients are on immunosuppressive medications (such as steroids, 

chemotherapy, antibodies, or biologic therapy) that can directly increase susceptibility to 

infection. Since these immunosuppressive therapies are typically continuous 
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medications given over months to years, current receipt of an immunosuppressive 

medication is likely highly correlated with prior immunosuppressive therapy. 

Frequent contact with the medical system 

Associated data fields: Location prior to admission, Indwelling devices 

 Location prior to admission (i.e. whether the patient is presenting from a long-

term acute care facility/LTACH, another hospital, or from home) is the most direct proxy 

available in the dataset for determining whether or not a patient is chronically 

hospitalized. Direct admission from another facility captures the most chronically 

hospitalized population, but fails to capture several scenarios, including patients who 

spent time in an LTACH, but were discharged home before admission, or patients with 

frequent outpatient contact, such as those on chronic hemodialysis. Presence of a 

chronic tracheostomy (present on admission) is also indicative of persistent contact with 

the medical system. Chronic medical illness is likely the best remaining proxy for 

frequent contact with the medical system, as illustrated in the model above, and much of 

the influence of chronic medical illness on the final outcome is likely mediated by the 

frequency of contact with medical facilities. 

Exposure to resistant bacteria 

Associated data fields: None 

 The dataset does not contain any information directly pertaining to exposure to 

resistant bacteria. This could theoretically be accessed by looking at the antibiogram 

data for facilities in which patients were seen prior to admission, or microbiology data 

from roommates/family members of the patients, but these data are not available in the 

xDR dataset. As such, this important construct is incompletely measured, and 

predominantly proxied by the upstream factors of contact with the medical system and 

medical comorbidity. 

Susceptibility to infection 
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Associated data fields: Social history, Location within hospital, Vital signs, Laboratory 

values, Indwelling devices 

 Susceptibility to infection matters most at the time of exposure to resistant 

bacteria, which usually happens at other facilities, outside the purview of this dataset. 

However, the dataset contains several fields that are potentially relevant to susceptibility 

during hospitalization at UCLA, namely measures of current acuity of illness. To a 

certain extent, as mentioned above, current acute illness is a marker of prior chronic 

illness and susceptibility, and this is this primary mechanism by which markers of acute 

illness can help proxy for susceptibility. Additionally, chronic indwelling devices increase 

the risk of infection via bypassing host defenses. However, the majority of information 

regarding susceptibility to infection will be obtained through information about chronic 

medical illness. 

Prior infection with high-risk species 

Associated data fields: Microbiology results 

 This is difficult construct to access, as information prior to a given admission is 

not accessible from the information provided. Since a large amount of this information is 

missing, it must largely be inferred from upstream constructs. Culture data for a given 

patient during the index or prior hospitalization at UCLA is available, as are sensitivities. 

In each paper, the presence of prior infection with a GNR resistant to other classes of 

antibiotics (aside from the one being studies) is analyzed as a risk factor. 

Prior exposure to antibiotics 

Associated data fields: Medications received 

 Since the dataset only includes inpatient data, there is information regarding prior 

antibiotic receipt that is not captured in these studies. In this dataset, exposure to 

antibiotics is operationalized as number of days since receipt of a particular class of 

antibiotic, Winsorized to a maximum value of 100 days (a value of zero means the 
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antibiotic in question was received on the day of culture, as long as this was not the first 

day the patient received the antibiotic). The receipt of probiotics may also serve as a 

proxy for prior antibiotic receipt, as many patients are placed on probiotics 

prophylactically while they are on other antibiotics, and potentially continued on 

probiotics after the end of their antibiotic therapy. 

Infection with previously resistant bacteria/ De novo resistance mutations 

Associated data fields: None 

 These constructs represent the two theoretical pathways towards the outcome, 

and are not directly measured. Since the outcome is agnostic to the source of resistant 

bacteria, the proportion of patients arriving via each pathway is indeterminate. These 

constructs are not operationalized in the dataset, and serve as mediators for the effects 

of upstream risk factors on the final outcome. 

Infection with resistant bacteria 

Associated data fields: Microbiology results 

 The outcome in each paper is the presence of resistance to the studied antibiotic 

on a given culture, taken directly from the microbiology results in the dataset. Resistance 

is determined by current CLSI standards. 
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Table 2-1: Measures 

Measure Data Source Notes Construct 
Date of 
birth/age 

Single text field in 
CareConnect 

Difference between DOB and 
admission date 

Susceptibility to 
medical illness 

Gender Single text field in 
CareConnect   Susceptibility to 

medical illness 

Race/Ethnicity Single text field in 
CareConnect Combined field/data Susceptibility to 

medical illness 

Social history Multiple separate fields 
in CareConnect 

Includes smoking history, 
alcohol intake, and other drug 
use 

Susceptibility to 
medical illness, 
Susceptibility to 
infection 

Location Prior 
to Admission 

Single text field in 
CareConnect 

Used to determine if the patient 
was admitted from a long-term 
care facility 

Chronic illness, 
Contact with the 
medical system 

Location 
Within 
Hospital 

Single text field in 
CareConnect 

Used to determine if the patient 
is in an ICU or regular ward 

Chronic illness, 
Susceptibility to 
infection 

Comorbidity 
list 

Constructed by applying 
the Elixhauser Score 
categories27 to the 
available list of 
comorbidities 

Elixhauser comorbidity index is 
used to calculate  expected in-
hospital mortality, and also 
serves to group similar 
diagnoses 

Chronic illness 

Vital signs Extractable en bloc from 
CareConnect 

Includes height, weight, blood 
pressure, pulse,  temperature, 
respiratory status, oxygen 
saturation 

Chronic illness, 
Susceptibility to 
infection 

Indwelling 
devices 

Extractable by looking at 
device-associated 
procedures in 
CareConnect 

Indwelling urinary catheter, 
tracheostomy, ventilator. No 
reliable information on central 
lines/indwelling venous 
catheters. 

Chronic illness, 
Susceptibility to 
infection, Contact 
with the medical 
system 

Laboratory 
results 

Extractable en bloc from 
CareConnect 

Complete blood count, basic 
chemistries, coagulation studies 

Chronic illness, 
Susceptibility to 
infection 

Medications 
received 

Extractable en bloc from 
CareConnect 

Grouped by class of medication; 
medications that serve similar 
functions are treated as the 
same medication 

Chronic illness, 
Weakened host 
defenses, Prior 
exposure to 
antibiotics 

Microbiology 
results 

Extractable en bloc from 
CareConnect 

All positive cultures from any 
source, includes  organism and 
sensitivity to specific antibiotics 

Outcome, Prior 
infectious 
exposure 
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Chapter 3 - Risk factors for developing colistin 

resistance among Gram-negative rods and Klebsiella 
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Abstract 

 Infections due to colistin-resistant Gram-negative rods (ColR-GNR), and 

colistin-resistant Klebsiella pneumoniae (ColR-KP) in particular result in high 

associated mortality and poor treatment options.  To determine risk factors for 

recovery on culture of ColR-GNR and ColR-KP, two key decision time points for 

choosing antimicrobial therapy corresponding to Gram stain and species 

identification results, cases were retrospectively analyzed at a major academic 

hospital system from 2011-2016. After excluding bacteria that are intrinsically 

resistant to colistin, a total of 28,512 GNR isolates (4,557 K. pneumoniae) were 

analyzed, 128 (0.45%) of which were ColR (i.e., MIC >2 ug/mL), including 68 

(1.49%) of which were ColR-KP. In multivariate analysis, risk factors for ColR-

GNR were neurologic disease, residence in a skilled nursing facility prior to 

admission, receipt of carbapenems in the last 90 days, prior infection with a 

carbapenem-resistant organism, and receipt of ventilatory support (c-statistic = 

0.81). Risk factors for ColR-KP specifically were neurologic disease, residence in 

a skilled nursing facility prior to admission, receipt of carbapenems in the last 90 

days, receipt of an anti-MRSA antimicrobial in the last 90 days, and prior 

infection with a carbapenem-resistant organism (c-statistic = 0.89). A scoring 

system derived from these models can be applied by humans to guide empiric 

antimicrobial therapy, and outperformed use of a standard hospital antibiogram in 

predicting infections with ColR-GNR and ColR-KP.  

Keywords: Antimicrobial resistance, clinical decision making, antimicrobial 

testing, antimicrobial stewardship, colistin, Gram-negative rods   
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Introduction 

 The rising prevalence of infection caused by multi-drug resistant 

organisms (MDROs) is a worldwide problem with increasing cost and associated 

morbidity and mortality.2 In the US, there are currently approximately 2 million 

annual cases of infections due to MDROs, with ~23,000 attributable deaths and 

$50 million in directly attributable costs.1 Initial antibiotic selection remains a 

challenge. Delayed start of microbiologically active antibiotic therapy has been 

shown to increase mortality and hospital length of stay,8,9 while overuse of broad-

spectrum antibiotics has been linked with increased prevalence of MDROs.15-19 

 Colistin (polymyxin E) has been considered an antibiotic of last resort for 

MDR Gram-negative bacteria, due to neurotoxicity and nephrotoxicity, but it has 

become an increasingly important therapy when MDR pathogens are suspected, 

and is at times the sole antimicrobial with activity against these organisms.38 

Early, appropriate treatment of patients with colistin-resistant GNRs (ColR-

GNRs) and colistin-resistant K. pneumoniae (ColR-KP) has been associated with 

reduced mortality.39-41 The prevalence of colistin resistance among Gram-

negative rods (GNRs) has been increasing over the past two decades, 

particularly among isolates of Klebsiella pneumoniae,38,40,42-46 limiting the 

potential utility of colistin. Infection with ColR-GNR is associated with higher 

mortality than colistin-susceptible isolates,39,40,47-50 making rapid identification of 

resistant important. However, early identification of ColR-GNR is challenging. 

  Prior literature has identified multiple risk factors for colistin resistance in 

GNRs, including recent prior hospitalization,47,51,52 prior carbapenem 
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resistance,40,43-45,51,53 prior treatment with colistin,48,51,53,54 exposure to 

chlorhexidine,55 and patients with multiple comorbidities,51,52 increasing age, 

male sex, length of hospitalization, and presence of indwelling urinary 

catheters.52 Other risk factors for development of MDROs in general included 

prior residence in a nursing home, hemodialysis, ICU admission,34 presence of 

medical comorbidity,49,56 prior beta-lactam usage, and invasive surgery.56 

 We hypothesized that a large, adequately powered study would provide 

sufficient observations to identify easily obtainable clinical factors that could 

serve as prediction tool for identifying patients at high risk for acquiring colistin 

resistant organisms, specifically ColR-KP.   

 

Methods 

 We conducted a retrospective, study of all patients with positive cultures 

from any source over a six-year period to develop a comprehensive model for 

risk of infection or colonization with ColR-GNRs, with a specific focus on ColR-

KP. The study was performed at two hospitals in metropolitan Los Angeles, 

California. Ronald Reagan UCLA Medical Center is a 520-bed tertiary care 

center with five adult intensive care units totaling 109 beds, Santa Monica-UCLA 

Medical Center has 266 beds total with 22 mixed intensive care beds in a single 

unit. Both are part of UCLA Health and serve patients with solid organ and bone 

marrow transplants, cancer, and various medical and surgical conditions. The 

Integrated Clinical and Research Data Repository (xDR) serves as a warehouse 

for all clinical data in the UCLA system since the implementation of electronic 
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health records in 2006. The dataset contained information from all admissions 

with start dates from January 2011 through November 2016 to either hospital for 

patients ≥18 years of age and at least one positive culture from any source 

(blood, urine, sputum, wound cultures, or other fluids). 

 Since the endpoint of this analysis was prediction of development of the 

first colistin resistant isolate, once a patient had a culture growing a ColR-GNR 

organism (defined as colistin MIC >2µg/mL), all cultures from that patient 

occurring at a later time than the original culture were removed from the dataset. 

Some isolates demonstrate intrinsic resistance to colistin namely Burkholderia, 

Morganella, Proteus, Providencia, and Serratia spp. With the exception of 

Burkholderia (of which there were only 16 isolates, or 0.05% of the total number), 

these species are typically sensitive to first-line antibiotics, do not usually acquire 

high-level resistance, and can be treated with standard therapy. In contrast, 

species with acquired colistin resistance usually do so as the end stage of a 

process of sequentially accumulating resistance mechanisms to other antibiotics, 

which makes them uniquely difficult to treat. Additionally, organisms 

demonstrating intrinsic resistance comprised 4,199 isolates, compared to only 

128 with acquired resistance, and including them in the model would generate a 

model that was overly weighted toward the prediction of culture recovery 

intrinsically resistant organisms, which do not require non-standard therapy. 

Therefore, in order to focus on the clinically relevant event of transition from 

colistin susceptibility to resistance, isolates with intrinsic colistin resistance were 

excluded from the analysis.  
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 Routine susceptibility testing was performed by the Clinical and 

Laboratory Standards Institute (CLSI) reference broth microdilution method 

(BMD), using panels prepared in-house. Only data from 2011 and onwards were 

used in this study, as routine colistin testing was not performed prior to 2011. All 

antimicrobial susceptibility data were interpreted using CLSI breakpoints current 

to the year of testing. Because no CLSI breakpoints exist for the 

Enterobacteriaceae and colistin, the EUCAST breakpoint of ≤2 ug/mL to define 

susceptible and >2 ug/mL to define resistance was applied.  

 Predictor variables were chosen on the basis of prior studies, as well as 

those with biologic plausibility that were readily obtained from the medical record. 

Risk factors were identified in the literature through a partially structured search 

of PubMed and Google Scholar. For PubMed, the initial search used the phrase: 

(colistin) AND (resist* OR non-suscept* OR suscept* OR nonsuscept* OR 

sensiti* OR non-sensiti* OR nonsensiti*) AND (risk OR predict* OR protec*). For 

Google Scholar, the initial search used the phrase: colistin (resist* | non-suscept* 

| nonsuscept* | suscept* | sensiti* | non-sensiti* | nonsensiti*) (risk factors | 

predict* | protect*). Once initial articles were identified, the references cited in 

those articles were also explored iteratively. 

 Data collected for each patient included admission hospital, days since 

admission, location prior to admission (home vs. long-term care facility or other 

hospital), demographic information, comorbidities (grouped into categories based 

on Elixhauser score designations),57 laboratory results from the date of the 

culture, vital signs on the date the culture was collected (maximum temperature, 
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heart rate, and respiratory rate, and minimum blood pressure), vital signs from 

initial hospital presentation, oxygen/ventilation method, presence of a 

tracheostomy, presence of urinary catheter, administration of antibiotics and 

other selected medications (vasopressors, probiotics, blood products, 

immunosuppressants, and acid suppressants), culture source, and prior culture 

positivity for carbapenem-resistant GNRs. Administration of antibiotics and the 

medications listed above was coded as the number of days since last receipt of 

the medication, Winsorized to a maximum value of 100 (received within 24 hours 

of the time of culture = 0, never received was coded as 100 days since receipt). 

The variable “anti-pseudomonal carbapenem” refers to receipt of meropenem, 

imipenem, or doripenem. “Anti-MRSA” agents refers to vancomycin, linezolid, 

and daptomycin, as these were used at our institution in cases of suspected 

hospital-acquired MRSA. Receipt of colistin was by any route, including 

intravenous or inhaled. An infection was coded as “hospital acquired” if the 

culture was submitted ot the laboratory >48 hours after the time of first 

presentation to the hospital. 

 The Elixhauser category of neurologic disease includes cerebral 

degeneration, movement disorders, degenerating neuropathies, seizure 

disorders, and anoxic brain injury.57 The construct of advanced ventilatory 

support includes patients receiving either non-invasive or invasive mechanical 

ventilation. 

 In cases where laboratory tests were not performed before cultures were 

sent (typically at the beginning of a patient’s admission), the first set of laboratory 
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results were used for that patient, provided they were performed on specimens 

collected within 24 hours of culture positivity. For laboratory tests not typically 

performed daily (e.g., liver function tests, measures of coagulation, and 

protein/prealbumin), the most recent result within a 48-hour period prior to culture 

positivity was used.  

 

Statistical Analysis 

 Two separate analyses were performed, one comparing all ColS-GNRs 

against all ColR-GNRs, and one comparing only colistin-susceptible KP (ColS-

KP) against ColR-KP. These two analyses were chosen to aid decision at two 

separate time points, the first when only Gram stain results are available without 

any bacterial species information, and the second when organism identification 

was performed, but prior to reporting of antimicrobial susceptibility results. The 

measured variables in each case were compared between the cases and 

controls by a two-sided Mann-Whitney U test, Student’s t-test, or chi-squared 

test, as appropriate. In each case, after bivariate associations were examined, 

variables with p<0.10 or strong biologic plausibility were included in a stepwise 

forward model selection procedure to create a logistic regression model for each 

case/control pair. Only complete cases were included in model selection. Model 

discrimination was assessed with area under the receiver operating characteristic 

curve (c-statistic), and models were compared by chi-squared test if they were 

nested, or Akaike information criterion if they were not.  
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 The steps of the model selection strategy are detailed in Appendix A. In 

each case, the predictor variables were divided into several categories, 

comprising medical comorbidities, demographics (age, gender, race, location 

prior to admission, and social history), laboratory variables, indwelling devices, 

and received medications. Vital signs as a group lacked sufficient explanatory 

power to be included in the model. Model selection occurred in stages, with each 

stage involving either the introduction of a new category of predictor, or the 

combination of a new category with prior models. At each stage, candidate 

variables from the chosen new category (defined as those with p < 0.05 on 

bivariate analysis or those with p < 0.10 with support from prior literature) were 

added to an initial model, and those that became non-significant in the 

multivariate model were dropped. Next, variables were iteratively dropped in a 

backwards selection process until parsimony was achieved. A parsimonious 

model was defined as the model with the smallest set of predictors in which 

dropping additional predictors resulted in a substantial drop in AUROC. A 

substantial drop in AUROC was defined as a decrease of at least 0.02, and a 

decrease that was larger by a factor of two than the decrease in AUROC with 

dropping the prior, less explanatory variable. In situations with two highly 

correlated variables that related to closely related constructs (for example, 

whether a patient was currently ventilated and whether they were ventilated at 

any point during the index hospitalization), the variable with less explanatory 

power was dropped, as measured by change in AUROC. The exceptions to the 

above process were some laboratory values, as there were a large number of 
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laboratory values that were significant at p < 0.05 on bivariate analysis despite 

not having a clinically significant difference between the resistant and non-

resistant groups. In these cases, the laboratory values with p < 0.05 were added 

individually to the final model to assess if they contributed significantly to the 

explanatory power (as defined by AUROC increase of 0.02); none of them did, 

and none were included. 

 For ColR-GNR, model selection began with the list of relevant medical 

comorbidities. Once this list was pared to a parsimonious model, demographic 

information was added and the model was pared again (Table A-1). Next, a 

model was constructed using only laboratory variables and, once pared, this 

model was combined with indwelling devices (Table A-2). These two models 

were combined together and pared again (Table A-3). Finally, a model was 

constructed using recently administered medications, and this was pared and 

combined with the previous predictors (Table A-4). A similar process was 

undertaken for ColR-KP, with the exception of a step for indwelling devices, as 

these did not notably improve the model when combined with other predictors 

(Tables A-6, A-7, and A-8). 

 As a sensitivity test, analyses were re-run defining colistin resistance in 

Pseudomonas aeruginosa as MIC >4µg/ mL (versus >2 ug/mL). All analyses 

were performed using the Stata statistical software package, version 14.2.58 

 

Results 

 The overall dataset included 28,512 GNR isolates from 12,388 patients, 
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128 (0.45%) of which were ColR. 4,557 K. pneumoniae isolates were in the 

dataset, 68 (1.49%) of which were ColR. Since only complete cases were 

analyzed for the multivariate model, the final model for all GNRs comprised 

15,372 cultures, 80 (0.52%) of which were ColR-GNR, and the final model for 

Klebsiella comprised 2,234 cultures, 34 (1.46%) of which were ColR-KP. Rates 

of development of ColR showed an upwards trend for both GNR and KP over the 

study period (Figure 3-1). Among ColR organisms, Klebsiella and Acinetobacter 

were overrepresented compared to colistin-susceptible organisms, while 

Escherichia and Pseudomonas spp. were underrepresented (Table 3-1). Among 

both all GNR and Klebsiella pneumoniae, respiratory source for the culture was 

predictive of ColR (Table 3-2).  

 

Bivariate Analyses 

 Selected bivariate associations are reported in Table 3-3. Risk factors 

were similar for all GNRs and for K. pneumoniae, although p-values were 

generally smaller for GNRs due to the larger sample size. Consistent with prior 

literature, risk factors included admission from a nursing home, location in an 

ICU,34 comorbidity (as measured by the Elixhauser score),49,52,56 prior culture 

positive for a carbapenem resistant organism,40,43-45,51,53 and prior treatment with 

colistin.48,51,53,54 Increasing age was associated with ColR-KP, but not ColR-GNR. 

The most prominent comorbidity associated with ColR was the neurologic 

disease category of the Elixhauser score. Several measures of chronic or acute 

respiratory failure were predictive of ColR, including whether the patient was 
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currently receiving advanced ventilatory support, whether the patient had been 

on a ventilator during that hospitalization, and whether the patient had a 

tracheostomy at the time of culture or the time of admission. Laboratory values 

associated with ColR were higher neutrophil, eosinophil, and basophil counts, 

lower hemoglobin/hematocrit, and higher blood urea nitrogen (BUN) and alkaline 

phosphatase. Receipt of the following classes of drugs on the day of culture were 

associated with ColR-GNR (and occasionally ColR-KP, see Table 3-3): 

probiotics, drugs to raise blood pressure, blood products, hematopoetic agents, 

inhaled bronchodilators, and gastric acid suppressants. While receipt of specific 

antibiotics on the day of culture was associated with ColR, this relationship was 

better described by time since last receipt of an antibiotic. Shorter time since 

receipt of the following antibiotics was associated with ColR-GNR (and 

occasionally ColR-KP, see Table 3-3): anti-pseudomonal carbapenems, 

ertapenem, penicillins, anti-MRSA agents, and colistin. Of note, steroids, 

chemotherapy, and immunosuppressants were not associated with increased 

risk for ColR infections. 

 

Multivariate Analyses 

 Many of the variables that were significant on bivariate analysis were 

strongly co-linear, and thus were categorized into our model as three major 

constructs representing chronic illness, antibiotic exposure, and acute illness. To 

facilitate model interpretability, the variables representing days since receipt of 

medications were dichotomized to receipt within the prior 90 days vs. not; this did 
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not significantly affect model fit. 

 For the model predicting ColR-GNR, the predictors in the final model were 

presence of neurologic disease (as defined by the Elixhauser score), admission 

from a long-term care facility, prior infection with a carbapenem-resistant 

infection, receipt of an anti-pseudomonal carbapenem in the prior 90 days, and 

receipt of advanced respiratory support at the time of culture (Table 3-4a). The 

first three of these variables best represented the construct of chronic illness, 

while the last two represented antibiotic exposure and acute illness, respectively; 

this model had a c-statistic of 0.81. 

 For the model predicting ColR-KP, the predictors in the final model were 

similar: presence of neurologic disease (as defined by the Elixhauser score), 

admission from a long-term care facility, prior infection with a carbapenem-

resistant organism, receipt of an anti-pseudomonal carbapenem in the prior 90 

days, and receipt of an anti-MRSA agent in the prior 90 days; this model had a c-

statistic of 0.89 (Table 3-4b). 

 Treating each multivariate model as a score with one point assigned for 

each of the five items in the model, we created a potentially user-friendly tool to 

predict the probability of ColR in both situations. Figures 3-2 and 3-3 show the 

positive predictive value at each score total for GNR and KP, respectively, and 

demonstrate that higher score is associated with higher likelihood of Col-R with 

scores of >3 representing 3.5% risk of ColR-GRN and 9.6% for ColR-KP. Tables 

3-5 and 3-6 show the fraction of GNR and K. Pneumoniae isolates, respectively, 

with each score, and the positive predictive value for colistin resistance at each 
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score. Only 79 GNR isolates had an associated score of 5, 2 of which were 

ColR-GNR. Similarly, only 8 K. Pneumoniae isolates had a score of 5, 3 of which 

were ColR-KP. Due to the small sample size at this score and the unusual rates 

observed in these small samples, in both cases the scores of 4 and 5 were 

combined into a single estimate for the figure and final scoring system. 

 Alternate scoring systems were tested for each model, with separate 

models assigning scoring weights in proportion to the model coefficients and in 

proportion to the change in odds ratios. In each case the range of predicted 

probabilities of resistance was similar between the upper and lower bounds of 

the score, but there was more granular resolution of those probabilities as a 

result of a larger number of possible score totals. A flat scoring system (one point 

per factor) was ultimately chosen for ease of interpretability by providers. 

 Changing the breakpoint for resistance for P. aeruginosa to MIC >4µg/ mL 

did not significantly change any of the results. 

 

Discussion 

 Infection with colistin-resistant organisms is associated with substantially 

increased risk for mortality, and options for treatment are limited.39-41,47-50 Prior 

studies have typically been relatively small or limited in scope, either following a 

relatively small number of patients,31,32,34,35,39,40,47,48,54,59 or focusing on a single 

organism,46,51,52,56 and none have resulted in a clinically meaningful prediction 

tool. Our score can be calculated by humans at the time of decision-making and 

potentially more accurately reflects a patient’s risk for ColR organisms than a 
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hospital-wide or unit-specific antibiogram, which can only provide a flat percent 

expected susceptibility for a given organism, and is not useful for management of 

rare events; additionally, most hospital labs do not routinely test for colistin, and it 

is rarely in a hospitals antibiogram. All information used in the models was 

extracted directly from the medical record without any direct examination of 

individual patient records, allowing this score to potentially be calculated 

automatically.  

 Our bivariate analysis is largely in line with prior similar studies, 

demonstrating the association with prior infections with carbapenem-resistant 

organisms,40,43-45,51,53 treatment with colistin,48,51,53,54 various medical 

comorbidities,49,50,52,56 increasing age, male sex, length of stay, presence of 

indwelling urinary catheters,52 prior residence in a nursing home, and ICU 

admission.34 While other models have focused on prior colistin exposure as a risk 

factor,51,53,54 our multivariate models suggest that exposure to other antibiotics 

(carbapenems and anti-MRSA agents) may serve as better markers for disease 

risk. While it is improbable that exposure to these medications mechanistically 

leads to development of ColR, carbapenem receipt likely proxies recent infection 

with MDR GNRs, while anti-MRSA receipt proxies recent concern for sepsis, as 

nearly all patients with suspicion for sepsis receive at least one dose of 

vancomycin at our institutions. The conceptual model described in Chapter 2 

suggests that acute illness does not play a large role in determining risk for 

recovery of a non-susceptible isolate on culture, and that the majority of risk 

occurs as a result of chronic illness and recent exposure to antibiotics. This 
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analysis supports that conclusion in several ways. First, vital signs have limited 

predictive power, and while some variables related to blood pressure are 

significant on bivariate analysis (Table 3-3), none were included in the final 

model. Secondly, while laboratory values individually have predictive power on 

bivariate analysis (Table 3-3), all except for hemoglobin (and eosinophil count, 

for ColR-GNR) drop out when added to prior variables in the analysis (Tables A-2 

and A-7). The only laboratory value with substantial predictive power is 

hemoglobin (which is not included in the final models); low hemoglobin in this 

context is likely more related to chronic anemia than acute blood loss. In 

contrast, variables associated with chronic illness feature prominently in the 

models, most notably chronic neurologic disease and residence in a facility prior 

to admission (Tables A-1, A-3, A-4, A-6, A-7, and A-8). Additionally, recent 

antibiotic exposure figures heavily into both models (Tables A-4 and A-8). 

 Our score for predicting ColR-GNR is of limited utility, given that the 

predicted probability never exceeds 4%, but it is useful for ruling out ColR-GNR 

at low scores. The model for predicting ColR-KP is significantly more useful, as a 

score >3 indicates a nearly 10% chance of ColR-KP, at which point colistin 

therapy is likely risky to use as a sole therapy. Since the score is substantially 

more useful after species identification, it is best paired with tools that allow for 

early identification, such as matrix-assisted laser desorption ionization-time of 

flight (MALDI-TOF), or other rapid identification technologies. 

 Our study has limitations. It examines patients from only two hospitals 

within a single hospital system. The final number of ColR cases is moderate, and 



	

29	

approximately 50% could not be included in the final analysis due to a lack of 

complete data across the relevant domains. Additionally, we only had access to 

data from inpatient hospitalizations within our hospital system, potentially 

excluding relevant information from outpatient encounters or treatment at other 

facilities. These limitations reflect the real-world data that is available at the time 

of decision-making, or for eventual integration of a similar score into an electronic 

health record. However, it is the largest investigation to date in terms of subject 

number and spans a period of six years, allowing us to examine far more 

potential explanatory variables than prior investigations of risk factors for 

development of ColR-GNR or ColR-KP. By performing a cohort study of patients 

with positive cultures, we eliminate potential selection bias in choosing controls 

and strengthen the validity of observed associations.60 

 While this model and scoring system may improve initial antibiotic therapy 

choice for patients with suspected ColR infections, the overall outcome is rare, 

and empiric treatment with the higher-intensity regimens required for ColR 

organisms may not always be warranted. A low score effectively rules out ColR 

organisms, and may be helpful in allowing less intensive treatment regimens 

even in cases that are otherwise higher risk. In particular, while awaiting the 

laboratory to perform colistin susceptibility testing, which may take days to weeks 

to result, due to limited availability of tests for colistin. 

 Our study demonstrates the potential to harness currently available 

information from an existing electronic medical record to better inform clinical 

decision-makers. Our simplified scoring system clearly outperformed the 
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traditional antibiogram approach of offering a single hospital-wide percentage 

rate of susceptibility. In the current era of data intensive medical care, we should 

harness all available information to better manage our patients. Further research 

will focus on validating this score in other populations, with other antibiotics, other 

pathogens, and analysis of cost-benefit thresholds for initiating specific antibiotic 

regimens in cases of uncertainty. 



	

31	

Figure 3-1: Rates of development of colistin resistance by year for K. 

pneumoniae and all Gram-negative rods, excluding isolates with intrinsic colistin 

resistance. 
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Figure 3-2: Positive predictive value for colistin resistance at each score value 

for Gram-negative rods 

  

 

 

 
  



	

33	

Figure 3-3: Positive predictive value for colistin resistance at each score value 

for K. pneumoniae 
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Table 3-1: Distribution of organisms for ColS and ColR cultures (p < 0.001 for X2 

test) (ColR defined as MIC > 2ug/mL) 

organism Col-S Col-R 
Acinetobacter 2.4% 11.1% 
Enterobacter 8.5% 6.2% 

Escherichia 37.6% 0.4% 
Klebsiella 16.0% 68.4% 

Pseudomonas 22.3% 7.6% 
Stenotrophomonas 3.7% 2.7% 

Other 9.5% 3.6% 
 

Table 3-2: Distribution of culture source for ColS and ColR cultures for both all 

GNR and Klebsiella. (p < 0.001 for X2 for GNR, p = 0.004 for KP) 

Specimen ColS-GNR ColR-GNR ColS-KP ColR-KP 
Blood 12.0% 12.0% 16.6% 17.6% 
Urine 40.0% 15.6% 42.0% 17.6% 

Respiratory 28.5% 50.7% 23.4% 40.9% 
External 6.9% 8.4% 5.6% 9.4% 

Other 12.7% 13.3% 12.4% 14.5% 
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Table 3-3: Selected bivariate associations 

 Col-S GNR Col-R GNR p-
value 

Col-S KP Col-R KP p-
value 

n = 28512 128  4557 68  

Age 63.1(19.3) 65.4(18.5) 0.166 62.7(18.4) 69.1(16.9) 0.004 

Male Sex 47.4% 57% 0.03 49.7% 58.8% 0.134 

Race   0.08   0.054 

White 52.3% 51.6%  49.7% 45.6%  

Asian 8.8% 9.4%  9.8% 7.4%  

Black 10.9% 17.2%  12.0% 23.5%  

Latino 21.5% 14.1%  22.4% 16.2%  

Other 6.4% 7.8%  6.1% 7.4%  

BMI 25.8(6.7) 25.6(7.4) 0.946 26.4(7.4) 25.5(8.7) 0.564 

Admitted From 
Healthcare Facility 

14.3% 45.7% <0.001 13.2% 55.9% <0.001 

Hospital (RRMC vs. 
SMH) 

65.7% 56.1% 0.198 64% 53.8% 0.283 

Log Days To Culture 0.69[-
1.35,2.31] 

1.57[-0.44,3] <0.001 0.86[-
1.27,2.38] 

1.06[-
0.77,2.82] 

0.029 

Hospital Acquired 0.463 0.516 0.237 0.487 0.515 0.647 

In ICU At The Time 
Of Culture 

20.3% 33.6% <0.001 21.5% 32.4% 0.014 

Any ICU Stay During 
Index Hosp. 

40.3% 61.2% <0.001 43.1% 68.3% <0.001 

Current Isolate Is 
Carbapenem 
Resistant 

7.8% 71.1% <0.001 6.3% 88.2% <0.001 

Prior Isolation Of 
Carbapenem-
Resistant GNR 

13.2% 47.7% <0.001 12.7% 57.4% <0.001 

Presence of 
Indwelling Urinary 
Catheter 

43.8% 76% 0.002 44% 75% 0.01 

Ventilated During 
Index Hosp. 

32.4% 65.1% <0.001 33.4% 68.3% <0.001 

Tracheostomy 
Present On Day Of 
Culture 

12.1% 30.2% <0.001 8.5% 24.4% <0.001 

Tracheostomy 
Present On 
Admission 

5% 16.3% <0.001 3.3% 19.5% <0.001 

Advanced Ventilation 
On Day Of Culture 

24% 51.2% <0.001 25.1% 51.2% <0.001 

Elixhauser Score 16[7,27] 21[11,28] 0.005 19[9,29] 21.5[11,31] 0.021 

Congestive Heart 
Failure 

20.5% 18% 0.477 20.8% 20.6% 0.969 

Arrhythmia 42.7% 56.3% 0.002 43.2% 63.2% <0.001 

Neurologic Disease 29.3% 56.3% <0.001 29.8% 64.7% <0.001 

Chronic Pulmonary 
Disease 

25.4% 29.7% 0.27 24% 27.9% 0.449 

Liver Disease 26.5% 25% 0.704 33% 29.4% 0.527 

Lymphoma 4.4% 4.7% 0.862 3.8% 2.9% 0.726 

Metastatic Cancer 10.6% 5.5% 0.06 11.3% 5.9% 0.161 
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Non-Metastatic 
Cancer 

23.4% 12.5% 0.004 26.6% 13.2% 0.013 

Weight Loss 19.9% 32% <0.001 22.3% 35.3% 0.011 

Electrolyte Disorder 61.6% 72.7% 0.011 66.6% 76.5% 0.088 

Deficiency Anemia 13.2% 14.1% 0.777 14.5% 14.7% 0.963 

Drug Abuse 7.2% 5.5% 0.448 8% 4.4% 0.274 

Solid Organ 
Transplant 

19.1% 21.1% 0.559 20.6% 16.2% 0.367 

Bone Marrow 
Transplant 

1.6% 1.6% 0.991 1.3% 0% 0.345 

Renal Failure 15.3% 24.2% 0.005 16.8% 29.4% 0.006 

Cystic fibrosis 1.9% 6.3% <0.001 0% 0% 0.863 

HIV 0.8% 0.8% 0.992 0.5% 1.5% 0.292 

Alcohol User 22.2% 15.9% 0.154 22.5% 21.4% 0.868 

Tobacco User 5.6% 5.5% 0.972 5.5% 9.4% 0.347 

Vital Signs On Day Of 
Culture 

      

Maximum 
Temperature 

99.7(1.6) 99.5(1.8) 0.292 99.7(1.8) 99.6(2.3) 0.774 

Maximum Pulse 104.3(23) 108.6(21.3) 0.078 105.4(23.5) 111.5(24.3) 0.089 

Maximum Respiratory 
Rate 

27.4(9.8) 28.7(8.8) 0.221 27.4(9.7) 28.8(8.4) 0.373 

Minimum SBP 101.2(21.7) 93.7(21) <0.001 100.1(22) 92.3(24.3) 0.01 

Minimum DBP 58.2(12.3) 54.6(10.6) 0.006 57.7(12.3) 54.5(12.8) 0.073 

Minimum MAP 72.4(14.3) 67.6(13.4) 0.001 71.8(14.3) 67.1(16) 0.022 

Septic Shock 20.6% 31.3% 0.003 22.3% 32.4% 0.047 

Hypotensive 21.2% 32% 0.001 22.9% 32.4% 0.034 

Labs On Day Of 
Culture 

      

WBC 12.4[8.6,17.4] 14.3[9.8,20.1] 0.034 12.3[8.3,17.5] 14.7[9.8,20.1] 0.008 

Hemoglobin 9.8[8.5,11.3] 9.2[8,10.1] <0.001 9.6[8.4,11.1] 9.3[8.2,10.2] 0.002 

Hematocrit 30.1[26.3,34.6] 28.2[25.2,31.
8] 

<0.001 29.5[25.7,33.
9] 

28.5[25.4,31.
8] 

0.009 

Platelets 201[124,288] 215[123,317] 0.31 190[106,273] 209[130,297] 0.349 

Sodium 137.3(5.5) 137.6(5.9) 0.55 137.2(5.6) 138.2(6.7) 0.159 

Potassium 4.1(0.6) 4.1(0.7) 0.276 4.1(0.6) 4.1(0.7) 0.915 

Chloride 102.4(6.5) 101.8(7.2) 0.205 102.7(6.7) 102.7(8.7) 0.948 

Bicarbonate 24.5(4.8) 25.2(5.4) 0.112 23.7(4.7) 24(4.5) 0.612 

Anion Gap 10.4(4) 10.7(5.2) 0.347 10.8(4.3) 11.5(5.6) 0.162 

Creatinine 1.4(1.3) 1.6(1.4) 0.048 1.4(1.3) 1.7(1.4) 0.042 

BUN 28.4(22.8) 36.6(26.3) <0.001 29.5(23.1) 40.5(27.2) <0.001 

GFR 71[39,100] 61[31,100] 0.081 67[37,100] 62[31.5,100] 0.069 

Glucose 135.3(57.1) 139.5(61) 0.433 137.8(60.9) 141.5(69) 0.674 

Magnesium 1.7(0.3) 1.7(0.3) 0.399 1.7(0.3) 1.7(0.3) 0.859 

Calcium 8.6(0.9) 8.7(1) 0.119 8.5(0.9) 8.6(1) 0.427 

Phosphorus 3.3(1.2) 3.4(1.3) 0.171 3.3(1.2) 3.5(1.2) 0.187 

AST 69.8(363.5) 51.6(97.6) 0.607 76.8(336.1) 65.6(128.6) 0.801 

ALT 52(187.7) 47.7(87.7) 0.814 58.6(178) 59.4(109.2) 0.983 



	

37	

ALK 149.9(168) 217.5(361.3) <0.001 157.3(178.2) 260.7(465.2) <0.001 

aPTT 22.7(15.3) 20.9(13.5) 0.23 23.3(15.9) 22.1(13.8) 0.604 

INR 1.3(0.6) 1.3(0.3) 0.434 1.4(0.7) 1.3(0.4) 0.814 

Lactate 20.5(22.5) 19.6(22) 0.766 23.3(24.4) 22(24.8) 0.797 

D-dimer 3021(2518) 2773(2699) 0.686 2979(2621) 2821(2474) 0.85 

Prealbumin 14.1(8.1) 14.1(7.9) 0.935 13.5(8) 12.6(6.9) 0.568 

Protein 6.1(1.1) 6.1(1.1) 0.784 5.9(1) 6(1.1) 0.877 

Fibrinogen 327.2(180.2) 334.6(174.1) 0.79 312.5(177.3) 326(175.1) 0.711 

Days Since:       

Last Antibiotic 0[0,5] 0[0,0] 0.014 0[0,14] 0[0,0] 0.004 

Last Aminoglycoside 100[100,100] 100[100,100] <0.001 100[100,100] 100[73,100] <0.001 

Last Anti-
pseudomonal 
Carbapenem 

100[100,100] 100[8,100] <0.001 100[100,100] 100[16,100] <0.001 

Last dose of 
Ertapenem 

100[100,100] 100[100,100] <0.001 100[100,100] 100[100,100] <0.001 

Last Fluoroquinolone 100[100,100] 100[29,100] 0.039 100[100,100] 100[42,100] 0.236 

Last Penicillin 100[2,100] 21[0,100] 0.002 100[0.5,100] 27.5[0,100] 0.086 

Last Anti-MRSA 60[0,100] 2[0,42] <0.001 58[0,100] 1[0,49] <0.001 

Last Colistin 100[100,100] 100[63,100] <0.001 100[100,100] 100[100,100] <0.001 

Last Aztreonam 100[100,100] 100[100,100] 0.705 100[100,100] 100[100,100] 0.876 

Last Carbapenem 
(any) 

100[100,100] 60[0,100] <0.001 100[100,100] 100[0,100] <0.001 

Last Beta-lactam 0[0,83] 0[0,17] 0.041 3[0,100] 0[0,19] 0.011 

Last Acid 
Suppressant 

0[0,100] 0[0,0] 0.014 0[0,88.5] 0[0,0] 0.332 

Last Probiotic 100[100,100] 100[100,100] <0.001 100[100,100] 100[100,100] <0.001 

Last Steroid 100[20,100] 100[13,100] 0.876 100[19.5,100] 100[54,100] 0.515 

Last Chemotherapy 100[100,100] 100[100,100] 0.99 100[100,100] 100[100,100] 0.723 

Last 
Immunosuppressant 

100[0,100] 100[0,100] 0.582 100[0,100] 100[0,100] 0.811 

Last Blood Product 100[100,100] 100[11,100] 0.002 100[40,100] 100[11,100] 0.172 

Normally-distributed outcomes are reported as mean(standard deviation), non-

normally-distributed outcomes are reported as median[interquartile range]. Binary 

outcomes are reported as percent positive. 

BMI: Body Mass Index, RRMC: Ronald Reagan Medical Center, SMH: Santa 

Monica UCLA Hospital, ICU: Intensive Care Unit, Hosp.: Hospitalization, 

Advanced Ventilation: Either non-invasive mask ventilation or endotracheal 

intubation, WBC: White Blood Cell count, BUN: Blood Urea Nitrogen, GFR: 

Race-adjusted Glomerular Filtration Rate, AST: Aspartate Aminotransferase, 
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ALT: Alanine Aminotransferase, ALK: Alkaline Phosphatase, aPTT: Activated 

Prothrombin Time, INR: International Normalized Ratio, Anti-pseudomonal 

Carbapenem: Meropenem, Imipenem, or Doripenem 
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Table 3-4: Model specifications for ColR-GNR (4a) and ColR-KP (4b) 

ColR-GNR Coefficient 
Standard 
Error p-value 

Neurologic Disease 0.53 0.24 0.026 
Facility prior to admit 0.96 0.24 <0.001 
Carbapenems within 90 days 0.75 0.25 0.002 
Intubation or non-invasive 
ventilation 0.64 0.25 0.009 
Prior carbapenem resistance 0.80 0.26 0.003 

    
ColR-KP Coefficient 

Standard 
Error p-value 

Neurologic Disease 0.75 0.37 0.041 
Facility prior to admit 1.89 0.38 <0.001 
Carbapenems within 90 days 0.76 0.40 0.059 
Anti-MRSA within 90 days 1.17 0.56 0.039 
Prior carbapenem resistance 1.58 0.39 <0.001 
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Table 3-5: Percentage of ColR-GNR having each score and percentage resistant 

at each score 

Score	
Percent	of	total	
organisms	with	score	

Resistance	rate	
at	score	

0	 45.2%	 0.1%	
1	 29.9%	 0.3%	
2	 15.2%	 0.9%	
3	 6.4%	 1.8%	
4	 2.7%	 3.8%	
5	 0.6%	 2.5%	

 

Table 3-6: Percentage of ColR-KP having each score and percentage resistant 

at each score 

Score	
Percent	of	total	
organisms	with	score	

Resistance	rate	
at	score	

0	 32.3%	 0.0%	
1	 33.0%	 0.3%	
2	 19.4%	 1.4%	
3	 10.3%	 6.4%	
4	 4.7%	 7.6%	
5	 0.4%	 37.5%	
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Abstract 

 Infections due to carbapenem-resistant gram-negative rods (CR-GNR) are 

increasing in frequency and result in high morbidity and mortality. Appropriate 

initial antibiotic therapy is necessary to reduce adverse consequences and 

shorten length of stay. To determine risk factors for recovery on culture of CR-

GNR, cases were retrospectively analyzed at a major academic hospital system 

from 2011-2016. Ertapenem resistance (ER-GNR) and anti-pseudomonal (non-

ertapenem) carbapenem resistance (ACR-GNR) patterns were analyzed 

separately. A total of 33,541 GNR isolates from 12,516 patients were analyzed, 

5,443 (16.2%) of which were ER, and 3,897 (11.6%) of which were ACR. In 

multivariate analysis, risk factors for ER-GNR were male sex, ventilation at any 

point prior to culture during the index hospitalization, presence of a 

tracheostomy, receipt of any carbapenem in the prior 30 days, and receipt of any 

anti-MRSA agent in the prior 30 days; this model had a c-statistic of 0.68. Risk 

factors for ACR-GNR were male sex, admission from another healthcare facility, 

ventilation at any point prior to culture during the index hospitalization, 

hemoglobin <11, and receipt of any carbapenem in the prior 30 days (c-statistic 

of 0.75). A straightforward scoring system derived from these models can be 

applied by providers to guide empiric antimicrobial therapy, and outperformed 

use of a standard hospital antibiogram in predicting infections with ER-GNR and 

ACR-GNR.  

Keywords: Antimicrobial resistance, clinical decision making, antimicrobial 

testing, antimicrobial stewardship, carbapenems, Gram-negative rods   
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Introduction 

 Rising worldwide prevalence of human infections with multi-drug resistant 

organisms (MDROs) is associated with increasing morbidity, mortality, and cost.2 

In the US, there are approximately 23,000 yearly attributable deaths and $50 

million in yearly attributable costs from MDRO infections.1 Appropriate initial 

antibiotic therapy decreases mortality and hospital length of stay,8,9 while 

overuse of broad-spectrum antibiotics has been linked with increased prevalence 

of MDROs;15-19 the initial choice of antibiotic remains a challenging and high-

stakes decision. 

 Carbapenem resistance among gram-negative rods (CR-GNRs) has been 

increasing over the past several decades, particularly in Enterobacteriaceae 

species.14,61-63 Infection with CR-GNR species is associated with higher 

mortality,14,61,63,64 hospital costs,14,62 and increased risk for inappropriate 

antibiotic therapy22 compared to infection with carbapenem-susceptible (CS) 

isolates. Delayed antimicrobial therapy (DAT) of CR-GNR has been shown to 

directly impact patient survival, highlighting the need for rapid identification of 

patients at high risk for CR-GNR. 

  Prior literature has identified multiple risk factors for the development of 

CR in various GNRs, including receipt of mechanical ventilation,14,25,34,52,64 

presence of various indwelling devices,22,52,61,64,65 more severe illness at the time 

of culture (ICU stay, comorbidities, or septic shock),14,27,52,63,64 length of hospital 

stay or recent hospitalization,14,22,52,65 receipt of immunosuppression,22,27 and 

recent exposure to various antibiotics.25,27,52,61,64,65 Other risk factors for 
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development of MDROs in general included prior residence in a nursing home, 

hemodialysis, ICU admission,34 increased medical comorbidity,49,56 prior 

antibiotic usage, and invasive surgery.56 

 Anti-pseudomonal carbapenems (defined as meropenem, imipenem, and 

doripenem) likely have a different risk factor profile from ertapenem. Several 

organisms (most notably Pseudomonas aeruginosa and Acinetobacter 

baumannii) have intrinsic resistance to ertapenem, but not anti-pseudomonal 

carbapenems. As such, we performed two separate analyses, one examining 

ertapenem resistance (ER) and one for anti-pseudomonal carbapenem 

resistance (ACR), to examine the similarities and differences in risk factors for 

recovery of a non-susceptible isolate. 

 Prior studies of risk factors for CR among GNRs have largely focused on 

the family Enterobacteriales which includes many commonly treated GNRs, but 

excludes several clinically significant genera, including Pseudomonas and 

Acinetobacter. Additionally, many of these studies have been limited in scope, 

analyzing a small number of patients (typically in the low 

hundreds),22,25,27,48,52,61,63-65 or focusing on a single organism.25,48,52,61,65 The 

largest prior study of ~40,000 patients with Enterobacteriaceae infection 

(including 1,227 with CRE) used hospital administrative data, and while it had an 

extensive list of covariates it did not include information about non-

Enterobacteriales GNRs or prior antibiotic exposure, and did not include a 

multivariate analysis or result in a clinical decision rule.14 We hypothesized that a 

large, adequately powered study would provide sufficient observations to identify 
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easily obtainable clinical factors that could serve as prediction tool for identifying 

patients at high risk for acquiring CR-GNRs.   

 

Methods 

 We conducted a retrospective study of all patients with positive cultures 

from any source over a six-year period to develop a comprehensive model for 

risk of infection or colonization with CR-GNRs, with separate analyses for ER-

GNR and ACR-GNR. The study was performed at two hospitals in metropolitan 

Los Angeles, California. Ronald Reagan UCLA Medical Center is a 520-bed 

tertiary care center with five adult intensive care units totaling 109 beds, Santa 

Monica-UCLA Medical Center has 266 beds total with 22 mixed intensive care 

beds in a single unit. Both are part of UCLA Health and serve patients with solid 

organ and bone marrow transplants, cancer, and various medical and surgical 

conditions. The Integrated Clinical and Research Data Repository (xDR) serves 

as a warehouse for all clinical data in the UCLA system since 2006. The dataset 

contained information from all admissions with start dates from January 2011 

through November 2016 to either hospital for patients ≥18 years of age and at 

least one positive culture from any source (blood, urine, sputum, wound cultures, 

or other fluids). 

 Since the endpoint of this analysis was prediction of development of the 

first carbapenem non-susceptible isolate, once a patient had a culture growing a 

CR-GNR organism, defined using Clinical and Laboratory Standards Institute 

(CLSI), breakpoints current to the year of testing, all cultures from that patient 
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occurring at a later time than the original culture were removed from the dataset. 

 Routine susceptibility testing was performed by the either the CLSI 

reference broth microdilution method (BMD), or using a Vitek 2 with BMD 

confirmation, using panels prepared in-house. Only data from 2011 and onwards 

were used in this study, as a changeover in clinical data warehousing methods 

corresponded to significantly more robust clinical information after that time. All 

antimicrobial susceptibility data were interpreted using CLSI breakpoints current 

to the year of testing, which have not changed since 2011. Isolates with 

intermediate susceptibility to either antibiotic class were categorized as resistant 

for the purposes of this analysis. Isolates with intrinsic resistance to the studied 

antibiotics were included in the analysis as resistant isolates. 

 Predictor variables were chosen on the basis of prior studies, as well as 

those with biologic plausibility that were readily obtained from the medical record. 

Risk factors were identified in the literature through a partially structured search 

of PubMed and Google Scholar. For PubMed, the initial search used the phrase: 

(carbapenem OR meropenem OR ertapenem OR imipenem OR doripenem) 

AND (resist* OR non-suscept* OR suscept* OR nonsuscept* OR sensiti* OR 

non-sensiti* OR nonsensiti*) AND (risk OR predict* OR protec*). For Google 

Scholar, the initial search used the phrase: (carbapenem | meropenem | 

ertapenem | imipenem | doripenem) (resist* | non-suscept* | nonsuscept* | 

suscept* | sensiti* | non-sensiti* | nonsensiti*) (risk factors | predict* | protect*). 

Once initial articles were identified, the references cited in those articles were 

also explored iteratively. 
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 Data collected for each patient included admission hospital, days since 

admission, location prior to admission (home vs. long-term care facility or other 

hospital), demographic information, comorbidities (grouped into categories based 

on Elixhauser score designations)57, laboratory results from the date of the 

culture, vital signs on the date the culture was collected (maximum temperature, 

heart rate, and respiratory rate, and minimum blood pressure), vital signs from 

initial hospital presentation, oxygen/ventilation method, presence of a 

tracheostomy, presence of urinary catheter, administration of antibiotics and 

other selected medications (vasopressors, probiotics, blood products, 

immunosuppressants, and acid suppressants), culture source, and prior culture 

positivity for carbapenem-resistant GNRs. Administration of antibiotics and the 

medications listed above was coded as the number of days since last receipt of 

the medication, Winsorized to a maximum value of 100 (received within 24 hours 

of the time of culture = 0, never received was coded as 100 days since receipt). 

“Anti-MRSA” agents refer to vancomycin, linezolid, and daptomycin, as these 

were used at both hospitals in cases of suspected hospital-acquired MRSA. 

Receipt of antibiotics were by any route, including oral, intravenous, and inhaled. 

An infection was coded as “hospital acquired” if the culture was submitted to the 

laboratory >48 hours after the time of first presentation to the hospital. The 

construct of advanced ventilatory support includes patients receiving either non-

invasive or invasive mechanical ventilation. 

 In cases where laboratory tests were not performed before cultures were 

performed (typically at the beginning of a patient’s admission), the first set of 
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laboratory results were used for that patient, provided they were performed on 

specimens collected within 24 hours of culture positivity. For laboratory tests not 

typically performed daily (e.g., liver function tests, measures of coagulation, and 

protein/prealbumin), the most recent result within a 48-hour period prior to culture 

positivity was used. 

 To facilitate model interpretability, some linear variables were 

recategorized as binary variables using cutoffs. Various cutoffs were tested 

against each other in the final model (e.g. 30 vs. 60 vs. 90 days since receipt of 

last antibiotic), and the cutoff that led to the highest c-statistic was chosen for 

inclusion in the scoring system. 

 

Statistical Analysis 

 Two separate analyses were performed, one comparing all ertapenem-

susceptible GNRs (ES-GNR) against ER-GNR, and one comparing anti-

pseudomonal carbapenem-susceptible GNR (ACS-GNR) against ACR-GNR. 

These two analyses were chosen to aid decision at the point of initial antibiotic 

choice, when the consequences for inappropriate antibiotic therapy are the 

greatest.6,10,12,66 The measured variables in each case were compared between 

the cases and controls by a two-sided Mann-Whitney U test, Student’s t-test, or 

chi-squared test, as appropriate. In each case, after bivariate associations were 

examined, variables with p<0.10 or strong biologic plausibility were included in a 

stepwise forward model selection procedure to create a logistic regression model 

for each analysis. Only complete cases were included in model selection. Model 
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discrimination was assessed with area under the receiver operating characteristic 

curve (c-statistic), and models were compared by chi-squared test if they were 

nested, or Akaike information criterion if they were not.  

 The steps of the model selection strategy are detailed in Appendix B. In 

each case, the predictor variables were divided into several categories, 

comprising medical comorbidities, demographics (age, gender, race, location 

prior to admission, and social history), laboratory variables, indwelling devices, 

and received medications. Vital signs as a group lacked sufficient explanatory 

power to be included in the model. Model selection occurred in stages, with each 

stage involving either the introduction of a new category of predictor, or the 

combination of a new category with prior models. At each stage, candidate 

variables from the chosen new category (defined as those with p < 0.05 on 

bivariate analysis or those with p < 0.10 with support from prior literature) were 

added to an initial model, and those that became non-significant in the 

multivariate model were dropped. Next, variables were iteratively dropped in a 

backwards selection process until parsimony was achieved. A parsimonious 

model was defined as the model with the smallest set of predictors in which 

dropping additional predictors resulted in a substantial drop in AUROC. A 

substantial drop in AUROC was defined as a decrease of at least 0.02, and a 

decrease that was larger by a factor of two than the decrease in AUROC with 

dropping the prior, less explanatory variable. In situations with two highly 

correlated variables that related to closely related constructs (for example, 

whether a patient was currently ventilated and whether they were ventilated at 
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any point during the index hospitalization), the variable with less explanatory 

power was dropped, as measured by change in AUROC. The exceptions to the 

above process were some laboratory values, as there were a large number of 

laboratory values that were significant at p < 0.05 on bivariate analysis despite 

not having a clinically significant difference between the resistant and non-

resistant groups. In these cases, the laboratory values with p < 0.05 were added 

individually to the final model to assess if they contributed significantly to the 

explanatory power (as defined by AUROC increase of 0.02); none of them did, 

and none were included. 

 In both cases, model selection began with the list of relevant medical 

comorbidities. Once this list was pared to a parsimonious model, demographic 

information was added and the model was pared again (Tables B-1 and B-6). 

Next, relevant indwelling devices were added to the model and the model was 

pared (Tables B-2 and B-7). Then, a model was constructed using only 

laboratory variables and, once pared, this model was combined with the final 

model from the previous table (Tables B-3 and B-8). Finally, a model was 

constructed using recently administered medications, and this was pared and 

combined with the previous predictors (Tables B-4 and B-9). 

 All analyses were performed using the Stata statistical software package, 

version 14.2.58 

 

Results 

 The complete dataset included 33,541 GNR isolates from 12,516 patients, 
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5,443 (16.2%) of which were ER, and 3,897 (11.6%) of which were ACR. Since 

only complete cases were analyzed for the multivariate model, the final model for 

ER comprised 14,682 cultures, 3,007 (20.5%) of which were ER-GNR, and the 

final model for ACR comprised 15,635 cultures, 1,961 (12.5%) of which were 

ACR-GNR. The majority of ER-GNR were Pseudomonas species, while the most 

common ES-GNR were Escherichia coli and Klebsiella species; the most 

common ACR-GNR were again Pseudomonas species, while the most common 

ACS-GNR were again Escherichia species (Table 4-1). Respiratory culture 

source was predictive of both ER-GNR and ACR-GNR, while urinary source was 

predictive of both ES-GNR and ACS-GNR (Table 4-2). 

 

Bivariate Analyses 

 Selected bivariate associations are reported in Table 4-3. Risk factors 

were similar for ER-GNR and ACR-GNR. Male sex was strongly associated with 

both ER and ACR. The most prominent comorbidities associated with ER and 

ACR were the neurologic disease and weight loss categories of the Elixhauser 

score, as well as cystic fibrosis, although these associations were not preserved 

on multivariate analysis. Consistent with prior published studies,14,25,34,52,64 

several measures of chronic or acute respiratory failure were predictive of both 

ER and ACR, including whether the patient was currently receiving advanced 

ventilatory support, whether the patient had been on a ventilator during that 

hospitalization, and whether the patient had a tracheostomy at the time of culture 

or the time of admission. Longer length of stay prior to culture was positively 
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associated with ER and ACR. Markers of acute disease severity, such as 

hypotension and active septic shock, were associated more strongly with ACR 

than ER; prior literature has described similar findings.14,22,52,65 Blood count 

values associated with ER and ACR were higher neutrophil, eosinophil, and 

basophil counts, lower hemoglobin/hematocrit, and lower platelets. Several other 

laboratory values were associated with ER and ACR, most notably higher 

bicarbonate, blood urea nitrogen, and alkaline phosphatase. Consistent with prior 

literature,25,27,52,61,64,65 more recent receipt of any and all studied antibiotics was 

associated with ER and ACR, as well as more recent receipt of probiotics, acid 

suppressants, blood products, and chemotherapeutic agents; ER was also 

associated with more recent receipt of any steroid or other immunosuppressant. 

 

Multivariate Analyses 

 Many of the variables that were significant on bivariate analysis were 

strongly co-linear, and were tested against each other in groups to determine 

which predictors were most representative from the various groupings of medical 

comorbidities, demographics, laboratory values, indwelling devices, and recently 

administered medications. To facilitate model interpretability, the variables 

representing days since receipt of medications were dichotomized to receipt 

within the prior 30 days vs. not; this did not significantly affect model fit. 

Hemoglobin was tested at multiple thresholds from 7-13g/dL; a cutoff of 11g/dL 

was found to have the best model discrimination. 

 For the model predicting ER-GNR, the predictors in the final model were 
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male sex, ventilation at any point prior to culture during the index hospitalization, 

presence of a tracheostomy, receipt of any carbapenem in the prior 30 days, and 

receipt of any anti-MRSA agent in the prior 30 days; this model had a c-statistic 

of 0.68 (Table 4-4a). 

 For the model predicting ACR-GNR, the predictors in the final model were 

somewhat overlapping: male sex, admission from another healthcare facility, 

ventilation at any point prior to culture during the index hospitalization, 

hemoglobin <11, and receipt of any carbapenem in the prior 30 days; this model 

had a c-statistic of 0.75 (Table 4-4b). 

 Treating each multivariate model as a score with one point assigned for 

each of the five items in the model, we created a potentially user-friendly tool to 

predict the probability of ER and ACR. Figures 4-1 and 4-2 show the positive 

predictive value at each score total for ER and ACR, respectively, and 

demonstrate that higher score is associated with higher likelihood of resistance. 

Rates of ER range from 8.7% for a score of 0 to 59.0% at a score of 5. Rates of 

ACR range from 1.1% at a score of 0 to 41.9% at a score of 5. Tables 4-5 and 4-

6 show the fraction of GNR with each score for ertapenem and anti-pseudomonal 

carbapenem resistance, respectively, and the positive predictive value for 

resistance at each score. 

 Alternate scoring systems were tested for each model, with separate 

models assigning scoring weights in proportion to the model coefficients and in 

proportion to the change in odds ratios. In each case the range of predicted 

probabilities of resistance was similar between the upper and lower bounds of 
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the score, but there was more granular resolution of those probabilities as a 

result of a larger number of possible score totals. A flat scoring system (one point 

per factor) was ultimately chosen for ease of interpretability by providers. 

 

Discussion 

 Infection with CR-GNR is associated with substantially increased cost and 

risk for mortality, and appropriate antibiotic treatment is paramount in mitigating 

these risks 14,22,61-64. Our scores can be calculated by providers at the time of 

decision-making and potentially more accurately reflects a patient’s risk for 

carbapenem-resistant organisms than a hospital-wide or unit-specific 

antibiogram, which provides a flat percent observed susceptibility for a given 

organism in the prior year, and is not useful for management of rare events. All 

information used in the models was extracted directly from the medical record 

without any direct examination of individual patient records, allowing this score to 

potentially be calculated automatically. 

 Our bivariate analysis is consistent with prior studies, confirming 

associations between CR and receipt of mechanical ventilation and presence of 

various indwelling devices,14,22,25,34,52,61,64,65 more severe illness at the time of 

culture,14,27,52,63,64 length of hospital stay or recent hospitalization,14,22,52,65 and 

recent exposure to various antibiotics.25,27,52,61,64,65 Several factors that featured 

prominently in other analyses were found not to contribute to the optimal 

prediction model. Length of stay, medical comorbidities, and receipt of 

immunosuppressive medications, while individually important, do not directly 
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contribute on multivariate analysis. This is most likely because they are related to 

a construct of chronic medical illness that is mediated through other concepts 

(such as frequent contact with the medical system, exposure to MDROs, and 

susceptibility to infection) that are better proxied by other variables.  

 While it is improbable that exposure to all antibiotics mechanistically leads 

to development of CR, some of these exposures likely proxy recent infection with 

MDR GNRs, while anti-MRSA receipt proxies recent concern for sepsis, as 

nearly all patients with suspicion for sepsis receive at least one dose of 

vancomycin at our institutions. The conceptual model described in Chapter 2 

suggests that acute illness does not play a large role in determining risk for 

recovery of a non-susceptible isolate on culture, and that the majority of risk 

occurs as a result of chronic illness and recent exposure to antibiotics. This 

analysis supports that conclusion in several ways. First, vital signs have limited 

predictive power, and while some variables related to blood pressure are 

significant on bivariate analysis (Table 4-3), none were included in the final 

model. Secondly, while laboratory values individually have predictive power on 

bivariate analysis (Table 4-3), all except for hemoglobin drop out when added to 

prior variables in the analysis (Tables B-3 and B-8). The only laboratory value 

with substantial predictive power is hemoglobin (which is included in the final 

model for ACR-GNR); low hemoglobin in this context is likely more related to 

chronic anemia than acute blood loss. Variables associated with chronic illness 

feature prominently in the models. In both models, chronic weight loss (which is 

associated chronic disease and malnutrition) is a significant medical comorbidity 
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(Tables B-1 and B-6), although in both cases all Elixhauser categories drop out 

of the models when combined with demographic information and chronic 

indwelling devices (Tables B-2 and B-7). The final model for ER-GNR comprises 

markers of need for respiratory support (ventilation and tracheostomy), male 

gender, and recent antibiotic exposure (Table B-5); in this case the indwelling 

tracheostomy is most likely a consequence of chronic medical illness as opposed 

to acute decompensation. The final model for ACR-GNR comprises male gender, 

recent antibiotic exposure, anemia, transfer from another medical facility, and 

ventilation during the current hospital stay. While ventilation during the current 

hospital stay in both cases could proxy both acute and chronic illness, the 

majority of other risk factors in the model are more associated with chronic illness 

as opposed to acute decompensation. 

 The discrimination ability for the ER-GNR model is more limited than for 

the ACR-GNR model, likely because the populations susceptible to ES-GNR and 

ER-GNR are relatively similar. The majority of ER-GNR isolates are P. 

aeruginosa, and infection by this organism is likely driven more by random 

chance than is acquisition of an ACR organism. While the risk factors for ER-

GNR are generally similar to those for ACR-GNR, the final model for ER-GNR 

risk contains variables that are more relevant to chronic respiratory failure and 

antibiotic exposure, which are likely indicative of risk for chronic colonization with 

P. aerguinosa and similar organisms with intrinsic resistance. The risk factors in 

the ACR-GNR model are similarly correlated with risk for chronic colonization, 

but focus more on prolonged contact with the healthcare system (admission from 
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another healthcare facility) and chronic disease states (best represented by 

anemia). The model discrimination for the ACR-GNR model is substantially better 

than for the ER-GNR model, indicating that the populations susceptible to ACR 

(vs. ACS) GNR infections differ in more identifiable ways; as such, the model is 

more able to rule out ACR-GNR infections at lower scores, with a <5% risk for 

ACR-GNR infection at scores <2.  

 Our study has limitations. It examines patients from only two hospitals 

within a single hospital system. Approximately 50% of ER- and ACR-GNR cases 

could not be included in the final analysis due to a lack of complete data across 

the relevant domains. Sensitivity analyses did not show a significant effect from 

missing data, although it is possible that the point estimates would have varied 

slightly if full data were available. Additionally, we only had access to data from 

inpatient hospitalizations within our hospital system, potentially excluding 

relevant information from outpatient encounters or treatment at other facilities. 

These limitations reflect the real-world data that is available at the time of 

decision-making, or for eventual integration of a similar score into an electronic 

health record. However, it is the largest investigation to date in terms of subject 

number and spans a period of six years, allowing us to examine far more 

potential explanatory variables than prior investigations of risk factors for 

development of ER-GNR and ACR-GRN. By performing a cohort study of 

patients with positive cultures, we eliminate potential selection bias in choosing 

controls and strengthen the validity of observed associations.60 
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 While the discriminatory capacity of the ER-GNR model is limited, the 

ACR-GNR model can effectively rule out ACR risk (<5% chance) at scores <2, 

allowing reasonably confident treatment with anti-pseudomonal carbapenems as 

a first option without waiting for definitive carbapenem susceptibility testing, 

which can take up to several days. 

 Our study demonstrates the potential to harness currently available 

information from an existing electronic medical record to inform clinical decision-

makers. Our simplified scoring system clearly outperformed the traditional 

antibiogram approach of offering a single hospital-wide percentage rate of 

susceptibility, by creating an individualized score than can be used and 

interpreted by individual clinicians without computer assistance. In the current era 

of data-intensive medical care, we should harness all available information to 

better manage our patients. Further research will focus on validating this score in 

other populations, and analysis of cost-benefit thresholds for initiating specific 

antibiotic regimens in cases of uncertainty. 
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Figure 4-1: Positive predictive value for ertapenem resistance at each score 

value for Gram-negative rods 
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Figure 4-2: Positive predictive value for anti-pseudomonal carbapenem 

resistance at each score value for Gram-negative rods 
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Table 4-1: Distribution of organisms for ER-GNR and ACR-GNR cultures (p < 

0.001 for X2 test) 

Genus ER-GNR ACR-GNR 
Acinetobacter 7.1% 10.3% 
Enterobacter 2.4% 1.1% 
Escherichia 1.2% 0.9% 
Klebsiella 5.2% 12.1% 
Pseudomonas 64.6% 46.0% 
Stenotrophomonas 10.9% 27.5% 
Other 8.6% 2.1% 

 

Table 4-2: Distribution of culture source for ES-GNR, ER-GNR, ACS-GNR, and 

ACS-GNR (p < 0.001 for X2 test for both ER and ACR) 

Source ES-GNR ER-GNR ACS-GNR ACR-GNR 
Blood 11.2% 7.7% 12.1% 8.4% 
Urine 45.6% 18.1% 42.1% 11.2% 
Respiratory 20.4% 52.0% 23.7% 61.6% 
External 8.3% 9.4% 8.1% 7.9% 
Other 14.5% 12.8% 14.0% 10.9% 
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Table 4-3: Selected bivariate associations 

n	=	 16298	 5443	 p-value	 29,664	 1,932	 p-value	

Age	 64.5(18.8)	 63.6(18.9)	 0.003	 64(19.1)	 63.6(18.9)	 0.427	
Male	Sex	 45.1%	 56%	 <0.001	 46.4%	 59.1%	 <0.001	
Race	

	 	
<0.001	

	 	
<0.001	

White	 51.1%	 54.8%	
	

52.7%	 53.6%	
	Asian	 9.1%	 7.0%	

	
8.7%	 6.8%	

	Black	 11.4%	 13.3%	
	

11.5%	 14.2%	
	Latino	 21.9%	 19.1%	

	
21.0%	 18.0%	

	Other	 6.5%	 5.9%	
	

6.2%	 7.3%	
	BMI	 26.3(6.8)	 25.6(6.8)	 <0.001	 26.1(6.8)	 25.1(6.7)	 <0.001	

Admitted	From	
Healthcare	Facility	 14.5%	 23.1%	 <0.001	 14.6%	 33.2%	 <0.001	
Hospital	(RRMC	vs.	
SMH)	 65.7%	 59.9%	 <0.001	 63.3%	 53.7%	 <0.001	

Log	Days	To	Culture	
0.13[-1.84,1.99]	 1.02[-0.97,2.51]	 <0.001	

0.44[-
1.48,2.09]	 1.6[-0.5,2.9]	 <0.001	

Hospital	Acquired	 41.2%	 51.6%	 <0.001	 48.7%	 51.5%	 <0.001	
In	ICU	At	The	Time	Of	
Culture	 18.5%	 22.7%	 <0.001	 17.5%	 29.1%	 <0.001	
Any	ICU	Stay	During	
Index	Hosp.	 32.4%	 49.1%	 <0.001	 36.1%	 57.7%	 <0.001	
Presence	of	
Indwelling	Urinary	
Catheter	 42.5%	 54.4%	 <0.001	 43.7%	 63.5%	 <0.001	
Ventilated	During	
Index	Hosp.	 24.2%	 44.9%	 <0.001	 28%	 57.6%	 <0.001	
Tracheostomy	
Present	On	Day	Of	
Culture	 6.9%	 21%	 <0.001	 9.6%	 28.9%	 <0.001	
Tracheostomy	
Present	On	
Admission	 3.1%	 11.4%	 <0.001	 4.4%	 16.6%	 <0.001	
Advanced	Ventilation	
On	Day	Of	Culture	 17.8%	 33.7%	 <0.001	 20.8%	 43.7%	 <0.001	
Elixhauser	Score	 14[5,25]	 18[8,29]	 <0.001	 16[6,26]	 22[12,31]	 <0.001	
Congestive	Heart	
Failure	 19.1%	 22.8%	 <0.001	 19.8%	 26.9%	 <0.001	
Arrhythmia	 40%	 47.5%	 <0.001	 41.6%	 53.9%	 <0.001	

Valvular	Disease	 22.4%	 26.1%	 <0.001	 24.3%	 27.2%	 0.005	
Pulmonary	Vascular	
Disease	 14.6%	 18.7%	 <0.001	 16.1%	 20.3%	 <0.001	
Peripheral	Vascular	
Disease	 21.4%	 26.6%	 <0.001	 23.4%	 28%	 <0.001	

Paralysis	 7.2%	 9.1%	 <0.001	 7.8%	 9.7%	 0.004	
Neurologic	Disease	 25.9%	 36.9%	 <0.001	 28.5%	 43.5%	 <0.001	
Chronic	Pulmonary	
Disease	 22%	 29.7%	 <0.001	 24.7%	 32.6%	 <0.001	
Renal	Disease	 31.8%	 37.5%	 <0.001	 33.3%	 40.5%	 <0.001	
Liver	Disease	 23.7%	 24%	 0.702	 24.3%	 28.1%	 <0.001	
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Lymphoma	 3.8%	 5.2%	 <0.001	 4.1%	 5.9%	 <0.001	
Metastatic	Cancer	 9.6%	 10.6%	 0.046	 10.5%	 10.4%	 0.933	
Non-Metastatic	
Cancer	 22.8%	 22.2%	 0.340	 23%	 21%	 0.042	
Coagulopathy	 24.6%	 28.5%	 <0.001	 26%	 35%	 <0.001	
Weight	Loss	 16.4%	 25.1%	 <0.001	 18.7%	 31.6%	 <0.001	
Electrolyte	Disorder	 58.2%	 64.2%	 <0.001	 60.3%	 71.5%	 <0.001	
Deficiency	Anemia	 4.7%	 5.7%	 0.004	 5.2%	 6.8%	 0.002	
Drug	Abuse	 6.6%	 6.9%	 0.315	 6.9%	 6.9%	 0.97	
Solid	Organ	
Transplant	 16.3%	 18.2%	 0.001	 17%	 19%	 0.028	
Bone	Marrow	
Transplant	 1%	 1.7%	 <0.001	 1.3%	 2.3%	 <0.001	
Renal	Failure	 13.2%	 17.3%	 <0.001	 14.1%	 19.9%	 <0.001	
Cystic	fibrosis	 0.2%	 2.3%	 <0.001	 1%	 3.6%	 <0.001	
HIV	 0.7%	 0.8%	 0.757	 0.7%	 0.7%	 0.975	
Alcohol	User	 22.6%	 20.8%	 0.024	 22.5%	 17.7%	 <0.001	
Tobacco	User	 5.9%	 6.4%	 0.224	 5.9%	 5.5%	 0.568	
Vital	Signs	On	Day	Of	
Culture	

	 	 	 	 	 	Maximum	
Temperature	 99.6(1.6)	 99.6(1.5)	 0.514	 99.7(1.6)	 99.6(1.6)	 0.057	
Maximum	Pulse	 102.1(22.5)	 104.5(22.6)	 <0.001	 103.3(22.7)	 106.6(23.3)	 <0.001	
Maximum	
Respiratory	Rate	 26.2(9.2)	 28.3(10)	 <0.001	 26.9(9.5)	 29.5(10.2)	 <0.001	
Minimum	SBP	 103.3(21.8)	 99.5(21.8)	 <0.001	 102(21.7)	 96.9(21.7)	 <0.001	
Minimum	DBP	 59(12.4)	 57.6(12.4)	 <0.001	 58.5(12.3)	 56.5(12.7)	 <0.001	
Minimum	MAP	 73.7(14.3)	 71.5(14.3)	 <0.001	 72.9(14.3)	 69.9(14.6)	 <0.001	
Septic	Shock	 20.9%	 19.6%	 0.040	 18.5%	 24.8%	 <0.001	
Hypotensive	 21.8%	 20.3%	 0.026	 19.1%	 25.7%	 <0.001	
Labs	On	Day	Of	
Culture	

	 	 	 	 	 	WBC	 12.4[8.6,17.1]	 13.2[9.1,18.3]	 <0.001	 12.4[8.6,17.2]	 13.7[9.5,19]	 <0.001	
Hemoglobin	 10.1[8.7,11.7]	 9.5[8.4,10.9]	 <0.001	 9.9[8.7,11.5]	 9.2[8.2,10.4]	 <0.001	
Hematocrit	 30.8[26.7,35.4]	 29.4[26.1,33.6]	 <0.001	 30.5[26.6,35]	 28.7[25.4,32.4]	 <0.001	
Platelets	 204[132,287]	 217[133,313]	 <0.001	 205[132,290]	 215[117,321]	 0.032	
Sodium	 137.3(5.7)	 137.7(5.4)	 <0.001	 137.3(5.5)	 138.2(5.6)	 <0.001	
Potassium	 4.1(0.6)	 4.1(0.6)	 0.043	 4.1(0.6)	 4.1(0.6)	 0.069	
Chloride	 102.4(6.6)	 102.5(6.6)	 0.585	 102.6(6.5)	 102.5(6.9)	 0.738	
Bicarbonate	 24.2(4.5)	 25.2(5)	 <0.001	 24.3(4.7)	 25.5(5.3)	 <0.001	
Anion	Gap	 10.7(4)	 10(4)	 <0.001	 10.4(4)	 10.1(4.2)	 0.003	
Creatinine	 1.4(1.3)	 1.4(1.4)	 0.762	 1.4(1.4)	 1.4(1.3)	 0.823	
BUN	 28(22.5)	 30.7(25.5)	 <0.001	 28.3(23.1)	 33.3(27)	 <0.001	
GFR	 69[39,100]	 75[39,100]	 <0.001	 71[39,100]	 73[37,100]	 0.079	
Glucose	 136.5(59.7)	 133.6(54.4)	 0.002	 135.4(58.2)	 134(55.5)	 0.31	
Magnesium	 1.7(0.3)	 1.7(0.3)	 <0.001	 1.7(0.3)	 1.7(0.3)	 <0.001	
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Calcium	 8.6(0.8)	 8.6(0.9)	 0.235	 8.6(0.8)	 8.6(1)	 0.327	
Phosphorus	 3.3(1.2)	 3.3(1.2)	 0.558	 3.3(1.1)	 3.3(1.2)	 0.088	
AST	 68(319.3)	 62.1(338.8)	 0.319	 64.9(320)	 66.7(322.5)	 0.832	
ALT	 49.3(144.8)	 48(203.5)	 0.670	 49.9(170.4)	 47.7(139.9)	 0.637	
ALK	 138.5(148.1)	 155.4(166.1)	 <0.001	 141.4(152.3)	 174.8(188.6)	 <0.001	
aPTT	 22(14.6)	 22.9(15)	 <0.001	 22.4(14.9)	 23.9(15.7)	 <0.001	
INR	 1.3(0.6)	 1.3(0.6)	 0.485	 1.3(0.6)	 1.4(0.6)	 0.072	
Lactate	 20.9(21.8)	 18.4(19.1)	 <0.001	 20.9(22.8)	 19(20.8)	 0.008	
D-dimer	 3054	(2596)	 2962	(2511)	 0.484	 3035	(2578)	 3043	(2485)	 0.964	
Prealbumin	 14.2(8.1)	 14.2(7.7)	 0.974	 14.3(8.2)	 13.7(7.6)	 0.082	
Protein	 6.1(1)	 6(1.1)	 0.018	 6.1(1.1)	 6(1.1)	 0.03	
Fibrinogen	 323(178.8)	 338.5(187.2)	 0.005	 329.4(181.4)	 347.1(195.8)	 0.018	
Days	Since:	

	 	 	 	 	 	Last	Antibiotic	 0[0,12]	 0[0,2]	 <0.001	 0[0,8]	 0[0,0]	 <0.001	
Last	Aminoglycoside	 100[100,100]	 100[100,100]	 <0.001	 100[100,100]	 100[100,100]	 <0.001	
Last	Anti-
Pseudomonal	
Carbapenem	 100[100,100]	 100[100,100]	 <0.001	 100[100,100]	 100[6,100]	 <0.001	
Last	Ertapenem	 100[100,100]	 100[100,100]	 <0.001	 100[100,100]	 100[100,100]	 <0.001	
Last	Carbapenem	
(any)	 100[100,100]	 100[21,100]	 <0.001	 100[100,100]	 100[0,100]	 <0.001	
Last	Fluoroquinolone	 100[100,100]	 100[97,100]	 <0.001	 100[100,100]	 100[37,100]	 <0.001	
Last	Penicillin	 100[2,100]	 100[1,100]	 <0.001	 100[1,100]	 48[2,100]	 <0.001	
Last	Anti-MRSA	 100[1,100]	 9[0,100]	 <0.001	 100[0,100]	 4[0,72]	 <0.001	
Last	Colistin	 100[100,100]	 100[100,100]	 <0.001	 100[100,100]	 100[100,100]	 <0.001	
Last	Aztreonam	 100[100,100]	 100[100,100]	 <0.001	 100[100,100]	 100[100,100]	 <0.001	
Last	Beta-lactam	 1[0,100]	 0[0,22]	 <0.001	 0[0,100]	 0[0,10]	 <0.001	
Last	Acid	
Suppressant	 0[0,100]	 0[0,100]	 <0.001	 0[0,100]	 0[0,61]	 <0.001	
Last	Probiotic	 100[100,100]	 100[100,100]	 <0.001	 100[100,100]	 100[100,100]	 <0.001	
Last	Steroid	 100[100,100]	 100[19,100]	 <0.001	 100[58,100]	 100[30,100]	 0.074	
Last	Chemotherapy	 100[100,100]	 100[100,100]	 <0.001	 100[100,100]	 100[100,100]	 0.003	
Last	
Immunosuppressant	 100[10,100]	 100[0,100]	 <0.001	 100[1,100]	 100[3,100]	 0.368	
Last	Blood	Product	 100[100,100]	 100[100,100]	 <0.001	 100[100,100]	 100[21,100]	 <0.001	

Normally-distributed outcomes are reported as mean(standard deviation), non-

normally-distributed outcomes are reported as median[interquartile range]. Binary 

outcomes are reported as percent positive. 

BMI: Body Mass Index, RRMC: Ronald Reagan Medical Center, SMH: Santa 

Monica UCLA Hospital, ICU: Intensive Care Unit, Hosp.: Hospitalization, 

Advanced Ventilation: Either non-invasive mask ventilation or endotracheal 
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intubation, WBC: White Blood Cell count, BUN: Blood Urea Nitrogen, GFR: 

Race-adjusted Glomerular Filtration Rate, AST: Aspartate Aminotransferase, 

ALT: Alanine Aminotransferase, ALK: Alkaline Phosphatase, aPTT: Activated 

Prothrombin Time, INR: International Normalized Ratio, Anti-Pseudomonal 

Carbapenem: Meropenem, Imipenem, or Doripenem 
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Table 4-4: Model specifications for ErtaR-GNR (4a) and ColR-KP (4b) 

ErtaR-GNR Coefficient 
Standard 
Error p-value 

Male gender 0.36 0.04 <0.001 
Ventilated during index 
hospitalization 

0.40 0.05 <0.001 
Tracheostomy present 0.70 0.07 <0.001 
Carbapenems within 30 days 0.60 0.05 <0.001 
Anti-MRSA agents within 30 
days 0.49 0.05 <0.001 

    
ACR-GNR Coefficient 

Standard 
Error p-value 

Male gender 0.30 0.05 <0.001 
In facility prior to admission 0.71 0.06 <0.001 
Ventilated during index 
hospitalization 0.96 0.06 <0.001 
Hemoglobin >11 g/dL -0.49 0.07 <0.001 
Carbapenems within 30 days 1.37 0.05 <0.001 
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Table 4-5: Percentage of ER-GNR having each score and percentage resistant 

at each score 

Score	
Percent	of	total	
organisms	with	score	

Resistance	rate	
at	score	

0	 29.4%	 8.7%	
1	 29.6%	 17.8%	
2	 20.5%	 23.8%	
3	 12.8%	 33.0%	
4	 5.7%	 42.1%	
5	 1.9%	 59.0%	

 

Table 4-6: Percentage of ACR-GNR having each score and percentage resistant 

at each score 

Score	
Percent	of	total	
organisms	with	score	

Resistance	rate	
at	score	

0	 14.1%	 1.1%	
1	 32.5%	 2.6%	
2	 28.1%	 5.4%	
3	 17.4%	 10.9%	
4	 6.8%	 18.5%	
5	 1.2%	 41.9%	
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Abstract 

 Infections due to aminoglycoside-resistant gram-negative rods (AR-GNR) 

are increasing in frequency and result in high morbidity and mortality. Appropriate 

initial antibiotic therapy is necessary to reduce adverse consequences and 

shorten length of stay. To determine risk factors for recovery on culture of AR-

GNR, cases were retrospectively analyzed at a major academic hospital system 

from 2011-2016. Gentamicin and tobramycin resistance (GTR-GNR) and 

amikacin resistance (AmR-GNR) patterns were analyzed separately. A total of 

26,154 GNR isolates from 12,516 patients were analyzed, 6,699 (25.6%) of 

which were GTR, and 2,467 (9.4%) of which were AmR. In multivariate analysis, 

risk factors for GTR-GNR were presence of weight loss (as measured by the 

Elixhauser Score category) admission from another medical or long-term care 

facility, hemoglobin <11, receipt of any carbapenem in the prior 30 days, and 

receipt of any fluoroquinolone in the prior 30 days (c-statistic of 0.63). Risk 

factors for AmR-GNR were diagnosis of cystic fibrosis, male sex, admission from 

another medical or long-term care facility, ventilation at any point prior to culture 

during the index hospitalization, receipt of any carbapenem in the prior 30 days, 

and receipt of any anti-MRSA agent in the prior 30 days (c-statistic of 0.74). 

Multinomial and ordinal models demonstrated that the risk factors for the two 

resistance patterns differed significantly. A scoring system derived from these 

models can be applied by humans to guide empiric antimicrobial therapy, and 

outperformed use of a standard hospital antibiogram in predicting infections with 

GTR-GNR and AmR-GNR. 
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Introduction 

 Rising worldwide prevalence of human infections with multi-drug resistant 

organisms (MDROs) is associated with increasing morbidity, mortality, and cost.2 

In the US, there are approximately 23,000 yearly attributable deaths and $50 

million in yearly attributable costs from MDRO infections.1 Appropriate initial 

antibiotic therapy decreases mortality and hospital length of stay,8,9 while 

overuse of broad-spectrum antibiotics has been linked with increased prevalence 

of MDROs;15-19 the initial choice of antibiotic remains a challenging and high-

stakes decision. 

 Aminoglycosides are a class of antibiotics typically reserved for treatment 

of isolates resistant to beta-lactams and other first-line antibiotic classes. 

Aminoglycoside resistance among gram-negative rods (AR-GNRs) has been 

increasing over the past several decades.67-69 Aminoglycoside resistance 

typically co-occurs with resistance to other antibiotics,70,71 increasing the risk for 

inappropriate initial antibiotic therapy, which has been shown to increase length 

of stay and mortality.6,10,12,66 However, early identification of AR-GNR can be 

challenging, as risk factors have not been consistently identified in the literature 

and this information is not available on initial culture results. 

 Prior literature on risk factors for aminoglycoside-resistant infections has 

been sparse, and has focused as much on gram-positive cocci as on GNRs.  

Several risk factors have been identified, primarily exposure to 

aminoglycosides,70,72-74 higher level of care,72 and presence of indwelling devices 

and exposure to other antibiotics.71,75 Other risk factors for development of 
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MDROs in general included prior residence in a nursing home, hemodialysis, ICU 

admission,34 increased medical comorbidity,49,56 prior antibiotic usage, and 

invasive surgery.56 

 Compared to gentamicin and tobramycin (gent/tobra), amikacin typically 

has higher rates of non-susceptibility.67,69,76 It is unclear from prior literature if the 

risk factors for gent/tobra resistance (GTR) are the same as for amikacin 

resistance (AmR). As such, two separate analyses were performed, one 

examining risk factors for GTR-GNR, and one for AmR-GNR, to examine the 

similarities and differences in risk factors for recovery of a non-susceptible 

isolate. This was followed by an analysis to determine if the risk factors were 

similar enough that a single model could predict resistance to both. 

 We hypothesized that a large, adequately powered study would provide 

sufficient observations to identify easily obtainable clinical factors that could 

serve as prediction tool for identifying patients at high risk for acquiring AR-

GNRs.   

 

Methods 

 We conducted a retrospective study of all patients with positive cultures 

from any source over a six-year period to develop a comprehensive model for 

risk of infection or colonization with AR-GNRs, with separate analyses for GTR-

GNR and AmR-GNR. The study was performed at two hospitals in metropolitan 

Los Angeles, California. Ronald Reagan UCLA Medical Center is a 520-bed 

tertiary care center with five adult intensive care units totaling 109 beds, Santa 
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Monica-UCLA Medical Center has 266 beds total with 22 mixed intensive care 

beds in a single unit. Both are part of UCLA Health and serve patients with solid 

organ and bone marrow transplants, cancer, and various medical and surgical 

conditions. The Integrated Clinical and Research Data Repository (xDR) serves 

as a warehouse for all clinical data in the UCLA system since the implementation 

of electronic health records in 2006. The initial dataset contained information 

from all admissions with start dates from January 2006 through November 2016 

to either hospital for patients ≥18 years of age and at least one positive culture 

from any source (blood, urine, sputum, wound cultures, or other fluids). 

 Since the endpoint of this analysis was prediction of development of the 

first aminoglycoside non-susceptible isolate, once a patient had a culture growing 

an organism with non-susceptibility to the antibiotic in question, defined using 

Clinical and Laboratory Standards Institute (CLSI), breakpoints current to the 

year of testing, all cultures from that patient occurring at a later time than the 

original culture were removed from the dataset. Since gentamicin and tobramycin 

had significant overlap in resistance patterns and neither drug was consistently 

more effective than the other, gentamycin and tobramycin resistance were 

treated as a single entity, with an organism treated as GTR if it had resistance to 

either gentamicin or tobramycin. 

 Routine susceptibility testing was performed by the CLSI reference broth 

microdilution method (BMD), using panels prepared in-house. Only data from 

2011 and onwards were used in this study, as a changeover in clinical data 

warehousing methods corresponded to significantly more robust clinical 
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information after that time. All antimicrobial susceptibility data were interpreted 

using CLSI breakpoints current to the year of testing. Isolates with intrinsic non-

susceptibility to the studied antibiotics were included in the analysis as non-

susceptible cultures. 

 Predictor variables were chosen on the basis of prior studies, as well as 

those with biologic plausibility that were readily obtained from the medical record. 

Risk factors were identified in the literature through a partially structured search 

of PubMed and Google Scholar. For PubMed, the initial search used the phrase: 

(aminoglycoside OR gentamicin OR tobramycin OR amikacin) AND (resist* OR 

non-suscept* OR suscept* OR nonsuscept* OR sensiti* OR non-sensiti* OR 

nonsensiti*) AND (risk OR predict* OR protec*). For Google Scholar, the initial 

search used the phrase: (aminoglycoside | gentamicin | tobramycin | amikacin) 

(resist* | non-suscept* | nonsuscept* | suscept* | sensiti* | non-sensiti* | 

nonsensiti*) (risk factors | predict* | protect*). Once initial articles were identified, 

the references cited in those articles were also explored iteratively. 

 Data collected for each patient included admission hospital, days since 

admission, location prior to admission (home vs. long-term care facility or other 

hospital), demographic information, comorbidities (grouped into categories based 

on Elixhauser score designations),57 laboratory results from the date of the 

culture, vital signs on the date the culture was collected (maximum temperature, 

heart rate, and respiratory rate, and minimum blood pressure), vital signs from 

initial hospital presentation, oxygen/ventilation method, presence of a 

tracheostomy, presence of urinary catheter, administration of antibiotics and 
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other selected medications (vasopressors, probiotics, blood products, 

immunosuppressants, and acid suppressants), and culture source. 

 Administration of antibiotics and the medications listed above was coded 

as the number of days since last receipt of the medication, Winsorized to a 

maximum value of 100 (received within 24 hours of the time of culture = 0, never 

received was coded as 100 days since receipt). “Anti-MRSA” agents refers to 

vancomycin, linezolid, and daptomycin, as these were used at our institution in 

cases of suspected hospital-acquired MRSA. Receipt of antibiotics were by any 

route, including oral, intravenous, and inhaled. An infection was coded as 

“hospital acquired” if the culture was submitted to the laboratory >48 hours after 

the time of first presentation to the hospital. The construct of advanced 

ventilatory support includes patients receiving either non-invasive or invasive 

mechanical ventilation. 

 In cases where laboratory tests were not performed before cultures were 

sent (typically at the beginning of a patient’s admission), the first set of laboratory 

results were used for that patient, provided they were performed on specimens 

collected within 24 hours of culture positivity. For laboratory tests not typically 

performed daily (e.g., liver function tests, measures of coagulation, and 

protein/prealbumin), the most recent result within a 48-hour period prior to culture 

positivity was used. 

 To facilitate model interpretability, some linear variables were 

recategorized as binary variables using cutoffs. Various cutoffs were tested 

against each other in the final model (e.g. 30 vs. 60 vs. 90 days since receipt of 
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last antibiotic), and the cutoff that led to the highest c-statistic was chosen for 

inclusion in the scoring system. 

 

Statistical Analysis 

 Two separate analyses were performed, one comparing all gent/tobra-

sensitive GNRs (GTS-GNR) against GTR-GNR, and one comparing amikacin-

susceptible GNR (AmS-GNR) against AMR-GNR. These analyses were chosen 

to aid decision at the point of initial antibiotic choice, when the consequences for 

inappropriate antibiotic therapy are the greatest.6,10,12,66 The measured variables 

in each case were compared between the cases and controls by a two-sided 

Mann-Whitney U test, Student’s t-test, or chi-squared test, as appropriate. In 

each case, after bivariate associations were examined, variables with p<0.10 or 

strong biologic plausibility were included in a stepwise forward model selection 

procedure to create a logistic regression model for each analysis. Only complete 

cases were included in model selection. Model discrimination was assessed with 

area under the receiver operating characteristic curve (c-statistic), and models 

were compared by chi-squared test if they were nested, or Akaike information 

criterion if they were not. 

 The steps of the model selection strategy are detailed in Appendix C. In 

each case, the predictor variables were divided into several categories, 

comprising medical comorbidities, demographics (age, gender, race, location 

prior to admission, and social history), laboratory variables, indwelling devices, 

and received medications. Vital signs as a group lacked sufficient explanatory 
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power to be included in the model. Model selection occurred in stages, with each 

stage involving either the introduction of a new category of predictor, or the 

combination of a new category with prior models. At each stage, candidate 

variables from the chosen new category (defined as those with p < 0.05 on 

bivariate analysis or those with p < 0.10 with support from prior literature) were 

added to an initial model, and those that became non-significant in the 

multivariate model were dropped. Next, variables were iteratively dropped in a 

backwards selection process until parsimony was achieved. A parsimonious 

model was defined as the model with the smallest set of predictors in which 

dropping additional predictors resulted in a substantial drop in AUROC. A 

substantial drop in AUROC was defined as a decrease of at least 0.02, and a 

decrease that was larger by a factor of two than the decrease in AUROC with 

dropping the prior, less explanatory variable. In situations with two highly 

correlated variables that related to closely related constructs (for example, 

whether a patient was currently ventilated and whether they were ventilated at 

any point during the index hospitalization), the variable with less explanatory 

power was dropped, as measured by change in AUROC. The exceptions to the 

above process were some laboratory values, as there were a large number of 

laboratory values that were significant at p < 0.05 on bivariate analysis despite 

not having a clinically significant difference between the resistant and non-

resistant groups. In these cases, the laboratory values with p < 0.05 were added 

individually to the final model to assess if they contributed significantly to the 

explanatory power (as defined by AUROC increase of 0.02); none of them did, 
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and none were included. 

 For GTR-GNR, model selection began with the list of relevant medical 

comorbidities. Once this list was pared to a parsimonious model, demographic 

information was added and the model was pared again (Table C-1). Next, a 

model was constructed using only laboratory variables and, once pared, this 

model was combined with the final model from the previous table (Table C-2). 

Finally, a model was constructed using recently administered medications, and 

this was pared and combined with the previous predictors (Table C-3). Indwelling 

devices did not have sufficient explanatory power to contribute to the multivariate 

model when combined with the other predictors. 

 For AmR-GNR, model selection began with the list of relevant medical 

comorbidities. Once this list was pared to a parsimonious model, demographic 

information was added and the model was pared again (Table C-5). Next, 

relevant indwelling devices were added to the model and the model was pared 

(Table C-6). Then, a model was constructed using only laboratory variables and, 

once pared, this model was combined with the final model from the previous 

table (Table C-7). Finally, a model was constructed using recently administered 

medications, and this was pared and combined with the previous predictors 

(Tables C-8). 

 For the combined model, three categories were created - susceptible to all 

aminoglycosides, GTR but not AmR, and AmR. If an isolate was non-susceptible 

to amikacin but susceptible to gent/tobra, it was classified as AmR, as though it 

were also sensitive to gent/tobra; these isolates comprised <3% of the total AmR 
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isolates. Multinomial and ordinal logistic regression models were then fitted 

predicting all three outcome categories, and these models were tested against 

each other by AIC. The Brant test was used to determine if the proportional odds 

assumption held for the ordinal model. All analyses were performed using the 

Stata statistical software package, version 14.2.58 

 

Results 

 The complete dataset included 26,154 GNR isolates from 12,516 patients, 

6,699 (25.6%) of which were GTR, and 2,467 (9.4%) of which were AmR. Since 

only complete cases were analyzed for the multivariate model, the final model for 

ER comprised 12,457 cultures, 1,779 (14.3%) of which were GTR-GNR, and the 

final model for AmR comprised 12,062 cultures, 532 (4.4%) of which were AmR-

GNR. The multinomial model comprised 12,062 cultures, 1,973 (16.4%) of which 

were GTR-GNR but not AmR-GNR, and 532 (4.4%) of which were AmR-GNR. 

 The majority of GTR-GNR were Escherichia species, while the most 

common GTS-GNR were Escherichia and Pseudomonas species; the most 

common AmR-GNR were Stenotrophomonas species (which have intrinsic 

resistance), while the most common AmS-GNR were Escherichia species (Table 

5-1). Respiratory culture source was predictive of both GTR-GNR and AmR-

GNR, while urinary source was predictive of both GTS-GNR and AmS-GNR 

(Table 5-2). 

 

Bivariate Analyses 
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 Selected bivariate associations are reported in Table 5-3. Male sex and 

Black American race were significantly associated with both GTR and AmR. The 

most strongly associated comorbidities associated with both GTR and AmR were 

cystic fibrosis and the Elixhauser score categories of weight loss and chronic 

pulmonary disease. In general, medical comorbidities were more strongly 

associated with GTR than AmR, while measures of disease severity (longer 

length of stay, higher white blood cell count, presence of septic shock, and 

presence of invasive ventilation or devices) were more strongly associated with 

AmR than GTR. Non-hematologic laboratory values were inconsistently 

associated with either resistance pattern. Consistent with prior literature, recent 

administration of aminoglycosides70,72-74 and other antibiotics71,75 was predictive 

of both GTR and AmR.  

 

Multivariate Analyses 

 Many of the variables that were significant on bivariate analysis were 

strongly co-linear, and thus were categorized into our model as three major 

constructs representing chronic illness, antibiotic exposure, and acute illness. To 

facilitate model interpretability, the variables representing days since receipt of 

medications were dichotomized to receipt within the prior 30 days vs. not; this did 

not significantly affect model fit. Hemoglobin was tested at multiple thresholds 

from 7-13g/dL; a cutoff of 11g/dL was found to have the best model 

discrimination. 

 For the model predicting GTR-GNR, the predictors in the final model were 
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presence of weight loss (as measured by the Elixhauser Score category),57 

admission from another medical or long-term care facility, hemoglobin <11, 

receipt of any carbapenem in the prior 30 days, and receipt of any 

fluoroquinolone in the prior 30 days; this model had a c-statistic of 0.63 (Table 5-

4a). 

 For the model predicting AmR-GNR, the predictors in the final model were 

somewhat overlapping: diagnosis of cystic fibrosis, male sex, admission from 

another medical or long-term care facility, ventilation at any point prior to culture 

during the index hospitalization, receipt of any carbapenem in the prior 30 days, 

and receipt of any anti-MRSA agent in the prior 30 days; this model had a c-

statistic of 0.74 (Table 5-4b). 

 Treating each multivariate model as a score with one point assigned for 

each of the items in the model, we created a potentially user-friendly tool to 

predict the probability of GTR and AmR. Figures 5-1 and 5-2 show the positive 

predictive value at each score total for GTR and AmR, respectively, and 

demonstrate that higher score is associated with higher likelihood of resistance. 

Rates of GTR range from 10.2% for a score of 0 to 32.1% at a score of 4+. Rates 

of AmR range from 0.7% at a score of 0 to 17.3% at a score of 5; there were 0 

cases with a score of 6. Tables 5-5 and 5-6 show the fraction of GNR with each 

score for gentamicin/tobramycin and amikacin resistance, respectively, and the 

positive predictive value for resistance at each score. There were no isolates with 

an AmR-GNR score of 6. Only 5 GNR isolates had a GTR-GNR score of 5, 1 of 

which was resistant. Due to the small sample size at this score and the unusually 
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low rate observed in that small sample, the GTR-GNR scores of 4 and 5 were 

combined into a single estimate for the figure and final scoring system. 

 Alternate scoring systems were tested for each model, with separate 

models assigning scoring weights in proportion to the model coefficients and in 

proportion to the change in odds ratios. In each case the range of predicted 

probabilities of resistance was similar between the upper and lower bounds of 

the score, but there was more granular resolution of those probabilities as a 

result of a larger number of possible score totals. A flat scoring system (one point 

per factor) was ultimately chosen for ease of interpretability by providers. 

 

 

Multinomial and Ordinal Logistic Regression 

 The risk factors for the GTR-GNR and AmR-GNR models were combined 

to create an (unordered) multinomial logistic regression and an ordinal logistic 

regression model predicting the three categories of aminoglycoside-susceptible, 

gent/tobra-resistant-amikacin-susceptible, and amikacin-resistant. By AIC, the 

multinomial model significantly outperformed the ordinal model. The Brant test of 

the proportional odds assumption indicated that the ordinal model did not 

appropriately describe the data. Taken together, these indicate that the risk 

factors for GTR-GNR differ from those for AmR-GNR in kind, and not merely 

degree. 

 

Discussion 
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 Inappropriate initial antibiotic treatment is associated with substantially 

increased cost and risk for mortality,6,10,12,66 and appropriate antibiotic treatment 

is paramount in mitigating these risks. Prior studies of risk factors for AR among 

GNRs have largely focused on the family Enterobacteriaceae, which includes 

many commonly treated GNRs, but excludes several clinically significant 

species, including Pseudomonas and Acinetobacter. Additionally, many of these 

studies have been limited in scope (analyzing <200 total patients), and none 

have created a predictive scoring system.70-72,75 Our scores can be calculated by 

humans at the time of decision-making and potentially more accurately reflects a 

patient’s risk for aminoglycoside-resistant organisms than a hospital-wide or unit-

specific antibiogram, which provides a flat percent observed susceptibility for a 

given organism in the prior year, and is not useful for management of rare 

events. All information used in the models was extracted directly from the 

medical record without any direct examination of individual patient records, 

allowing this score to potentially be calculated automatically. 

 Our bivariate analysis is consistent with prior studies, confirming 

associations between AR and receipt of mechanical ventilation and presence of 

various indwelling devices,71,75 longer hospital stay and more severe illness at 

the time of culture,72 and recent exposure to various antibiotics.70-73,75 While it is 

improbable that exposure to all antibiotics mechanistically leads to development 

of AR, some of these exposures likely proxy recent infection with MDR GNRs, 

while anti-MRSA receipt proxies recent concern for sepsis, as nearly all patients 

with suspicion for sepsis receive at least one dose of vancomycin at our 
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institution. The conceptual model described in Chapter 2 suggests that acute 

illness does not play a large role in determining risk for recovery of a non-

susceptible isolate on culture, and that the majority of risk occurs as a result of 

chronic illness and recent exposure to antibiotics. This analysis supports that 

conclusion in several ways. First, vital signs have limited predictive power, and 

while some variables related to blood pressure are significant on bivariate 

analysis (Table 5-3), none were included in the final model. Secondly, while 

laboratory values individually have predictive power on bivariate analysis (Table 

5-3), all except for hemoglobin drop out when added to prior variables in the 

analysis (Tables C-2 and C-7). The only laboratory value with substantial 

predictive power is hemoglobin (which is included in the final model for GTR-

GNR); low hemoglobin in this context is likely more related to chronic anemia 

than acute blood loss. Variables associated with chronic illness feature 

prominently in the models. In both models, chronic weight loss (which is 

associated chronic disease and malnutrition) and cystic fibrosis are significant 

medical comorbidities (Tables C-1 and C-5). In the GTR-GNR model, weight loss 

features in the final specification; in the AmR-GNR model, cystic fibrosis features 

in the final specification. The final model for GTR-GNR comprises recent 

antibiotic exposure and markers of chronic illness: weight loss, anemia, and 

transfer from another medical facility (Table C-4). The final model for AmR-GNR 

comprises male gender, recent antibiotic exposure, cystic fibrosis, transfer from 

another medical facility, and ventilation during the current hospital stay. While 

ventilation during the current hospital stay in both cases could proxy both acute 
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and chronic illness, the majority of other risk factors in the model are more 

associated with chronic illness as opposed to acute decompensation. 

 The discrimination ability for the GTR-GNR model is more limited than for 

the AmR-GNR model, likely because the populations susceptible to GTS-GNR 

and GTR-GNR are relatively similar. GTR is substantially more common than 

AmR, and infections by these organisms are likely driven more by random 

chance than is acquisition of an AmR organism. The final model for AmR-GNR 

risk contains variables that are more relevant to chronic respiratory failure and 

prior severe infections, which are likely indicative of exposure to multiple 

antibiotics and repeated infections with organisms capable of developing AmR. 

Additionally, the combined analysis indicates that the risk factors, while 

overlapping, are significantly different for the two resistance patterns. The model 

discrimination for the AmR-GNR model is substantially better than for the GTR-

GNR model, indicating that the populations susceptible to AmR (vs. AmS) GNR 

infections differ in more identifiable ways; as such, the model is more able to rule 

out AmR-GNR infections at lower scores, with a <5% risk for AmR-GNR infection 

at scores <3.  

 Our study has limitations. It examines patients from only two hospitals 

within a single hospital system. After eliminating duplicate cultures, 

approximately 60% of GTR and AmR-GNR cases could not be included in the 

final analysis due to a lack of complete data across the relevant domains. 

Additionally, we only had access to data from inpatient hospitalizations within our 

hospital system, potentially excluding relevant information from outpatient 
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encounters or treatment at other facilities. These limitations reflect the real-world 

data that is available at the time of decision-making, or for eventual integration of 

a similar score into an electronic health record. However, it is the largest 

investigation to date in terms of subject number and spans a period of six years, 

allowing us to examine far more potential explanatory variables than prior 

investigations of risk factors for development of GTR-GNR and AmR-GNR. By 

performing a cohort study of patients with positive cultures, we eliminate potential 

selection bias in choosing controls and strengthen the validity of observed 

associations.60 

 While the discriminatory capacity of the GTR-GNR model is limited, the 

AmR-GNR model can effectively rule out AmR risk (<5% chance) at scores <2, 

allowing reasonably confident treatment with amikacin as a first option without 

waiting for definitive amikacin susceptibility testing, which can take up to several 

days. 

 Our study demonstrates the potential to harness currently available 

information from an existing electronic medical record to inform clinical decision-

makers. Our simplified scoring system clearly outperformed the traditional 

antibiogram approach of offering a single hospital-wide percentage rate of 

susceptibility, by creating an individualized score than can be used and 

interpreted by individual clinicians without computer assistance. In the current era 

of data intensive medical care, we should harness all available information to 

better manage our patients. Further research will focus on validating this score in 
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other populations, and analysis of cost-benefit thresholds for initiating specific 

antibiotic regimens in cases of uncertainty. 
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Figure 5-1: Positive predictive value for gentamicin/tobramycin resistance at 

each score value for gram-negative rods 
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Figure 5-2: Positive predictive value for amikacin resistance at each score value 

for gram-negative rods 
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Table 5-1: Distribution of organisms for GTS-GNR, GTR-GNR, AmS-GNR, and 

AmS-GNR (p < 0.001 for X2 test for both ER and AmR) 

organism	 GTS	 GTR	 AmS	 AmR	
Acinetobacter	 1.0%	 6.5%	 1.0%	 14.5%	
Enterobacter	 9.5%	 1.2%	 9.0%	 0.2%	
Escherichia	 34.9%	 33.4%	 40.7%	 4.6%	
Klebsiella	 17.8%	 13.4%	 18.4%	 15.4%	

Pseudomonas	 21.7%	 13.6%	 13.9%	 14.1%	
Stenotrophomonas	 0.0%	 16.0%	 0.0%	 43.5%	

Other	 15.1%	 15.9%	 17.0%	 7.7%	
 

 

Table 5-2: Distribution of culture source for GTS-GNR, GTR-GNR, AmS-GNR, 

and AmS-GNR (p < 0.001 for X2 test for both ER and AmR) 

Source	 GTS	 GTR	 AmS	 AmR	
Blood	 8.8%	 9.3%	 8.9%	 9.1%	
Urine	 46.2%	 34.3%	 48.4%	 10.8%	

Respiratory	 24.0%	 38.9%	 22.8%	 62.5%	
External	 7.8%	 7.6%	 7.5%	 7.5%	
Other	 13.2%	 10.0%	 12.4%	 10.2%	
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Table 5-3: Selected bivariate associations 

	
	 GTS-GNR	 GTR-GNR	

	
AmS-GNR	 AmR-GNR	

	
n	=	

21,540	 4,087	
p-
value	 23,687	 1,315	

p-
value	

Age	 64.2(19.1)	 65.6(18.7)	 <0.001	 64.7(19)	 62.4(19)	 <0.001	

Male	Sex	 45.4%	 49.2%	 <0.001	 44.6%	 56.7%	 <0.001	

Race	
	 	

<0.001	
	 	

0.011	

White	 53.7%	 50.4%	
	

52.5%	 53.8%	
	Asian	 9.0%	 7.5%	

	
8.9%	 8.0%	

	Black	 11.1%	 13.7%	
	

11.5%	 13.0%	
	Latino	 20.0%	 20.8%	

	
20.8%	 17.6%	

	Other	 6.1%	 7.6%	
	

6.4%	 7.7%	
	BMI	 26(6.7)	 25.5(6.8)	 <0.001	 26.1(6.8)	 25.1(6.6)	 <0.001	

Admitted	From	
Healthcare	Facility	 14.2%	 28.5%	 <0.001	 16.2%	 25.7%	 <0.001	

Hospital	(RRMC	vs.	SMH)	 65.6%	 51.5%	 <0.001	 63.2%	 53.6%	 <0.001	

Log	Days	To	Culture	
0.44	
[-1.51,2.11]	

0.57	
[-1.41,2.35]	 <0.001	

0.36	
[-1.57,2.11]	

1.32	
[-0.58,2.69]	 <0.001	

Hospital	Acquired	 43.0%	 43.2%	 0.841	 42.1%	 55.5%	 <0.001	
In	ICU	At	The	Time	Of	
Culture	 18.4%	 18.7%	 0.656	 17.8%	 25.8%	 <0.001	
Any	ICU	Stay	During	Index	
Hosp.	 36.2%	 41.6%	 <0.001	 35.7%	 56.6%	 <0.001	
Presence	of	Indwelling	
Urinary	Catheter	 42.8%	 50.3%	 <0.001	 43.8%	 65.8%	 <0.001	
Ventilated	During	Index	
Hosp.	 28.6%	 38.7%	 <0.001	 28.5%	 53.4%	 <0.001	
Tracheostomy	Present	On	
Day	Of	Culture	 10.5%	 17.8%	 <0.001	 10.7%	 21.9%	 <0.001	
Tracheostomy	Present	On	
Admission	 4.5%	 10.8%	 <0.001	 4.8%	 13%	 <0.001	
Advanced	Ventilation	On	
Day	Of	Culture	 21%	 28.9%	 <0.001	 20.8%	 41.8%	 <0.001	

Elixhauser	Score	 15[6,26]	 19[9,29]	 <0.001	 16[6,26]	 21[11,30]	 <0.001	

Congestive	Heart	Failure	 19.4%	 24.9%	 <0.001	 20.3%	 25.6%	 <0.001	

Arrhythmia	 40.9%	 49.5%	 <0.001	 42%	 52.4%	 <0.001	

Valvular	Disease	 23.4%	 27.2%	 <0.001	 24%	 29.6%	 <0.001	
Pulmonary	Vascular	
Disease	 15.6%	 19.1%	 <0.001	 16.1%	 22.1%	 <0.001	
Peripheral	Vascular	
Disease	 22.8%	 26.7%	 <0.001	 23.2%	 28%	 <0.001	

Paralysis	 7.5%	 9.4%	 <0.001	 7.9%	 8.7%	 0.292	

Neurologic	Disease	 27.6%	 37.9%	 <0.001	 28.8%	 38.9%	 <0.001	
Chronic	Pulmonary	
Disease	 23.6%	 31.6%	 <0.001	 24.6%	 35.5%	 <0.001	

Renal	Disease	 32.2%	 39.2%	 <0.001	 33.5%	 39.6%	 <0.001	

Liver	Disease	 23.8%	 25.4%	 0.021	 24.5%	 27.9%	 0.005	

Lymphoma	 4.1%	 4.4%	 0.313	 4.1%	 4.9%	 0.152	
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Metastatic	Cancer	 10.6%	 8.2%	 <0.001	 10.1%	 9.7%	 0.687	

Non-Metastatic	Cancer	 23.4%	 18.8%	 <0.001	 22.8%	 20.6%	 0.067	

Coagulopathy	 25%	 30.7%	 <0.001	 26%	 32.9%	 <0.001	

Weight	Loss	 17.2%	 25.7%	 <0.001	 18%	 30.5%	 <0.001	

Electrolyte	Disorder	 58.7%	 66.8%	 <0.001	 60.3%	 70%	 <0.001	

Deficiency	Anemia	 12.8%	 14.9%	 <0.001	 13.3%	 13.8%	 0.635	

Drug	Abuse	 6.7%	 6.3%	 0.330	 6.8%	 6.8%	 0.933	

Depression	 22.5%	 25.5%	 <0.001	 23.4%	 25%	 0.179	

Solid	Organ	Transplant	 16.9%	 17.2%	 0.669	 17.3%	 18.3%	 0.378	

Bone	Marrow	Transplant	 1.3%	 1.5%	 0.255	 1.2%	 1.9%	 0.018	

Renal	Failure	 13.5%	 17.7%	 <0.001	 14.5%	 18.3%	 <0.001	

Cystic	fibrosis	 0.8%	 2.3%	 <0.001	 0.7%	 5.5%	 <0.001	

HIV	 0.8%	 0.8%	 0.990	 0.8%	 0.8%	 0.988	

Alcohol	User	 23.3%	 17.3%	 <0.001	 22%	 19.3%	 0.077	

Tobacco	User	 5.9%	 5.1%	 0.123	 5.7%	 4.5%	 0.154	
Vital	Signs	On	Day	Of	
Culture	

	 	 	 	 	 	Maximum	Temperature	 99.6(1.6)	 99.5(1.6)	 0.026	 99.6(1.6)	 99.5(1.6)	 0.415	

Maximum	Pulse	 102.7(22.4)	 102.9(22.4)	 0.635	 102.5(22.5)	 105.9(22.3)	 <0.001	
Maximum	Respiratory	
Rate	 26.7(9.5)	 27.5(9.7)	 <0.001	 26.7(9.5)	 29.4(10.3)	 <0.001	

Minimum	SBP	 102.7(21.5)	 100.6(22.5)	 <0.001	 102.7(21.7)	 97.3(22.1)	 <0.001	

Minimum	DBP	 58.8(12.2)	 57.9(13)	 <0.001	 58.7(12.4)	 57(13)	 <0.001	

Minimum	MAP	 73.4(14.2)	 72(15)	 <0.001	 73.3(14.3)	 70.4(14.7)	 <0.001	

Septic	Shock	 18.9%	 18.4%	 0.392	 18.9%	 21.5%	 0.019	

Hypotensive	 19.7%	 19%	 0.342	 19.6%	 22.1%	 0.028	

Labs	On	Day	Of	Culture	 91.2(21.7)	 92.7(22)	 0.002	 91.3(21.7)	 94.2(21.7)	 <0.001	

WBC	 12.4[8.7,17.1]	 12.7[8.8,17.4]	 0.061	 12.3[8.7,17]	
13.4	
[9.4,18.5]	 <0.001	

Hemoglobin	 10[8.7,11.6]	 9.7[8.5,11.1]	 <0.001	 10[8.7,11.6]	 9.3[8.3,10.6]	 <0.001	

Hematocrit	
30.7	
[26.8,35.3]	

29.9	
[26.3,34.1]	 <0.001	

30.7	
[26.7,35.2]	

29	
[25.8,32.8]	 <0.001	

Platelets	 206[134,289]	 213[129,302]	 0.046	 205[133,288]	 211[119,314]	 0.224	

Sodium	 137(6)	 138(6)	 0.172	 137(6)	 138(6)	 <0.001	

Potassium	 4.1(0.6)	 4.1(0.6)	 <0.001	 4.1(0.6)	 4.1(0.6)	 0.398	

Chloride	 103(6)	 102	(7)	 0.107	 103(7)	 102	(7)	 0.301	

Bicarbonate	 24.4(4.6)	 24.8(5.1)	 <0.001	 24.4(4.6)	 25.5(5.5)	 <0.001	

Anion	Gap	 10.4(4)	 10.3(4.1)	 0.414	 10.4(4)	 10.1(4.3)	 0.014	

Creatinine	 1.4(1.3)	 1.5(1.4)	 <0.001	 1.4(1.3)	 1.4(1.3)	 0.466	

BUN	 27.9(22.4)	 32.2(26.3)	 <0.001	 28.4(22.7)	 32.6(28)	 <0.001	

GFR	 71[40,100]	 68[36,100]	 <0.001	 70[39,100]	 72[37,100]	 0.160	

Glucose	 135(57)	 136(61)	 0.480	 135	(59)	 135(54)	 0.686	

Magnesium	 1.7(0.3)	 1.7(0.4)	 0.006	 1.7(0.3)	 1.8(0.4)	 <0.001	

Calcium	 8.6(0.8)	 8.6(0.9)	 0.565	 8.6(0.8)	 8.6(1.1)	 0.248	

Phosphorus	 3.3(1.2)	 3.4(1.2)	 0.031	 3.3(1.1)	 3.4(1.2)	 0.036	
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AST	 68(352)	 65(328)	 0.735	 66(335)	 77(403)	 0.286	

ALT	 51	(190)	 49(167)	 0.503	 50(175)	 51(156)	 0.846	

ALK	 143(161)	 153(163)	 0.002	 143(156)	 164(187)	 <0.001	

aPTT	 22.1(14.5)	 23.5(15.5)	 <0.001	 22.3(14.9)	 24.8(16.5)	 <0.001	

INR	 1.3(0.6)	 1.4(0.7)	 0.004	 1.3(0.6)	 1.4(0.6)	 0.055	

Lactate	 20.1(21.8)	 19.6(20.2)	 0.338	 20.3(21.6)	 19.4(21.8)	 0.275	

D-dimer	 2972(2524)	 2976	(2532)	 0.976	 3002(2536)	 3051(2684)	 0.821	

Prealbumin	 14.4(8.1)	 14.2(7.8)	 0.462	 14.3(8.1)	 13.9(7.7)	 0.212	

Protein	 6.1(1)	 6.1(1.1)	 0.284	 6.1(1)	 6(1.1)	 <0.001	

Fibrinogen	 328(180)	 328(179)	 0.985	 323(177)	 337(191)	 0.114	

Days	Since:	
	 	 	 	 	 	Last	Antibiotic	 0[0,9]	 0[0,4]	 <0.001	 0[0,9]	 0[0,0]	 <0.001	

Last	Aminoglycoside	 100[100,100]	 100[100,100]	 <0.001	 100[100,100]	 100[100,100]	 <0.001	

Last	Carbapenem	 100[100,100]	 100[47,100]	 <0.001	 100[100,100]	 100[4,100]	 <0.001	

Last	Fluoroquinolone	 100[100,100]	 100[50,100]	 <0.001	 100[100,100]	 100[21,100]	 <0.001	

Last	Penicillin	 100[2,100]	 100[3,100]	 0.150	 100[3,100]	 60[1,100]	 <0.001	

Last	Anti-MRSA	 100[0,100]	 24[0,100]	 <0.001	 100[0,100]	 4[0,100]	 <0.001	

Last	Colistin	 100[100,100]	 100[100,100]	 <0.001	 100[100,100]	 100[100,100]	 <0.001	

Last	Aztreonam	 100[100,100]	 100[100,100]	 <0.001	 100[100,100]	 100[100,100]	 <0.001	

Last	Beta-lactam	 0[0,100]	 0[0,79.5]	 0.089	 0[0,100]	 0[0,18]	 <0.001	

Last	Acid	Suppressant	 0[0,100]	 0[0,100]	 <0.001	 0[0,100]	 0[0,2]	 <0.001	

Last	Probiotic	 100[100,100]	 100[100,100]	 <0.001	 100[100,100]	 100[100,100]	 <0.001	

Last	Steroid	 100[60,100]	 100[22.5,100]	 0.090	 100[61,100]	 100[4,100]	 0.002	

Last	Chemotherapy	 100[100,100]	 100[100,100]	 0.233	 100[100,100]	 100[100,100]	 0.015	

Last	Immunosuppressant	 100[2,100]	 100[0.5,100]	 0.312	 100[2,100]	 100[0,100]	 0.021	

Last	Blood	Product	 100[100,100]	 100[100,100]	 0.001	 100[100,100]	 100[28,100]	 <0.001	

 

Normally-distributed outcomes are reported as mean(standard deviation), non-

normally-distributed outcomes are reported as median[interquartile range]. Binary 

outcomes are reported as percent positive. 

BMI: Body Mass Index, RRMC: Ronald Reagan Medical Center, SMH: Santa 

Monica UCLA Hospital, ICU: Intensive Care Unit, Hosp.: Hospitalization, 

Advanced Ventilation: Either non-invasive mask ventilation or endotracheal 

intubation, WBC: White Blood Cell count, BUN: Blood Urea Nitrogen, GFR: 

Race-adjusted Glomerular Filtration Rate, AST: Aspartate Aminotransferase, 
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ALT: Alanine Aminotransferase, ALK: Alkaline Phosphatase, aPTT: Activated 

Prothrombin Time, INR: International Normalized Ratio 
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Table 5-4: Model specifications for GTR-GNR (4a) and AmR-GNR (4b) 

GTR-GNR Coefficient 
Standard 
Error p-value 

Weight Loss 0.41 0.07 <0.001 
Facility prior to admission 0.84 0.06 <0.001 
Hemoglobin <11 g/dL 0.23 0.06 <0.001 
Carbapenems within 30 days 0.49 0.07 <0.001 
Fluoroquinolones within 30 
days 0.38 0.07 <0.001 

    
AmR-GNR Coefficient 

Standard 
Error p-value 

Cystic Fibrosis 2.04 0.21 <0.001 
Male 0.47 0.10 <0.001 
Facility prior to admission 0.43 0.11 <0.001 
Ventilated during 
hospitalization 0.70 0.10 

 
<0.001 

Carbapenems within 30 days 0.61 0.10 <0.001 
Anti-MRSA agent within 30 
days 0.53 0.10 <0.001 
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Table 5-5: Percentage of GTR-GNR having each score and percentage resistant 

at each score 

Score	
Percent	of	total	
organisms	with	score	

Resistance	rate	
at	score	

0	 22.8%	 9.0%	
1	 42.5%	 11.2%	
2	 23.6%	 18.8%	
3	 9.1%	 26.5%	
4	 2.0%	 32.4%	
5	 0.0%	 20.0%	

 

Table 5-6: Percentage of AmR-GNR having each score and percentage resistant 

at each score 

Score	
Percent	of	total	
organisms	with	score	

Resistance	rate	
at	score	

0	 26.1%	 0.7%	
1	 29.5%	 3.1%	
2	 22.0%	 4.9%	
3	 14.7%	 8.8%	
4	 6.6%	 11.4%	
5	 1.2%	 17.3%	
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Chapter 6 - The cost-effectiveness of meropenem versus 

colistin in the initial empiric treatment of low and high 

acuity patients presenting with undifferentiated 

infections 

 

Stefan E. Richter, Brennan Spiegel, Daniel Z. Uslan, Karol Watson, Jack 

Needleman 
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Abstract 

 Infections due to carbapenem-resistant gram-negative rods (CR-GNR) are 

increasing in frequency and result in high morbidity and mortality. The optimal 

empiric antibiotic strategy for patients with undifferentiated infections depends on 

the frequency of resistance, but analysis of specific thresholds for clinical 

decision-making have been poorly studied. To determine which factors have the 

largest effect on initial antibiotic choice, we performed a decision analysis on two 

theoretical cohorts of patients presenting for treatment with uncharacterized 

infections, one with low risk for mortality, who would have been admitted to a 

regular hospital ward (low acuity), and one with high risk for mortality (high 

acuity), who would have been admitted to the intensive care unit (ICU) with 

severe sepsis or septic shock. We compared two strategies of treating 

empirically with either meropenem or colistin and performed sensitivity analyses 

to determine which strategy was preferable in terms of cost (low acuity) and 

avoidance of mortality (high acuity strategy) under several willingness-to-pay 

thresholds. Under base case assumptions, the meropenem-first strategy 

dominated in low acuity patients at a meropenem resistance rate of up to 10.9%. 

In high acuity patients, the colistin strategy was preferable with a willingness-to-

pay per avoided death as low as $46,231; at $468,750 per avoided death, the 

colistin-first strategy was preferable with meropenem resistance rates as low as 

5.5%. The relative cost difference between the two strategies was small in terms 

of overall health system impact, with the colistin-first strategy costing $2.83 per-

member per-year. 
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Introduction 

 Increasing prevalence of infections with multi-drug resistant organisms 

(MDROs) is responsible for increasing morbidity, mortality, and cost.1 In the US 

alone there are approximately 23,000 yearly attributable deaths and $50 million 

in yearly attributable costs from MDRO infections.2 Appropriate initial antibiotic 

therapy can decrease mortality3-9 and hospital length of stay,6,10-14 while overuse 

of broad-spectrum antibiotics has been linked with increased prevalence of 

MDROs.15-19 As such, the initial choice of antibiotic remains a challenging and 

high-stakes decision. 

 Carbapenem resistance among gram-negative rods (CR-GNRs) has been 

increasing over the past several decades.14,61-63 Infection with CR-GNR species 

is associated with higher mortality14,61,63,64 and hospital costs,14,62 although it 

appears that many of the adverse outcomes associated with CR-GNR are due to 

ineffective initial antibiotic therapy (IAT).4-7 As such, effective initial antibiotic 

therapy (EAT) is paramount to reducing adverse outcomes. 

 Since there are negative consequences to both over-  and under-

treatment with initial antibiotic choice, the optimal strategy will depend on the 

prevalence of resistant bacteria. In situations with low rates of resistance, using 

overly broad antibiotics potentially exposes patients to increased side effects, 

costs, and future rates of resistance, whereas in situations with low rates of 

resistance, insufficiently powerful initial antibiotic therapy risks undertreating the 

infection, with increased length of stay and mortality risk. The exact cutoffs for 
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prevalence of resistance that influence this decision have been insufficiently 

studied. 

 We focused our research on a specific question: which factors are key in 

influencing antibiotic strategy in patients with gram-negative infections when 

choosing between empiric therapy with meropenem vs. colistin? Since the 

payoffs appear to be different between low and high acuity infections, we 

constructed two models, one for each scenario, to address this question. 

 

Methods 

Model overview 

 Using decision-analysis software,77 we evaluated two hypothetical cohorts 

of patients presenting to hospital care for treatment of infection - one with low risk 

for mortality, who would have been admitted to a regular hospital ward and are 

referred to as the “low acuity” (LA) group, and one with high risk for mortality, 

who would have been admitted to the intensive care unit (ICU) with severe 

sepsis or septic shock, and are referred to as the “high acuity” (HA) group. 

Infections of various types (urinary tract infections, pneumonias, and bloodstream 

infections) were analyzed together as a single group since there were not 

sufficiently granular data for various infection types. The two separate 

populations were chosen because the risk for mortality and expected length of 

stay (LOS) have been shown to vary substantially depending on severity of 

infection. Specifically, literature has shown that the risk for mortality in LA 

infections is not substantially affected by timeliness of effective antibiotic 
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therapy,6,10,11 while the mortality risk for HA infections is substantially increased 

by delayed initiation of effective antibiotic therapy.3-9 

A simplified decision tree is shown in Figure 6-1. The trees representing the two 

scenarios were made with the following assumptions: 

- Patients were given one of two strategies: (1) Initial treatment with meropenem, 

with a conversion to colistin if the initial therapy was found to be ineffective on 

susceptibility testing, or (2) Initial treatment with colistin for all patients. 

- All patients will have a positive culture/susceptibility profile that allows guidance 

of future therapy. 

- Susceptibilities come back after 72 hours, and include colistin susceptibility. 

- Complications from therapy (renal injury, anemia, and encephalopathy) happen 

during the first 72 hours of therapy with a given antibiotic, if they are going to 

happen. 

- Patients will be treated with a total of seven days of effective therapy. If initial 

therapy is ineffective, they will receive three days of ineffective therapy followed 

by seven days of effective therapy. 

- In the case of colistin non-susceptibility, there is a single “secondary salvage” 

regimen with a fixed daily cost and no additional modeled rate of complications. 

In this model, this fixed cost represents the expected costs of any additional 

testing or complications from the secondary salvage regimen. 

- If there is a complication from initial meropenem therapy, there is no additional 

calculated risk for that same complication from colistin salvage therapy, or at 
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least no additional cost associated with having that same complication from 

colistin salvage therapy. 

- Costs are calculated as (cost per hospital day)*LOS + (cost per antibiotic 

day)*(length of therapy) + (cost of complication)*(presence of complication) 

- Complications from therapy do not lead to additional LOS as calculated in the 

model; instead, these costs (including costs for longer LOS) are captured by the 

total costs attributable to each complication as indicated in the literature. 

- Mortality is only modeled in the HA scenario, as there is insufficient evidence to 

suggest significantly increased mortality in LA patients with ineffective initial 

therapy. 

- Complications with an associated mortality risk add a flat percentage risk of 

death. 

- The model follows patients until hospital discharge or death. In order to avoid 

inappropriately censoring costs for patients who died, the expected cost of a 

patient who survives to hospital discharge in a given scenario is considered to be 

equivalent to the expected cost of a patient who died prior to hospital discharge. 

These assumptions were made to allow for a level of complexity that would 

hopefully approximate real clinical experience, without adding so many 

possibilities that the uncertainty from the estimates would render the conclusions 

suspect. 

 

Clinical Probability and Cost Estimates  

 Our models used probability and cost estimates derived from a review of 
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the medical literature. Costs were determined from a hospital-payer perspective. 

We derived base-case estimates from a search of English-language publications 

from January 2005 to the present using PubMed, targeting systematic reviews, 

meta-analyses, and cost-benefit/cost-effectiveness analyses addressing issues 

of expected costs and/or length of stay for patients presenting with UTIs, PNA, 

BSI, or unspecified infection type, with or without sepsis/septic shock, and the 

consequences of effective vs. ineffective initial antibiotic therapy. In order to get a 

pooled estimate for the base cost and length of stay (LOS) for the LA and HA 

types, a median value was chosen, weighted for the various types of infections. 

To determine the cost for a hospital day for LA and HA patients, the total cost per 

admission was divided by the expected LOS for correct therapy, on the 

assumption that the majority of cases in the literature were correctly treated. All 

costs were converted to 2017 dollars using medical CPI.78 We then varied each 

estimate over a wide range for the sensitivity analysis, as described below. Table 

6-1 lists the range in the literature, base estimate, range for sensitivity analysis, 

justification, and supporting references for each probability, cost, and LOS 

estimate. 

 Although many of the estimates in the models have multiple supporting 

references (Table 6-1), several have limited data. The rates of resistance to 

meropenem and colistin were taken from a database of cases at the authors’ 

main institution over the prior 8 years, and the range for resistance rates 

represents the upper and lower rates determined by clinical scoring systems for 

predicting these resistance rates. (Richter 2018, unpublished data) Actual 
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acquisition costs for antibiotic regimens are difficult to find in the literature, but 

available at our institution and were taken from the UCLA 2017 Antibiotic Guide. 

The upper limit on cost for the colistin regimen ($500/day) is meant to account for 

not only colistin, but also other potential similar regimens (such as novel drugs or 

drug combinations) and the expected value of associated testing and 

complications. The daily cost of salvage therapy is difficult to ascertain since 

there are no universally agreed-upon regimens to treat colistin non-susceptible 

GNR infections. A daily cost of $400 was chosen to cover the cost of the 

antibiotics, consultation fee by the Infectious Disease physicians necessary to 

administer such a regimen, and the expected value of additional tests and 

complications associated with the regimen. The incremental increase in cost for 

the complications of anemia and mental status changes come from a single 

paper79 that examined this exact question. The most comparable complication to 

drug-induced anemia was “Post-hemorrhagic and other acute anemia with 

transfusion”; since not all drug-associated anemia requires transfusion, a value of 

half the mean value listed in the paper was chosen as a reasonable estimate for 

the expected costs attributable to drug-associated anemia. The incremental 

increase in mortality from the complications of drug therapy (acute kidney injury, 

altered mental status, and anemia) are poorly studied in the literature. Of these, 

the best studied is acute kidney injury, although the majority of studies report 

large increases in mortality odds ratio (up to 3.7) since they include all types of 

kidney injury (including that requiring hemodialysis) and populations with 

relatively low mortality risk to begin with.80-82 Ultimately the value used in this 
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study was chosen to be an OR of 1.3 for mortality relative to the base-case septic 

patient, or an incremental 7% absolute risk for death, since this corresponded to 

the type of mild renal injury typically associated with adverse drug reactions. 

Delirium appears to be more associated with a risk for adverse outcomes than a 

direct cause,83 but a range of incremental absolute mortality increase of up to 5% 

was included in sensitivity analysis to account for uncertainty. Since there were 

no articles that directly addressed the question of increased incremental mortality 

risk from drug-associated anemia, a base-case estimate of 0% with a range of up 

to 5% in sensitivity analysis was chosen. Estimates with less certainty were 

varied over relatively larger ranges in the sensitivity analysis to account for the 

lack of precision in the initial estimates. 

 

Cost-Effectiveness Outcomes 

 To determine a reasonable value for willingness-to-pay (WTP) per avoided 

death in the HA model, we multiplied expected quality-adjusted life years 

(QALYs) after hospitalization for severe sepsis by WTP per QALY. As a 

sensitivity analysis, we used three WTP per QALY estimates corresponding to 

the bottom ($32,000/QALY), median ($75,000/QALY), and top of the range 

($200,000/QALY).  

 

Budget Impact Model 

 While cost-effectiveness analyses address the question of strategies for 

individual patients, they do not account for prevalence of the disease process or 



	

107	

for total costs to an institution. In some cases, expensive therapies can be 

justified if they are only used on small subsets of the population; conversely, the 

overall institutional cost of any given intervention is substantially higher if it is 

applied to a highly prevalent condition. As such, we created a budget impact 

model to analyze the total cost of each strategy in a hypothetical hospital system 

covering 100,000 patients, with the overall outcome being the difference in the 

per-member per-year (PMPY) cost for each initial strategy under the LA and HA 

scenarios. This is given by: 

(Average cost per patient for a given strategy)*(Yearly incidence of the 

presenting condition) 

where the presenting conditions were presentation with an infection with a gram-

negative rod either with or without accompanying severe sepsis. 

 

Sensitivity Analyses 

 Table 6-1 lists the base-case probability and cost estimates and the 

ranges used in sensitivity analyses. To test the sensitivity of the results to the 

assumptions of the estimates, a multivariable sensitivity analysis (tornado 

analysis) was performed to rank-order the most influential variables on the cost 

outcome of each strategy. We then performed a two-way sensitivity analysis on 

the two variables most influential to cost to determine their effects on the 

dominant strategy for lowest cost for the LA scenario and dominant strategy at 

the three WTP per avoided death thresholds for the HA scenario. 
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Monte Carlo Analyses 

 Monte Carlo analyses were performed in each scenario to test the 

sensitivity of the model to assumptions regarding variable range. In the LA 

scenario the analysis focused on the cost-minimization model. In the HA model, 

Monte Carlo analyses were performed at each WTP threshold. In each case, a 

triangular distribution of values was used, with the center point at the base case 

estimate and the top and bottom of the distribution corresponding to the minimum 

and maximum range in Table 6-1. Given the influential effects of the rate of renal 

toxicity from colistin, a maximum value of 30% was used in Monte Carlo analyses 

to account for scenarios in which hospitals have less effective monitoring of 

colistin dosing and potentially higher rates of toxicity. Each analysis was 

performed using 1,000 trials. 

 

Results 

Low Acuity Scenario 

 Using the base-case probabilities and costs drawn from the available 

literature and shown in Table 6-1, the strategy of initial empiric therapy with 

meropenem has an expected cost of $364 less per patient ($11,989 for the 

colistin-first strategy vs. $11,625 for the meropenem-first strategy). Multivariable 

sensitivity analysis (Figure 6-2) showed significant effects across the tested 

ranges from four variables - daily cost of colistin therapy, probability of 

meropenem resistance, probability of renal injury from colistin therapy, and 

probability of encephalopathy from meropenem therapy. Two-way sensitivity 
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analysis on the daily cost of colistin therapy and probability of meropenem 

resistance is shown in Figure 6-3, demonstrating that a colistin-first strategy 

dominates in scenarios with high prevalence of meropenem resistance and 

relatively lower cost for colistin therapy. With a constant daily cost for colistin 

therapy, the meropenem-first strategy is less costly up to meropenem resistance 

rates of 10.9%. 

 Monte Carlo analysis showed that the meropenem-first strategy was the 

less expensive model 77% of the scenarios. Since only one outcome was 

examined, this made it the dominant strategy in those scenarios. 

 Assuming a yearly incidence for LA infections of 780/100,000 patients,84-87 

the meropenem-first strategy corresponds to a yearly savings of 

$283,920/100,000 patients per year, or $2.83 PMPY. 

 

High Acuity Scenario 

 Using the base-case probabilities and costs shown in Table 6-1, the 

strategy of initial empiric therapy with meropenem has an expected cost of $37 

less per patient ($30,012 for the colistin-first strategy vs. $29,975 for the 

meropenem-first strategy). The colistin-first strategy results in a lower mortality, 

with an incremental cost-effectiveness ratio (ICER) of $46,231/avoided death. 

Multivariable sensitivity analysis (Figure 6-4) looking at only cost showed the 

most significant effects again from the probability of meropenem resistance and 

the daily cost of colistin therapy. Since the cost differential was small between 

the two strategies, the dominant strategy was sensitive to a large number of 



	

110	

predictors. Two-way sensitivity analyses on the daily cost of colistin therapy and 

probability of meropenem resistance at a WTP per avoided death of $200,000, 

$468,750, and $1,250,000 are shown in Figures 6-5, 6-6, and 6-7, respectively. 

These two-way analyses demonstrate that a meropenem-first strategy dominates 

in situations of lower meropenem resistance (below ~5.5%) and a colistin-first 

strategy dominates in situation with higher prevalence of meropenem resistance 

(above ~12.8%); the dominant strategy between within that range depends on 

the cost of colistin therapy and WTP per avoided death. 

 Monte Carlo analysis showed the colistin-first strategy was more cost 

effective in 73.0%, 81.1%, and 85.4% of the scenarios at a WTP of $200,000, 

$468,750, and $1,250,000, respectively. 

 Assuming a yearly incidence for HA infections of 300/100,000 patients,87,88 

the colistin-first strategy costs an additional $11,100/100,000 patients per year, 

or $0.11 PMPY. 

 

Discussion 

 In the absence of published trials directly addressing the cost-

effectiveness of different strategies for initial antibiotic therapy, an analysis such 

as this can help answer questions regarding the economic effects of optimal 

initial antibiotic therapy for patients presenting with undifferentiated gram-

negative rod infections. 

 Assuming a 6% prevalence of meropenem resistance, a meropenem-first 

strategy dominates on the basis of cost for LA patients. The 6% prevalence 
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figure comes from the UCLA dataset used in Project 1, and is comparable to 

other recently published literature showing a carbapenem resistance rate of 4.5% 

over the time period 2009-2013,89 when accounting for yearly increases in 

carbapenem resistance. However, with >10.9% prevalence of meropenem 

resistance, the colistin-first strategy becomes favorable (Figure 6-2). A clinical 

risk score to predict the probability of meropenem resistance for hospitalized 

patients was recently developed by several of the authors (Richter 2018, 

submitted for publication) and gives a range of probabilities for resistance 

ranging from 2-30% based on clinical information available at the time of 

decisions regarding initial therapy, which would allow clinicians to stratify patients 

into groups that would potentially benefit from a meropenem-first vs. colistin-first 

strategy. Similarly, which strategy has the lowest cost depends significantly on 

the daily cost of colistin therapy. While colistin is a relatively inexpensive therapy 

in terms of actual acquisition costs for the medication itself, the sensitivity 

analyses included a high theoretical daily cost in order to capture potential 

alternative therapy choices. Some novel antibiotic agents in current or recent 

development have daily costs running into several hundred dollars per day and 

poorly-studied side-effect profiles, and the higher range of daily costs is intended 

to proxy the use of these novel agents in the same role as colistin in this 

analysis. 

 In multivariable sensitivity analysis (Figure 6-3), the upper range of 

probability of encephalopathy from meropenem therapy does make colistin the 

dominant strategy. However, this high potential rate of encephalopathy comes 
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from a single reference,90 is more than triple the rate found in the next highest 

reference,91 and likely represents an outlier analysis. 

 Considerations in the HA scenario differ from the LA scenario since there 

is a demonstrated mortality benefit to early effective antibiotic therapy in patients 

with severe infections.3-9 As such, the ICER for avoided mortality is the major 

outcome of the HA scenario analysis. Again assuming a 6% prevalence of 

meropenem resistance, the meropenem-first strategy has lower cost, but higher 

mortality than the colistin-first strategy, with colistin-first dominating with $46,231 

per avoided death, well below any of the tested WTP thresholds. The optimal 

strategies at different WTP per avoided death as a function of meropenem 

resistance rate and colistin daily therapy costs are shown in Figures 6-5, 6-6, and 

6-7. Below a meropenem resistance rate of ~5.5%, the meropenem-first strategy 

dominates at any WTP, because mortality is lower in the meropenem-first 

strategy. This is primarily driven by the increased mortality risk from the higher 

rates of acute kidney injury observed in the colistin group; with lower rates of 

acute kidney injury from colistin usage, the colistin-first strategy is favored at 

lower rates of meropenem resistance. The optimal strategy for HA patients is 

less sensitive to the costs of colistin therapy than in LA patients since 1) the 

overall costs of hospitalization for HA patients are substantially higher, and 2) the 

colistin-first strategy substantially decreases the risk for death in HA patients. 

While the relative expected costs of the strategies in absolute dollar terms are 

similar, and thus sensitive to many assumptions made regarding costs an 

probabilities (Figure 6-4), the preferred strategy in terms of cost-effectiveness is 
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not sensitive to many of the underlying assumptions, since the colistin-first 

strategy avoids deaths at little incremental cost. 

 In both cases, the cost differential between the two strategies is minimal 

($2.83 PMPY for the LA scenario and $0.11 PMPY for the HA scenario). By way 

of comparison, the total PMPY spent is ~$30 for infections, ~$54 for depression, 

and ~$81 for diabetes.92 

 This analysis looks at costs as incurred by the hospital, rather than 

amounts paid by insurers or total societal costs. Insurance-payers typically 

reimburse based on hospital charges as opposed to costs, and while insurance 

providers rarely pay the full charges, average payments typically exceed 

hospital-incurred costs. As such, analysis from an insurance-payer perspective 

would likely substantially increase the costs of both strategies in each scenario. 

Additionally, we do not consider effects after the initial hospitalization. The rates 

of rehospitalization and admission to post-acute-care facilities are likely higher for 

patients with ineffectively treated infections, leading to higher post-discharge 

costs, which could potentially alter the cost analysis for both scenarios. Higher 

post-discharge costs for ineffectively treated infections in the LA scenario could 

cause the colistin-first strategy to be preferable at lower rates of meropenem 

resistance. Higher post-discharge costs would likely reduce the ICER for the 

colistin-first strategy in the HA scenario, causing colistin to be favored as a first-

line therapy over a wider range of cost/probability combinations. 

 Our analysis also does not account for the downstream effects of antibiotic 

overuse. Prior research has demonstrated that use of antibiotics is related to 
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development of resistance to antibiotics in related classes,15-19 and prior 

unpublished research by the authors has demonstrated that exposure to colistin 

is a risk factor for development of later colistin resistance (Richter 2018, 

submitted for publication). There may be negative consequences from a colistin-

first strategy beyond the hospital costs for the initial visit captured by our model 

due to development of future colistin resistance. In the HA scenario with a 

substantial risk for death, these potential future costs are likely not significant 

compared to the reduction in mortality, but in the LA scenario they may push 

providers to use colistin only in patients with higher predicted risk for meropenem 

resistance. 

 The low acuity scenario analysis relies on the fairly strong assumption that 

mortality is not a consequence of any decisions made by the provider. While 

there are strong studies demonstrating that effective empiric antibiotic therapy 

does not affect mortality in LA patients,3,66 this assumption is less well-supported 

for other potential causes of mortality, most significantly the marginal increase in 

risk of death from acute kidney injury (AKI). Most papers addressing this question 

attempt some adjustment for baseline patient characteristics and severity of AKI. 

The range for increase in odds of mortality ranges from 1.0-3.7, with lower odds 

ratios associated with less sick patients and less severe renal failure.80-82 Given 

that the AKI associated with colistin and meropenem administration is typically 

mild (particularly in LA patients)90,93,94 and that severity of illness and 

comorbidities are risk factors for AKI, we felt it was reasonable to assume the 

lowest end of this range for mortality increase due to AKI in LA patients. 
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However, if the same calculation were used to determine increased risk for death 

in LA patients as HA patients (odds ratio of 1.3 multiplied by the initial risk for 

mortality), this would imply a marginal increase of 2% in risk for death with 

antibiotic-associated AKI. The marginal increase in mortality for the use of colistin 

therapy over meropenem therapy would be given by: 

 

[Risk of AKI with colistin (0.14) - Risk of AKI with meropenem (0.04)]*risk of death (0.02) 

 

which yields a 0.2% marginal increase in the risk of death with colistin vs. 

meropenem therapy. However, since the meropenem-first strategy already costs 

less than the colistin-first strategy at baseline estimates for the LA scenario, this 

would reinforce the suggestion for meropenem-first, and (depending on the WTP 

per avoided death) increase the number of scenarios under which meropenem is 

favored as the initial antibiotic choice. 

 Finally, this analysis relies on several assumptions that potentially limit its 

applicability. By focusing on patients with positive cultures that are useful to 

guide therapy, we do not directly address patients in whom no organism is 

recovered. In these patients, therapy is typically guided by symptoms, and at the 

72 hour mark patients without clinical improvement (particularly those with severe 

sepsis or septic shock) will have their antibiotic regimen intensity increased, 

similarly to the culture-guided strategy we have proposed here. Our analysis only 

addresses infections with gram-negative organisms. Since empiric therapy for 

infections typically addresses both gram-positive and gram-negative organisms, 

the decision for initial empiric gram-negative coverage is relevant to all infections. 
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In cases in which a gram-positive organism is identified (or in which the patient is 

determined not to have an infection), gram-negative coverage can be stopped, 

and the majority of the consequences of this cost-effectiveness analysis will not 

be applicable. 

 While this paper applies to undifferentiated gram-negative infections in 

patients with low or high acuity infections, the general framework can be used to 

evaluate cost-minimization and cost-effectiveness for a variety of scenarios and 

antibiotic choices. Further research will focus on infections from specific sources 

and different initial antibiotic strategies. 
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Figure 6-1: Simplified Decision Tree 
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Figure 6-2: Multivariable sensitivity analysis for cost, low acuity patients (Tornado 

Diagram) 
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Figure 6-3: Two-way sensitivity analysis for low acuity patients, lowest-cost 

strategy 
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Figure 6-4: Multivariable sensitivity analysis for cost, high acuity patients 

(Tornado Diagram) 
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Figure 6-5: Two-way sensitivity analysis for high acuity patients, preferred 

strategy at willingness-to-pay of  $200,000 per avoided death 
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Figure 6-6: Two-way sensitivity analysis for high acuity patients, preferred 

strategy at willingness-to-pay of  $468,750 per avoided death 
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Figure 6-7: Two-way sensitivity analysis for high acuity patients, preferred 

strategy at willingness-to-pay of  $1,250,000 per avoided death 
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Table 6-1: Base Case Costs, Outcomes, and Probabilities 

Costs	and	
Outcomes	

Range	in	
Literature	

Base	
Estimate	

Justification	
for	base	
estimate	

Range	
Tested	

Justification	for	
range	tested	 References	

Cost	for	hospital	
admission	for	
infection	

$8,313-
$11,945	 $10,000		

Median	value,	
weighted	for	
infection	type	

$8,313-
$11,945	

Range	in	
literature	

HCUP	201887	Sato	
201311	Simmering	
201786	Thaden	
201795	

Cost	for	hospital	
admission	for	
serious	infection	

$20,147-
$30,235	 $28,000		

Median	value,	
weighted	for	
infection	type	

$20,147
-
$30,235	

Range	in	
literature	

HCUP	201887	
Pfuntner	201396	
Saleh	201011	
Zilberberg	201714	

Length	of	stay	with	
appropriate	therapy	
for	infection	 4.2-8	days	 7	days	

Median	value,	
weighted	for	
infection	type	

4-8	
days	

Range	in	
literature	

HCUP	201887	Lee	
201185	Restrepo	
200897	Simmering	
201786		

Length	of	stay	with	
inappropriate	
therapy	for	
infection	

Additional	
3-5	days	 11	days	

Median	value,	
weighted	for	
infection	type	

7-13	
days	

Tested	range	plus	
3-5	days	

Lee	201110	Raman	
20156	Sato	201311	

Length	of	stay	with	
appropriate	therapy	
in	sepsis	 7-18	days	 12	days	

Median	value,	
weighted	for	
infection	type	

7-18	
days	

Range	in	
literature	

HCUP	201887	
Raman	20156	
Restrepo	200897	
Shorr	201112	
Zilberberg	201714	

Length	of	stay	with	
inappropriate	
therapy	in	sepsis	

Additional	
3-8	days	 17	days	

Median	value,	
weighted	for	
infection	type	

10-26	
days	

Tested	range	plus	
3-8	days	

Raman	20156	Sato	
201311	Shorr	
201112	Tsalik	2016	
13	Zilberberg	
201714	

Cost	per	day	for	
infection	 n/a	 $1,429		

Cost	of	
hospital	stay	
divided	by	7	
(expected	
combined	
LOS	assuming	
25%	rate	of	
inappropriate	
initial	
therapy)	

$1,188-
$1,706	

(Minimum	
cost)/LOS	to	
(Maximum	
cost)/LOS	 n/a	

Cost	per	day	for	
serious	infection	 n/a	 $2,333		

Cost	of	
hospital	stay	
divided	by	
13.25	
(expected	
combined	
LOS	assuming	
25%	rate	of	
inappropriate	
initial	
therapy)	

$1,679-
$2,520	

(Minimum	
cost)/LOS	to	
(Maximum	
cost)/LOS	 n/a	

QALYs	after	survival	
from	discharge	with	
sepsis	 5.5-7	 6.25	 Median	value	 5.5-7	

Range	in	
literature	

Davies	200598	
Jones	201199		
Karlsson	2009100	

Willingness-to-pay	
per	QALY	

$32,000-
$200,000	 $75,000		 Median	value	

$32K-
$200K	

Range	in	
literature	

Neumann	2015101	
Ryen2015102	
Shiroiwa	2010103	
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Willingness-to-pay	
per	avoided	death	 n/a	 $468,750		

(Expected	
QALYs)*(willi
ngness-to-
pay/QALY)	

$200K-
$1,250
K	

Expected	
QALYs*minimum	
and	maximum	
willingness-to-
pay	 n/a	

Cost	per	day	of	
meropenem	
therapy	 $45		 $45		

Actual	
Acquisition	
Cost	at	our	
institution	

$22-
$90	

Author-
determined	
reasonable	range	
(50-200%	of	base	
cost)	

UCLA	Antibiotic	
Guide104	

Cost	per	day	of	
colistin	therapy	 $30		 $30		

Actual	
Acquisition	
Cost	at	our	
institution	

$15-
$500	

Upper	limit	
includes	potential	
upper	costs	for	
novel	agents	

UCLA	Antibiotic	
Guide104	

Cost	per	day	of	
salvage	therapy	 n/a	 $400		

Estimate	for	
alternative	
therapy	+	
complications	
+	ID	consult	

$200-
$1,000	

Author-
determined	
reasonable	range	 n/a	

Cost	of	acute	kidney	
injury	

$9,088-
$13,451	 $11,000		 Median	value	

$9,088-
$13,451	

Range	in	
literature	

Chertow	2005105	
Fuller	200979	

Cost	of	altered	
mental	status	

$4,341-
$5,389	 $4,850		 Mean	value	

$3,350-
$6,350	

Author-
determined	
reasonable	range	 Fuller	200979	

Cost	of	anemia	
$6,111-
$10,296	 $4,100		

(Mean	
value)/2	
(assuming	
50%	risk	for	
transfusion	
with	drug-
induced	
anemia)	

$2,600-
$5,600	

Author-
determined	
reasonable	range	 Fuller	200979	

	 	 	 	 	 	 	

Probabilities	
Range	in	
Literature	

Probabili
ty	Used	

Justification	
for	base	
estimate	

Range	
Tested	

Justification	for	
range	tested	 References	

Probability	of	
meropenem	
resistance	 4.5-6%	 6%	 Available	data	 0-30%	

Limits	of	scoring	
system	

Richter	2018	
(unpublished)	
Cai	201789	

Probability	of	
colistin	resistance	 0.5%	 0.5%	 Available	data	 0-2%	

Colistin	
resistance	is	rare,	
but	increasing;	
chosen	based	on	
possible	future	
rates	

Richter	2018	
(unpublished)	

Probability	of	
colistin	resistance	|	
meropenem	
resistance	 5.2%	 5.2%	 Available	data	 2-10%	

Colistin	
resistance	is	rare,	
but	increasing;	
chosen	based	on	
possible	future	
rates	

Richter	2018	
(unpublished)	

In-hospital	mortality	
with	appropriate	
therapy	for	
infection	 4-18%	 6%	

Weighted	for	
type	of	
infection	 n/a	

Range	in	
literature	

Gradel	20173	
Restrepo	200897		
Thom	200866	

In-hospital	mortality	
with	inappropriate	

No	
change	 6%	 Per	literature	 n/a	

Range	in	
literature	

Gradel	20173	
Thom	200866	
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therapy	for	
infection	

In-hospital	mortality	
with	appropriate	
therapy	for	serious	
infection	 15-28%	 22%	

Weighted	for	
type	of	
infection	 15-28%	

Range	in	
literature	

Gradel	20173	
Kohler	20174	Paul	
20105	Raman	
20156	Restrepo	
200897	Retamar	
20127	

In-hospital	mortality	
with	inappropriate	
therapy	for	serious	
infection	

1.2-3.0	OR	
increase	 35.20%	

Used	1.6	OR,	
median	value	
and	best	
evidence	 28-45%	

1.6	times	upper	
and	lower	limits	

Gradel	20173	
Kohler	20174	Paul	
20105	Raman	
20156	Retamar	
20127	

Risk	of	renal	
impairment	with	
meropenem	 1-7%	 4%	

Middle	of	
range	 1-7%	

Range	in	
literature	

Imani	201790	
Meropenem	
Package	Insert106	

Risk	of	renal	
impairment	with	
colistin	 8-20%	 14%	

Middle	of	
range	 8-20%	

Range	in	
literature	

Falagas	200593	
Kasiakou	2005107	
Michalopoulos	
2010108	Pintado	
200894	

Risk	of	neurotoxicity	
with	meropenem	 0-16%	 4%	 Median	value	 0-16%	

Range	in	
literature	

Imani	201790	
Joseph	2008109	
McDonald	2016	91	
Meropenem	
Package	Insert106	

Risk	of	neurotoxicity	
with	colistin	 0-8%	 4%	

Middle	of	
range	 0-8%	

Range	in	
literature	

Falagas	200593	
Kasiakou	2005107	
Michalopoulos	
2010108	

Risk	of	anemia	with	
meropenem	 5.5%	 5.5%	 One	source	 3-9%	

Author-
determined	
reasonable	range	

Meropenem	
Package	Insert106	

Marginal	increase	in	
risk	of	death	with	
renal	impairment	

1.0-3.7	OR	
increase	 7%	

(OR	from	
most	
applicable	
study)*(base	
case	for	
appropriately
-treated	
infection)	 0-15%	

Author-
determined	
reasonable	range	

Iwagami	201680	
Jurawan	201781	
Wang	201282	

Marginal	increase	in	
risk	of	death	with	
delirium	

1.0-2.2	OR	
increase	 0%	

Most	
applicable	
study	found	
no	increased	
risk	once	
controlling	for	
other	factors	 0-5%	

Author-
determined	
reasonable	range	

Salluh	2015110	van	
den	Boorgaard	
201083	

Marginal	increase	in	
risk	of	death	with	
anemia	 n/a	 0%	

Unable	to	find	
applicable	
studies	 0-5%	

Author-
determined	
reasonable	range	 n/a	
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Chapter 7 - Limitations and Conclusions 

Project 1 

 The papers in the first project suffer from two primary limitations, both 

stemming from the nature of the data. The first limitation comes from the 

incompleteness of the data; the models are built off of only what is available from 

the xDR data repository. Since data are only available from inpatient stays in 

which a patient had a positive blood culture, there is no information available 

regarding outpatient treatment, either at UCLA or other facilities, or 

hospitalizations at other facilities. Exposure to antibiotics and resistant infections 

are constructs that are central to the model and are incompletely captured by the 

dataset. As such, many of the measures that appear frequently in the models 

(e.g. admission from an outside facility, some measures of chronic medical 

illness/comorbidities, and presence of indwelling devices) may owe a large 

amount of their predictive power to their ability to proxy for these unmeasured 

exposures. Additionally, some measures are incomplete. Perhaps the most 

important incomplete field is the in_facility variable denoting whether a patient 

was admitted from an outpatient medical facility. These data are taken from the 

patient’s social history section of the medical chart, and must be entered by hand 

by the receiving nurse; it is likely that human error or expediency is responsible 

for incomplete information. Additionally, this variable does not capture patients 

who were discharged from a facility back to their communities/homes, and then 

admitted back to UCLA shortly thereafter (within a day, week, or month), which is 

potentially a very common occurrence in patients with chronic medical disease. 
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However, since the goal of the scoring systems is to create a score that can be 

calculated using available data (and hopefully eventually automated), the 

shortcomings of this dataset reasonably approximate the limitations physicians 

encounter on a daily basis when attempting to make clinical decisions with 

incomplete information. 

 The second significant potential limitation of the first project is its external 

validity. Since all of the data come from a single institution, it is possible that 

these models are not applicable to other medical systems. The work described 

has several safeguards that mitigate this effect. First, the dataset draws from two 

hospitals that serve somewhat different populations. Ronald Reagan Medical 

Center has a high proportion of patients undergoing transplants of either solid 

organs or bone marrow, a robust neurosurgery patient population, and a large 

number of patients with chronic severe medical illness. Santa Monica UCLA is a 

community hospital with a focus on geriatrics, orthopedic procedures, and solid 

oncology patients. Second, the dataset contains tens of thousands of patients, 

one to two orders of magnitude larger than other similar studies examining risk 

factors for infection with resistant organisms. Third, as shown above, the 

bivariate predictor variables largely match up with predictors described in 

previous work. Finally, in order to prevent overfitting, the final models were 

restricted to a small number of predictor variables. Nevertheless, external validity 

is always a concern for single-institution studies, and further work will focus on 

validating these prediction scores on more diverse datasets. 
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Project 2 

 Potential weaknesses of the second project stem primarily from the 

assumptions made to facilitate model interpretability. Several of the assumptions 

- that duplicate complications from two separate medications do not add to cost 

or mortality risk, that patients will be treated with seven days of effective therapy, 

and that complications happen within the first 72 hours - do not have substantial 

effects on the outcomes (data not shown). Additionally, the assumption that there 

is a single “secondary salvage” regimen in the case of colistin non-susceptibility 

with fixed daily costs does not have a significant effect on outcomes, as shown in 

the multivariable sensitivity analyses demonstrating that the cost and nature of 

secondary salvage has little influence on the costs of the different strategies. 

 Some assumptions have a possibility of affecting the outcome. 

Complications from antibiotic therapy are calculated as adding a flat cost (as 

opposed to increased length of stay); this cost is identical in the high and low 

acuity groups, which probably does not directly reflect reality. The cost of some 

of these complications, most notably renal failure, do exert some potentially 

significant influence on the optimal strategy in the low acuity scenario, and would 

likely change the optimal strategy across some of the relevant range of 

meropenem resistance rates if it were inappropriately calculated. The assumption 

that the expected cost of a hospitalization resulting in death is identical to that of 

one resulting in discharge is potentially significant, and could affect the 

calculations in the high acuity scenario. Currently, the data do not exist in the 

literature in a convincing form to allow for differentiation of the two scenarios. 
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Additionally, the optimally cost-effective strategy in the high acuity scenario was 

shown to be relatively insensitive to most factors related to cost (and, in fact, to 

most things besides rates of meropenem resistance). 

 Perhaps the most significant assumption in the analysis is that patients 

would present with only Gram-negative infections, thus ignoring the possibility of 

Gram-positive, fungal, or anaerobic infections. This assumption was made to 

guide the analysis towards answering a specific question, but it does require the 

results to be modified to apply to more realistic situations. However, this 

modification is relatively minor - divide the expected rate of meropenem 

resistance among Gram-negatives by the local prevalence of Gram-negative 

infections as a fraction of total infections. For example, if at a given hospital 50% 

of all infections were caused by Gram-negative bacteria, the threshold values for 

switching from meropenem to colistin as an initial strategy would be twice those 

described in the paper above. 
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Conclusions 

How measures relate to outcomes 

 The models developed in the first three papers of the thesis expand on 

work previously done on similar topics, using larger datasets and more complete 

measures. They additionally each provide actionable results in the form of 

scoring systems that could guide clinical therapy, particularly in conjunction with 

cost-effectiveness analyses such as those presented in the second project. Due 

to the large sample size relative to prior papers (the work of this thesis draws 

from tens of thousands of samples, while prior research typically has sample 

sizes in the hundreds to thousands), significantly more predictive factors were 

found to be statistically significant on univariate analysis. On multivariable 

analysis, many of these predictors are collinear and serve to proxy similar 

constructs, as detailed above in the conceptual model. The following is a review 

of the contributions of various types of data elements and their contributions 

across models. 

Demographic information - age, gender, race, social history 

Demographic information was generally of minimal importance to the final 

models, with the exception of male gender, which figured prominently in the 

prediction of resistance to amikacin and both classes of carbapenems. That age 

was not a prominent predictor at almost any stage of the model construction was 

somewhat surprising, as older age is a strong risk factor for almost all medical 

comorbidity; it is likely that medical comorbidities more accurately captured the 

variance associated with age, as they are the primary mediator for the influence 
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of age on outcome. That gender remains a significant risk factor for several types 

of antibiotic resistance even when controlling for medical comorbidities suggests 

that gender may have influence on the outcome that is not fully mediated by 

chronic medical illness. This could potentially be through unexplored pathways 

such as higher-risk behavior leading to more frequent contact with the medical 

system, more frequent exposure to infection with high-risk or already-resistant 

bacteria, or it is possible that men receive antibiotics at a higher rate than 

women. 

Location prior to admission 

This was the most consistent predictor of resistance across the predictive 

models, likely because it represents several key constructs in the conceptual 

model. Residence in a long-term medical facility prior to transfer is most directly 

associated with frequent contact with the medical system, but it also implies a 

degree of significant chronic medical illness. Additionally, most long-term medical 

facilities have high rates of resistant bacteria, increasing the risk of exposure to 

high-risk and already-resistant bacteria. The models could likely be substantially 

improved by obtaining more complete information regarding the amount of 

exposure to long-term medical facilities, since the data field in CareConnect from 

which this information is drawn does not account for residence in these facilities 

that does not take place immediately prior to transfer. 

Location within the hospital - in ICU vs. regular medical floor 

While patient location in an ICU (either currently or previously during the index 

hospitalization) was associated in most cases with a higher likelihood of 
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resistance, its effect on the outcome was in all cases better explained by other 

variables, typically the presence of a tracheostomy or ventilator. Since ventilators 

can only be administered within an ICU and patients are admitted to the ICU for 

other reasons, it appears likely that the presence of the indwelling device, rather 

than the absolute level of acute medical illness, is associated with risk for 

antibiotic resistance. Admission to an ICU is a marker of acute illness that is 

correlated with chronic medical illness; its association with chronic medical illness 

(and thus the outcome) is likely better proxied by other variables, and acute 

medical illness does not appear to have a direct effect on the final outcome. 

Medical comorbidities - Elixhauser index 

Chronic medical comorbidities are the best proxy available in the dataset for 

chronic medical illness, which is upstream of almost all of the major constructs in 

the conceptual model. However, specific comorbidities are present in only about 

half of the studied models, likely because the effects of chronic medical illness 

are mediated by a variety of constructs for which we have reasonable proxies. 

The medical comorbidities that are present in the final stages of the models are 

typically neurologic disease, weight loss, and cystic fibrosis. Neurologic disease 

and weight loss, while related to specific diagnostic codes, can be indicators of 

global dysfunction, and can serve as a proxy for general overall debility, which 

leads to increased susceptibility to infection. Cystic fibrosis is a specific genetic 

condition that leads directly to respiratory colonization with high-risk species and 

persistent exposure to antibiotics as a regular part of treatment, as well as 

increased susceptibility to infection due to impaired airway clearance. Since 
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many of the multi-drug resistant infections studied are predominantly respiratory 

in nature, the role of cystic fibrosis as a risk factor is not particularly surprising. 

Laboratory values and vital signs 

While there were multiple laboratory values and vital signs that were associated 

with the outcomes of interest on univariate analysis, in most cases neither of 

these categories had significant contributions to the overall risk for antibiotic 

resistant infections. These two sets of variables primarily are associated with 

acute illness, and relate to the model as proxies for chronic medical illness (in 

that chronic medical illness increases a patient’s risk for acute medical illness). 

Predictably, this is better proxied by other variables in the model, specifically 

medical comorbidities and indwelling devices. A notable exception to this is 

hemoglobin - anemia (represented by hemoglobin <11) was present in several 

final models. This is likely because chronic anemia can be a marker of overall 

medical comorbidity (much like weight loss), and serves as a reasonable proxy 

for chronic medical illness in some situations. 

Indwelling devices - tracheostomies, ventilators, and indwelling urinary catheters 

While indwelling urinary catheters were associated with the outcome in most 

cases, variables associated with indwelling ventilatory devices were more likely 

to end up in the final models. The exact variable - current tracheostomy, ever 

tracheostomy, current ventilation, or ever ventilation - varies depending on the 

model, but in general ventilatory support is associated strongly with the primary 

outcome. This is likely because persistent ventilatory support proxies not only 

chronic medical illness, but frequently necessitates frequent contact with the 
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medical system (usually through long-term medical facility residence) and directly 

increases susceptibility to infection via bypassing natural host defenses. 

Medications received 

While many classes of medications were associated with infection with resistant 

bacteria on univariate analysis, only recent antibiotic usage was included in the 

final multivariable models. This is likely because non-antibiotic medications serve 

as proxies for chronic medical illness, which is better represented by other 

variables. Recent antibiotic usage proxies for several important predictive 

constructs. First, it directly informs prior exposure to antibiotics, which is 

potentially directly mechanistically related to the development of de novo 

resistance mutations, an important final pathway to the outcome of interest. 

Second, recent exposure to antibiotics is indicative of prior infections, which are 

relevant in both final pathways to infection with resistant bacteria. Third, broad-

spectrum antibiotics are preferentially administered to patients who are 

chronically ill and in frequent contact with the medical system, and this may proxy 

some of that construct that is not fully explained by the medical record. In all 

cases, the amount of time since last receipt of a carbapenem was significantly 

associated with the outcome on multivariable analysis. Additionally, time since 

last receipt of an anti-MRSA agent was a significant predictor in three of the six 

models. Since it is unlikely that anti-MRSA agents (or carbapenems, for non-

carbapenem-related outcomes) directly lead to antibiotic resistance, time since 

receipt of these antibiotic classes is most likely serving as a proxy for recent 

infections and contact with the medical system. 
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Low- vs. high-level resistance 

 The discriminatory power of the models predicting higher-level resistance 

(corresponding to more difficult-to-treat infections) was substantially greater than 

those predicting lower-level resistance. The model predicting ertapenem 

resistance had an AUROC of 0.684 compared to 0.754 for predicting resistance 

to anti-pseudomonal carbapenems; the model predicting gentamicin/tobramycin 

resistance had an AUROC of 0.634 compared to 0.735 for predicting resistance 

to amikacin. The discriminatory power of the colistin models (0.808 for gram 

negative rods and 0.887 for Klebsiella pneumoniae) are higher than for the other 

antibiotic classes. This is most likely because development of high-level 

resistance is a less random event than development of low-level resistance. 

Ertapenem and gentamicin/tobramycin are considered less powerful antibiotics 

than anti-pseudomonal carbapenems and amikacin, respectively, because 

resistance to them is more common. Organisms with low-level resistance are 

easier to acquire outside of the pathways described in the model, while 

organisms with high-level resistance exist more preferentially in healthcare 

settings and as a result of de novo mutations, as such, patients with infections 

with low-level resistance more closely resemble patients without resistance. 

 

Correlated Resistance 

 There is significant overlap between the risk factors for resistance to the 

various antibiotics studied in Project 1, particularly for high-level resistance. 
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While the final multivariate models have different specifications, the bivariate 

correlations are similar across the antibiotics. Additionally, several recurrent 

factors (most notably neurologic disease, weight loss, hemoglobin, several 

indwelling devices, male gender, transfer from an outside facility, and recent 

administration of various antibiotic classes) can be seen in the model selection 

process, even if they did not make it into the final models (see Appendices A, B, 

and C). This implies that there is likely a fair amount of  correlation between 

resistance to all of the studied antibiotics, and that organisms with high 

probability of resistance to one antibiotic are likely at high risk for resistance to 

other antibiotics. This was explicitly studied in Chapter 3, where prior 

carbapenem resistance is seen as a major risk factor in the final models 

predicting colistin resistance in both GNRs and K. Pneumoniae. 

 The work of this thesis does not specifically address the question of 

choices among antibiotic classes, and this is a major direction for future study. 

There are likely subtle differences in the risk patterns between various antibiotic 

classes, and identification of these differences will be necessary to address the 

question of optimal empiric antibiotic strategy in these cases. Further research 

will focus on risk factors that allow differentiation of the various resistance 

patterns and prediction of the optimal initial antibiotic for empiric therapy. Another 

possible strategy would involve switching to a combination of other antibiotics 

once there is a sufficiently high probability of resistance to a given antibiotic (for 

example, using a combination of amikacin and a fluoroquinolone to treat 
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infections with a high risk for anti-Pseudomonal carbapenem resistance). Future 

work will also focus on the cost-effectiveness of such strategies. 

 

Cost-effectiveness analysis 

 A key conclusion from the second project is that the pre-test probability of 

meropenem resistance should be an important factor in decisions regarding initial 

choice of antibiotics in both the low and high acuity scenarios. The range of 

meropenem non-susceptibility for the cost-effectiveness paper was chosen to 

mirror the range demonstrated by the score from the second paper, from 0-30%. 

In the context of the cost-effectiveness analysis, the meropenem resistance rate 

was shown to influence the optimal strategy for the low acuity scenario across 

the entirety of this range, while for the high acuity scenario the relevant range 

(across several willingness-to-pay thresholds) was from approximately 5-12%. 

This demonstrates the utility of the advanced carbapenem resistance prediction 

score, particularly in the high acuity scenario. For high acuity patients with a 

score of 0 or 1, initial therapy with meropenem is a strictly dominant strategy 

(lower cost and lower likelihood of death). Similarly, for patients with a score of 3 

or higher, initial therapy with colistin is a strictly dominant strategy. 

 Further research for cost-effectiveness analysis will focus on specific 

types of infection (urinary tract, bloodstream, and respiratory) and different 

antibiotic combinations, attempting to apply the scores developed in the other 

papers and to examine the tradeoffs in situations in which the infection source is 

known. 
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Appendix A - Model selection for colistin resistance 

 
Table A-1: Model selection for colistin resistance in GNRs, comorbidities and 
demographics 

	

Comorbidities	
-	start	

Comorbidities	
-	end	

Comorbidities	+	
demographics	-	end	

AUROC	 0.707	 0.686	 0.746	
Variable	

	 	 	elixhauser_score	 -0.029*	 -0.019*	
	arrhythmia	 0.511*	 0.552**	
	neurologic_dz	 1.190***	 1.225***	 0.791**	

renal_dz	 0.116		
	 	tumor_without_mets	 -0.480	
	 	weight_loss	 0.545*	 0.519*	

	electrolyte_disorders	 0.315		
	 	renal_failure	 0.427		
	 	cystic_fibrosis	 1.447***	 1.421***	 1.714***	

in_facility	
	 	

1.509***	
male	

	 	
0.546*	

_cons	 -6.065***	 -6.010***	 -6.36***	
p-values: * <0.05, ** <0.01, *** <0.001 
 
- Started with list of individually significant comorbidities 

- Dropped all comorbidities that did not remain significant on multivariable 

analysis 

- Added in demographic variables (age, gender, race, location prior to admission, 

etc.) 

- Dropped redundant/collinear variables until parsimony was achieved (no further 

variables could be dropped without significantly affecting the AUROC) 
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Table A-2: Model selection for colistin resistance in GNRs, labs and devices 

	
Labs	-	start	 Labs	-	end	 Labs	+	devices	

AUROC	 0.660	 0.648	 0.715	
Variable	

	 	 	neutrophil	 0.009		 	 	
monocyte	 -0.004		

	 	eosinophil	 0.508***	 0.545***	 0.488*	
basophil	 0.428		

	 	hemoglobin	 -0.223***	 -0.226***	 -0.095		
ever_vented	

	 	
1.314***	

_cons	 -3.427***	 -3.290***	 -5.174***	
p-values: * <0.05, ** <0.01, *** <0.001 
 
- Started with list of individually significant laboratory values 

- Tried combinations of lab values until parsimony was achieved. Neutrophils, 

monocytes, eosinophils, and basophils are all types of white blood cells; best 

represented by eosinophils 

- Added in information about indwelling devices (tracheostomy, urinary catheter, 

ventilator) 

- Dropped redundant/collinear variables until parsimony was achieved (no further 

variables could be dropped without significantly affecting the AUROC). Removing 

hemoglobin significantly dropped the AUROC (to 0.684) despite not being 

significant 
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Table A-3: Model selection for colistin resistance in GNRs, combining 
comorbidities, demographics, labs, and devices together 

	
Combined	model,	start	 Combined	model,	end	

AUROC	 0.816	 0.780	
Variable	

	 	eosinophil	 0.383		
	hemoglobin	 -0.119		
	ever_vented	 1.062***	 1.217***	

neurologic_dz	 0.455		 0.567*	
cystic_fibrosis	 1.944***	 1.693**	
in_facility	 1.481***	 1.488***	
male	 0.366		

	_cons	 -5.758***	 -6.539***	
p-values: * <0.05, ** <0.01, *** <0.001 
 
- Combined end model from labs + devices with end model from comorbidities + 

demographics 

- Dropped redundant/collinear variables until parsimony was achieved (no further 

variables could be dropped without significantly affecting the AUROC) 

 
 
  



	

142	

 
Table A-4: Model selection for colistin resistance in GNRs, recent medications 
plus above variables 

	
Recent	therapy	

Recent	therapy	+	other	
constructs	 Final	model	

AUROC	 0.754	 0.817	 0.801	
Variable	

	 	 	ever_vented	
	

0.766**	 0.646*	
neurologic_dz	

	
0.407		 0.440		

cystic_fibrosis	
	

1.069		
	in_facility	

	
1.369***	 1.220***	

prior_carb_resist	 0.937***	 0.412		 0.771**	
last_ertamero	 -0.006*	 -0.007*	 -0.009**	
last_polymyxin	 -0.007*	 -0.005		

	last_anti_GPC	 -0.009**	 -0.004		
	_cons	 -4.173***	 -5.248***	 -5.602***	

p-values: * <0.05, ** <0.01, *** <0.001 
 
- Started with list of individually significant recent medications (and prior 

carbapenem resistance) 

- Unable to drop any recent medications without significantly affecting AUROC 

- Added in variables from the above model 

- Dropped redundant/collinear variables until parsimony was achieved (no further 

variables could be dropped without significantly affecting the AUROC) 
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Table A-5: Model selection for colistin resistance in GNRs, simplified final model 

	
Final	model	-	simplified	

AUROC	 0.808	
Variable	

	advanced_O2	 0.645*	
neurologic_dz	 0.498*	
in_facility	 1.247***	
prior_carb_resist	 0.721**	
carb90	 0.959***	
_cons	 -6.510***	

p-values: * <0.05, ** <0.01, *** <0.001 
 
- Dichotomized “last_ertamero” to whether or not carbapenems were received in 

the prior 90 days for simplicity of interpretation, after testing multiple thresholds 

for time cutoffs (30, 60, 90 days) and determining that 90 days had the best 

discriminatory capacity for the model 
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Table A-6: Model selection for colistin resistance in Klebsiella pneumoniae, 
comorbidities and demographics 

	

Comorbidities	
-	start	

Comorbidities	
-	end	

Comorbidities/demographics	
-	end	

AUROC	 0.731	 0.723	 0.779	
Variable	

	 	 	elixhauser_score	 -0.037*	
	 	renal_failure	 0.574*	 0.423	

	arrhythmia	 0.761**	 0.513*	
	neurologic_dz	 1.500***	 1.317***	 1.060***	

weight_loss	 0.657*	
	 	electrolyte_disorders	 0.253	
	 	male	

	 	
0.541		

in_faciility	
	 	

1.976***	
_cons	 -5.046***	 -5.193***	 -5.552***	
 p-values: * <0.05, ** <0.01, *** <0.001 
 
- Started with list of individually significant comorbidities 

- Dropped all comorbidities that did not remain significant on multivariable 

analysis 

- Attempted to further drop comorbidities until parsimony was achieved (dropping 

renal failure reduced AUROC to 0.709 despite not being significant) 

- Added in demographic variables (age, gender, race, location prior to admission, 

etc.) 

- Dropped redundant/collinear variables until parsimony was achieved (no further 

variables could be dropped without significantly affecting the AUROC) 
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Table A-7: Model selection for colistin resistance in Klebsiella pneumoniae, labs 
and devices 

	
Labs	-	start	 Labs	-	end	 Combined	model	

AUROC	 0.705	 0.701	 0.814	
Variable	

	 	 	neutrophil	 0.009		 0.015		
	eosinophil	 0.544**	 0.527**	
	basophil	 2.126		

	 	hemoglobin	 -0.162*	 -0.219**	 -0.243*	
GFR	 -0.005		

	 	ALK	 0.001*	
	 	creatinine	 -0.006		
	 	anion_gap	 0.019		
	 	neurologic_dz	

	 	
0.993**	

in_facility	
	 	

2.071***	
_cons	 -2.985**	 -2.367***	 -2.951***	
 p-values: * <0.05, ** <0.01, *** <0.001 
 
- Started with list of individually significant laboratory values 

- Tried combinations of lab values until parsimony was achieved. Neutrophils, 

monocytes, eosinophils, and basophils are all types of white blood cells; best 

represented by neutrophils and eosinophils 

- Added in information about indwelling devices (tracheostomy, urinary catheter, 

ventilator) - none significantly improved the model; this step is not shown 

- Added variables from the above model 

- Dropped redundant/collinear variables until parsimony was achieved (no further 

variables could be dropped without significantly affecting the AUROC). 
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Table A-8: Model selection for colistin resistance in Klebsiella pneumoniae, 
recent medications plus above variables 

	

Recent	therapy	-	
start	

Recent	therapy	+	
other	constructs	 Final	model	

AUROC	 0.786	 0.874	 0.902	
Variable	

	 	 	hemoglobin	
	

-1.430		
	neurologic_dz	

	
2.470*	 0.750*	

in_facility	
	

5.900***	 2.003***	
last_carbapenem	 -0.004	 -2.910**	 -0.009		
last_anti_GPC	 -0.015**	 -2.380*	 -0.013*	
last_polymyxin	 -0.016***	

	 	last_probiotic	 -0.011**	
	 	prior_carb_resist	

	 	
1.622***	

_cons	 -0.967	 -2.380*	 -4.688***	
 p-values: * <0.05, ** <0.01, *** <0.001 
 
- Started with list of individually significant recent medications 

- Unable to drop any recent medications without significantly affecting AUROC 

- Added in variables from the above model 

- Dropped redundant/collinear variables until parsimony was achieved (no further 

variables could be dropped without significantly affecting the AUROC) 

- Added in prior carbapenem resistance, repeated parsimony step 

- As a double-check, performed the same analysis adding in prior carbapenem 

resistance at earlier stages of the model, ended with the same final model 
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Table A-9: Model selection for colistin resistance in Klebsiella pneumoniae, 
simplified final model 

	
Final	model	-	simplified	

AUROC	 0.887	
Variable	

	neurologic_dz	 0.748*	
in_facility	 1.888***	
carb90	 0.764		
GPC90	 1.167*	
prior_carb_resist	1.575***	
_cons	 -6.760***	
 p-values: * <0.05, ** <0.01, *** <0.001 
 
- Dichotomized “last_carbapenem” and “last_anti_GPC” to whether or not these 

antibiotics were received in the prior 90 days for simplicity of interpretation, after 

testing multiple thresholds for time cutoffs (30, 60, 90 days) and determining that 

90 days had the best discriminatory capacity for the model 
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Appendix B - Model selection for carbapenem resistance 

Table B-1: Model selection for ertapenem resistance in GNRs, comorbidities and 
demographics 

	

Comorbidities	
-	start	

Comorbidities	
-	end	

Comorbidities	+	
demographics	-	
start	

Comorbidities	+	
demographics	-	
end	

AUROC	 0.601	 0.600	 0.600	 0.638	
Variable	

	 	 	 	CHF	 -0.014		
	 	 	arrhythmia	 0.111**	 0.122***	 0.103		

	valve_disease	 -0.034		
	 	 	pulm_vasc_dz	 0.038		
	 	 	peripheral_vasc_

dz	 0.078*	
	 	 	paralysis	 0.123*	
	 	 	neurologic_dz	 0.38***	 0.390***	 0.112		

	chronic_pulm_dz	 0.272***	 0.282***	 0.221***	 0.213***	
renal_dz	 0.017		

	 	 	liver_dz	 -0.186***	
	 	 	coagulopathy	 0.029		
	 	 	weight_loss	 0.390***	 0.379***	 0.317***	 0.359***	

electrolyte_disor
ders	 0.005		

	 	 	renal_failure	 0.188***	 0.155***	 0.146		
	bmi	

	 	
-0.009*	

	age	
	 	

-0.006***	
	male	

	 	
0.511***	 0.550***	

in_facility	
	 	

0.596***	 0.563***	
ever_icu	

	 	
0.485***	 0.551***	

_cons	 -1.438***	 -1.445***	 -1.531***	 -2.062***	
p-values: * <0.05, ** <0.01, *** <0.001 
 
- Started with list of individually significant comorbidities 

- Dropped all comorbidities that did not remain significant on multivariable 

analysis 

- Dropped redundant/collinear variables until parsimony was achieved (no further 

variables could be dropped without significantly affecting the AUROC) 
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- Added in demographic variables (age, gender, race, location prior to admission, 

etc.) 

- Dropped redundant/collinear variables until parsimony was achieved (no further 

variables could be dropped without significantly affecting the AUROC) 
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Table B-2: Model selection for ertapenem resistance in GNRs, comorbidities, 
demographics, and devices 

	

Comorbidities/demographics	
+	devices	-	start	

Comorbidities/demographics	
+	devices	-	end	

AUROC	 0.675	 0.666	
Variable	

	 	chronic_pulm_dz	 -0.019		
	weight_loss	 0.224		
	male	 0.918***	 0.883***	

in_facility	 0.031		
	ever_icu	 0.134		
	urine_cath	 0.468***	 0.512***	

trach	 0.446		 0.526*	
ever_vented	 0.431*	 0.486***	
_cons	 -2.782***	 -2.794***	

p-values: * <0.05, ** <0.01, *** <0.001 
 
- Started with list of comorbidities/demographics from above, added significant 

indwelling devices 

- Dropped redundant/collinear variables until parsimony was achieved (no further 

variables could be dropped without significantly affecting the AUROC). 
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Table B-3: Model selection for ertapenem resistance in GNRs, combining 
comorbidities, demographics, devices, and labs together 

	
Labs	-	start	 Labs	-	end	 Labs	+	above	

AUROC	 0.624	 0.604	 0.670	
Variable	

	 	 	WBC	 0.010***	 0.012***	
	hemoglobin	 -0.117***	 -0.125***	 -0.078***	

platelets	 0.001***	
	 	sodium	 -0.025***	
	 	potassium	 0.054		
	 	chloride	 0.029***	
	 	bicarb	 0.068***	 0.052***	

	GFR	 0.006***	
	 	BUN	 0.010***	
	 	glucose	 -0.001**	
	 	ever_vented	

	 	
0.521***	

trach	
	 	

0.835***	
male	

	 	
0.439***	

_cons	 -2.210***	 -1.290***	 -1.096***	
p-values: * <0.05, ** <0.01, *** <0.001 
 
- Started with significant labs 

- Dropped redundant/collinear variables until parsimony was achieved (no further 

variables could be dropped without significantly affecting the AUROC) 

- Added in end model from above (comorbidities, demographics, and indwelling 

devices) 

- Dropped redundant/collinear variables until parsimony was achieved (no further 

variables could be dropped without significantly affecting the AUROC) 
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Table B-4: Model selection for ertapenem resistance in GNRs, recent 
medications plus above variables 

	

Recent	therapy	-	
start	

Recent	therapy	
-	end	 Final	model	

AUROC	 0.645	 0.641	 0.681	
Variable	

	 	 	last_abx	 0.000	
	 	last_carbapenem	 -0.007***	 -0.007***	 -0.006***	

last_fluoroquin	 -0.001*	
	 	last_anti_GPC	 -0.007***	 -0.007***	 -0.006***	

last_betalactam	 -0.001		
	 	last_antacid	 -0.003***	 -0.003***	

	last_probiotic	 -0.004***	 -0.004***	
	last_chemo	 -0.002		

	 	last_blood	 0.000	
	 	male	

	 	
0.338***	

ever_vented	
	 	

0.398***	
trach	

	 	
0.703***	

_cons	 0.359*	 0.130	 -0.964***	
p-values: * <0.05, ** <0.01, *** <0.001 
 
- Started with list of individually significant recent medications 

- Dropped redundant/collinear variables until parsimony was achieved (no further 

variables could be dropped without significantly affecting the AUROC) 

- Added in variables from the above model 

- Dropped redundant/collinear variables until parsimony was achieved (no further 

variables could be dropped without significantly affecting the AUROC) 
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Table B-5: Model selection for ertapenem resistance in GNRs, simplified final 
model 

	

Final	model	-	
simplified	

AUROC	 0.684	
Variable	

	carb30	 0.600***	
GPC30	 0.488***	
male	 0.365***	
ever_vented	 0.404***	
trach	 0.703***	
_cons	 -2.113***	

p-values: * <0.05, ** <0.01, *** <0.001 
 
- Dichotomized “last_carbapenem” and “last_anti_GPC” to whether or not 

antibiotics were received in the prior 30 days for simplicity of interpretation, after 

testing multiple thresholds for time cutoffs (30, 60, 90 days) and determining that 

30 days had the best discriminatory capacity for the model 
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Table B-6: Model selection for anti-pseudomonal carbapenem resistance in 
GNRs, comorbidities and demographics 

	

Comorbidities	
-	start	

Comorbidities	
-	end	

Comorbidities	+	
demographics	-	
start	

Comorbidities	+	
demographics	-	
end	

AUROC	 0.632	 0.628	 0.707	 0.638	
Variable	 Significance	 Significance	 Significance	 Significance	
CHF	 0.176**	

	 	 	arrhythmia	 0.262***	 0.283***	 0.213**	 0.279***	
valve_disease	 -0.215***	

	 	 	pulm_vasc_dz	 -0.004		
	 	 	peripheral_vasc_

dz	 -0.051		
	 	 	paralysis	 0.082		
	 	 	neurologic_dz	 0.444***	 0.467***	 0.080	

	chronic_pulm_dz	 0.214***	 0.203***	 0.152		
	renal_dz	 -0.064		

	 	 	liver_dz	 -0.076		
	 	 	coagulopathy	 0.174**	 0.192***	 0.188*	

	weight_loss	 0.471***	 0.488***	 0.394***	 0.445***	
electrolyte_disor
ders	 0.158**	

	 	 	renal_failure	 0.201**	
	 	 	age	

	 	
-0.007***	 -0.007***	

male	
	 	

0.542***	 0.538***	
in_facility	

	 	
1.119***	 1.121***	

ever_icu	
	 	

0.668***	 0.692***	
_cons	 -3.318***	 -3.270***	 -3.431***	 -3.345***	

p-values: * <0.05, ** <0.01, *** <0.001 
 
- Started with list of individually significant comorbidities 

- Dropped all comorbidities that did not remain significant on multivariable 

analysis 

- Dropped redundant/collinear variables until parsimony was achieved (no further 

variables could be dropped without significantly affecting the AUROC) 

- Added in demographic variables (age, gender, race, location prior to admission, 

etc.) 
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- Dropped redundant/collinear variables until parsimony was achieved (no further 

variables could be dropped without significantly affecting the AUROC) 
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Table B-7: Model selection for anti-pseudomonal carbapenem resistance in 
GNRs, comorbidities, demographics, and devices 

	

Comorbidities/demographics	
+	devices	-	start	

Comorbidities/demographics	
+	devices	-	end	

AUROC	 0.766	 0.763	
Variable	

	 	arrhythmia	 0.303		
	weight_loss	 0.096		
	age	 -0.003		
	male	 0.997***	 1.045***	

in_facility	 0.654**	 0.669**	
ever_icu	 0.173		

	urine_cath	 0.403		 0.412*	
ever_vented	 0.982***	 1.173***	
admission_trach	 0.092		

	_cons	 -4.614***	 -4.67***	
p-values: * <0.05, ** <0.01, *** <0.001 
 
- Started with list of comorbidities/demographics from above, added significant 

indwelling devices 

- Dropped redundant/collinear variables until parsimony was achieved (no further 

variables could be dropped without significantly affecting the AUROC). 
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Table B-8: Model selection for anti-pseudomonal carbapenem resistance in 
GNRs, combining comorbidities, demographics, devices, and labs together 

	
Labs	-	start	 Labs	-	end	 Labs	+	Above	

AUROC	 0.653	 0.645	 0.773	
Variable	

	 	 	WBC	 0.008***	
	 	hemoglobin	 -0.178***	 -0.175***	 -0.132**	

platelets	 0.001***	
	 	sodium	 0.023**	
	 	potassium	 0.069		
	 	chloride	 -0.002		
	 	bicarb	 0.044***	 0.050***	

	GFR	 0.006***	 0.007***	
	BUN	 0.010***	 0.012***	
	glucose	 -0.001		

	 	male	
	 	

1.012***	
in_facility	

	 	
0.695***	

urine_cath	
	 	

0.392		
ever_vented	

	 	
1.003***	

_cons	 	 	 -3.269***	
p-values: * <0.05, ** <0.01, *** <0.001 
 
- Started with significant labs 

- Dropped redundant/collinear variables until parsimony was achieved (no further 

variables could be dropped without significantly affecting the AUROC) 

- Added in end model from above (comorbidities, demographics, and indwelling 

devices) 

- Dropped redundant/collinear variables until parsimony was achieved (no further 

variables could be dropped without significantly affecting the AUROC). Urine cath 

could not be dropped, despite not being significant. 
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Table B-9: Model selection for anti-pseudomonal carbapenem resistance in 
GNRs, recent medications plus above variables 

	

Recent	therapy	-	
start	

Recent	therapy	
-	end	 Final	model	

AUROC	 0.716	 0.723	 0.757	
Variable	

	 	 	last_abx	 -0.002		
	 	last_carbapenem	 -0.011***	 -0.013***	 -0.014***	

last_fluoroquin	 -0.003***	
	 	last_anti_GPC	 -0.008***	 -0.008***	

	last_betalactam	 0.000	
	 	last_antacid	 -0.004***	 -0.004***	

	last_probiotic	 -0.007***	 -0.007***	
	last_chemo	 -0.001		

	 	last_blood	 0.000	
	 	male	

	 	
0.411***	

in_facility	
	 	

0.985***	
ever_vented	

	 	
0.728***	

hemoglobin	
	 	

-0.071***	
_cons	 -0.419*	 -0.689***	 -1.812***	

p-values: * <0.05, ** <0.01, *** <0.001 
 
- Started with list of individually significant recent medications 

- Dropped redundant/collinear variables until parsimony was achieved (no further 

variables could be dropped without significantly affecting the AUROC) 

- Added in variables from the above model 

- Dropped redundant/collinear variables until parsimony was achieved (no further 

variables could be dropped without significantly affecting the AUROC) 
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Table B-10: Model selection for anti-pseudomonal carbapenem resistance in 
GNRs, simplified final model 
Final	model	-	
simplified	

Final	model	-	
simplified	

AUROC	 0.754	
Variable	

	carb30	 1.207***	
male	 0.432***	
in_facility	 0.967***	
ever_vented	 0.753***	
hem11	 -0.377***	
_cons	 -3.717***	

p-values: * <0.05, ** <0.01, *** <0.001 
 
- Dichotomized “last_carbapenem” to whether or not carbapenems were received 

in the prior 30 days for simplicity of interpretation, after testing multiple thresholds 

for time cutoffs (30, 60, 90 days) and determining that 30 days had the best 

discriminatory capacity for the model. Dichotomized hemoglobin to whether 

hemoglobin was above or below 11 (reference category below) for simplicity of 

interpretation, after testing multiple cutoffs (7, 8, 9, 10, 11, 12, 13) and 

determining that 11 had the best discriminatory capacity for the model. 
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Appendix C - Model selection for aminoglycoside 

resistance 

 
Table C-1: Model selection for gentamicin/tobramycin resistance in GNRs, 
comorbidities and demographics 

	

Comorbidities	
-	start	

Comorbidities	
-	end	

Comorbidities	+	
demographics	-	
start	

Comorbidities	+	
demographics	-	
end	

AUROC	 0.604	 0.593	 0.626	 0.618	
Variable	

	 	 	 	CHF	 0.111*	
	 	 	arrhythmia	 0.150***	
	 	 	valve_disease	 -0.083		
	 	 	pulm_vasc_dz	 -0.074		
	 	 	peripheral_vasc_dz	 -0.031		
	 	 	paralysis	 0.135*	
	 	 	neurologic_dz	 0.313***	 0.387***	 0.128*	

	chronic_pulm_dz	 0.255***	 0.303***	 0.124		
	renal_dz	 0.067		

	 	 	liver_dz	 -0.150***	
	 	 	metastatic_cancer	 -0.144*	
	 	 	tumor_without_me

ts	 -0.232***	 -0.28***	 -0.271***	
	coagulopathy	 0.133**	

	 	 	obesity	 0.129*	
	 	 	weight_loss	 0.363***	 0.396***	 0.457***	 0.466***	

electrolyte_disorde
rs	 0.114**	

	 	 	blood_loss_anemia	 0.114		
	 	 	deficiency_anemia	 -0.078		
	 	 	renal_failure	 0.096		
	 	 	cystic_fibrosis	 1.137***	 0.993***	 1.178***	 1.250***	

Asian	 	 	 0.026		 0.004		
Black	 	 	 0.175*	 0.198*	
Latino	 	 	 0.274***	 0.283***	
Other	 	 	 0.438***	 0.453***	

in_facility	 	 	 0.877***	 0.912***	
_cons	 -2.047***	 -1.911***	 -2.197***	 -2.205***	

p-values: * <0.05, ** <0.01, *** <0.001 
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- Started with list of individually significant comorbidities 

- Dropped all comorbidities that did not remain significant on multivariable 

analysis 

- Dropped redundant/collinear variables until parsimony was achieved (no further 

variables could be dropped without significantly affecting the AUROC) 

- Added in demographic variables (age, gender, race, location prior to admission, 

etc.) 

- Dropped redundant/collinear variables until parsimony was achieved (no further 

variables could be dropped without significantly affecting the AUROC) 

Note: reference category for race is “White”  
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Table C-2: Model selection for gentamicin/tobramycin resistance in GNRs, 
combining comorbidities, demographics, and labs together 

	
Labs	-	start	 Labs	-	end	 Labs	+	Above	

AUROC	 0.573	 0.569	 0.628	
Variable	

	 	 	hemoglobin	 -0.064***	 -0.061***	 -0.062***	
platelets	 0.000*	

	 	potassium	 0.067*	
	 	bicarb	 0.022***	 0.024***	

	GFR	 0.002*	
	 	BUN	 0.008***	 0.007***	

	weight_loss	
	 	

0.429***	
cystic_fibrosis	

	
1.295***	

Asian	
	 	

-0.033		
Black	

	 	
0.179*	

Latinx	
	 	

0.274***	
Other	

	 	
0.429***	

in_facility	
	 	

0.921***	
_cons	 -2.247***	 -1.833***	 -1.575***	
 p-values: * <0.05, ** <0.01, *** <0.001 
 
- Started with significant labs 

- Dropped redundant/collinear variables until parsimony was achieved (no further 

variables could be dropped without significantly affecting the AUROC) 

- Added in end model from above (comorbidities and demographics) 

- Dropped redundant/collinear variables until parsimony was achieved (no further 

variables could be dropped without significantly affecting the AUROC) 

- Added indwelling devices, none of which improved the model or remained 

significant on multivariable analysis 

Note: reference category for race is “White” 
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Table C-3: Model selection for gentamicin/tobramycin resistance in GNRs, 
recent medications plus above variables 

	

Recent	therapy	-	
start	

Recent	therapy	
-	end	 Final	model	

AUROC	 0.597	 0.589	 0.642	
Variable	

	 	 	last_abx	 0.000	
	 	last_aminoglycoside	 0.000		
	 	last_ertamero	 -0.004***	 -0.005***	 -0.005***	

last_fluoroquin	 -0.004***	 -0.004***	 -0.004***	
last_anti_GPC	 -0.003***	 -0.003***	

	last_polymyxin	 -0.008***	
	 	last_antacid	 0.000	
	 	last_probiotic	 -0.003**	
	 	last_chemo	 0.000	
	 	last_blood	 0.001		
	 	weight_loss	

	 	
0.420***	

in_facility	
	 	

0.842***	
hemoglobin	

	 	
-0.043***	

_cons	 0.049		 -0.890***	 -0.853***	
p-values: * <0.05, ** <0.01, *** <0.001 
 
- Started with list of individually significant recent medications 

- Dropped redundant/collinear variables until parsimony was achieved (no further 

variables could be dropped without significantly affecting the AUROC) 

- Added in variables from the above model 

- Dropped redundant/collinear variables until parsimony was achieved (no further 

variables could be dropped without significantly affecting the AUROC) 
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Table C-4: Model selection for gentamicin/tobramycin resistance in GNRs, 
simplified final model 
Final	model	-	
simplified	

Final	model	-	
simplified	

AUROC	 0.634	
Variable	

	carb30	 0.493***	
flo30	 0.382***	
weight_loss	 0.414***	
in_facility	 0.844***	
hem11	 -0.232***	
_cons	 -2.12***	

p-values: * <0.05, ** <0.01, *** <0.001 
 
- Dichotomized “last_carbapenem” and “last_fluoroquin” to whether or not 

antibiotics were received in the prior 30 days for simplicity of interpretation, after 

testing multiple thresholds for time cutoffs (30, 60, 90 days) and determining that 

30 days had the best discriminatory capacity for the model. Dichotomized 

hemoglobin to whether hemoglobin was above or below 11 (reference category 

below) for simplicity of interpretation, after testing multiple cutoffs (7, 8, 9, 10, 11, 

12, 13) and determining that 11 had the best discriminatory capacity for the 

model. 
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Table C-5: Model selection for amikacin resistance in GNRs, comorbidities and 
demographics 

	

Comorbidities	
-	start	

Comorbidities	
-	end	

Comorbidities	+	
demographics	-	
start	

Comorbidities	+	
demographics	-	
end	

AUROC	 0.635	 0.631	 0.712	 0.707	
Variable	

	 	 	 	CHF	 0.067		
	 	 	arrhythmia	 0.210***	 0.268***	 0.299**	

	valve_disease	 -0.029		
	 	 	pulm_vasc_dz	 0.005		
	 	 	peripheral_vasc_

dz	 0.041		
	 	 	neurologic_dz	 0.288***	 0.323***	 -0.157		

	chronic_pulm_dz	 0.251***	 0.288***	 0.282**	
	renal_dz	 -0.034		

	 	 	liver_dz	 -0.112		
	 	 	coagulopathy	 0.114		
	 	 	weight_loss	 0.465***	 0.504***	 0.474***	 0.538***	

electrolyte_disor
ders	 0.177*	

	 	 	renal_failure	 0.103		
	 	 	cystic_fibrosis	 2.067***	 1.982***	 1.699***	 1.880***	

age	
	 	

-0.011***	 -0.009***	
male	

	 	
0.677***	 0.664***	

in_facility	
	 	

0.736***	 0.742***	
ever_icu	

	 	
0.618***	 0.623***	

_cons	 -3.465***	 -3.379***	 -3.48***	 -3.478***	
p-values: * <0.05, ** <0.01, *** <0.001 
 
- Started with list of individually significant comorbidities 

- Dropped all comorbidities that did not remain significant on multivariable 

analysis 

- Dropped redundant/collinear variables until parsimony was achieved (no further 

variables could be dropped without significantly affecting the AUROC) 

- Added in demographic variables (age, gender, race, location prior to admission, 

etc.) 
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- Dropped redundant/collinear variables until parsimony was achieved (no further 

variables could be dropped without significantly affecting the AUROC) 
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Table C-6: Model selection for amikacin resistance in GNRs, comorbidities, 
demographics, and devices 

	

Comorbidities/demographics	
+	devices	-	start	

Comorbidities/demographics	
+	devices	-	end	

AUROC	 0.724	 0.710	
Variable	

	 	weight_loss	 0.449***	 0.486***	
cystic_fibrosis	 1.931***	 2.150***	
age	 -0.008**	

	male	 0.585***	 0.570***	
in_facility	 0.582***	 0.477***	
ever_icu	 -0.018		

	trach	 0.097		
	ever_vented	 0.908***	 0.937***	

_cons	 -3.518***	 -4.007***	
p-values: * <0.05, ** <0.01, *** <0.001 
 
- Started with list of comorbidities/demographics from above, added significant 

indwelling devices 

- Dropped redundant/collinear variables until parsimony was achieved (no further 

variables could be dropped without significantly affecting the AUROC). 
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Table C-7: Model selection for amikacin resistance in GNRs, combining 
comorbidities, demographics, devices, and labs together 

	
Labs	-	start	 Labs	-	end	 Labs	+	Above	

AUROC	 0.629	 0.619	 0.723	
Variable	

	 	 	WBC	 0.006*	
	 	hemoglobin	 -0.148***	 -0.146***	 -0.053*	

platelets	 0.000	
	 	sodium	 0.017		
	 	potassium	 0.077		
	 	chloride	 -0.005		
	 	bicarb	 0.043***	 0.054***	

	GFR	 0.005***	
	 	BUN	 0.008***	 0.006***	

	glucose	 0.000	
	 	weight_loss	

	 	
0.489***	

cystic_fibrosis	
	

2.189***	
male	

	 	
0.563***	

in_facility	
	 	

0.512***	
ever_vented	

	 	
0.887***	

_cons	 -5.230***	 -2.959***	 -3.488***	
p-values: * <0.05, ** <0.01, *** <0.001 
 
- Started with significant labs 

- Dropped redundant/collinear variables until parsimony was achieved (no further 

variables could be dropped without significantly affecting the AUROC) 

- Added in end model from above (comorbidities, demographics, and indwelling 

devices) 

- Dropped redundant/collinear variables until parsimony was achieved (no further 

variables could be dropped without significantly affecting the AUROC) 
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Table C-8: Model selection for amikacin resistance in GNRs, recent medications 
plus above variables 

	

Recent	
therapy	-	
start	

Recent	
therapy	-	
end	 Final	model	

AUROC	 0.694	 0.676	 0.733	
Variable	

	 	 	last_abx	 0.000	
	 	last_aminoglycoside	 -0.003*	
	 	last_ertamero	 -0.007***	 -0.008***	 -0.007***	

last_fluoroquin	 -0.004***	 -0.005***	
	last_anti_GPC	 -0.008***	 -0.009***	 -0.006***	

last_betalactam	 0.001		
	 	last_polymyxin	 -0.006***	
	 	last_antacid	 -0.004***	
	 	last_probiotic	 -0.001		
	 	last_chemo	 -0.001		
	 	last_blood	 0.001		
	 	cystic_fibrosis	
	

1.992***	
male	

	 	
0.430***	

in_facility	
	 	

0.387***	
ever_vented	

	 	
0.670***	

_cons	 -0.776**	 -1.643***	 -2.904***	
p-values: * <0.05, ** <0.01, *** <0.001 
 
- Started with list of individually significant recent medications 

- Dropped redundant/collinear variables until parsimony was achieved (no further 

variables could be dropped without significantly affecting the AUROC) 

- Added in variables from the above model 

- Dropped redundant/collinear variables until parsimony was achieved (no further 

variables could be dropped without significantly affecting the AUROC) 
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Table C-10: Model selection for amikacin resistance in GNRs, simplified final 
model 
Final	model	-	
simplified	

Final	model	-	
simplified	

AUROC	 0.735	
Variable	

	carb30	 0.606***	
GPC30	 0.529***	
cystic_fibrosis	 2.037***	
male	 0.470***	
in_facility	 0.431***	
ever_vented	 0.697***	
_cons	 -4.179***	

p-values: * <0.05, ** <0.01, *** <0.001 
 
- Dichotomized “last_carbapenem” and “last_anti_GPC” to whether or not 

antibiotics were received in the prior 30 days for simplicity of interpretation, after 

testing multiple thresholds for time cutoffs (30, 60, 90 days) and determining that 

30 days had the best discriminatory capacity for the model 
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