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Abstract

Agile Design of Generator-Based Signal Processing Hardware

by

Angie Wang

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Borivoje Nikolić, Chair

Custom, application-specific implementations of digital signal processing (DSP) systems
o↵er high performance and high energy e�ciency, but require significant design and verifi-
cation e↵ort. Fast Fourier transform (FFT) processors with a broad range of performance
requirements are needed for many modern-day signal processing applications, ranging from
medical imaging and machine learning to communication and radio astronomy. Certain ap-
plications, including modern-day wireless communications, require runtime reconfigurability
across a multitude of mixed-radix FFT sizes, high throughput, low latency, and lower power.
Convolutional neural networks use multi-dimensional FFTs with stringent requirements on
quantization bounds. Despite sharing underlying algorithms and hardware constructs, FFT
designs are often di�cult to reuse on a per-application or even per-platform basis, lead-
ing to redeveloping and reverifying conceptually similar instances. Hardware generators are
attractive solutions for e↵ectively balancing fine-grained control of implementation details
with simple, rapidly retargetable hardware descriptions, but the existing FFT generators do
not support key features like runtime reconfigurability or more general mixed-radix FFTs,
limiting their applicability.

This thesis presents ACED (A Chisel Environment for DSP), a library extension to the
Chisel hardware construction language and the FIRRTL (Flexible Intermediate Represen-
tation for RTL) compiler specifically created to simplify the development of hardware DSP
generators. ACED allows DSP designs to be specified at a higher level of abstraction, making
it easier to add new features as they become necessary. Optimization and specialization are
handled via platform-specific compiler passes that promote generator reusability. The ACED
library has been used to create a parameterizable memory-based, runtime-reconfigurable
2n3m5k7l FFT generator to support next-generation wireless systems prototyping. The gen-
erator uses a conflict-free, in-place, multi-bank SRAM design, and exploits the duality of
decimation-in-frequency and decimation-in-time FFTs to support continuous data flow with
⇠2N memory. The hardware itself is templated so that Chisel/Scala code can be written
to add additional functionality, and users pass parameters to the hardware template via a
“firmware” block. This is the essence of the Chisel DSP generator methodology.
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The FFT generator has been proven via a 0.37-mm2 LTE/Wi-Fi compatible FFT RISC-V
accelerator instance with measured performance and area comparable to state-of-the-art. To
demonstrate the use case of the FFT generator in a larger systems context, a low-power signal
acquisition front end capable of sensing frequency-sparse signals in a 1.89-GHz bandwidth
with a resolution of 175 kHz in real time has also been prototyped in a 16-nm process. The
spectral analysis chip relies on mixed-radix FFTs and reconstruction via the fast Fourier
aliasing-based sparse transform (FFAST) algorithm to recover signals in compressed form
from a subsampled input. This thesis presents new tools and design methodologies to rapidly
design DSP hardware generators—with a particular focus on FFTs—for use in emerging
applications such as spectrum sensing for cognitive radio, RADAR, and more.
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Chapter 1

Introduction: Agile DSP Hardware
Generation. Why the Need?

1.1 FFTs: A Motivating Example for Hardware DSP
Generators

Figure 1.1: Seminal FFT papers and applications relying on FFTs. [1]

Fast Fourier transforms (FFTs) have played an integral part in various technological
advancements since at least the 1960’s, when J. W. Cooley and John Tukey devised the
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widely-used Cooley-Tukey algorithm (CTA) to bring the computational complexity of com-
puting a discrete Fourier transform (DFT) down from O(N2) to O(N logN)[2]. Dedicated
hardware FFTs or FFTs implemented in software are used in a multitude of modern-day elec-
tronics systems. They serve as core digital signal processing (DSP) blocks in applications
ranging from radio astronomy to image compression, magnetic resonance imaging (MRI),
cognitive- and software-defined radio, and machine learning. Because each application has
di↵erent requirements in terms of power, precision, throughput, latency, etc., FFTs must be
custom-tailored to a given system. Although the same fundamental algorithm is used for
converting time or spatial representations into the frequency domain, hardware FFTs have
been optimized and re-implemented countless times.

Figure 1.2: Cartoon illustration of power vs. performance requirements for di↵erent wireless
standards. 802.11ah is used for IoT devices, which require low power, low data rate operation.
Digital TV broadcasts require high power radios that reach large swaths of area. WiGig is
intended for close-proximity, high data rate video and audio streams.

FFT Length 64 128 256 512
Bandwidth/IO Rate (MHz) 20 40 80 160

Table 1.1: Wi-Fi 802.11ac FFT requirements. The symbol duration is 3.2µs with an addi-
tional 800ns guard interval. FFT computation can be performed across a total of 4µs.

Even within the narrow application scope of orthogonal frequency-division multiplexing
(OFDM) wireless communication, di↵erent standards necessitate highly customized FFT
configurations (Fig. 1.2). Wi-Fi basebands must support di↵erent channel bandwidths and
modulation schemes over a symbol duration of 3.2µs, requiring runtime reconfigurability
across di↵erent 2n FFT sizes and multiple data rates (Table 1.1). Basic OFDM for the
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Figure 1.3: OFDM transmitter and receiver. The additional DFT/IDFT blocks in pink are
required for single-carrier frequency-division multiple access (SC-FDMA), used by LTE [3].

FFT Length 128 256 512 1024 1536 2048
Bandwidth (MHz) 1.25 2.5 5 10 15 20
IO Rate (MHz) 1.92 3.84 7.68 15.36 23.04 30.72

Table 1.2: LTE FFT requirements. The symbol duration is 66.67µs. An additional 4.76µs
is reserved for the cyclic prefix.

12 96 216 384 648 972
24 108 240 432 720 1080
36 120 288 480 768 1152
48 144 300 540 864 1200
60 180 324 576 900 1296
72 192 360 600 960

Table 1.3: 2n3m5k FFT sizes required for LTE SC-FDMA precoding.

Long-Term Evolution (LTE) standard requires a di↵erent set of data rates and FFT sizes
(Table 1.2) [4]. Radios that support LTE’s single-carrier frequency-division multiple access
scheme (SC-FDMA), which relaxes the peak-to-average power ratio at the transmitter, must
additionally perform mixed-radix 2n3m5k FFTs (Table 1.3).

1.2 Background and Prior Art

A significant amount of e↵ort has gone into the optimization of FFTs in software. The
most well-known work in this space is the C subroutine library FFTW, also known as the
“Fastest Fourier Transform in the West” [5]. It is able to compute one- or many-dimensioned
DFTs of arbitrary input size and can be optimized for either real or complex data. The
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backbone behind FFTW is a “codelet generator” that produces optimized C code for specific
FFT sizes on a given hardware architecture. The resultant C code has performance that is
comparable to, if not better than, most other software FFT implementations. The generator
can target di↵erent architectures, exhibiting a high degree of portability.

Although suitable for many applications, when real-time computation, runtime configu-
ration, and energy e�ciency are required, as is the case with wireless communication, even
the most optimized software FFT implementation cannot outperform its hardware counter-
part. To satisfy general industry needs, FPGA and ASIC companies provide reconfigurable,
but costly/closed-platform, FFT IP cores [6], [7]. These solutions are not extensible to new
or more exotic standards such as Chinese terrestrial Digital TV (which requires a 3,780-point
FFT and radix-7 butterfly support) [8]. Additionally, runtime-reconfigurable cores are not
resource-optimized for particular applications, which is problematic when users only need a
subset of FFT sizes and are otherwise severely hardware constrained. This is a pain point
when prototyping next-generation wireless on resource-constrained devices.

Academia has attempted to address these problems with parameterized FFT generators
[9], [10]. These generators ideally exploit our understanding of algorithms and architecture
regularity to create hardware-optimized FFT engines for any application, enabling design
space exploration and rapid systems prototyping, while supporting state-of-the-art perfor-
mance. Highly parameterized generators should allow throughput/area trade-o↵s, memory
access methods, fixed point optimizations [11], etc. to be studied in detail. However, exist-
ing generators are sub-optimal/have incomplete feature sets. They do not support runtime
reconfigurability/non-2n FFTs and are thus inadequate for applications like software-defined
radio (SDR). In particular, Carnegie Mellon’s Spiral is sub-optimal in its memory require-
ments, necessitating (best-case) 4N memory to compute an N -point FFT [9] with a radix-2
iterative architecture (Table 1.4). It relies on the fixed-interconnect Pease algorithm [12],
which makes it ill-suited for runtime-reconfigurability. Additionally, Stanford’s Genesis2
FFT generator does not support IO unscrambling.

Radix-2 Streaming Radix-2 Iterative

Data Memory 7.99N 4N
Twiddle ROM 0.99N N
Clock Cycles 1,024 11,287
Multipliers 40 4

Table 1.4: Generated FFT configurations from Spiral for fixed N = 2, 048.

Significantly more research e↵ort has been spent on the optimization of individual FFT
instances for particular applications. Several chip implementations are highlighted below.

• In [13], Yang et al. developed a reconfigurable FFT based o↵ of the pipelined single-
path delay feedback (SDF) architecture to support 128- to 2048-point FFT sizes for
3GPP-LTE. It uses radix factorization to achieve high energy e�ciency while support-
ing runtime reconfigurability.
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• In [14], Hickish et al. summarize a decade of development of open-source hardware
DSP generators targeting Xilinx FPGAs for the radio astronomy community. These
include a radix-2 FFT generator that supports multiple parallel data streams with
 5N/2 memory [15]. An FFT instance generated by this FFT generator was mapped
using an automated design flow to an application-specific integrated circuit (ASIC) by
Richards et al. [16] for use in a high-performance 4096-point digital spectrometer.

• In [17], G. Yahalom built runtime-reconfigurable, mixed-radix FFT and IFFT instances
for an LTE uplink channel. Like [13], the FFT instances rely on the SDF architecture,
but DFT sizes of 12-1200 are supported for single-carrier frequency-division multiple
access (SC-FDMA).

• In [18], Xia et al. implemented memory-based FFT processors to support runtime
reconfigurability among FFT sizes of 12-1296 and 128-2048 for LTE. The work relies
on the prime factor algorithm (PFA) for FFT decomposition and a custom conflict-free
memory addressing scheme. It is able to achieve continuous data flow, although 3N
memory is required to support SC-FDMA FFT sizes.

• In [19], Chen et al. also implemented memory-based FFT processors for FFT lengths
of 12-1296 and 128-2048. These processors achieve continuous data flow with only 2N
memory through the use of the PFA + CTA and a high-radix butterfly unit.

Much of this research has tended to focus on one aspect of the FFT design at a time, without
considering implications on overall system complexity or performance. Table 1.5 highlights
particular blocks targeted for optimization in recent literature and potential costs of these
optimizations.

Enhancements Possible Costs

Qureshi et al. [20] Reconfigurable WFTA BF

Richardson et al. [21]
Multi-BF Conflict-Free I/O Addressing1

Calculation Schedules Twiddle ROM Addressing

Chen et al. [19]
PFA + CTA to Reduce Complex Calculation
Non-Trivial Twiddles Addressing Scheme

Hsiao et al. [22]
In-Place IO Mem. Reduction

Single-BF Conflict-
Free Addressing

Table 1.5: Areas of focus for hardware FFT optimizations in recent literature. Genesis2 data
is pre-stored in memory.1

One of the more “unique” hardware FFT instances was reported by Abari et al. in
[23]. The instance is capable of calculating a 746,496-point FFT with the caveat that the
frequency spectrum being computed must be sparse—only 0.1% of the spectrum should
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be occupied. This hardware FFT relies on MIT’s sparse Fourier transform algorithm [24],
[25]—which happens to be quite similar to the Fast Fourier Aliasing-based Sparse Transform
(FFAST) developed by Pawar et al. at Berkeley—and coprime subsampling. The same
authors applied sparse FFT concepts to a GHz-wide spectrum analyzer called BigBand [26],
capable of detecting signals at more realistic sparsity levels. More traditional spectrum
analyzers like those used in the Microsoft spectrum observatory sequentially scan small
bandwidth windows, making real-time operation di�cult and leading to missed signals—
particularly those that are short-lived. BigBand is instead able to capture a GHz of spectrum
in real time using commodity subsampling analog-to-digital converters (ADCs) instead of
power-hungry, costly, and low-resolution, but high-speed ADCs.

In designing new and complex systems like BigBand, it is imperative that focus be spent
on systems-level optimizations that enhance the performance of individual blocks, which
themselves can be improved over time. For example, BigBand is not reliant on high-speed
ADCs, but can achieve real-time performance, because the digital backend—consisting of
subsampled frequency bucketization, frequency estimation, and collision (due to aliasing)
resolution components and reliant on several small FFTs instead of one large one—can
resolve information “lost” in the initial subsampling stage.

Figure 1.4: Simulink-generated blocks for a mars spectrometer designed at the Berkeley
Wireless Research Center.
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The design of complex systems for next-generation applications greatly benefits from tools
that enhance designer productivity, particularly at the systems level. In [16], researchers at
the Berkeley Wireless Research Center experimented with building DSP instances using
Simulink data flow graphs. However, graphical representations do not always equate to the
most intuitive representations, especially as designs balloon in complexity (Fig. 1.4). In
particular, mathematical functions like complex twiddle multiplication are often much easier
to grasp in text. Although Simulink flows are decent at mapping designs to generic hardware,
specialization—like mapping to ASIC SRAMs—becomes challenging, because the final RTL
is not transparent and additional tools are required, potentially resulting in translation errors.
This suggests that there is a need to build tightly integrated tools that operate at various
design abstraction levels. Additionally, much like FFTW in the software space, generators
must exist in the hardware space to:

• Enhance designer productivity and encourage rapid design development/deployment
by supporting a high degree of parameterization, and

• Enable automatic platform specialization and optimization.

1.3 Agile Hardware Design: Building Hardware
Generators

It should be clear that one-o↵ design instances are not resource- and time-e�cient and
do not provide the agility required for fast systems development in the modern age. For
example, the design and verification of a single FFT instance for a particular application
may take months, if not years, to complete. To spur innovation at the hardware systems
level, hardware engineers need to be comfortable with an intersection of low-level circuit
design, algorithms, and software tools and methodology. More specifically, they should be
taking a “big-picture” approach to hardware design, building hardware generators (Fig. 1.5),
rather than single instances that are micro-optimized for a particular application. As with
designing single instances, generator design must focus on systems-level optimization.

Unfortunately, as exemplified in the previous section, neither commercial nor academic
tools have catered to the needs of designers of hardware DSP generators, and thus support
limited “agility.” Verilog and VHDL support minimal generator capability with simple pa-
rameterization and “for-generate” statements that are prone to indexing errors. Numeric
processing with powerful scientific libraries and tools like Matlab is not integrated. As a
concept is funneled down various abstraction layers along its path to hardware, several man-
ual translation and verification steps must occur. Miscommunication and mistranslation at
abstraction and tool boundaries (e.g., porting constants in the wrong format or defining in-
correct fixed-point representations) incur significant penalties in the technology development
timeline, resulting in algorithms becoming “stale” before their hardware implementations are
realized.
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Figure 1.5: In the approach highlighted in this thesis, hardware generators consist of a
user-facing interface that allows users to input design constraints (e.g., FFT sizes). These
constraints are then used by “firmware” to determine optimal hardware allocation. Cal-
culated parameters are fed into a hardware template to generate synthesizable Verilog. A
similar mechanism is used to automatically generate tests associated with a parameterized
hardware instance. Scientific libraries built for Scala can be directly used at each generator
layer.

The Chisel hardware construction language [27] improves upon some of these limitations.
It supports high levels of parameterization and, due to its functional programming nature,
more intuitive and concise syntax for structured math. It promotes a unified development
environment, with its own Tester class for validation and verification, but, up until recently,
did not support DSP number types and verification. Chisel provided no mechanism for
floating-point to fixed-point translation (which requires significant design e↵ort) and math-
to-hardware was extremely error prone, because Chisel, like Verilog, merely understood bits
rather than numbers.

To address these pain points, we enhanced Chisel with the library ACED: A Chisel
Environment for DSP. ACED has been used in the design of various hardware DSP generators
that have been verified in silicon. It natively supports DSP-specific number representations,
enabling features like automatic bitwidth reduction via static/dynamic range analysis, while
still a↵ording the designer tight control over implementation details. It supports easy design
parameterization with DSP-specific typeclasses, facilitating code reuse across platforms and
applications. This key feature also enables architectures to be validated in floating-point
and a one-step translation to fixed-point hardware (and associated tests) for verification and
evaluation of hardware metrics like quantization without rewriting code.
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1.4 Thesis Overview

This thesis focuses on the design of DSP—and in particular, FFT—generators for use
in next-generation wireless systems and additionally introduces new tools to simplify the
development of such generators. This thesis presents a design methodology and library
utilizing the Chisel hardware construction language [27] to support rapid prototyping of
DSP hardware generators with a focus on high-level, minimal-cost abstraction, unobtrusive
optimization that preserves design re-usability, and portable systems modeling and testing.

To support SDR and beyond, in [28], we designed a compile-time parameterizable gener-
ator of memory-based, runtime-reconfigurable 2n3m5k7l FFTs using Chisel and the ACED
hardware DSP library [29]. The generator uses a conflict-free, in-place, multi-bank SRAM
design and supports continuous data flow. Generated FFT instances use less data/twiddle
memory than comparable (iterative, N = 2, 048) instances from the Spiral FFT generator
(50%/25% savings, respectively) [9].

A 0.37mm2 FFT accelerator meeting LTE/Wi-Fi requirements has been generated and
taped out in 16nm FinFET. The accelerator is optimized for radix-2/3/4/5 butterfly reuse
[20] and continuous data flow with just 2.23Nmax total SRAM (4,576⇥48-bit, 24-bit re-
al/imaginary). It requires a twiddle LUT depth of only 1,718 (0.84Nmax), despite supporting
all LTE/Wi-Fi FFT configurations. The FFT accelerator is attached to a RISC-V Rocket
core [30] to simplify testing with C code, and the FFT + Rocket system has been verified
to function with a core clock up to 940MHz. The system operates at 22.6mW to meet the
more stringent Wi-Fi specifications. Measurement results show that generator-based designs
are competitive with state-of-the-art.

Furthermore, to demonstrate generator versatility, the same FFT generator has been
exercised in a real-time (< 20µs runtime), 1.89-GHz bandwidth, 175-kHz resolution sparse
spectral analysis system-on-chip (SoC), which uses the FFAST sparse FFT algorithm devel-
oped by S. Pawar in K. Ramchandran’s group at U.C. Berkeley [31]. The SoC is able to
recover realistic spectra with up to 3.2% sparsity (compared to 0.1% in [23]). This algorithm
relies on “co-prime subsampling” and thus necessitates the use of mixed-radix 2n3m5k FFTs.
The SoC, taped out in 16nm, is the first fully-integrated demonstration of a sparse spectral
analysis system, consisting of custom subsampling SAR ADCs designed with the Berke-
ley Analog Generator [32] at the frontend, FFTs generated via the aforementioned Chisel
generator, a Chisel-generated spectrum reconstruction backend, and a Rocket RISC-V pro-
cessor used for simplifying testing with C code and performing additional post-processing.
The spectrum reconstruction backend consists of common DSP instances like CORDIC that
were also designed as generators using ACED.

Analog and digital hardware generators enabled the rapid 16-nm implementation of both
chips in less than two months each.
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Chapter 2

A Runtime-Reconfigurable,
Mixed-Radix Hardware FFT
Generator

2.1 Overview

This chapter takes a bottom-up approach to the design of hardware FFT generators.
In order to build hardware FFT instances and generators, it is first necessary to under-
stand the underlying algorithms and architectures (e.g., memory-based vs. pipelined) behind
them. Here, we outline widely used algorithms for enabling e�cient FFT computations—
the Cooley-Tukey algorithm, the prime factor algorithm (specifically used to support DFT
sizes that can be decomposed into coprime numbers), and the Winograd’s Fourier transform
algorithm. Key properties of the algorithms, which are used to optimize memory/compute
resources and develop the butterfly datapath and control blocks like the index vector gener-
ator, twiddle address generator, etc., are highlighted. Finally, we show how the individually
described functional blocks are packaged into a compile-time-parameterized generator of
runtime-reconfigurable, mixed-radix hardware FFTs.

2.2 Computing the Discrete Fourier Transform via
FFTs

The discrete Fourier transform (DFT), which transforms the N -length complex sequence
of (xn)

N�1
n=0 into the complex sequence (Xk)

N�1
k=0 , is defined by [33]

Xk =
N�1X

n=0

xnW
nk
N , W nk

N = e�
j2⇡nk

N . (2.1)
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The DFT is an important tool in applications such as wireless communication, computer
vision, radio astronomy, medical imaging, etc., that require time $ frequency domain trans-
forms of finite-duration, discretely sampled data. Because the computational complexity of
(2.1) is O(N2), applications that deal with large input sequences benefit from fast algorithms
for DFT computation known collectively as fast Fourier transforms (FFT). This work at-
tempts to provide a thorough explanation of how the FFT can be mapped into an e�cient
hardware generator with wide application coverage.

2.2.1 Cooley-Tukey FFT

The Cooley-Tukey algorithm (CTA) is synonymous with the FFT [2]. It applies a recur-
sive “divide and conquer” one-dimension (N = N1N2) to two-dimension (N1, N2) decompo-
sition strategy to reduce the computational complexity of calculating a DFT to O(N logN).

2.2.1.1 Decimation-in-Frequency FFT

The CTA is often associated with the following index mappings (detailed in Section
2.2.2):

nDIF = N2n1 + n2 (2.2)

kDIF = k1 +N1k2 , (2.3)

where n1, k1 2 [0, N1), n2, k2 2 [0, N2), and N1, N2 2 Z. When recursively applied for
N = N1 ⇥ (N2 ⇥N3), the resulting index maps are

nDIF = (N2N3)n1 + ñ2,DIF , ñ2,DIF = N3n2 + n3 (2.4)

kDIF = k1 +N1k̃2,DIF , k̃2,DIF = k2 +N2k3 , (2.5)

where ñ2, k̃2 2 [0, N2N3). Substituting (2.2) and (2.3) into (2.1) so that xn ! x[n1, n2] and
Xk ! X[k1, k2] leads to the decimation-in-frequency (DIF) CTA equation [22], [19]:

X[k1, k2] =
N2�1X

n2=0

N1�1X

n1=0

x[n1, n2]W
(N2n1+n2)(k1+N1k2)
N

=
N2�1X

n2=0

((
N1�1X

n1=0

x[n1, n2]W
n1k1
N1

)
W n2k1

N

)
W n2k2

N2

=
N2�1X

n2=0

�
y[k1, n2]W

n2k1
N

 
W n2k2

N2
.

(2.6)

Recall that W a
N for a 2 [0, N) are the Nth roots of unity. W aN

N = e�j2⇡a = 1 for a 2 Z.
Equation (2.6) indicates that the N -point DFT can be obtained by



CHAPTER 2. A HARDWARE FFT GENERATOR 12

1. Computing N2 sub-DFTs of size N1 in the first calculation stage (where, for fixed n2,
the inputs/outputs to/from each N1-point DFT are x[n1, n2] and y[k1, n2] respectively),

2. Performing N twiddle rotations as indicated by W n2k1
N (some of which are trivial mul-

tiplications by W 0
N = 1), and

3. Computing N1 sub-DFTs of size N2 in the second calculation stage (where k1 is fixed
at the input of each N2-point DFT, and the outputs are X[k1, k2]).
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Figure 2.1: N = 16, radix-2 DIF (a) and DIT (b) CTA signal-flow graphs [34]. One butterfly
“group” (containing N/2i butterflies for the DIF FFT) in each of the four N/2i�1, i 2 [1, 4]
decomposition stages is highlighted. The number of butterfly groups in the ith stage is given
by 2i�1. Di↵erent butterfly groups within the same stage share the same twiddle factors.
Example radix-2 DFT butterflies are in pink.

For n0, k0
2

h
0, N

N1

⌘
, (2.6) can also be written as

X[k1 +N1k
0] = DFT N

N1

((
N1�1X

n1=0

x


N

N1
n1 + n0

�
W n1k1

N1

)
W n0k1

N

)
. (2.7)

In particular, when N1 = 2, the recursive formulas for describing an N -point DFT in terms
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of N/2-point DFTs are derived to be [34]

X[2k0] = DFTN
2

⇢
x [n0] + x


n0 +

N

2

��
(2.8)

X[2k0 + 1] = DFTN
2

⇢✓
x [n0]� x


n0 +

N

2

�◆
W n0

N

�
, (2.9)

where the sum and di↵erence correspond to radix-2 butterfly operations. If N = 2n, those
N/2-point DFTs can be calculated with N/4-point DFTs, and so forth, until the last decom-
position stage involving a 2-point DFT is reached. Using (2.8) and (2.9), the summations
in (2.6) can be unrolled and represented in a fully parallel form by a radix-2 DIF CTA
signal-flow graph (SFG), as seen for N = 16 in Fig. 2.1a. The index mappings in (2.2) and
(2.3) are recursively applied, resulting in

nDIF = 8n1 + (4n2 + (2n3 + n4)) (2.10)

kDIF = k1 + 2(k2 + 2(k3 + 2k4))

= k1 + 2k2 + 4k3 + 8k4 . (2.11)

The number of decomposition stages needed for an N = 2n radix-2 FFT is log2 N (4 for
N = 16). This determines the computational complexity and is set by the recursion depth.

Due to hardware area and power constraints, typically, SFGs are translated into sequen-
tial (i.e., memory-based or pipelined) architectures with potentially some degree of paral-
lelism, as addressed in Section 2.4.1. When in-place computation is performed for a DIF
radix-2 FFT, the outputs of the individual radix-2 DFT butterflies are stored at the locations
of corresponding inputs in the case of a memory-based architecture. In this case, as evidenced
by (2.10), (2.11), and Fig. 2.1a, the time-domain inputs are in order and frequency-domain
outputs appear in “bit-reversed” order, e.g., time sample 1 = 02020212 ! frequency sample
8 = 12020202. Thus, input/output streaming cannot be performed in-place, and a separate
output unscrambling block is needed. To support continuous data flow, 1) input streaming,
2) the N -point FFT calculation, and 3) output unscrambling must all be occurring simul-
taneously, necessitating a “ping-pong” memory scheme with nominally 3N memory (Fig.
2.2).
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Figure 2.2: N -point DIF FFT memory access timing to support continuous data flow with
3N memory. Memories A-C are simultaneously accessed. One symbol contains N data
samples.

2.2.1.2 Decimation-in-Time FFT and DIF $ DIT Duality

The SFG for an N = 16 decimation-in-time (DIT) radix-2 CTA implementation is illus-
trated in Fig. 2.1b. In general, DIT index mappings, which can be obtained from “reversing”
the DIF input/output mappings in (2.2) and (2.3), are given by [35]

nDIT = n1 +N1n2 (2.12)

kDIT = N2k1 + k2 . (2.13)

Note that reversing the DIF mappings, or equivalently, reversing the decomposition order
for DIF ! DIT, implies that N2 ! N1, N1 ! N2, n2, k2 ! n1, k1, and n1, k1 ! n2, k2.
When recursively applied for N = (N3 ⇥N2)⇥N1, the following index maps are obtained:

nDIT = n1 +N1ñ2,DIT , ñ2,DIT = n2 +N2n3 (2.14)

kDIT = (N2N3)k1 + k̃2,DIT , k̃2,DIT = N3k2 + k3 . (2.15)

Therefore, the DIT index mappings for N = 16 are

nDIT = n1 + 2n2 + 4n3 + 8n4 (2.16)

kDIT = 8k1 + 4k2 + 2k3 + k4 . (2.17)

Substituting (2.12) and (2.13) into (2.1) leads to the DIT equation [22], [19]:

X[k1, k2] =
N1�1X

n1=0

(
W n1k2

N

(
N2�1X

n2=0

x[n1, n2]W
n2k2
N2

))
W n1k1

N1
. (2.18)
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For n0, k0
2

h
0, N

N1

⌘
, (2.18) can be written as

X


N

N1
k1 + k0

�
=

N1�1X

n1=0

8
<

:W n1k0

N

8
<

:

N/N1�1X

n0=0

x [n1 +N1n
0]W n0k0

N/N1

9
=

;

9
=

;W n1k1
N1

. (2.19)

When N1 = 2, the DIT formulas can be expressed by [34]

X[k0] = DFTN
2
{x[2n0]}+W k

NDFTN
2
{x[2n0 + 1]} (2.20)

X[k0 +N/2] = DFTN
2
{x[2n0]}�W k

NDFTN
2
{x[2n0 + 1]} . (2.21)

A radix-2 DIT FFT also requires nominally 3N memory. However, (2.12) and (2.13)
indicate that the inputs are in bit-reversed order, i.e., the time-domain input is decimated
and divided into even/odd samples, and the outputs are in order, as per (2.20) and (2.21).
An important observation (Fig. 2.1) is that DIF and DIT FFT SFGs are mirror images of
each other, both in terms of input/output ordering, as described earlier, and in terms of the
location of twiddle multiplications. As indicated by (2.8) and (2.9), twiddle multiplication
occurs after the DIF radix-2 butterfly; however, according to (2.20) and (2.21), it occurs
before the sum and di↵erence operations of a radix-2 butterfly in a DIT FFT. By exploiting
the DIF/DIT input/output duality, assuming an N -point FFT calculation can be completed
in N clock cycles, continuous data flow with in-place IO and output unscrambling can be
achieved with only 2N memory, as shown in Fig. 2.3. In this case, the FFT hardware
alternates between performing DIF and DIT FFTs every 2ath symbol e.g., symbol 0’s x0[n]
is streamed into Memory A in natural order (corresponding to nDIF ), a DIF FFT calculation
is performed, and the result is streamed out from Memory A using the bit-reversed kDIF

mapping. As X0[k] is streamed out, symbol 2’s x2[n] is simultaneously read into the same
location via the nDIT index mapping for a subsequent DIT FFT calculation. More formally,
reversing the decomposition order in such a way allows x2a+2[n], x2a+3[n] to be written to
memory as X2a[k], X2a+1[k] is read out, in order, with n = k [28], [22]. While calculations
are being performed on data in Memory A, data are being input/output to/from Memory
B.
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Figure 2.3: Memory access timing to support in-order, continuous IO with 2N memory.
Memories A and B are simultaneously accessed, while DIF (green) $ DIT (blue) alternates
every 2ath cycle.

2.2.1.3 Generalizing the CTA Index Mapping: Digit Reversal

Table 2.1: n, k index mappings for radix-2 and radix-4 N = 16 FFTs.

n Base-2 n Base-4 n Base-2 k Base-4 k
0 02020202 0404 0 = 02020202 0 = 0404
1 02020212 0414 8 = 12020202 4 = 1404
2 02021202 0424 4 = 02120202 8 = 2404
3 02021212 0434 12 = 12120202 12 = 3404
4 02120202 1404 2 = 02021202 1 = 0414
5 02120212 1414 10 = 12021202 5 = 1414
6 02121202 1424 6 = 02121202 9 = 2414
7 02121212 1434 14 = 12121202 13 = 3414
8 12020202 2404 1 = 02020212 2 = 0424
9 12020212 2414 9 = 12020212 6 = 1424
10 12021202 2424 5 = 02120212 10 = 2424
11 12021212 2434 13 = 12120212 14 = 3424
12 12120202 3404 3 = 02021212 3 = 0434
13 12120212 3414 11 = 12021212 7 = 1434
14 12121202 3424 7 = 02121212 11 = 2434
15 12121212 3434 15 = 12121212 15 = 3434

Although this section has focused on radix-2 FFT implementations for computing N =
2n-point DFTs, the CTA also applies to higher order radix (e.g., radix-4, as in Fig. 2.4) and
mixed-radix (N = 2n3m5k...) DFTs. For non-radix-2 CTA FFTs, input and output index
mappings are more generally “digit-reversed,” and DIF/DIT duality still applies. General-
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Table 2.2: n, k index mappings for radix-2 and radix-4/2 N = 8 FFTs.

n Base-2 n Base-4/2 n Base-2 k Base-2/4 k
0 020202 0402 0 = 020202 0 = 0204
1 020212 0412 4 = 120202 4 = 1204
2 021202 1402 2 = 021202 1 = 0214
3 021212 1412 6 = 121202 5 = 1214
4 120202 2402 1 = 020212 2 = 0224
5 120212 2412 5 = 120212 6 = 1224
6 121202 3402 3 = 021212 3 = 0234
7 121212 3412 7 = 121212 7 = 1234
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Figure 2.4: N = 16, radix-4 DIF (forward) and DIT (reverse) CTA signal-flow graph.

izing (2.4) for mixed-radix results in

nDIF =

"
S�1X

i=1

 
ni

SY

l=i+1

Nl

!#
+ nS (2.22)

when a DFT of size N = N1N2...NS is decomposed into S stages. In mixed-radix form, n
is represented as n1n2...nS, where ni is a digit with base Ni and nS is the least significant
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digit. Digit reversal leads to

kDIF =

"
S�1X

i=1

 
kS+1�i

SY

l=i+1

NS+1�l

!#
+ k1 , (2.23)

where k1 is the least significant digit and k is represented as kSkS�1...k1. Here, kS+1�i is
associated with the base NS+1�i. As an example, if N = N1N2 = 4⇥ 2 is decomposed with
two stages, n = 6 is represented as 3402, and k = 6 is represented as 1224, according to (2.22)
and (2.23). Table 2.1 shows the complete n and k index mappings for radix-2 and radix-4
N = 16 FFTs, and Table 2.2 shows the complete index mappings for radix-2 and radix-4/2
N = 8 FFTs.

2.2.1.4 CTA Twiddle Multiplication

Equation (2.6) indicates that each of the N1 DIF butterfly outputs is multiplied by a
twiddle factor, given by W n2k1

N for k1 = 0, 1, ...N1 � 1 and fixed n2. Since W n2k1
N = 1

when k1 = 0, each Ni butterfly, where i 2 [1, S), requires at most Ni � 1 non-trivial twiddle
multiplications. Twiddle multiplications are expensive to perform in hardware. Additionally,
the twiddle values, specifically tailored for theN -point FFT, must be stored in look-up tables.
A näıve implementation of a runtime-reconfigurable DIF or DIT CTA FFT, required by many
applications, would store unique twiddles for each supported N , incurring a potentially large
read-only memory (ROM) area penalty.

When N = 24 is decomposed into N = N1 ⇥ (N2 ⇥N3) = 4⇥ (2⇥ 3), the twiddles found
after the first DIF stage are

W (0,1,...,N1�1)⇥(0,1,...,N2N3�1)
N = W (0,1,...,3)⇥(0,1,...,5)

24 . (2.24)

The twiddles used in the second stage are

W (0,1,...,N2�1)⇥(0,1,...,N3�1)
N2N3

= W (0,1)⇥(0,1,2)
6 . (2.25)

A key observation is that the set of second stage twiddles comprises a subset of the first
stage twiddles due to the fact that the values can be renormalized:

W (0,1)⇥(0,1,2)
6 = W 2⇥(0,1)⇥2⇥(0,1,2)

24 = WN1⇥(0,1,...,N2�1)⇥(0,1,...,N3�1)
N . (2.26)

Thus, only first stage twiddles must be calculated for storage. As mentioned earlier, the
first stage of a näıve 24-point FFT uses 24 twiddles. Because twiddle multiplication can be
bypassed (and the butterfly output directly passed through) when k1 = 0, a more intelligent
design might store 3

4 ⇥24 = 18 (not necessarily unique) twiddles while still remaining simple
to programmatically control. If more complex control logic is tolerable, only 12 unique (or
11 unique, non-trivial) twiddles must be stored. Similarly, the 12 twiddles associated with
N = 4⇥ 3 are given by

W (0,1,...,N1�1)⇥(0,1,...,N2�1)
N = W (0,1,...,3)⇥(0,1,2)

12 = W 2⇥(0,1,...,3)⇥(0,1,2)
24 . (2.27)
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If reconfigurability between 12-point and 24-point FFTs is required, an intelligent design will
only store the twiddles associated with N = 24, since the N = 12 twiddles are a subset of
the N = 24 twiddles. The renormalization in (2.27) is possible because 24 is divisible by 12.

In a final N = 20 = 4⇥5 example, the 20 first stage twiddles are W (0,1,...,3)⇥(0,1,...,4)
20 . Ignoring

twiddles associated with k1 = 0, only 4
5 ⇥ 20 = 16 twiddles must be stored. Further storage

optimization results in 9 unique (or 8 unique, non-trivial) twiddles. Since 24 is not divisible
by 20, twiddle factors cannot be shared, and a reconfigurable FFT supporting N = 12,
N = 20, and N = 24 must store, at best, 19 unique, non-trivial twiddles.

The previous examples illustrated the possibility of minimizing the number of explicit
twiddle multiplications when constructing a more intelligent runtime-reconfigurable CTA
FFT accelerator. Minimizing non-trivial twiddle multiplications reduces dynamic power
and ROM area. However, the most e�ciently implemented Cooley-Tukey algorithm is still
suboptimal for handling large, mixed-radix N ’s individually. Additionally, it is suboptimal,
both in terms of control logic complexity and in terms of twiddle storage, when one desires
runtime reconfigurability among mixed-radix FFT sizes that are not fully divisible with each
other.

2.2.2 Generalized Index Mapping

The CTA mappings in (2.2), (2.3), (2.12), and (2.13) are specific versions of the following
more general 1D-to-2D index mapping equations [36]:

n = (A1n1 + A2n2) mod N (2.28)

k = (B1k1 +B2k2) mod N . (2.29)

Applying (2.28) results in the two-dimensional data map:

⇥
x0 x1 x2 . . . xN�1

⇤
7!

2

6664

x[0, 0] x[0, 1] . . . x[0, N2 � 1]
x[1, 0] x[1, 1] . . . x[1, N2 � 1]

...
...

. . .
...

x[N1 � 1, 0] x[N1 � 1, 1] . . . x[N1 � 1, N2 � 1]

3

7775
. (2.30)

Substituting (2.28) and (2.29) into (2.1) results in

X[k1, k2] =
N2�1X

n2=0

N1�1X

n1=0

x[n1, n2]W
(A1n1+A2n2) mod N⇥(B1k1+B2k2) mod N
N

=
N2�1X

n2=0

N1�1X

n1=0

x[n1, n2]W
(A1n1+A2n2)(B1k1+B2k2)
N

=
N2�1X

n2=0

N1�1X

n1=0

x[n1, n2]W
A1n1B1k1
N WA1n1B2k2

N WA2n2B1k1
N WA2n2B2k2

N .

(2.31)
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Because powers of the roots of unity are periodic with period N ,

W a
N = W a+bN

N , b 2 Z . (2.32)

Therefore, the exponent a can be taken modulo N , i.e., W a
N = W a mod N

N . This, along with
the property:

(ab) mod N = (a mod N ⇥ b mod N) mod N (2.33)

enables the simplification in (2.31).

2.2.2.1 Case A: gcd(N1, N2) 6= 1

When gcd(N1, N2) 6= 1, as is the case for N = 2n, the (2.28) mapping is one-to-one if

A1 = ↵N2 and A2 6= �N1 and gcd(↵, N1) = gcd(A2, N2) = 1 (2.34)

or

A1 6= ↵N2 and A2 = �N1 and gcd(A1, N1) = gcd(�, N2) = 1 . (2.35)

Note that ↵, � 2 Z. Equation (2.29) is likewise bijective if B1, B2 are substituted for A1, A2

in (2.34) and (2.35). Setting A1 = N2, A2 = 1, B1 = 1, and B2 = N1 results in the DIF CTA
index mappings in (2.2) and (2.3). Note that since N2n1 + n2 < N and k1 +N1k2 < N , the
modulo operation is not explicitly needed. Likewise, setting A1 = 1, A2 = N1, B1 = N2, and
B2 = 1 results in the DIT CTA index mappings in (2.12) and (2.13).

2.2.2.2 Case B: gcd(N1, N2) = 1

When gcd(N1, N2) = 1, (2.28) is one-to-one if

A1 = ↵N2 and/or A2 = �N1 and gcd(A1, N1) = gcd(A2, N2) = 1 . (2.36)

Equation (2.29) is likewise bijective if B1, B2 are substituted for A1, A2 in (2.36). As can be
seen in Section 2.2.3, when gcd(N1, N2) = 1, careful selection of A1, A2, B1, and B2 satisfying
the conditions given in (2.36) eliminates the need for twiddle multiplication in (2.31).

2.2.3 Prime-Factor Algorithm

To eliminate twiddle multiplications from (2.31), one needs to set

WA1n1B1k1
N = W n1k1

N1
and WA2n2B2k2

N = W n2k2
N2

(2.37)

WA1n1B2k2
N = WA2n2B1k1

N = 1 . (2.38)

Condition (2.37) is true when

A1B1 = �N +N2 and A2B2 = �N +N1 (2.39)
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for �, � 2 Z. This is equivalent to saying [37]

(A1B1) mod N = N2 and (A2B2) mod N = N1 . (2.40)

Additionally, condition (2.38) is true when

(A1B2) mod N = 0 and (A2B1) mod N = 0 . (2.41)

Let

A1 = N2 (2.42)

A2 = N1 (2.43)

and

B1 = N2µ = N2 ⇥ (N�1
2 ) mod N1 (2.44)

B2 = N1⇢ = N1 ⇥ (N�1
1 ) mod N2 . (2.45)

⇢ is the (integer) multiplicative inverse of N1 reduced modulo N2. Stated another way,
1 + N2 = N1⇢, where  is an integer. Likewise, 1 + ⌫N1 = N2µ, where µ, ⌫ are integers. It
can then be easily shown that (2.42)–(2.45) satisfy the conditions (2.40) and (2.41). Bézout’s
identity states that

gcd(a, b) = au+ bv , (2.46)

where a, b, u, v 2 Z and a, b are not both equal to 0. This implies that gcd(B1, N1) = 1
and gcd(B2, N2) = 1, so that the Case B condition (2.36) is met for coprime N1, N2. The
resultant index mapping equations for n (known as the Good’s mapping) and k (known as
the Chinese remainder theorem (CRT) mapping) are given by [36], [38]

n = (N2n1 +N1n2) mod N (2.47)

k = (N2 ⇥ hN�1
2 iN1 ⇥ k1 +N1 ⇥ hN�1

1 iN2 ⇥ k2) mod N . (2.48)

Note that the shorthand notation hA�1
iB = (A�1) mod B is used to represent the multi-

plicative inverse of A reduced modulo B. The Chinese remainder theorem is discussed in
more detail in Section 2.6.2.3.1. For N = N1N2 DFT decompositions where N1 and N2 are
coprime, substituting (2.47) and (2.48) into (2.1) thus leads to the recursive prime-factor
algorithm (PFA) [19]:

X[k1, k2] =
N2�1X

n2=0

(
N1�1X

n1=0

x[n1, n2]W
n1k1
N1

)
W n2k2

N2
. (2.49)

Equation (2.49) represents a true bi-dimensional transform without twiddle factors, such
that reversing the decomposition order results in the transpose mapping, i.e., the summa-
tions in (2.49) can be performed in either order. N = 4na2nb3m5k7l mixed-radix hardware
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FFTs, which are supported by the generator presented in this work, can attain better hard-
ware e�ciency by recursively utilizing the PFA to eliminate twiddle multiplications. As an
example, for N = N1N2 = 3⇥ 5, the index mapping equations are

n = (5n1 + 3n2) mod N (2.50)

k = (10k1 + 6k2) mod N , (2.51)

resulting in the 1D-to-2D mapping illustrated in Fig. 2.5 and detailed in Table 2.3.

DFT
3

X9

X4

X5

X11

X2

X8

X14

x10

x5

x0

x3

x6

x9

x12

Good’s Mapping CRT Mapping

DFT
5

Figure 2.5: N = 15 1D-to-2D PFA mapping [35].

Table 2.3: n, k index mappings for N = 15 FFTs.

Good’s Input Mapping n
n1\n2 0 1 2 3 4
0 x[0] x[3] x[6] x[9] x[12]
1 x[5] x[8] x[11] x[14] x[2]
2 x[10] x[13] x[1] x[4] x[7]

CRT Output Mapping k
k1\k2 0 1 2 3 4
0 X[0] X[6] X[12] X[3] X[9]
1 X[10] X[1] X[7] X[13] X[4]
2 X[5] X[11] X[2] X[8] X[14]

A benefit of the CTA was that the same index counters could be used to map both
nDIT and kDIF (and likewise, nDIF and kDIT ) data, supporting in-place IO. From (2.47) and
(2.48), it is evident that reversing the decomposition order does not allow the same index
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counters to be used for nreverse and kforward, as nforward = nreverse. Therefore, since in-place
IO cannot be performed, the use of Good’s mapping and the CRT mapping necessitates
nominally 3N memory.

2.2.4 A Generalized Mixed-Radix Algorithm

The Good and CRT mappings given by (2.47) and (2.48) are the most commonly used
index mappings when decomposing N into coprime N1 and N2 with the PFA. However, other
mappings exist that satisfy the conditions in (2.36), (2.40), and (2.41), such as the index
mappings proposed in [22]:

n = (N2n1 + A2n2) mod N (2.52)

k = (B1k1 +N1k2) mod N , (2.53)

where

A2 = p1N1 = q1N2 + 1 (2.54)

B1 = p2N2 = q2N1 + 1 . (2.55)

Equations (2.54) and (2.55) indicate that gcd(A1, N1) = gcd(N2, N1) = 1, gcd(A2, N2) = 1,
(A1B1) mod N = (N2q2N1 + N2) mod N = N2, (A2B2) mod N = (q1N2N1 + N1) mod N =
N1, (A1B2) mod N = (N2N1) mod N = 0, and (A2B1) mod N = (p1N1p2N2) mod N = 0.
As in Section 2.2.3, (2.54) and (2.55) can be restated:

A2 = N1 ⇥ (N�1
1 ) mod N2 (2.56)

B1 = N2 ⇥ (N�1
2 ) mod N1 . (2.57)

Thus, the (forward) generalized mixed-radix index mapping can be written as

nforward = (N2n1 +N1 ⇥ hN�1
1 iN2 ⇥ n2) mod N (2.58)

kforward = (N2 ⇥ hN�1
2 iN1 ⇥ k1 +N1k2) mod N . (2.59)

Reversing the decomposition order results in

nreverse = (N1n2 +N2 ⇥ hN�1
2 iN1 ⇥ n1) mod N (2.60)

kreverse = (N1 ⇥ hN�1
1 iN2 ⇥ k2 +N2k1) mod N . (2.61)

Because (2.58)–(2.61) indicate that the same index counters can be used to map both nreverse

and kforward (and likewise, nforward and kreverse), in-place IO with 2N memory is achievable
using the index mappings from [22] and alternating decomposition orders every 2ath cycle.
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To illustrate that the recursive decomposition of N into relatively prime N1, N2, N3 sup-
ports in-place IO, recall that numbers A and B are coprime when gcd(A,B) = 1. Therefore,

A2,n = p1N1 = Q1(N2N3) + 1 = hN�1
1 iN2N3 ⇥N1 (2.62)

A2,ñ2 = p2N2 = Q2N3 + 1 = hN�1
2 iN3 ⇥N2 (2.63)

B1,k̃2
= p3N3 = Q3N2 + 1 = hN�1

3 iN2 ⇥N3 (2.64)

B1,k = p4(N2N3) = Q4N1 + 1 = h(N2N3)
�1
iN1 ⇥N2N3 . (2.65)

Note that n, k are associated with mapping [0, N) to [0, N1) ⇥ [0, Ñ2), where Ñ2 = N2N3,
and ñ2, k̃2 are associated with mapping Ñ2 to [0, N2)⇥ [0, N3). The forward decomposition
of N = N1 ⇥ (N2 ⇥N3) thus results in the following input/output maps:

nforward = ((N2N3)n1 +N1 ⇥ hN�1
1 iN2N3 ⇥ ñ2,forward) mod N (2.66)

ñ2,forward = (N3n2 +N2 ⇥ hN�1
2 iN3 ⇥ n3) mod N2N3 (2.67)

kforward = ((N2N3)⇥ h(N2N3)
�1
iN1 ⇥ k1 +N1k̃2,forward) mod N (2.68)

k̃2,forward = (N3 ⇥ hN�1
3 iN2 ⇥ k2 +N2k3) mod N2N3 . (2.69)

The reverse decomposition of N = (N3 ⇥N2)⇥N1 leads to

nreverse = (N1ñ2,reverse + (N2N3)⇥ h(N2N3)
�1
iN1 ⇥ n1) mod N (2.70)

ñ2,reverse = (N2n3 +N3 ⇥ hN�1
3 iN2 ⇥ n2) mod N2N3 (2.71)

kreverse = (N1 ⇥ hN1
�1
iN2N3 ⇥ k̃2,reverse + (N2N3)k1) mod N (2.72)

k̃2,reverse = (N2 ⇥ hN�1
2 iN3 ⇥ k3 +N3k2) mod N2N3 . (2.73)

2.2.5 Combining the CTA and PFA

It is possible to order the decomposition of N = 2n3m5k such that the PFA is first used
to factorize N into coprime N1 = 2n, N2 = 3m, and N3 = 5k, and then the relatively prime
N1, N2, N3 can each be individually decomposed intoN1 = N1,1N1,2... = 2na2nb ..., etc. via the
CTA. By performing PFA decomposition before CTA decomposition, the number of twiddle
multiplications is minimized [19], and consequently, the twiddle ROM size is reduced, while
still supporting in-place IO with 2N memory. This is because the PFA does not require
twiddle multiplications, so the number of twiddles is a function of the twiddles required to
decompose each Ni with the CTA. It is O(max(Ni)) instead of O(N).

When the CTA decomposition is ordered from largest to smallest radix, the twiddles
required to decompose Ni are fully determined by the twiddles used in the first DIF CTA
decomposition stage. As in Section 2.2.1.4, the twiddle factors of all subsequent stages can
be renormalized to a subset of the first stage’s twiddles. If the first DIF decomposition
stage is associated with radix-Ni,1, Ni,1 should always be associated with the largest radix-r
corresponding to each of 2n, 3m, and 5k. As explained in Section 2.5, the number of butterfly
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operations associated with unique twiddles in the first stage is Ni/Ni,1. Note once again
that this is not a function of N . Additionally, as described in Section 2.2.1.4, every radix-r
butterfly requires at most r�1 non-trivial twiddle rotations. Therefore, each Ni is associated
with at most Ni/Ni,1 ⇥ (Ni,1 � 1) twiddles whose values are W

(0,1,...,Ni/Ni,1�1)⇥(1,2,...,Ni,1�1)
Ni

.
Without further optimization, when applying the PFA + CTA to decompose the DFT into
smaller 2-point, 3-point, 4-point, and 5-point DFT butterfly operations, only

T =
3X

i=1

Ni

Ni,1
⇥ (Ni,1 � 1) =

3

4
⇥ 2n +

2

3
⇥ 3m +

4

5
⇥ 5k (2.74)

twiddle factors must be stored. Here, the largest butterfly radix associated with 2n is 4.
Note that (2.74) still accounts for trivial twiddle multiplications associated with ki,1 6= 0 for
ki,1 2 [0, Ni,1). Those multiplications can be bypassed to save power with some additional
control complexity. Additionally, trivial twiddles can be easily removed for each Ni = Ni,1,
since W 0

Ni
= 1.

When runtime reconfigurability is desired, due to renormalization, the total number of
twiddles is governed by the maximum N1,max = 2n,max, N2,max = 3m,max, and N3,max = 5k,max

required by all supported N ’s:

T =
3

4
⇥ 2n,max +

2

3
⇥ 3m,max +

4

5
⇥ 5k,max . (2.75)

This implies that the ROM savings from PFA + CTA decompositions are even more pro-
nounced for reconfigurable architectures. Furthermore, because the twiddle ROMs can be
partitioned by the N1, N2, N3 coprimes used in PFA decompositions, simpler control logic
can be used to support runtime reconfigurability. As an example, if an accelerator is de-
signed to support N = 24 = (4 ⇥ 2) ⇥ 3, N = 12 = 4 ⇥ 3, and N = 20 = 4 ⇥ 5, PFA +

CTA decomposition requires that the 12 twiddles: W (0,1)⇥(1,2,3)
8 , W (0)⇥(1,2)

3 , and W (0)⇥(1,2,3,4)
5

be stored, corresponding to N1,max = 8, N2,max = 3, and N3,max = 5, respectively. This is
an improvement over a similarly reconfigurable FFT accelerator using only the CTA, which
requires, at best, 19 unique, non-trivial twiddles, as detailed in Section 2.2.1.4. Eliminating
non-trivial twiddles via control optimizations would bring the number of unique twiddles to
3 when using PFA + CTA. All three of these twiddles arise from N1,max = 8 associated with
N = 24. There are no twiddles associated with N = 20 and N = 12 (although 1’s are stored,
according to (2.75)), because the CTA is not required when radix-4 butterflies are used.

Fig. 2.6 illustrates the forward/reverse signal flow graph for a 24-point FFT using PFA
+ CTA that requires only 2N memory for in-place computation and IO.
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Figure 2.6: FFT N = 24 signal flow graph. Forward and reverse decompositions mirror
each other. Calculations can be performed in-place, but nDIF , kDIF input/output orders are
scrambled relative to each other. The ith calculation stage requiresN/ri butterfly operations,
where ri is the radix associated with stage i. Colors in the radix-2 stage represent di↵erent
memory banks needed at each butterfly iteration. As an example, butterflies 0 & 6 use
non-conflicting banks. This will be described further in Section 2.4.3.

2.3 Input/Output Index Vector Generator

Recall from Section 2.2.4 that an N -point forward FFT is associated with the input map

n = hN2n1 + (Q1N2 + 1)n2iN , (2.76)

when N is decomposed into coprime N1, N2 with gcd(N1, N2) = 1. Since N1 and N2 are
known, the recursive extended Euclidean algorithm (Algorithm 1) can be used to solve for
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Q1 in

p1N1 �Q1N2 = 1 , (2.77)

which is a rearrangement of (2.54).

Algorithm 1: Extended Euclidean algorithm for ax+ by = gcd(a, b).

function ExtendedEuclidean (a, b) Input : Two nonnegative integers a and b
Output: gcd(a, b), x, y
if a = 0 then

return (b, 0, 1)
else

(gcd, y, x) = ExtendedEuclidean(b mod a, a)
return (gcd, x�

b
ay, y)

end

To enable reconfigurability, rather than mapping data indices to memory addresses/banks
via LUTs, a custom index vector generator based o↵ of [22] is implemented. To build an
index vector generator for use with an N = N1N2-point FFT, assume there is a series of
cascaded counters whose counts are n0

1 2 [0, N1) and n0
2 2 [0, N2). The counter sequence is

incremented as follows:

n0
2 :=

(
n0
2 + 1 if n0

2 6= N2 � 1

0 otherwise
(2.78)

n0
1 :=

(
n0
1 + 1 if n0

1 6= N1 � 1

0 otherwise
, on n0

2 ! 0 . (2.79)

The := indicates that the update happens on the next clock cycle (i.e., sequential logic).
n0
1 is not updated until the n0

2 counter wraps. The purpose of the index vector generator is
to map these cascaded n0

x counter values to nx so that sequential time-domain inputs are
stored in memory locations corresponding to the correct multidimensional index mapping.
In other words, it must satisfy

n = N2n
0
1 + n0

2 = hN2n1 + (Q1N2 + 1)n2iN . (2.80)

When attempting to satisfy this requirement, we set n2 = n0
2. It can then be proven that

setting
n1 = hn0

1 +Q0
1n2iN1 (2.81)

satisfies this condition for Q0
1 = hN1 �Q1iN1 as follows:

n = hN2n1 + (Q1N2 + 1)n2iN (2.82)

= hN2(n1 +Q1n2) + n2iN

= hhN2(n1 +Q1n2)iN1N2 + n2iN

= hN2hn1 +Q1n2iN1 + n2iN . (2.83)
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In particular,

hn1 +Q1n2iN1 = hhn0
1 + hN1 �Q1iN1n2iN1 +Q1n2iN1 (2.84)

= hn0
1 + hN1 �Q1iN1n2 +Q1n2iN1

= hn0
1 + (Q1 + hN1 �Q1iN1)n2iN1

= hn0
1 + hhQ1 + hN1 �Q1iN1iN1hn2iN1iN1iN1

= hn0
1 + hhQ1 +N1 �Q1iN1hn2iN1iN1iN1

= hn0
1 + h0⇥ hn2iN1iN1iN1

= n0
1 . (2.85)

Therefore,

n = hN2n
0
1 + n0

2iN (2.86)

= N2n
0
1 + n0

2 . (2.87)

In addition to (2.33), the following properties were used to verify the correct operation of
the index vector generator:

(a mod N) mod N = a mod N (2.88)

(a+ b) mod N = [(a mod N) + (b mod N)] mod N (2.89)

(a mod N + b) mod N = (a+ b) mod N (2.90)

(Ab) mod (AN) = A(b mod N) . (2.91)

When decomposing N into more coprime factors, n0
x is always incremented when n0

x+1

wraps, and the counter associated with the largest index, denoted xmax, continually updates.
More generally, nxmax = n0

xmax
, and Q0

x = (Nx�Qx) mod Nx, where x < xmax, are calculated
and stored in look-up tables for index vector generation. When N is decomposed into N1,
N2, and N3,

n1 = hn0
1 +Q0

1ñ2iN1 (2.92)

n2 = hn0
2 +Q0

2n3iN2 . (2.93)

The ñ2 count increments and wraps when the wrap condition (W.C.) is met: n0
2 = N2 � 1

and n0
3 = N3 � 1, although it is not explicitly used. Instead, the index vector generator

performs:

R1 :=

(
0 if W.C.

(R1 +Q0
1) mod N1 otherwise

(2.94)

R2 :=

(
0 if n0

3 = N3 � 1

(R2 +Q0
2) mod N2 otherwise

(2.95)

n1 = (n0
1 +R1) mod N1 (2.96)

n2 = (n0
2 +R2) mod N2 . (2.97)
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Because Rx, Q0
x, n

0
x 2 [0, Nx), the sums are < 2Nx � 1, so a simple subtractor and two-input

Mux can compute the modulus when base-10 representations are used. One such index
vector generator can be used for both DIF and DIT configurations with N1, N2, N3 reversal,
but the Q0

xs must be calculated separately.
To support coprime factorization and then CTA, the vector (n1,v, n1,v�1, ..., n1,0, n2,u, ...,

n2,0, n3,t, ..., n3,0) can be obtained by using the (n1, n2, n3) values to address corresponding
decimal-to-base-r LUTs (when all digits are represented in radix-r). However, we have
chosen instead to store the Q0

xs in base-r notation and implement base-r adders. The IO
control logic consists of a series of cascaded base-r (or mixed-radix) counters/adders that map
[0, Nx), where x 2 [1, 3], with digits nx,y, ..., nx,0, to an index vector. The counters are built
by replacing standard unsigned adders with base-r building blocks. When base-r numbers
a2a1a0 and b2b1b0 are added, the digits of the sum and the intermediate carry outs can be
computed with a simple subtraction and mux-based mod unit because ay + by + cin,y < 2ry
(where ry is the radix of the yth digit). The modulo operations with the decomposed Nx

are obtained “for free” by simply masking out the appropriate base-r digits, and the final
index vector is directly obtained without additional LUTs. As an example, if N3,DIF is
5k, n3 is decomposed into the base-5 digits (n3,t, ..., n3,0). For an N1,DIT , N2,DIT , N3,DIT =
N3,DIF , N2,DIF , N1,DIF decomposition, n1 uses base-5, and the index vector is reversed (digit
reversal is performed) so that the same hardware constants may be used for address/bank
generation: (n3,0, ..., n3,t, n2,0, ..., n2,u, n1,0, ..., n1,v). A subtle but important point is that the
radix order is swapped to support in-place IO, e.g., if the counters are mixed-radix 4/2
in the forward mode (DIF), they operate as mixed-radix 2/4 counters in the reverse mode
(DIT), requiring programmability of the counters’ radices. This index vector generation/IO
unscrambling scheme is not unique to specific flavors of FFT and supports a recursive (PFA,
then CTA) decomposition. Fig. 2.7 illustrates the index vector generator used.
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Figure 2.7: IO control logic: Index to memory bank/address mapper, consisting of n0
x and Rx

mixed-radix counters and a digit reversal block for forward/reverse decompositions. Modulo
operations, which only need basic digit masking, are built into adders, as required. n0

2 incre-
ments when n0

3 wraps. n
0
1 increments when n0

3, n
0
2 wrap. Rx<3 wraps when the corresponding

n0
x increments. The mixed-radix digits of the Nx mapper outputs are combined into one

index vector. Banks and addresses are obtained from the nx values via (2.104) and (2.109).

2.4 Memory-Based Architecture with Conflict-Free
Calculation Scheduling

Although details in the previous section, such as input/output unscrambling and PFA +
CTA decomposition strategies, are generally architecture-agnostic, hardware to perform the
actual FFT computation is not. The choice of hardware architecture and scheduling scheme
is largely dependent on the performance and area requirements of a particular application,
as explained below.

2.4.1 Pipelined vs. Memory-Based Architectures

Hardware FFT designs often use either in-place memory-based (Fig. 2.8) or pipelined
architectures. Pipelined designs use a fixed number of processing elements for a given but-
terfly radix to guarantee throughput and more easily support continuous data flow [39], [17].
Often, butterflies are over-provisioned to achieve a desired throughput. Although various
flavors of pipelined architectures (e.g., multi-path delay commutator) exist, one of the most
frequently used is the single-path delay feedback (SDF) architecture shown in Fig. 2.9. The
SDF architecture requires log2(N) radix-2 butterflies to calculate N = 2n FFTs. Although
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Figure 2.8: High-level diagram of a memory-based architecture.

Radix-2

4

Radix-2

8

Radix-2

1

Radix-2

2

Figure 2.9: N = 16 radix-2 single-path delay feedback (SDF) FFT.

butterfly utilization is only at 50%, a significant benefit of SDF FFTs when compared to
memory-based FFTs is the ability to sequentially access memory. Additionally, memory is
localized to each PE. A drawback of pipelined FFTs is that they are less flexible, potentially
leading to a wasteful design, especially when runtime-reconfigurability is desired. For ex-
ample, excluding memory required for unscrambling, the reconfigurable 12–1200 point FFT
engine in [17] required 1.84⇥ the memory of a 1200-point FFT. Memory-based FFTs have
fairly complex control logic when compared to their stream-based counterparts, but once
the logic is designed, it is easily generalizable to support runtime reconfigurability across
various mixed-radix FFT lengths with minimum additional overhead. For large FFT sizes,
memory-based designs are smaller in area—usually relying on a single iterating butterfly—
but support lower throughput [22]. Table 2.4 compares memory-based radix-2 FFTs with
radix-2 SDF FFTs.

Memory SDF
Storage Requirements N N � 1

Memory Banks 2 log2(N)
# of Complex Multipliers 1 log2(N)� 1
# of Complex Adders 2 2 log2(N)

# of Computation Cycles N log2(N)/2 N

Table 2.4: Comparison of radix-2 memory-based vs. SDF FFTs.
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Figure 2.10: Area/throughput trade-o↵s for di↵erent FFT architectures. Given a throughput
constraint (e.g., continuous data flow), the optimal number of parallel butterflies should be
used. However, this complicates conflict-free scheduling.

2.4.2 Computation Clock Cycles

Assuming that conflict-free memory access can be scheduled, memory-based designs with
simultaneously active PEs can be fine-tuned to just barely meet throughput requirements
without over-provisioning PEs and wasting area. An N -point FFT can be calculated in

C = SP +
S�1X

i=0

⇠
N

riB

⇡
(2.98)

computation clock cycles, where B is the number of parallel butterflies used, ri is the radix
at the (i+1)th calculation stage corresponding to some Nx,y, S is the number of calculation
stages, and P represents the pipelining between memory accesses (butterfly pipeline and
sequential memory read delay). The first term shows that all stage (i� 1) operations must
finish before stage i calculations begin. As the pipeline is flushed out, calculations must be
stalled (Fig. 2.11), so subsequent stages can compute on fresh data. Fig. 2.12 illustrates
the number of clock cycles needed (normalized to the FFT length) to complete each FFT
calculation with one iterating PE. As N increases, typically > N clock cycles must be
reserved for computation (Fig. 2.12). Unfortunately all operands ingested in parallel must
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come from di↵erent memory banks, so scheduling to decrease the cycle count by supporting
butterfly parallelization, especially for reconfigurable mixed-radix FFT engines, is still a
topic of ongoing research.

XA
(Butterfly X Mem)

xA Data
(Mem Butterfly x)

RAddrA RAddrA

xA Data
(Mem Butterfly x)

xA*
(Butterfly Pipe 1)

xA*
(Butterfly Pipe 1)

Stage 1 Stale Data Stage 2

WAddrA

+ WE !WE !WE

XA Data
(Valid in Mem)

Figure 2.11: Calculation stalling assuming the butterfly and twiddle computation have a
total pipeline delay of one. There is an additional one cycle latency from read address to
valid data from the SRAM. Stale data should not be written to memory, necessitating that
the write enable be disabled. The SRAM logic is implemented such that if a computation
block requires data from an address that is currently being written to, the new data is
automatically routed to the output, although it takes an extra cycle to actually write to
memory.

Figure 2.12: Normalized number of computation cycles needed for various LTE/Wi-Fi com-
patible FFT lengths using one butterfly. Most of the LTE/Wi-Fi FFTs require > N com-
putation cycles to complete. Stall cycles needed for pipelining increase the number of com-
putation clock cycles.
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Equation (2.98) shows that only two radix-2/4 butterflies are needed to complete a 2048-
point FFT in < 2048 clock cycles. This is generally true for LTE/Wi-Fi compatible FFT
lengths. Stated another way, most of these FFTs can be computed with a single iterating
butterfly running at twice the IO clock rate to support continuous data flow, which is how
the FFT instances described in this thesis are implemented. Unfortunately, Fig. 2.12 also
indicates that some FFTs need > 2N computation cycles when a single butterfly is used.
N = 648 and N = 864 calculations, requiring > 1350 and > 1728 computation cycles
respectively, cannot be completed in time to support continuous data flow. To ensure that
those FFTs can meet streaming requirements with calculations occurring at twice the IO rate,
2 radix-2 butterflies are performed in parallel, reusing existing hardware in the reconfigurable
butterfly described in Section 2.6.3. Only the radix-2 stage is targeted, because it requires
the most butterfly computations (where the (i+1)th stage has N/ri butterfly computations)
and does not have twiddle multiplications, since DIF radix stages are ordered from highest
to lowest radix in an Nx group (e.g., 32 is decomposed into 4⇥ 4⇥ 2). The latter fact allows
for scheduling modifications without adding complexity to twiddle address generation. Fig.
2.13 illustrates how doubling the number of radix-2 butterflies ensures that all LTE/Wi-Fi
compatible FFTs are able to complete in time to support continuous data flow by halving
the number of iterations needed in the radix-2 stage.

Figure 2.13: Compute cycles normalized to FFT length for 1 radix-2/3/4/5 butterfly (circles)
vs. 1 radix-2x2/3/4/5 butterfly (triangles). Power measurements are performed for FFT
lengths highlighted in red.

2.4.3 Butterfly Scheduling and Calculation Control Logic

2.4.3.1 Computation with a Single Iterating Butterfly

As previously mentioned, the FFT generator uses the simplest memory-based architec-
ture: one with a single butterfly that iterates through stages of the signal flow graph at twice
the IO rate. To achieve conflict-free memory access when only 1 PE is active, the calculation



CHAPTER 2. A HARDWARE FFT GENERATOR 35

SRAM is split into
rmax = max(r0, r1, ...rS�1) (2.99)

banks.
In mixed-radix FFTs as in Fig. 2.6, butterflies occur in

(Qi�1
x=0 rx if i > 0

1 otherwise
(2.100)

groups of
(QS�1

x=i+1 rx if i < S � 1

1 otherwise
(2.101)

ordered operations, where (i + 1) corresponds to a particular one-indexed stage. When a
DIF FFT is performed, stages in Fig. 2.6 are traversed left to right. When a DIT FFT is
performed, the stages are traversed from right to left. A set of cascaded m0

x counters are
used to track the current butterfly iteration (in mixed-radix form) at a given stage:

m0
x=S�1 :=

(
m0

S�1 + 1 if m0
S�1 6= rS�1 � 1 & i 6= S � 1

0 otherwise
(2.102)

m0
x<S�1 :=

(
m0

x + 1 if m0
x 6= rx � 1 & x 6= i

0 otherwise
, on m0

x+1 ! 0 . (2.103)

The counter i associated with the current stage (i+1) is zeroed out so that associated counts
(corresponding to j) can be used to refer to individual operands at each butterfly. Note that
stages were identified by one-indexed counts at the beginning of this chapter, but here, they
are associated with zero-indexed i 2 [0, S) to simplify equation indexing.

Conflict-free banking relies on the mixed-radix representations of operand locations. Be-
cause ri  rmax, each butterfly operand indexed by j < ri is guaranteed to come from a
di↵erent memory bank bj [22], given by:

bi,j=0 =
S�1X

x=0

m0
x mod rmax (2.104)

bi,0<j<ri = (bi,0 + j) mod rmax . (2.105)

Conflict-free memory access is guaranteed, because the operand indices associated with a
single PE di↵er only in 1 mixed-radix digit j. Modulo operations are more complex than
the XOR logic in [40], but they simply extend XOR (modulo-2 addition) to more general
base-r’s, which is useful in mixed-radix designs. Because the N data are split amongst rmax

banks, data in each bank are mapped to addresses in [0, N/rmax). A possible addressing
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scheme, where ai,j is the address of the jth butterfly operand of a butterfly in stage (i+ 1),
is:

r0x =

(
rx if rx is not the first (left-most) occurrence of rmax

1 otherwise
(2.106)

Ax=S�1 = 1 (2.107)

Ax<S�1 = Ax+1 ⇥ r0x+1 (2.108)

ai,j=0 =
S�1X

x=0

(
Axm0

x if rx = r0x
0 otherwise

(2.109)

ai,0<j<ri = ai,j�1 + Ai . (2.110)

To guarantee conflict-free memory access with parallel PEs, butterflies must be re-
ordered. As an example, Fig. 2.6 shows that, for N = 24, radix-2 butterflies 0-5 can be
performed simultaneously with radix-2 butterflies 6-11, respectively. Corresponding operand
indices are mapped to the same SRAM addresses, but at unique banks with the banking
scheme described. Adding support for two parallel radix-2 butterflies is simple in this case,
because riB = rmax (2⇥ 2 = 4). As previously described, a schedule that takes advantage of
this pattern is used to reduce the cycle count when a combination of radix-2/3/4 is needed
by reducing the number of computation cycles in a radix-2 stage.

2.4.3.2 Computation with Multiple Parallel Butterflies

Parallelizing PEs helps to meet throughput requirements with a lower calculation clock
rate. Unfortunately, supporting several butterflies in parallel is especially di�cult when
one desires a general solution for runtime-reconfigurable, mixed-radix FFTs without adding
considerable complexity to the I/O (as would be incurred in [21]). However, it is not necessary
to change operand locations in order to prevent bank conflicts. Instead, using a modified
banking strategy, butterfly operations within a radix-r stage may be reordered to minimize
conflicts. To simplify scheduling logic with conflict-free memory access, N should be divisible
by rmaxB.

A new scheduling scheme has been devised for supporting multiple butterflies with the
restriction that at least two radices amongst r0, r1, ..., rS�1 must be divisible by the number
of parallel butterflies. This means that only two butterflies can be computed in parallel for
N = 4⇥ 2⇥ 3, and three butterflies should be parallelized for N = 2⇥ 3⇥ 3. In such cases,
the number of SRAM banks required to support conflict-free memory access is rmaxB, where
B is the number of parallel butterflies used. The data in each bank are mapped to addresses
in the space of [0, N/(rmaxB)).

Assuming that B is equal to some ri for i 2 [0, S), let ro represent the first occurrence
of B and rp represent the first occurrence of rmax among r0, r1, ..., rS�1, such that o 6= p. p
has precedence as the index of the left-most occurrence of rmax. Therefore, if rp = ro, p < o.
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The memory addressing logic is modified as follows:

r0x =

(
rx if x 6= o and x 6= p

1 otherwise
(2.111)

Ax=S�1 = 1 (2.112)

Ax<S�1 = Ax+1 ⇥ r0x+1 (2.113)

ai,j=0 =
S�1X

x=0

(
Axm0

x if rx = r0x
0 otherwise

(2.114)

ai,0<j<ri = ai,j�1 + Ai . (2.115)

Here (i + 1) corresponds to the current stage, and j 2 [0, ri) is associated with butterfly
operand indices. The banking logic is modified so m0

x, where x = p, becomes Bm0
x:

bi,j=0 =
S�1X

x=0

 (
m0

x if x 6= p

Bm0
x otherwise

!
mod (rmaxB) (2.116)

bi,0<j<ri =

(
(bi,0 + j) mod (rmaxB) if i 6= p

(bi,0 + jB) mod (rmaxB) otherwise
. (2.117)

On stage (i+1), j is substituted formx=i. Supporting 3 parallel butterflies with N = 2⇥3⇥3
requires that bi,0 = (m0

0 + 3m0
1 +m0

2) mod 9.
In order for the m0

x values to serve as mixed-radix representations of butterfly counts,
they are best represented as mx = m0

S�x�1, such that mx=0 is the least significant digit
and counts up first (from the right). These mx values correspond to the ones in Fig. 2.7,
indicating that the same address/bank generation logic can be used both for calculation and
IO indexing.

So far, we have attempted to illustrate how memory addresses and banks can be calculated
from mx. However, to “re-order” the butterflies so that parallel PEs can have conflict-free
memory access, the least significant mixed-radix digit is circularly shifted amongst the mx.
The exact shift amount is determined empirically for each FFT N . An evolution of this
scheduling scheme is described below.

Using the banking scheme described in (2.104), calculations can be scheduled so that
memory accessed per PE is conflict-free. This is shown in Fig. 2.14 for N = 48. It is also
evident that (2.104) does not support parallel butterflies, since there are only 4 memory
banks and at least 8 are needed to support two PEs without bank overlap. Changing the
banking scheme to

b = (4m2 +m1 +m0) mod 16 , (2.118)

where m0
x=i is replaced by the (j < ri)th operand index at the (i + 1)th stage, allows 4

processing elements to be parallelized.
However, butterflies must be grouped di↵erently, and therefore, counting up starting with
m0 as the least significant digit does not work. Instead, the least significant digit in stage 1



CHAPTER 2. A HARDWARE FFT GENERATOR 38

Figure 2.14: N = 48 calculation scheduling. Banks are individually color-coded to illustrate
that, on a per-PE basis, all operands come from di↵erent memory banks.

is m1, and the least significant digit in stages 2 and 3 is m2, owing to the fact that m0 = 0
in stage 3. As shown in Fig. 2.16, by rearranging butterflies in this way, 4 butterflies in a
sequence can be run simultaneously.

Although scheduling has thus far been described for butterfly parallelization, it also
allows single-ported SRAMs (instead of dual-ported SRAMs) to be used in pipelined designs,
reducing the amount of on-chip memory—and therefore, area—by> 30% [21]. Finally, higher
radix butterflies can also be used to reduce the number of clock cycles needed.
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Figure 2.15: N = 48 calculation scheduling so that 4 butterflies can be parallelized. Arrows
indicate butterflies that are associated with operands from non-conflicting banks. These
butterflies are not consecutive and need to be re-ordered.
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Figure 2.16: N = 48 calculation scheduling so that 4 butterflies can be parallelized, with
butterfly re-ordering to group conflict-free sets.
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2.5 Twiddle Address Generation

As elucidated in Section 2.2.1.4, the non-trivial first stage twiddles W
ntw,0j
N , j 2 [1, r0) of

an N -point DIF CTA FFT can be calculated as

W ntwj
N = e�

i2⇡ntw,0j

N (2.119)

and stored into ROM look-up tables. Note that here, i represents the imaginary number
and j represents the jth operand index of a butterfly. Since one ROM is associated with
each j 2 [1, ra,max), where ra,max is described in the next paragraph, and subsequent stage
twiddles can be derived from the twiddles in the first stage, the ROMs themselves can be
addressed with ntw as follows:

ntw,i=0 2


0,

N

r0

◆
(2.120)

ntw,0<i<S�1 2

 
i�1Y

x=0

rx

!
⇥

"
0,

N
Qi

x=0 rx

!
. (2.121)

The first CTA DIF stage in Fig. 2.1 requires the most twiddle factors. Because the DFT is de-
composed into smaller sizes, each subsequent stage uses fewer unique twiddles—in particular,
butterfly groups in subsequent stages share the same twiddles— and the last stage requires
none. The twiddle index is renormalized back to the full ROM range, e.g., W 1

4 = W 4
16.

Define Na,max to be the largest coprime associated with radix ra, such that ra,max is
the largest radix ra that can be divided into any Na divisible by ra. Since the range of
twiddle addresses for a given ra is set by Na,max/ra,max, all twiddle values associated with
N1 = 2n  2n,max, N2 = 3m  3m,max, and N3 = 5k  5k,max are supported by only 9 ROMs
with address renormalization (i.e., 3 for N1’s, 2 for N2’s, and 4 for N3’s). Using such ROMs,
when iterating through stages associated with ra’s for an FFT that is decomposed with Na,
the ntw previously calculated must be further renormalized by the amount Na,max/Na.

To extend this addressing scheme to combined PFA/CTA decompositions, the twiddle
address ntw,i of a radix-ri stage (where the subscript again is associated with the (i + 1)th
calculation stage rather than coprime designation, as was the case with ra) is held for zi but-
terflies prior to changing. If ri’s corresponding coprime is Na, a 2 [1, D], where D represents
the number of coprimes in the decomposition (e.g., D = 3 for N = N1N2N3), then

zi =

(QD
x=a+1 Nx if a < D

1 otherwise
. (2.122)
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Figure 2.17: Radix-2 butterfly.

2.6 Butterfly Construction

2.6.1 Using the Cooley-Tukey Algorithm

In Section 2.2.1.1, it was shown that (2.7) could be used to derive the radix-2 butterfly
equations:

X0 = x0 + x1 (2.123)

X1 = x0 � x1 . (2.124)

These equations correspond to the signal-flow graph in Fig. 2.17. More generally, (2.7) can
be rewritten as [41], [17]

X[k1 +N1k
0] = DFT N

N1

((
N1�1X

i=0

xiW
ik1
N1

)
W n0k1

N

)
, (2.125)

where xi = x
h

N
N1

i+ n0
i
. Equation (2.125) can be used to derive SFGs for any radix-r

butterfly. When N1 = 3, (2.125) becomes

X[k1 + 3k0] = DFTN
3

n⇥
x0 + x1W

k1
3 + x2W

2k1
3

⇤
W n0k1

N

o
. (2.126)

Table 2.5: Radix-3 SFG equations. 6 additions and 2 constant multiplications (one imple-
mented as a shift operation) are required.

Stage 1 Stage 2 Stage 3 Stage 4
a1 = x1 + x2

a2 = x1 � x2

m1 = c21a1
m2 = jc22a2

X0 = x0 + a1
c1 = x0 �m1

X1 = c1 +m2

X2 = c1 �m2

This results in
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Table 2.6: Radix-3 constants.

c21 1/2
c22 � sin(2⇡/3)

x(0)

x(1)

X(0)

X(1)

x(2) X(2)
1/2

-sin(2π/3)j
Radix-3 Butterfly

WN
n

WN
2n

Twiddles

a1

a2

m1

m2

c1

Figure 2.18: Radix-3 butterfly with two non-trivial, complex twiddle multiplications at the
output (DIF).
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X[3k0 + 2] = DFTN
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⇤
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⇢
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Radix-3 butterfly operations are derived from (2.127)–(2.129) and found in the
⇥
·
⇤
’s. Equa-

tion (2.32) implies that W 4
3 = W 1

3 . The resulting radix-3 SFG, along with the two non-trivial
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twiddle multiplications (at the butterfly output for a DIF FFT), is shown in Fig. 2.18. The
equations at intermediate nodes are given by Table 2.5. Equations (2.186) and (2.187) il-
lustrate that multiplying two complex numbers, as is the case with twiddle multiplication,
requires three real multiplications. However, the Stage 2 multiplications in Table 2.5 involve
a complex number and either a constant real or imaginary number. In such cases, only
two real multiplications are necessary. When a complex number a+ jb is multiplied by the
imaginary number jy,

(a+ jb)⇥ jy = �by + jay . (2.130)

It is also useful to note that, for fixed-point numbers, multiplication by 1/2 corresponds to
a simple arithmetic right shift by one. The SFG in Fig. 2.18 requires the minimum amount
of real multiplications for a radix-3 butterfly, but manual optimization is required to achieve
this. Manual optimization becomes less tractable when large butterflies are desired.

2.6.2 Winograd’s (Short) Fourier Transform Algorithm

When implementing mixed-radix DFT hardware, Winograd’s short Fourier transform
algorithm (WFTA) [42], which exploits fast cyclic convolution, is commonly used to reduce
the number of expensive hardware multipliers in favor of a greater number of inexpensive
adder units per butterfly. WFTA butterflies achieve the minimum theoretical number of
multiplications for a given prime radix-r [43] and can be systematically derived by combining
the use of Rader’s DFT algorithm [44], which formulates the DFT as a circular convolution
problem, and Winograd’s short convolution algorithm.

2.6.2.1 Primitive Roots of N

When N is prime, there exists a primitive root modulo N called g such that ga mod N
“generates” all elements of a in the field ZN except 0, i.e., ga mod N 2 [1, N) [45]. An
interesting property of g is that the sequence (ga mod N)1a=0 always repeats with a period
of N � 1 after a certain value of a. Therefore,

g0 mod N = gN�1 mod N . (2.131)
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Consider N = 5. A primitive root g = 2 exists because

a = 0 , 20 mod 5 = 1 (2.132)

a = 1 , 21 mod 5 = 2 (2.133)

a = 2 , 22 mod 5 = 4 (2.134)

a = 3 , 23 mod 5 = 3 (2.135)

a = 4 , 24 mod 5 = 1 (2.136)

a = 5 , 25 mod 5 = 2 (2.137)

a = 6 , 26 mod 5 = 4 (2.138)

a = 7 , 27 mod 5 = 3 (2.139)

a = 8 , 28 mod 5 = 1 . (2.140)
...

...

Here, the period of repetition is 4, and the sequence a = (0, 1, 2, ...) is mapped to the repeated
sequence (1, 2, 4, 3, 1, 2, ...). Multiple g’s can exist for a particular N . Additionally, numbers
that are not prime but have the form 2, 4, pb, or 2pb, where b � 1 and p is an odd prime,
also have primitive roots [46], [45]. Table 2.7 lists the g’s associated with the first few N for
which primitive roots exist.

Table 2.7: Primitive roots of N [45].

N g(N)
2 1
3 2
4 3
5 2, 3
6 5
7 3, 5
9 2, 5
10 3, 7
11 2, 6, 7, 8
13 2, 6, 7, 11

2.6.2.2 Rader’s DFT Algorithm

To formulate the DFT as a circular convolution problem [47], (2.1) is rewritten as follows:

X[k] = x[0] +
N�1X

n=1

x[n]W nk
N . (2.141)
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Assuming N has primitive roots, performing the index maps k ! gk mod N and n !

gn mod N and utilizing (2.32) and (2.33) results in

X[gk mod N ] = x[0] +
N�1X

n=1

x[gn mod N ]W (gn mod N)⇥(gk mod N)
N

= x[0] +
N�1X

n=1

x[gn mod N ]W gn+k mod N
N .

(2.142)

Because of the (N � 1) periodicity of the mapping, the sequence (1, 2, ..., N � 1) can be
uniquely mapped to another sequence containing the same elements (but in di↵erent order).
This means that (2.141) and (2.142) are equivalent for X[1], X[2], ..., X[N � 1]. The DC
term X[0] is unaccounted for, but can be easily computed via

X[0] =
N�1X

n=0

x[n] . (2.143)

Rearranging the terms in (2.142) leads to

X[gk mod N ]� x[0] =
N�1X

n=1

x[gn mod N ]W gn+k mod N
N . (2.144)

Using (2.32), this can be expressed in matrix form ~y = W~x as

2

666664

X[hg1iN ]
X[hg2iN ]
X[hg3iN ]

...
X[hgN�1

iN ]

3

777775
�

2

666664
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x[0]

3
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=

2

6666664
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N W gN

N

W g3
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N . . . W gN
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N

W g4

N W g5

N . . . W gN+1

N W gN+2

N
...

...
. . .

...
...

W gN

N W gN+1

N . . . W g2N�3

N W g2N�2

N

3

7777775

2

666664

x[hg1iN ]
x[hg2iN ]
x[hg3iN ]

...
x[hgN�1

iN ]

3

777775
.

(2.145)

For clarity, using (2.131), (2.145) is rewritten as

2

666664

X[hg1iN ]
X[hg2iN ]
X[hg3iN ]

...
X[hgN�1

iN ]

3

777775
�

2

666664
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x[0]
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...

x[0]

3

777775
=

2

6666664

W g2

N W g3

N . . . W g0

N W g1

N

W g3

N W g4

N . . . W g1

N W g2

N

W g4

N W g5

N . . . W g2

N W g3

N
...

...
. . .

...
...

W g1

N W g2

N . . . W gN�2

N W g0

N

3

7777775

2

666664

x[hg1iN ]
x[hg2iN ]
x[hg3iN ]

...
x[hgN�1

iN ]

3

777775
. (2.146)

Because the sequence (ga mod N)1a=0 is cyclic, W is an (N � 1) ⇥ (N � 1) left circulant
matrix. Each row of W is the previous row circularly shifted left by one element, wrapping
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at row edges. This implies that such a circulant matrix can be fully specified by the vector
corresponding to the first row of W . More importantly, if the sequence represented by ~y is
reversed, the result is ~ynew = Wnew~x, or, expanded out,

2

666664

X[hgN�1
iN ]

...
X[hg3iN ]
X[hg2iN ]
X[hg1iN ]

3

777775
�

2

666664
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666664
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x[hg2iN ]
x[hg3iN ]
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x[hgN�1

iN ]

3

777775
. (2.147)

It is now evident that Wnew is a right circulant matrix, and Wnew~x computes the (N �

1)-point discrete circular convolution of the sequence (x[hgniN ])
N�1
n=1 with (W g1

N ,W g2

N , ...,

W gN�2

N ,W g0

N ). Thus, if primitive roots of N exist, the N -point DFT can be reformulated
as a circular convolution problem.

2.6.2.3 Winograd’s Short Convolution Algorithm

The matrix multiplication involving the left circulant matrix in (2.146) has the form
2

6664

tm
tm�1
...
t0

3

7775
=

2

6664

am am�1 . . . a1 a0
am�1 am�2 . . . a0 am
...

...
. . .

...
...

a0 am . . . a2 a1

3

7775

2

6664

b0
b1
...
bm

3

7775
. (2.148)

Let the associated polynomials be

Am(x) =
mX

i=0

aix
i (2.149)

Bm(x) =
mX

i=0

bix
i (2.150)

Tm(x) =
mX

i=0

tix
i , (2.151)

where it can be proven that [48]

Tm(x) = hAm(x)Bm(x)ixn�1 . (2.152)

Here, n = m+1 is the order of the matrix. xn
�1 can be factorized into k distinct irreducible

polynomials mi(x) such that

xn
� 1 = m(x) =

kY

i=1

mi(x) . (2.153)
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Factorizations for n = 2, 4, 6 are given in Table 2.8. Winograd showed that only 2n � k
multiplications are required to compute Tm(x) (not counting multiplications by rational
numbers) [42], [48]. This is achievable by leveraging properties derived from the Chinese
remainder theorem.

Table 2.8: Factorizations of xn
� 1 into irreducible polynomials [48].

n xn
� 1 Factorization k 2n� k

2 (x� 1)(x+ 1) 2 2
4 (x� 1)(x+ 1)(x2 + 1) 3 5
6 (x� 1)(x+ 1)(x2 + x+ 1)(x2

� x+ 1) 4 8

2.6.2.3.1 Chinese Remainder Theorem

Define m = m1m2...mk, where mi 2 Z and gcd(mi,mj) = 1 for i 6= j. That is, all mi’s
are pairwise coprime with each other. Any ui 2 Zmi is uniquely mapped to one x 2 Zm,
determined by the relation [49]:

ui = x mod mi . (2.154)

The map

x mod m 7! (x mod m1, x mod m2, ..., x mod mk) (2.155)

is injective. Using Bézout’s identity (2.46), i.e. q1m1 + q2m2 = 1 for some q1, q2 2 Z, a
solution to the system of equations:

u1 = x mod m1 (2.156)

u2 = x mod m2 (2.157)

is

x = u1m2q2 + u2m1q1 (2.158)

= hxim1m2q2 + hxim2m1q1 . (2.159)

More generally, for x 2 [0,m), it can be proven that

x = x mod m =
kX

i=1

hximi

m

mi
Qi , (2.160)

where qimi +Qi
m
mi

= 1, satisfies (2.154) for i = 1, 2, ..., k.
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The Chinese remainder theorem can also be extended to polynomials as well. Define
m(x) = m1(x)m2(x)...mk(x), where mi(x) are pairwise coprime polynomials and di =
degmi(x). Then the polynomial ui(x), where deg ui(x) < di, is uniquely mapped to a
polynomial p(x) with deg p(x) < d1 + d2 + ...+ dk satisfying

ui(x) = p(x) mod mi(x) . (2.161)

The solution of the simultaneous congruence system (2.161) for i = 1, 2, ..., k is given by

p(x) = p(x) mod m(x) =
kX

i=1

hp(x)imi(x)
m(x)

mi(x)
Qi(x) . (2.162)

This highlights the fact that hp(x)im(x) can be found when (2.161) are known, and therefore,
Tm(x) can be calculated after ui(x) = hAm(x)Bm(x)imi(x) are determined. Garner devised a
convenient algorithm for computing p(x) given (2.161) [50]. It is restated here:

hcij(x)mi(x)imj(x) = 1 , 1  i < j  k (2.163)

v1(x) = u1(x) (2.164)

v2(x) = [(u2(x)� v1(x))c12(x)] mod m2(x) (2.165)

v3(x) = [((u3(x)� v1(x))c13(x)� v2(x))c23(x)] mod m3(x) (2.166)
...

vk(x) = [(...(((uk(x)� v1(x))c1k(x)� v2(x))c2k(x)� v3(x))c3k(x)�

...� vk�1(x))c(k�1)k(x)] mod mk(x) (2.167)

p(x) mod m(x) = p(x) = v1(x) +
k�1X

i=1

 
vi+1(x)

 
iY

j=1

mj(x)

!!
. (2.168)

2.6.2.3.2 2-Point Convolution Example

A 2-point discrete convolution can be evaluated using a matrix of order n = 2:

t1
t0

�
=


a1 a0
a0 a1

� 
b0
b1

�
. (2.169)

Here, t0, t1 are the coe�cients of the polynomial T1(x) = hA1(x)B1(x)ix2�1, and

p(x) = A1(x)B1(x) = (a0 + a1x)(b0 + b1x) . (2.170)
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Because x2
� 1 can be factorized into (x� 1)(x+ 1), T1(x) can be obtained from

u1(x) = hA1(x)B1(x)ix�1 (2.171)

u2(x) = hA1(x)B1(x)ix+1 . (2.172)

When mi(x) = x� xi where xi = ±1, ui(x) = ri, which has degree zero. In this case, if
p(x) has degree n, p(x) = (x � xi)sn�1(x) + ri. sn�1(x) is a polynomial with degree n � 1.
It is evident that p(xi) = ri. Therefore,

u1 = p(x1 = 1) = (a0 + a1)(b0 + b1) (2.173)

u2 = p(x2 = �1)= (a0 � a1)(b0 � b1) . (2.174)

Since mj(x) is of degree 1, hcij(x)mi(x)imj(x) = cij(xj)mi(xj) = 1. Therefore, cij(x) is chosen
so that

cij(x) = cij =
1

mi(xj)
. (2.175)

This leads to

c12(x) =
1

m1(x2)
=

1

m1(�1)
= �

1

2
. (2.176)

The remaining polynomials are calculated as follows:

v1 = u1 (2.177)

v2(x) = [(u2 � u1)(�
1

2
)] mod (x+ 1)

=
1

2
(u1 � u2) (2.178)

T1(x) = v1 + v2m1(x)

= u1 +
1

2
(u1 � u2)(x� 1)

=
1

2
[(u1 � u2)x+ (u1 + u2)] . (2.179)

The procedure demonstrated above can be used to derive algorithms requiring a mini-
mal number of multiplications for calculating other short-length circular convolutions. The
resultant algorithms can be found in [48] and [42].

2.6.2.4 3-Point WFTA Butterfly Derivation and N-Point WFTA Equations

To derive the equations for an N = 3 WFTA butterfly, the primitive root g = 2 is used.
Therefore (2.146) is


X[2]
X[1]

�
�


x[0]
x[0]

�
=


W 1

3 W 2
3

W 2
3 W 1

3

� 
x[2]
x[1]

�
. (2.180)
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The butterfly equations are derived from (2.143) and (2.179) as follows:

u1 = (W 2
3 +W 1

3 )(x[2] + x[1])

= �(x[1] + x[2]) (2.181)

u2 = (W 2
3 �W 1

3 )(x[2]� x[1])

= �j2 sin

✓
2⇡

3

◆
(x[1]� x[2]) (2.182)

X[0] = x[0] + (x[1] + x[2]) (2.183)

X[1] = x[0] +
1

2
(u1 + u2)

= (x[0]�
1

2
(x[1] + x[2]))� j sin

✓
2⇡

3

◆
(x[1]� x[2]) (2.184)

X[2] = x[0] +
1

2
(u1 � u2)

= (x[0]�
1

2
(x[1] + x[2])) + j sin

✓
2⇡

3

◆
(x[1]� x[2]) . (2.185)

These are consistent with the equations in Table 2.5 and indicate that a 3-point WFTA
butterfly requires 2 multiplications (one of which is a simple shift right) and 6 additions.
Equations for other short-length butterflies can be derived in a similar fashion [48], [42].
Radix-5 and radix-7 SFG equations are given in Table 2.9 and Table 2.12. Although N = 4
is not prime, it also has an associated WFTA butterfly consisting entirely of additions and a
simple multiplication by the imaginary number j. Its SFG equations and the corresponding
diagram are given in Table 2.11 and Fig. 2.19, respectively.

Table 2.9: Radix-5 SFG equations [51], [52]. 17 additions and 5 constant multiplications
(one implemented as a shift operation) are required.

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
a1 = x1 + x4

a2 = x1 � x4

a3 = x2 + x3

a4 = x2 � x3

a5 = a2 + a4
a6 = a1 � a3
a7 = a1 + a3

m1 = jc51a5
m2 = jc52a2
m3 = jc53a4
m4 = c54a6
m5 = c55a7

c1 = x0 �m5

c2 = c1 +m4

c3 = c1 �m4

c4 = m1 �m3

c5 = m2 �m1

X0 = x0 + a7

X1 = c2 � c4
X2 = c3 � c5
X3 = c3 + c5
X4 = c2 + c4
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Table 2.10: Radix-5 constants, where u = 2⇡/5 [20].

c51 sin(u)
c52 sin(u) + sin(2u)
c53 sin(u)� sin(2u)

c54
cos(u)� cos(2u)

2
c55 1/4

Table 2.11: Radix-4 SFG equations [51]. 8 additions and 1 simple constant multiplication
are required.

Stage 1 Stage 2 Stage 3
a1 = x0 + x2

a2 = x0 � x2

a3 = x1 + x3

a4 = x1 � x3

m1 = ja4 X0 = a1 + a3
X1 = a2 �m1

X2 = a1 � a3
X3 = a2 +m1

x(1)

x(2)

x(3)

x(0)

j

X(2)

X(1)

X(3)

X(0)

Figure 2.19: Radix-4 butterfly.
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Table 2.12: Radix-7 SFG equations [51]. 36 additions and 8 constant multiplications are
required.

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
a1 = x1 + x6

a2 = x1 � x6

a3 = x2 + x5

a4 = x2 � x5

a5 = x3 + x4

a6 = x3 � x4

a7 = a1 + a3 + a5
a8 = a1 � a5
a9 = �a3 + a5
a10 = �a1 + a3
a11 = a2 + a4 � a6
a12 = a2 + a6
a13 = �a4 � a6
a14 = �a2 + a4

m1 = c71a7
m2 = c72a8
m3 = c73a9
m4 = c74a10
m5 = jc75a11
m6 = jc76a12
m7 = jc77a13
m8 = jc78a14

c1 = x0 �m1

c2 = c1 +m2 +m3

c3 = c1 �m2 �m4

c4 = c1 �m3 +m4

c5 = m5 +m6 �m7

c6 = m5 �m6 �m8

c7 = �m5 �m7 �m8

X0 = x0 + a7

X1 = c2 � c5
X2 = c3 � c6
X3 = c4 � c7
X4 = c4 + c7
X5 = c3 + c6
X6 = c2 + c5

Table 2.13: Radix-7 constants, where u = 2⇡/7 [20].

c71 �
cos(u) + cos(2u) + cos(3u)

3

c72
2 cos(u)� cos(2u)� cos(3u)

3

c73
cos(u)� 2 cos(2u) + cos(3u)

3

c74
cos(u) + cos(2u)� 2 cos(3u)

3

c75
sin(u) + sin(2u)� sin(3u)

3

c76
2 sin(u)� sin(2u) + sin(3u)

3

c77
� sin(u) + 2 sin(2u) + sin(3u)

3

c78
sin(u) + sin(2u) + 2 sin(3u)

3

The WFTA butterfly is constructed so that operation stages are either associated with
addition/subtraction or multiplication. Additionally, the progression of operations always
follows an 1) add/subtract, 2) constant multiply, 3) add/subtract pattern, and the multipli-
cation stage always consists only of multiplications with either real or imaginary constants,
which require less hardware than complex multiplications. In the next section, a runtime
reconfigurable butterfly with the same general WFTA structure is detailed. Using [20] as a
starting point, some butterfly operations are moved around to more easily create the recon-
figurable butterfly. Fig. 2.20 indicates how this is done for a radix-3 butterfly. In particular,
the output of the pink node is c1 = �(1 + c21)a1 +X0 = x0 �m1, as in the original radix-3
equations.
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x(0)

x(1)

X(0)

X(1)

x(2) X(2)

-(1+c21)

c22j

Figure 2.20: Radix-3 butterfly with rearranged operations for easier integration.

2.6.3 Reconfigurable WFTA Butterfly

Because butterflies up to radix-7 are needed to support various OFDM radios—in par-
ticular, Chinese-DTV— and because radix-7 butterflies use the most adders and multipliers
amongst all radices  7, a runtime reconfigurable butterfly has been built that reuses radix-7
hardware in other radix modes. The butterfly, seen in Fig. 2.21, supports up to 36 complex
additions and 8 multiplications. The multiplications involve a complex number and either
a real or imaginary number that is programmable depending on the runtime radix. Tables
2.14, 2.15, and 2.16 outline parameters that are used to configure the butterfly at runtime.
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Figure 2.21: Reconfigurable radix-2⇥2/3/4/5/7 butterfly with operator reuse [20], [28]. Con-
trol signals and outputs in brown are for supporting 2 radix-2 butterflies simultaneously.
Each colored stage can be programmatically pipelined. Two internal multipliers are recon-
figured for multiplication by real or imaginary constants depending on the current radix.
The other multipliers interpret associated constants as real (R) or imaginary (I), without
reconfigurability.
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Table 2.14: Butterfly input/output mappings, i.e., xi ! aj and bk ! Xl. * are required for
simultaneous operation of two radix-2 butterflies.

Butterfly Input Mappings
Radix a0 a1 a2 a3 a4 a5 a6

2 0 x0 0 x3⇤ x2⇤ 0 x1

3 x0 x1 0 0 0 0 x2

4 0 x0 0 x3 x1 0 x2

5 x0 x1 0 x3 x2 0 x4

7 x0 x1 x2 x3 x4 x5 x6

Butterfly Output Mappings
Radix X0 X1 X2 X3 X4 X5 X6

2 b0 b5 X0b⇤ X1b⇤ 0 0 0
3 b0 b1 b6 0 0 0 0
4 b0 b1 b3 b5 0 0 0
5 b0 b1 b5 b2 b6 0 0
7 b0 b1 b2 b3 b4 b5 b6

Table 2.15: Mux selects used by the reconfigurable butterfly. Ii control signals determine
whether multiplication is by an imaginary (1) or real (0) constant. * are required for two
radix-2 butterflies.

Radix S1,1 S0,1 S1,2 S3 S2 S1,5 S0,6 I5 I7
2 0⇤ 0 1 0 0 1 0 0 1
3 1 0 1 1 0 0 0 1 1
4 0 0 0 0 1 0 0 0 0
5 1 0 1 1 0 1 0 1 1
7 1 1 1 1 1 1 1 1 1

Table 2.16: Reconfigurable WFTA multiplication constants. Multiplication by 0, 1, or -1
can be bypassed or replaced with simpler operations.

Radix A0 A1 A2 A3 A4 A5 A6 A7

2 0 0 0 0 0 1 0 0
3 �(1 + c21) 0 0 0 c22 0 0 0
4 0 0 0 0 �1 1 0 1
5 �(1 + c55) c54 0 0 �c51 �c52 0 c53
7 �(1 + c71) c72 c74 c73 �c75 �c76 �c78 c77
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Fig. 2.22 illustrates how the butterfly is reconfigured at runtime for radix-3 operation.
External control logic passes a one-hot vector to the butterfly unit, indicating that radix-3
operation (and not radix-2/4/5/7) is to be performed. This is used to generate mux select
signals that enable relevant data to pass through muxes while others are zeroed out. Likewise,
multiplication constants associated with radix-3 equations are selected and fed into active
multipliers. In this case, 6 adders and 2 multipliers, highlighted in purple, are active.
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Figure 2.22: Butterfly configured (at runtime) for radix-3 operation.

However, the butterfly is not only runtime reconfigurable but also compile-time config-
urable. It has been designed to support:
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• Custom stage pipelining, so that the correct number of registers can be inserted when
targeting the design for FPGA or ASIC implementation,

• Tunable internal bit growth for SQNR optimizations, and

• Flexible parameterization, to enable optimal stage bypassing (bypassing adders/multi-
pliers) when radices are not needed by the generated instance.

If a designer desires only to support radix-3 FFTs, a butterfly containing only radix-3 logic
will be generated, eliminating unnecessary multiplications and additions used by higher order
radices and saving area. The relative areas of di↵erent butterfly configurations are shown
in Fig. 2.23. An interesting observation is that the area of a runtime-reconfigurable radix-
2/3/4/5/7 butterfly is comparable to the sum of the areas of the individual butterflies. This
is due to the fact that constant multiplication is significantly cheaper than multiplication
where both inputs are unknown and suggests that additional butterfly optimizations are
needed to make runtime reconfigurability worthwhile (e.g., [53]).
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Figure 2.23: Relative area of generated butterflies using a 28nm process. Synthesis results
were obtained from Design Compiler. Constant multiplication requires fewer resources. Sup-
porting reconfigurability across radix-2/3/4/5/7 requires 70% more area than that of a static
radix-7 butterfly.

2.6.4 The Complete Processing Element

The data path consists of both the runtime-reconfigurable butterfly and twiddle multi-
plication, although the ordering of the two depends on whether a DIF or DIT FFT is being
performed.
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Each twiddle multiplication performs a complex multiplication. Complex multiplication
is usually performed with 4 real multipliers. However, in actuality, it can be performed with
only 3 multiplications. Consider x = a + ib and y = c + id. The product z = xy can be
written as

<(z) = ac� bd (2.186)

=(z) = (a+ b)(c+ d)� ac� bd . (2.187)

The twiddle multiplications can be optionally performed in this way.
As Fig. 2.24 shows, the processing element (butterfly + twiddle multipliers) supports

DIF/DIT reconfiguration using one set of twiddle multipliers with at least one stage of
pipelining between memory accesses.
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Figure 2.24: Reconfigurable processing element for DIF/DIT consisting of a runtime-
reconfigurable butterfly and twiddle multipliers. Pipeline delays across the data paths need
to be matched in both the DIF and DIT cases.

2.7 Generating FFT Instances from a Hardware
Template

A hardware generator that generalizes the control logic and datapath described in previ-
ous sections has been built using the Chisel hardware construction language. The generator
has two components. Given a set of user constraints (i.e. desired FFT N ’s), the firmware
component (Fig. 2.25) uses Scala and the Breeze numerical processing library [54] to calcu-
late parameters and create lists of constants for look-up table (LUT) generation. The FFT
sizes are factorized to support PFA + CTA, determine the number of calculation stages
needed, optimize a reconfigurable WFTA butterfly, and generate twiddle factors and index
vector generator constants. As indicated in Fig. 2.25, the firmware also determines an ap-
propriate banking scheme, which is a function of the maximum radix supported in a given
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Figure 2.25: Firmware component of the FFT generator. It calculates constants for LUT
generation as well as optimized hardware parameters. It is also used for test vector genera-
tion.

instance (or in the multi-butterfly scheduling case, the product of the maximum radix and
the number of parallel butterflies), and allocates memory per bank to best distribute the
FFT data. Because Chisel is a domain-specific language (DSL) for hardware written in Scala,
LUT construction can be performed in a few short lines of Scala code, without requiring the
user to switch to some intermediate representation.

The hardware template contains configurable controllers that handle data flow between
IO, memories, and the butterfly unit, and an optional output normalization block, as in Fig.
2.26. For a given configuration, the hardware template produces just enough optimally-
sized instances of each block and connects them together. The FFT template uses the
calculated parameters to specify memory sizes and distribution, calculation + I/O rates,
the amount of butterfly pipelining, signal bitwidths, and a butterfly to support all needed
radices. Parameters can be updated without rewriting code, and synthesizable Verilog is
generated directly by Chisel. The only fixed component of the generator is the runtime-
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Figure 2.26: Hardware template consisting of LUTs for reconfiguration + twiddles and
configurable blocks controlling data flow between IO, SRAMs, and PE(s). The complexity
of memory-based designs is primarily in the control logic.

reconfigurable butterfly. This means that it needs to be redesigned to support radices > 7.
All other control blocks are completely parameterizable, given PFA + CTA constraints.

For LTE/Wi-Fi, the supported Ns are factorized, and information about the correspond-
ing coprimes (2n,max = 2048, 3m,max = 243, 5k,max = 25) results in memory that is split into
2 ⇥ 5 SRAM banks (with depths of 4 ⇥ 512 and 240), a reconfigurable radix-2 ⇥ 2/3/4/5
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butterfly, and a PE with 4 complex twiddle multipliers (supporting up to radix-5) that can
be configured for forward or reverse decomposition. A total of 22 real multipliers are used
by the Winograd’s Fourier transform butterfly + twiddle unit for configurability across all
LTE/Wi-Fi sizes. 10 real multipliers are used in the WFTA butterfly, and 12 are used for
twiddle multiplication.

2.7.1 Generator Comparison

Figure 2.27: Post-synthesis (cell) area breakdown.

The generator capabilities were initially verified in a cycle-accurate fashion via Chisel’s
built-in tester. As shown in Fig. 2.27, two generated FFT engines with 24, 24-bit complex IO
were synthesized with 28nm standard cells and a clock target of 3.9ns to meet stringent Wi-Fi
requirements while utilizing the Wi-Fi guard interval for computation. There is a 24% area
penalty (compared to a fixed N = 2048 engine) to support mixed-radix reconfigurability.
The radix-4/2 WFTA butterfly is smaller than the reconfigurable 2/3/4/5 butterfly, and
memories occupy a vast majority of the area. Therefore a 3N ! 2N memory reduction is
extremely beneficial to both power and area.

As shown in Table 2.19, the FFT generator can create FFT engines with performance
comparable to state-of-the-art reconfigurable FFTs [22], [19]. Wang et al. [55] propose
a pipelined architecture that can be reconfigured/scaled, but it is not implemented as a
generator. While achieving higher throughput, the generated FFT engine uses 50% less data
memory and 25% smaller twiddle storage than the radix-2 N = 2048 iterative FFT from
Spiral’s online generator [9]. Memory savings are even greater relative to Spiral’s streaming
FFTs, but with clear area/throughput trade-o↵s, as seen in Table 2.17. Designs in Table
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This Spiral Spiral Spiral Löfgren et al.
Work [9], Rad-4 [9], Rad-2 [9], Rad-2 [41]

Streaming Streaming Iterative Streaming

Data Memory 2N 7.3N 7.99N 4N N-1*
Twiddle ROM 0.75N 0.99N 0.99N N -
Clock Cycles ⇠ 3, 072 512 1,024 11,287 2,048
Multipliers 12 56 40 4 30

Table 2.17: Resource comparison for fixed N = 2, 048. For fair comparison, 4 real multipliers
are assumed per complex multiply, and trivial multiplications are not counted. The number
of clock cycles of our N = 2, 048 implementation is calculated assuming a radix-2⇥2/3/4/5/7
butterfly. * No memory is allocated for I/O unscrambling in [41].

2.18 with fewer multipliers require higher calculation clock rates. Genesis2 [10] and the fixed
pipelined architecture from [41] do not address I/O and its impact on memory.

This Work Chen et al. [19] Hsiao et al. [22] Xilinx

Data Memory 2.23Nmax 2N 2N 2N
Twiddle ROM 1,718 - - -

Calc. Clk./IO Clk.* 2⇥ 1⇥ 2⇥ 4⇥
Multipliers 22 44 26 16

Table 2.18: Resource comparison for reconfigurable LTE/Wi-Fi FFTs. Comparison numbers
are taken from [19]. * represents the ratio of calculation to IO clock rates to support con-
tinuous data flow. Note that 2N is achievable with our generator for specific FFT lengths,
but for LTE/Wi-Fi, we require 2.23Nmax memory.

2.8 Generator Verification via Silicon Implementation

A generated LTE/Wi-Fi compatible FFT engine has been implemented as an accelerator
attached to a tethered 64-bit RISC-V Rocket core (Fig. 2.28) [30], all in a 16nm FinFET
process. To test the digital system at su�ciently high clock rates without a dedicated clock
receiver, the Rocket core and FFT accelerator are clocked via the divided output of a voltage
tunable ring oscillator.

The Rocket core allows reading and writing to a series of dedicated memory-mapped
I/O registers and SRAMs supporting runtime FFT configuration and input/output data
loading/unloading. To simplify testing, a snapshot memory is included at the Rocket/FFT
interface, and Rocket can pause FFT streaming to load new test vectors. As seen in Fig.
2.28, the Calculate and Setup registers are strobe/status registers—they are pulsed high for
one cycle to align the first time-domain data in a frame to the start of an FFT computation
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(in the case of Calculate) and indicate that new FFT parameters such as current FFT N
are valid (in the case of Setup). When a valid frame is output by the FFT block and can
be read by the Rocket core, the Calculate register is set to 1 by an interface state machine.
The Rocket core polls the Calculate and Setup registers to determine when it can proceed
with testing.

A Rocket tile consists of an in-order pipeline implementing the RISC-V 64-bit instruc-
tion set architecture, a floating-point unit, and L1 instruction and data caches. It is able
to communicate with the FFT MMIO registers and SRAM via the chip-scale interconnect
standard TileLink. Likewise, TileLink is used to interface with the L2 cache, and paral-
lel/serial adapters are implemented on chip to communicate with the testing infrastructure.
Main memory is realized by o↵-chip DRAM that is accessed via a Xilinx Zynq FPGA. A
RISC-V frontend server on the FPGA’s ARM processing system loads compiled C code onto
the chip.
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Figure 2.28: Rocket-Chip + FFT system, with snapshot memory.

2.8.1 Generator Verification Methodology with Rocket-Chip

The fixed-point FFT is characterized with complex random inputs. Its quantized results
are compared with outputs from a floating-point software FFT from the Scala Breeze numer-
ical processing library [54]. SQNRs for 16-bit and 24-bit implementations across di↵erent
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Figure 2.29: Fixed-point SQNR (vs. floating-point) for di↵erent FFT lengths and bitwidths.

FFT lengths are shown in Fig 2.29. As expected, there is a ⇠6dB/bit SQNR improvement.
Additionally, due to the accumulation of rounding errors, the SQNR (when compared to a
floating-point implementation) degrades by ⇠6dB with each 2⇥ increase in N . Although
a 24-bit FFT was taped out to evaluate the high-SQNR regime, a 16-bit implementation
meets LTE/Wi-Fi requirements with ⇠30% lower power/area than the 24-bit design.
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Bit-accurate outputs from Chisel simulations are used to automatically generate Verilog
test benches for post-place-and-route verification. Likewise, C tests are automatically gener-
ated to simplify chip verification. The sequence of C tasks used to verify FFT functionality
on the chip is illustrated in Fig. 2.30. The C code exercises the Rocket/FFT interface to
reconfigure the FFT length being computed. It then loads random test vectors originally
generated in Scala into the FFT test memory, waits until the FFT is done churning on the
data (approximately two frames later), and finally verifies that the FFT output matches
simulated outputs bit-for-bit. The Scala-generated test vectors are printed to a templated
C file as array elements, and the C code is compiled for loading onto the chip.

2.8.2 Measurement Results
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Figure 2.31: Gate area breakdown (0.24mm2 total).

The FFT occupies an area of 0.37mm2, while Rocket-Chip, the outer memory system,
and FFT test memory occupy 0.39mm2. The actual gate area, dominated by SRAMs, is
approximately 0.24mm2, as shown in Fig. 2.31. The FFT gate area is 0.11mm2. Operating
at a 570mV supply voltage and running C tests associated with LTE FFT requirements,
the total chip power (dominated by the FFT) ranges from 0.46mW to 4.8mW, with clock
frequencies up to 61.4MHz. At the same supply, the chip consumes between 2.7mW and
22.6mW when running Wi-Fi tests, which require clock frequencies up to 320MHz (Fig.
2.32).
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Figure 2.32: Total (FFT + Rocket) measured power at 570mV for LTE/Wi-Fi.

Figure 2.33: Total power required for various FFTs and corresponding supply voltages used
at di↵erent core frequencies (ring oscillator frequency / 8).

Functionality has been verified up to 940MHz with a 0.9V supply. Measurements are
taken by scaling the supply voltage (0.57V to 0.9V) along with frequency (40MHz to 940MHz
from the ring oscillator). The total chip power ranges from 2.8mW to 170mW (Fig. 2.33).
Because Rocket-Chip is mostly idle while the FFT is running, the FFT accelerator and
corresponding test memories draw most of the power. A power breakdown is obtained with
a Primetime simulation deploying the same C tests as in measurement; as expected and
shown in Figs. 2.31 and 2.34, the SRAMs are the largest single contributor to both FFT



CHAPTER 2. A HARDWARE FFT GENERATOR 68

power and area.
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Figure 2.34: Primetime post-synthesis power breakdown for a 2048-point FFT at 520MHz
and 0.72V core supply.

In Fig. 2.13, the configuration with the largest ratio of compute cycles to FFT N deter-
mines the ratio of calculation to IO clock rates. With a ratio of 2, all other sizes complete
in a smaller fraction of the symbol period and hence exhibit lower power (Fig. 2.33). For
example, a 972-point FFT that uses 1,905 compute cycles (98% of the 2N clock cycles allo-
cated, as illustrated in Fig. 2.13) requires more power than all other measured FFTs. On
the other hand, only 284 cycles are needed to complete a 256-point FFT, allowing the FFT
engine to sit idle (and in a lower power state) nearly half the time.

2.8.3 Summary

Hardware generators enable rapid and reusable design of hardware instances in advanced
technology nodes. A 0.37mm2 LTE/Wi-Fi compatible 2n3m5k FFT instance with perfor-
mance and area comparable to state-of-the-art (Table 2.19) and integrated as an accelerator
within a complete RISC-V processing system was designed and taped out within 1 month of
PDK delivery. The accelerator is optimized for radix-2 ⇥ 2/3/4/5 butterfly reuse and con-
tinuous data flow with just 2.23Nmax total SRAM. It requires a twiddle LUT depth of only
1,718 (0.84Nmax), despite supporting all LTE and Wi-Fi FFT configurations. The 0.37mm2

encompasses all blocks that are needed to stream data in/out of the FFT accelerator, in
order. The chip’s performance and functional correctness have been verified up to 940MHz
via C tests loaded onto the Rocket core.
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Figure 2.35: Die photo. The total active area is 1.28mm2. The FFT occupies 0.37mm2. The
active area can be significantly smaller with improved floor planning.

Although not implemented on this chip, the scheduling scheme described in Section
2.4.3.2 to support additional parallel PEs can be used to lower the system clock rate and
power consumption.
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This Yahalom Chen et al. Xia et al.
Work [17] [19] [18]

Architecture Mem. SDF DEM Mem.

FFT Size
64-2048, 128-2048, 128-2048 128-2048
1536, 1536 + 12-1296 + 12-1296

12-1296 + 12-1200
Technology 16nm 28nm 0.18µm 55nm
Word Width 2⇥ 24 2⇥ 16 2⇥ 16 2⇥ 16

Mem. Depth
4576 2047 + 2NFFT+ 2NFFT+

(2.23Nmax) 2213d 2NDFT 3NDFT

Gate Count
700K 170K + 316K + 136K +

511K 482K 340K
Area (mm2) 0.37 0.31 25 1.678
Voltage (V) 0.57a,b 0.61-1a - 1.08

Power (mW)
0.46-4.8a,c 0.08-2.93a 320 45.5
2.7-22.6b,c

Clock (MHz)
3.84-61.44a 1.92-30.72a 122.88 122.88
40-320b

Throughput (MS/s)
1.92-30.72a 1.92-30.72a 122.88 122.88
20-160b

Incl. Processor Yes No No No

Table 2.19: Comparison with other LTE-compatible FFTs.
a LTE, b Wi-Fi, c including Rocket + snapshot memory, d unscrambling memory is not reported.



71

Chapter 3

ACED: A Hardware Library for
Generating DSP Systems

3.1 Introduction

Algorithm development in the application domains of computer vision, big data, sensor
fusion, and wireless communication has greatly outpaced our ability to deliver dedicated
hardware accelerators that promise orders-of-magnitude energy-e�ciency and performance
improvements over CPU/GPU realizations. Many systems targeting these applications, such
as reconfigurable/cognitive radios, RADAR receivers, and wideband spectum analyzers, rely
on new algorithmic and architectural solutions, but also on common functions like FFT,
matrix multiplication, and digital filtering. Although underlying algorithms and hardware
primitives are often reused, architectural realizations must be heavily—and manually—tuned
to meet specific performance and deployment platform requirements. In practice, reusing
blocks with structural variations increases development and verification time, elucidating
the need for reusable and highly parameterized generators of hardware instances that sup-
port application retargetability, in addition to the generation of optimized and specialized
RTL, normally only achievable with one-o↵ instance design. The preceding chapter focused
specifically on the motivation behind and design of a runtime-reconfigurable hardware FFT
generator, satisfying the needs of various stream-based radio applications and useful for
prototyping next-generation wireless.

While designing the FFT generator, it became clear that existing tools (both for instance
and generator design) were lacking in their ability to support DSP contexts and math-to-
hardware translation. For example, the default behavior of the + operator in Chisel is to
wrap upon overflow. This is the norm in computer arithmetic, where data is represented
in bits, but results in incorrect mathematical outcomes. The original version of Chisel
presented in [27] did not include a fixed-point type. Therefore, a DSP designer needed to
manually convert decimal variables in high-level models to signed integers (i.e., bits) for
hardware implementation and propagate binary points across operations by hand. This
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same e↵ort was required at module interfaces to evaluate system performance using Chisel
testers. As a result, significant debug e↵ort was often spent to align hardware models
with their intended fixed-point behavior. In [56], it is estimated that 25% to 50% of the
total implementation time is spent on the tedious and error-prone task of floating-point
to fixed-point conversion. Matlab HDL Coder provides a more automatic way to convert
floating-point Matlab algorithm models into fixed-point hardware. This is accomplished by
profiling the ranges of internal variables during a simulation, using representative input data.
However, the model and test bench must be “templated” in an HDL Coder-friendly manner,
and manual iteration (with user-proposed bitwidths) might be required to achieve desired
results.

To address these barriers for developing DSP generators, we have created the hardware
library ACED: A Chisel Environment for DSP. Built upon the Chisel hardware construction
language [27] and its compiler FIRRTL[57], it operates on three key principles:

1. Powerful meta-programming with zero-cost abstractions. Designers can concisely ex-
press algorithm intent at higher levels of abstraction by utilizing Scala programming
constructs that support DSP-specific and user-defined number representations, while
maintaining tight control over implementation details. Hardware optimizations like in-
formed bitwidth reduction via static/dynamic range analysis are performed as library-
specific FIRRTL compiler passes [57] that do not change the original user intent.

2. Unobtrusive optimization and specialization. Chisel’s support for easy design parame-
terization is enhanced with DSP-specific typeclasses. This enables generator code reuse
among all platforms and applications and automatic optimization of each generated
hardware instance per context. This simplifies design exploration.

3. Unified, yet portable, modeling, validation, verification, and testing. Architecture val-
idation is decoupled from hardware evaluation of quantization e↵ects. By relying on
type generics and folding the SystemVerilog Real type into the library, simply switching
data types enables easy verification of functional correctness via floating-point simula-
tion and analysis of hardware metrics like SQNR. Additionally, the same verification
criteria can be used across all design tools and abstractions—tests against a golden
model are automatically ported to various points in the design cycle, propagating user
intent to reduce errors arising from mistranslation.

To support these principles, ACED introduces the following library and compiler fea-
tures, which preserve code reusability and enable a single unified validation and verification
framework, while still producing highly-optimized hardware instances:

• Operator and data type parameterization,

• Unified systems modeling, and

• Powerful static and trace-based bitwidth optimizations.
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While successfully used in software-defined/cognitive radio DSP chips, this thesis separately
evaluates ACED’s ability to foster design space exploration at the algorithmic, architectural,
and implementation levels.

3.2 Background

Traditionally, algorithm-to-hardware is done by iteratively applying designer intent across
many tools/abstraction boundaries: algorithm and systems models, RTL implementations,
and physical design. Expert architects tediously hand-optimize hardware realizations of algo-
rithms, decreasing portability and malleability. For example, many algorithms use floating-
point arithmetic, which cannot be synthesized with basic Verilog/VHDL; designers must
undergo an error-prone, unintuitive, and manual process to convert to fixed point, track
binary point locations, and create bit-level tests.

3.2.1 MathWorks Simulink

MathWorks’s closed-source, model-based design flow, Simulink, simplifies passing user
intent to early stages of design/verification, saving 30% in design time [58] when using pre-
existing IP. It supports systems validation and verification with double-precision floating-
point simulations and leverages Matlab’s powerful DSP utilities and “automatic” fixed-point
bitwidth optimization for power and area reduction when provided a representative set of
application-specific test vectors. The Simulink environment supports the “Chip in a Day”
methodology [59], [60], but only accelerates the design of one instance for one hardware
platform, rather than accelerating generator design targeting multiple platforms. It lacks
transparent, programmatic, and extensible abstractions, requiring non-trivial manual e↵ort
to support multiple targets (FPGA/ASIC) and data types. While high level models are au-
tomatically translated into target-independent HDL via HDL Coder, platform-specific spe-
cialization requires that IP blocks be manually targeted to tools like Xilinx System Generator
or Altera DSP Builder. In addition, ASIC specializations necessary to use foundry-specific
SRAMs are not supported. Finally, to support a higher degree of parallelization, blocks must
be manually added and hooked up; the model must be redrawn to support di↵erent numeric
types; and graphical entry limits block-level complexity when custom-defined IPs need to be
integrated.

3.2.2 High-Level Synthesis

High-level synthesis (HLS) tools abstract away low-level implementation details from
the algorithm-to-hardware translation process. CAD vendors have developed various C (or
C++/SystemC/etc.)-to-RTL compilers for this purpose: Mentor Graphics Catapult C, Syn-
opsys Synphony C Compiler, Cadence Stratus HLS, Intel HLS Compiler, and Xilinx Vivado
[61], to name a few [62]. LegUp is likewise an academic-turned-commercial HLS tool for tar-
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geting C to FPGAs or hardware accelerators [63]. The academic endeavor FCUDA presents a
CUDA-to-FPGA flow [64]. Intel’s FPGA SDK for OpenCL allows designers to write code for
FPGAs using OpenCL. Darkroom is a compiler that maps high-level image processing code
(written in the custom Darkroom programming language) to FPGAs, ASICs, and CPUs
[65]. HLS is useful for designing blocks that require complex memory access scheduling,
deep pipelining, and sequential logic. However, many DSP datapaths have high degrees of
parallelism, requiring carefully structured SystemC code. Finally, hardware generation from
recursive functions is not allowed, except with template metaprogramming.

3.2.3 Tools for Hardware Generation

Other tools also enable designing generators. Genesis2 augments synthesizable Sys-
temVerilog with Perl extensions for generator parameterization [10]. The generator code
is fairly verbose; however, the end user is expected only to tweak high-level parameters
for specialization. Genesis2 relies on two decoupled languages, increasing the likelihood
of generating di�cult-to-debug syntax errors. Spiral is a generator specifically targeting
DSP hardware [9]. Designers input a linear transform of a fixed size, and through a series of
algorithm-informed optimization phases, the tool chooses the most suitable architecture, e.g.,
the optimal amount of sequential reuse required of a datapath, to meet application needs.
Although powerful, Spiral is designed for static function generation and is not well suited
for runtime-reconfigurable architectures, which require that interconnects be non-static. We
believe a better approach is building generators in an embedded domain-specific language
catered to hardware.

3.2.4 Hardware Construction (Generation) Languages

Domain-specific languages for hardware like PyMTL, which is built on top of Python, en-
able a unified design environment for hardware modeling and generation with more “software-
friendly” syntax [66]. Likewise, the hardware construction/generation languages Bluespec
(closed-source) and Chisel (open-source) enable systems modeling, generator construction,
and test environment creation with one underlying functional and object-oriented program-
ming language [67], [27]. Each supports:

• Custom-defined number abstractions,

• Compile-time type-checking,

• Type polymorphism and operator overloading for hardware template parameterization,

• Recursive functions to generate hardware, and

• Functional constructs (e.g., map, reduce, etc.) that enable concisely expressing struc-
tured datapaths.
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Figure 3.1: ACED hardware generator design environment.

Bluespec and Chisel are both architecturally transparent, supporting fine-grained control
of implementation details and leading to faster convergence to optimal designs when com-
pared to HLS tools that sacrifice implementation flexibility for automatic (but potentially
suboptimal) optimization via tool heuristics. Bluespec provides an additional abstraction
layer for multi-rate interfaces between heterogeneous functional units. However, end users
can create custom interface classes like those in Bluespec for their Chisel-derived hardware
library. The Chisel design methodology in particular encourages unit testing with minimal
boiler plate code, making it easy to observe the behavior of submodules outside the systems
context. Most importantly, design specialization—HLS-like automatic pipelining, memory
macro to SRAM mapping, etc.—is achieved at the lowest level of abstraction because of the
open-compiler FIRRTL framework that supports user-created optimization passes.

3.3 ACED: A Chisel Environment for DSP

ACED (Fig. 3.1) provides constructs to capture and propagate designer intent down
the hardware abstraction hierarchy without redundant specification. To allow designers to
focus on algorithms, it separates algorithmic and implementation abstractions, yet supports
platform/application-specific specialization and optimization.

ACED is implemented on top of the open-source Chisel hardware construction language
and its open-source compiler, FIRRTL [57]. The FIRRTL (Flexible Intermediate Represen-
tation for RTL) compiler enables the creation of new hardware libraries that are agnostic to
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specific deployment platforms like FPGAs and ASICs by providing mechanisms to convert
high-level, target-independent constructs into technology-specific RTL. The open-compiler
framework supports custom analysis passes that provide design introspection. Additionally,
compiler passes for hardware optimization/specialization are supported. As an example, im-
plementations of “memory” are platform-specific. Memory can be mapped to block RAMs
or distributed RAMs on FPGAs or registers and SRAMs on ASICs, all of which might have
di↵erent input and output timing requirements, etc. In a more traditional approach, a cus-
tom memory wrapper must be written for each target platform and manually swapped into
the RTL as needed. Instead, Chisel supports a generic memory construct that gets mapped
to technology-specific blocks automatically and correctly through a FIRRTL compiler pass,
without any intervention from the designer. Such a pass requires both design introspec-
tion and transformation capabilities, which we leverage in ACED for interval analysis and
bitwidth reduction.

Because Chisel is written in Scala, existing Scala and Java libraries like the Breeze nu-
merical processing library can be used to generate “golden model” references and constant
coe�cients for DSP systems [54]. The same underlying language is used by generators,
optimizing/specializing compiler passes, and the testing environment, allowing a single set
of tests to verify the system. This reduces the likelihood of translation errors and sim-
plifies development and design-space exploration. High-level data structures support fast,
cycle-accurate simulation and validation with non-synthesizable floating-point through the
FIRRTL Interpreter in addition to automatic instance generation for domain-dependent
hardware using fixed-point, complex, mixed-radix, and other number abstractions without
redesign.

3.3.1 Operator and Data-Type Parameterization

Type-generic generators increase code reuse; for example, one type-generic FIR filter
generator can replace separate complex- and real-type FIR filter generators. Type-generic
generators require:

• Operator parameterization,

• Native operator and data types,

• Flexibility to specify new number types, and

• The ability to parameterize the type used by a Chisel circuit via type generics.

Many DSP operations have implementation details, such as rounding modes (round half-
up, floor, ceil, & truncate), overflow modes (grow, wrap, & saturate), and depth of pipelining,
that a↵ect performance/area trade-o↵s. Consistently specifying these per-operation prop-
erties is tedious and error-prone; ACED provides a DspContext to set and override these
properties. The hardware designer does not need to manually add shift registers after oper-
ators like multiply and add; this is done automatically when the pipeline depth is specified.
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Additionally, after specifying rounding modes to achieve a desired number of fractional bits,
the rounding circuitry (e.g., mux) is automatically added by ACED. DspContext sets de-
faults at the top-level module scope and may be overridden hierarchically. If necessary, a
single operator’s parameters can be overridden.

Powerful native types help achieve functionally correct designs. To design fixed-point
DSP hardware in HDLs such as Verilog or VHDL, one must manually track binary points
across operations. Chisel’s FixedPoint type automatically propagates binary points. To
enable range-based analyses & optimizations, the native type Interval was added. To support
specifying new number types and parameterizing Chisel circuits via type generics, ACED
abstracts data types and representations using typeclasses, a functional programming pattern
that enables type-safe polymorphic code. ACED extends the Scala numeric library Spire
[68] with typeclasses for Chisel/ACED types including UInt, SInt, FixedPoint, Interval,
DspComplex, and DspReal.

3.3.1.1 Typeclass Construction

Designers can create new number types and use them with other ACED library com-
ponents. For example, non-2n FFTs benefit from mixed-radix number types, where full
adders are replaced with custom adders built with simple subtractor + mux modulo oper-
ations. The following illustrates a custom complex number type for use with type-generic
generators. First, a DspComplex Chisel type is created from a Chisel Bundle (like a struct):

Listing 3.1: T <: Data:Ring says generic type T is a Chisel hardware type and implements
Ring typeclass.

class DspComplex [T<:Data : Ring ] ( val r e a l :T, val imag :T)
extends Bundle { . . . }

ACED uses typeclasses for algebraic structures (ring, order, signed, real, etc.). A typeclass
Ring[T] defines the behavior of addition, multiplication, subtraction, and negation for objects
of type T ; DspComplex supports ring operations via a Ring[DspComplex[T]] instance. The
complex ⇥ operator uses three real multipliers:

Listing 3.2: Typeclass for DspComplex.

class DspComplexRing [T<:Data : Ring ] extends Ring [ DspComplex [T ] ] {

def t imes ( f : DspComplex [T] , g : DspComplex [T] ) = {

val p1 = f . r e a l ∗ ( g . r e a l + g . imag )
val p2 = ( f . r e a l + f . imag ) ∗ g . imag
val p3 = ( f . imag � f . r e a l ) ∗ g . r e a l
return DspComplex . wire ( p1 � p2 , p1 + p3 )

} . . .
}
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Implementing DspComplexRing allows DspComplex to be used for any generator with type
constraint T <: Data:Ring. If such a generator is invoked with an instance of DspComplex,
all instances of f ⇤ g will call this implementation of times(f, g).

3.3.1.2 An FIR Filter Generator Example:

The following direct-form, real-coe�cient FIR filter template illustrates how ACED is
used to make hardware generators. It directly maps the equation y[n] =

PN
k=0 h[k]x[n � k]

into hardware.

Listing 3.3: FIR Filter Generator

class FIR [T <: Data : Ring : ConvertableTo ] ( genI : => T,
genO : => T, c f s : Seq [ Double ] ) extends Module {

// Set module input / output por t s
val i o = IO(new Fi l t e r IO ( genI , genO ) )
// Spec i f y p i p e l i n e s t a g e s and da ta f l ow p r e c i s i on
val newContext = DspContext . cu r r ent . copy ( numMulPipes=3 ,

b inaryPoint= Some (14 ) )
// New scope has newContext parameters
DspContext . a l t e r ( newContext ) {

// Generate r e g i s t e r sequence to de lay input ( taps )
val tps = c f s . t a i l . s canLe f t ( i o . in ) (

( in , ) => RegNext ( in , i n i t = Ring [T ] . ze ro ) )
// Make cons tan t s from f l o a t i n g�po in t c o e f f i c i e n t s
val cs = c f s .map( c => ConvertableTo [T ] . fromDouble ( c ) )
// Create one mu l t i p l i e r per tap / c o e f f i c i e n t pa i r
val ms = tps . z ip ( cs ) .map{case ( t , c ) => t contex t ∗ c}
// Set output to sum of a l l mu l t i p l i e r ou tpu t s
i o . out := ms reduce ( contex t + )

}

}

The template takes inputs/outputs of type Data that have the typeclasses Ring (for ad-
d/multiply operations) and ConvertableTo (for translating Scala Doubles into the correct
Chisel literal type via the fromDouble function). The Scala compiler checks that any invo-
cation of the generator satisfies these type constraints. Functional programming constructs
represent DSP operations concisely. Scan is used to create the delay taps, map is used for
coe�cient/tap multiplication, and reduce is used for the summation. The filter order is
indirectly specified via the number of coe�cients in the cfs parameter. DspContext sets
the number of pipeline registers for multiplication and the number of fractional bits used to
represent the filter coe�cients.

This code creates an FIR module specialized for Interval types:
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Listing 3.4: FIR instantiation with Interval types.

new FIR( I n t e r v a l ( range “ [�16 , 16 ) . 2 ” ) ,
I n t e r v a l ( range “ [ ? , ? ] . 4 ” ) , . . . )

Likewise, a filter with complex inputs is instantiated with:

Listing 3.5: FIR instantiation with DspComplex types.

new FIR(DspComplex ( I n t e r v a l ( range “ [�16 , 16 ) . 2 ” ) ) ,
DspComplex ( I n t e r v a l ( range “ [ ? , ? ] . 4 ” ) ) , . . . )

3.3.2 Unified Systems Modeling and Verification

When verifying and validating systems, the same tests should be propagated across all
layers of the design hierarchy, from the systems model down to behavioral and gate-level RTL
code. Reusable tests prevent design intent from being mistranslated across abstraction and
tool boundaries. The ACED library contains a Chisel tester extension that natively supports
DSP-specific number representations and error tolerance parameters. ACED’s DspTester
tracks the sequence of user inputs, prompted design outputs, and time steps, mirroring them
one-for-one in an automatically generated Verilog testbench that can be run on specialized
designs. This generated testbench verifies that gate-level netlists are properly inferred and
that macro replacement, such as swapping out Chisel memories for FPGA BRAMs or ASIC
SRAMs, does not result in functionality or timing changes.

To decouple algorithm/architecture validation (whether the fundamental algorithm or
architecture is able to achieve a performance target) from secondary e↵ects like insu�cient
bitwidth allocation that degrade system metrics, ACED again relies on typeclasses. It can
often be hard to determine if poor DSP system performance is due to quantization error from
finite word length or an algorithmic error. Using floating-point data representations virtually
eliminates quantization errors and makes it easy to evaluate algorithmic performance and
correctness. ACED provides a DspReal type that implements non-synthesizable double-
precision floating point, simulatable with either the FIRRTL Interpreter or SystemVerilog’s
Real type. Typeclasses have been implemented for DspReal, so floating-point numbers can be
used with type-generic generators without any changes to the generator. As in Section 3.3.1,
a block intended to be used with FixedPoint or Interval inputs can be verified with floating
point data simply by swapping out those synthesizable types for DspReal at instantiation.
Once mathematical correctness has been verified, the template can be re-parameterized to
use a synthesizable type for implementation.

It is frequently useful to be able to integrate analog or non-synthesizable floating-point
models together with synthesizable hardware for system evaluation. For example, a designer
building a radio baseband may want to study the e↵ects of ADC or FFT quantization error
on either a subsequent demodulator’s reliability or the entire system performance. One way
to do this is to model a radio transmitter and over-the-air channel using library functions in
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Figure 3.2: A system model of an OFDM transmitter/receiver pair with an additive white
Gaussian noise channel. At the transmitter, each set of b data bits is represented as a point
on a complex (I/Q) constellation diagram and mapped onto a subcarrier in the frequency
domain. The time-domain waveform is cyclically extended to improve robustness against
multipath interference and turn the channel response into a cyclic convolution, allowing for
single-tap equalization at the receiver. Then it is up-converted in the analog domain and
transmitted over the antenna. The receiver undoes channel e↵ects and the steps used by
the transmitter, corrects for any timing and frequency mismatches between itself and the
transmitter, and tries to recover the data from its noise-corrupted input.

Scala and then feed the model output via the DspTester to a simple receive chain consisting
of an analog/mixed-signal ADC model followed by parameterized FFT and demodulator
blocks that can use either synthesizable or non-synthesizable constructs (Fig. 3.2). Using
FIRRTL transformation passes, the ADC model can be swapped out for a custom-designed
ADC macro achieving the same e↵ective number of bits at implementation. To support
this, a ChiselConvertableFrom typeclass that implements “shims” between DspReals and
synthesizable types has been created. Interfaces at module boundaries can be mated together
by pattern matching input/output data types and using this typeclass.

One important system metric for radio receivers is the symbol error rate (SER) vs. the
input signal-to-noise ratio (SNR). Alternatively, the bit error rate (BER) can also be studied.
When an M -QAM modulation scheme is used, e.g., Fig. 3.3, where M = 2b and b is even,
the best theoretically achievable SER (using ideal RX blocks) is given by [69]
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Figure 3.3: 16-QAM constellation diagram. A sequence of 4 bits is converted to a complex
symbol whose real and imaginary components taken on a value of -3, -1, 1, or 3. Gray
codes are used so that adjacent symbols only di↵er by one bit, reducing bit errors. Upon
demodulation, noisy inputs located at regions adjacent to a symbol are mapped to that
symbol, e.g., all inputs in the blue box are mapped to 0b0111.

Here, Q(x) =
1

2
erfc(x/

p
2), and the baseband SNR is defined as Es/N0 i.e., the ratio of the

signal power to noise power. The SER vs. SNR for Fig. 3.2’s systems model with various
combinations of synthesizable and non-synthesizable blocks is compared to the theoretical
limit in Fig. 3.4. This can be used to determine system sensitivity to the performance of
individual blocks. Additionally, the FFT generator described previously was evaluated for
use in the context of this baseband receiver chain and a separate spectral analysis system.
The SQNR achievable for di↵erent FFT bitwidths is given in Fig. 3.5 and used to inform
bitwidths of generated FFT instances in practical designs, which also integrated custom SAR
ADCs that were modeled using ACED constructs.
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Figure 3.4: SER vs. input SNR @ baseband using 16-QAM modulation and an N = 128
FFT. ADC quantization and FFT output bits are indicated for each I and Q channel. The
SER is very sensitive to FFT output bitwidths below 16 bits.

Figure 3.5: SQNR vs. FFT length for di↵erent output I/Q bitwidths.
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3.3.3 Interval-Based Arithmetic and Bitwidth Reduction

DSP designers may know module input/output ranges, but often rely on synthesis tools
to infer internal node widths. Unfortunately, the tools cannot infer a signal’s range from
its bitwidth, resulting in suboptimal power and area results. Designer intent can be bet-
ter captured by directly encoding input ranges into the design, allowing automatic range
propagation and bitwidth reductions.

Simple forward/backward range propagation [70], [71], while still conservative, o↵ers
improvements without complex symbolic analysis of ranges. Potential ranges are tracked for
each operation, and the solver finds the worst case bitwidth. A�ne analysis of ranges [72]
can cancel correlated terms (e.g., A�A has a range [0, 0]), leading to a more compact design
at the expense of more complex analysis. These techniques are used in high-level synthesis
flows [73], which unfortunately require users to express their designs using non-zero-cost
abstractions. The benefits of these optimizations can be o↵set by the di�culties encountered
when porting existing RTL to a new flow and/or application. Dynamic bitwidth analyses
(e.g., used by Matlab’s floating-point to fixed-point conversion tool [58]) can significantly
improve upon these methods. They require a thorough set of application-specific test vectors,
potentially leading to long runtimes. Without complete coverage, the design’s correctness is
only statistically guaranteed. Unrepresentative test vectors can incorrectly add or remove
hardware and result in wasted bits or reduced dynamic range. At some expense, inserting
guard bits and saturation logic makes the output “more correct” for inputs that exceed the
test vector bounds.

Manual bitwidth optimization, especially for generators, is inconvenient and error-prone.
To address this, ACED supports automatic (static) range propagation that aids bitwidth
optimization via FIRRTL passes. It also provides dynamic analysis—FIRRTL Interpreter
simulation results can automatically direct bitwidth reduction.

3.3.3.1 Static Interval Optimization

An Interval type containing precision, a lower bound, and an upper bound was added
to Chisel and FIRRTL. Bounds are closed [], open (), or unknown. Additionally, they
can be half open e.g., the bounds [0, 4) and (0, 4] contain 0/4, but do not contain 4/0,
respectively. Precisions are unknown or an integer. Hardware components like wires, ports,
and registers can be declared with these Interval types. Additionally, two new primitive
operators enable limiting an expression to an interval: clip and wrap will clip (or wrap) the
first input argument’s value to the interval of the second argument. For example, if x = 5
and y : Interval[0, 3], then clip(x, y) is 3, while wrap(x, y) is 1. For common but simple use
cases as in the previous example, wrap acts like a modulo operation, while clip saturates a
value. Chisel Reg passes interval bounds between its input and output. Intervals can also
be manually reassigned with reassignInterval.

To generated Verilog with signed data from Interval types, FIRRTL passes perform the
following:
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Op Chisel Baseline Interval Lower Bound Interval Upper Bound Precision
add(x, y) max(xw, yw) + 1 xl + yl xh + yh max(xp, yp)
sub(x, y) max(xw, yw) + 1 xl � yh xh � yl max(xp, yp)
mul(x, y) xw + yw min(xlyl, xlyh, xhyl, xhyh) max(xlyl, xlyh, xhyl, xhyh) xp + yp

mux(p, x, y) max(xw, yw) min(xl, yl) max(xh, yh) max(xp, yp)
wrap(x, y) xw yl yh xp

clip(x, y) min(xw, yw) max(xl, yl) min(xh, yh) xp

shl(x,C) xw + C 2Cxl 2Cxh xp

shr(x,C) xw � C b2xp�Cxlc/2xp b2xp�Cxhc/2xp xp

dshl(x, u) xw + 2uw � 1 min(xl, 22
uw�1xl) max(xu, 22

uw�1xu) xp

dshr(x, u) xw xl xu xp

bpshl(x,C) xw + C xl xu xp + C
bpshr(x,C) xw � C b2xp�Cxlc2C�xp b2xp�Cxhc2C�xp xp � C
bpset(x,C) xw � xp + C b2Cxlc/2C b2Cxhc/2C C

Table 3.1: A subset of corresponding constraint expressions for each supported FIRRTL
primitive operation. Listed operation arguments are FIRRTL interval-typed expressions (x,
y), a constant integer C, or an unsigned-typed (UInt) expression u. The argument subscripts
refer to the lower bound, upper bound, precision, or width of the expression (e.g., xl, xu, xp,
or xw, respectively). Constraint expressions are: +, �, ⇤, max, min, and floor.

1. Resolve unknown precisions at intermediate and output nodes.

2. Trim interval bounds to known precision. Open bounds are converted to closed bounds.
For example, [0, 3).0 is converted to [0, 2].0. If a fractional bound (e.g., 0.9) cannot
be represented with the specified precision (e.g., 1 binary point), it is trimmed to a
representable bound (e.g., 0.5) within the original interval.

3. Resolve all upper and lower bounds at intermediate and output nodes.

4. Align precisions by shifting binary points.

5. Convert Interval types and associated operations to SInt types and operations. For
example, bpshl is ultimately implemented as a shl (arithmetic shift left) operation.

The relationships between bound/precision constraints and associated FIRRTL expres-
sions are complex. For output precision, many primitive operations simply take the max-
imum precision of their input arguments. Others explicitly set the precision or shift the
binary point position. Finally, some have unique rules e.g., multiplication takes the sum of
the input arguments’ precisions. A subset of these relationships is summarized in Table 3.1.

Unknown bounds and precisions are uniquely named with variables. After collecting
monotonic constraints from analyzing FIRRTL connections and expressions and merging
constraints on the same variable, a custom constraint solver uses a forward-backward algo-
rithm to solve the constraints. Finally, all values specified by variable names are replaced
with their solved bounds or precisions.
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Figure 3.6: A demonstration of transformations which infer precisions and bounds of Interval
circuit elements that are then converted to signed integer types.

A simple example can demonstrate the savings of ACED range analysis over Chisel’s
standard bitwidth propagation. The product of three 2-bit unsigned numbers requires 6
bits according to Chisel (Table 3.1), but since the input ranges can be at worst [0, 3], the
worst-case output range is [0, 27], requiring only 5 unsigned bits; the savings are amplified
as operations are chained together.

3.3.3.2 Dynamic Interval Optimization via Hardware Profiling

Random 12b

DSP
Tester FIRRTL

2) FIRRTL
Interpreter

3) Bitwidth
Transform

Per-Node
Range Observ.

Width Change
Annotations

Bitwidth Reduc. 
Analysis

4) To Final
Verilog

Test
Vectors

Systolic
MatMul DCT

Initial 22b Allocation

1) From Chisel Design

Figure 3.7: Bitwidth optimization procedure using the FIRRTL Interpreter for dynamic
range analysis. Utilization is reported visually to help build design intuition.

As shown in Fig. 3.7, to further optimize the bitwidths of a design with a thorough set
of test vectors, dynamic interval analysis using the FIRRTL Interpreter can be turned on to
automatically trim bitwidths of internal nodes.

Starting with an unoptimized circuit, the FIRRTL Interpreter captures the smallest and
largest values seen at significant (named) internal nodes. It tracks the min./max., mean,



CHAPTER 3. THE ACED HARDWARE DSP LIBRARY 86

and standard deviation at these nodes and displays a histogram of values to give designers
a better understanding of data flow through the circuit. As an example, when randomly
generated test vectors occupying a 12-bit input range are fed into the circuit in Fig. 3.7, it
is useful to see that the original allocation of 22 bits at the output is far too conservative,
and only ⇠31% of the range is actually utilized.

FIRRTL annotations are generated for downstream optimization passes to: (1) adjust
node widths downward based o↵ of their simulated extrema (additional guard bits can be
added) or (2) adjust widths to support x� ranges. At the expense of additional logic,
saturation operations can be added to protect from undesirable overflow behavior. Finally,
bitwidth-optimized Verilog RTL is generated.

3.4 Bitwidth Optimization Results

C11=A11B11+A12B21
C12=A11B12+A12B22
C21=A21B11+A22B21
C22=A21B12+A22B22
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Figure 3.8: a) Divide + conquer MatMul. Intervals are automatically propagated.

To evaluate ACED, generators supporting di↵erent AB = C matrix multiplication al-
gorithms and architectures (Figs. 3.8, 3.9) have been built. Recursive divide-and-conquer
MatMul algorithms showcase bitwidth reduction from static and dynamic interval analyses.
The associated generators are constructed via a Matrix data type supporting Ring opera-
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Figure 3.9: Systolic array MatMul. Prototype Intervals from loop unrolling must be supplied.

tions like +, �, and ⇥. n⇥n matrices are recursively partitioned into 4 new block matrices,
and either a standard O(n3) algorithm or Strassen’s O(n2.81) algorithm [74] is used to create
the fully parallel data-flow graph. A hardware template for more typical systolic array-based
MatMuls that rely on iterative multiply-accumulate (MAC) operations has also been created.
Systolic implementations are much more compact (e.g., the 8-bit 8 ⇥ 8 systolic DCT using
Chisel FixedPoint has 16.4% of the area of an equivalent DCT implemented using Strassen’s
algorithm), but require more compute cycles. A prototype Interval used for range analysis
is specified at the MAC’s adder output with the equivalent (unsynthesized) sum of products
in unrolled form.

Hardware instances are generated for 8⇥ 8 MatMuls, and Interval ranges at fixed input
bitwidths are swept. As an example, the smallest Interval needing 8 bits is [�65, 65)—where
the MSB is relatively underutilized, and savings accumulate more quickly—while the largest
(full-width Interval) is [�128, 128). For DCT hardware, the MatMuls are configured so
matrix A contains constant DCT coe�cients, and 1-D DCTs are calculated for the columns
of B. The generated instances are synthesized with a commercial 16nm FinFET technology
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8×8 Systolic DCT 8×8 Strassen’s DCT 8×8 Strassen’s MatMul

Static Analyses:
Dynamic Analyses:

Figure 3.10: Area comparison using FixedPoint bitwidth propagation (Chisel baseline) vs.
ACED Interval range optimization (with equivalent input bitwidths). Static and dynamic
range analyses can automatically reduce area down to 62%, with zero (static) or mini-
mal (dynamic) performance penalties using representative test vectors and input conditions.
Constant coe�cients are built into DCT-specific MatMul circuits. Area is calculated post-
synthesis and includes the cell + estimated net area.

Using
8×8 MatMul

Figure 3.11: Relative areas for 8-bit divide + conquer & Strassen’s MatMul DCTs.

at 500MHz (SS process corner, 0.72V supply, 125�C, and cworst CCworst RC corner with
Cadence Genus) to observe how FIRRTL range optimizations a↵ect the QoR of the final
design.

Static range analyses promise the most benefit over baseline FixedPoint designs relying on
width inference for small input bitwidths (9% smaller area for full-width 4-bit input Intervals
with DCT using Strassen’s algorithm); the number of bits trimmed makes up a larger fraction
of bits in the Chisel baseline design. Additionally, the DCT examples show that static range
analysis performs better with specific input information, e.g., that elements of A are fixed
values (Fig. 3.10). However, even when only full-width input Intervals are used, range
analysis provides some area savings. The algorithms are easily compared: Fig. 3.11 shows
that range analysis benefits the standard divide-and-conquer MatMul less, but the standard
algorithm is more area e�cient than Strassen’s algorithm for 8⇥ 8 matrices. Unfortunately,
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the synthesized area is larger for a systolic DCT implementation with 16-bit inputs when the
full-width Interval type is used (vs. FixedPoint); bitwidth trimming using range analysis
removes some design regularity that synthesis tools use for deep optimizations across PEs.
Finally, ACED static range optimization times are compared with Chisel width inference
times in Table 3.2. Recursive implementations using range analyses require significantly
longer optimization and constant propagation times.

8⇥ 8 Design 16b Fix. 16b Intvl.
Systolic DCT 1.361 2.597
Strass. DCT 4.004 19.020
Strass. MatMul 4.065 17.104

Table 3.2: Static range optimization times (s) for designs using 16-bit FixedPoint and full-
width Interval inputs.

User intent is embedded into the design via dynamic range analysis. Test vectors spanning
the input range are generated from a uniform random distribution, and bitwidth optimiza-
tion is performed, leading to significant area savings. In particular, properly capturing the
system context in simulation (e.g., when the inputs are first low-pass filtered) leads to greater
dynamic analysis savings—up to 38% in Fig. 3.10.

MatMul Generator Design Slice LUTs DSPs
Matlab HDL Coder (2017B) 41528 0
C++ Vivado HLS (2017.4) 18364 196
ACED (Smallest Full-Width Interval) 22924 328

Table 3.3: Synthesis results for ACED, HLS, and Matlab HDL Coder (2017B) outputs using
Vivado 2017.4. 8-bit 8x8 Strassen’s matrix multiplies were synthesized with 10.0ns 50% duty
cycle clocks for the ZC706 FPGA. Matlab used dynamic optimization with uniform random
matrices as inputs. ACED used static range optimization.

To evaluate ACED, a similar Strassen MatMul has been implemented using Matlab
HDL Coder and C++ with Vivado HLS. Synthesis results are summarized in Table 3.3. It
should be noted that the Vivado HLS results required extensive refactoring and heavy use of
pragmas—without which the designs had poor throughput and high resource utilization—
to achieve reasonable QoR. The Chisel designs were generated for ASICs and reused here
without any tuning.

3.5 ACED Summary

Extensibility is important to a useful library. ACED operates at several di↵erent levels of
abstraction, from high level type-generic generators to low-level bitwidth optimizations, but
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these abstractions are kept separate to facilitate extensibility. For example, static bitwidth
optimization and Intervals can be used on any design (e.g., a processor) and do not make
assumptions about being run with the DSP-centric types. Bitwidth optimization techniques
are directly usable without needing to modify the compiler, enabling the generator designer
to focus more on rapid algorithm to hardware translation and less on tedious bitwidth opti-
mization/decimal point alignment, etc., while still achieving a design with good QoR.

The ACED DSP library is a straightforward enhancement to Chisel. We have shown how
the ACED hardware library can be used for generating DSP systems. It supports zero-cost
abstraction and high-level data types, “free” optimization and specialization via open-source
compiler passes, and a unified systems modeling framework. Interval bitwidth reduction is
analyzed closely, and the ACED library has been successfully used to create DSP hardware
blocks including FFTs, CORDICs, and FIR filters for various tapeouts.

ACED brings tried-and-true techniques immediately into the hands of the designer, mak-
ing them accessible for everyday use. It is important to emphasize that our contribution is
not just the particular bitwidth optimization techniques, but rather their implementation in
an open compiler framework and a discussion of the value of these techniques in the context
of writing generators. Other optimization techniques can be added to the compiler chain in
a way that is transparent to the designer of a top level generator.
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Chapter 4

A Real-Time, Analog/Digital
Co-Designed 1.89-GHz Bandwidth,
175-kHz Resolution Sparse Spectral
Analysis RISC-V SoC in 16-nm
FinFET

4.1 Introduction

Today, di↵erent kinds of wireless systems are typically assigned to fixed, exclusively li-
censed bands. This nearly century old scheme prevents, for example, TV from interfering
with radio. However, as wireless demands increase, preventing interference simply by way of
rationing spectrum becomes intractable. First, this methodology cannot adapt to real-time
supply and demand. At any given time, many bands are unused; typically, a wide swath of
bandwidth might only be 5% occupied. However, other bands are completely saturated. Ad-
ditionally, many modern-day wireless systems do not have fixed system operation—meaning
they hop from frequency to frequency periodically, and bands might only be occasionally
occupied.

Real-time GHz spectrum sensing ideally enables dynamic spectrum access. Secondary
radios can, in theory, search for spectral holes (as in Fig. 4.1) to occupy, increasing spectrum
e�ciency. In practice, it is di�cult to discern a weak user from noise without prior knowledge
of the transmission scheme, à la matched filtering. The percentage of false negatives is an
important metric for spectrum sensing success, since it is extremely undesirable to transmit
over other users. A simpler task for spectrum sensing with FFT-based energy detection is
interference avoidance, where large interfering signals are detected and “notched out.” It
requires no a-priori knowledge of signal types, but provides the feedback mechanism necessary
so that tunable filters may adapt for blocker suppression.
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Figure 4.1: Cartoon representation of the RF spectrum.
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Figure 4.2: Nyquist-rate wideband sensing requires a high-sample-rate and, therefore, high-
power ADC. Because the n = 21, 600 FFT (with computational complexity O(n log n)) out-
puts a significant amount of raw, real-time data, the interface between it and any subsequent
processor must be high bandwidth and high power.

Like RADAR and radio spectrometry, wideband spectrum sensing and analysis for un-
known signal detection and adaptation typically requires either a high sample rate, high-
power ADC (Fig. 4.2) or scanning and tuning a narrowband filter across a wide frequency
range. When narrow-band frontends are used, typically only tens of MHz are acquired at a
time, and sequentially scanning a GHz-wide bandwidth means that bands are monitored over
a small fraction of time [26]. It is easy to miss short-lived signals, and real-time operation—
so that adaptation can occur when a signal is actually present—becomes challenging. In
practice, many applications

• Deal with signals that are sparse in the frequency domain,
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• Greatly benefit from data compression early in the processing chain, and

• Do not require perfect spectrum reconstruction, tolerating probabilistic errors on the
order of a percent.

Recently, compressed sensing techniques [75], [76] have been used to reduce the ADC
sampling rate and analog power, but the complexity and overhead of hardware reconstruction
has not been adequately addressed [77]. Additionally, compressed sensing typically requires
analog mixing at GHz speeds [26], which, given stringent requirements on jitter, etc., results
in comparable power requirements to high-speed ADCs. An on-chip, all-digital sparse FFT
accelerator [23] reconstructs signals sparse in frequency, but targets a sparsity of only 0.1%
and does not address algorithm degradation at low SNRs, making it impractical for use in
real applications. We demonstrate an analog/digital co-designed sparse spectral analysis SoC
supporting real-time signal detection for frequency spectra with sparsities up to 3.2% and
input SNRs down to 9.7dB (Fig. 4.37) with a 17.5µs signal acquisition + analysis time. This
is a significant improvement over commercial spectrum monitors like RFeye or o↵-the-shelf
USRPs, which have scan times in the range of tens of milliseconds for significantly smaller
observation bandwidths [26]. The output data is compressed to 4.4%.

The premise of this chip resembles that of MIT’s BigBand [26]. Low-speed ADCs are
used for uniform subsampling, saving power. Mixed-radix FFTs, generated by the FFT
generator described earlier, are required for spectrum reconstruction. Additionally, the chip
is capable both of detecting occupied frequency bands and also decoding the signals within
them, assuming a su�ciently sparse spectrum. Unlike BigBand, which uses o↵-the-shelf
components, the ADCs and digital reconstruction backend are fully integrated on chip.
Finally, this chip covers more than twice the bandwidth of BigBand (1.89 GHz vs. 0.9GHz).

4.2 FFAST Algorithm Overview

4.2.1 Noiseless FFAST

The FFAST algorithm relies on controlled aliasing via Chinese-Remainder-Theorem-
guided (CRT) subsampling [78] to reduce the computational complexity of large FFTs and
minimize data storage requirements, while still supporting a high probability of spectrum
recovery for su�ciently sparse spectra. For a k sparse spectrum, meaning that only k fre-
quency bins contain non-zero data, where k << n, the computational complexity is reduced
from O(n log n) to O(k log k), corresponding to FFT computation on O(k) subsampled time-
domain data.

The CRT can be used to show that a frequency bin j 2 [0, n) is uniquely mapped to
subsampled frequency bins a1, a2 such that j ⌘ a1 mod n1 and j ⌘ a2 mod n2 for n = n1n2,
where n1 and n2 are pairwise coprime. Subsampling typically poses a problem, because
signals at various frequency locations alias on top of each other and cannot be distinguished.
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This is explained by the equation:

Xni [b] =
X

j⌘b mod ni

X[j] . (4.1)

However, as shown in Fig. 4.4, when a spectrum is su�ciently sparse, most subsampled
frequency bins will contain either noise (= zeroton) or only a signal from a single frequency
(= singleton), and only a few bins will contain multiple aliased signals (= multiton).

n = 20, 4 Time Domain

Figure 4.3: n = 20 time-domain sequence, subsampled by 4 in pink.

Consider the n = 20 time-domain sequence ~x shown in Fig. 4.3. Its frequency-domain
representation ~X has sparsity k = 5, as indicated by Fig. 4.4, where the non-zero signals are
X[3], X[7], X[9], X[12], and X[14]. As shown in Fig. 4.5, a frontend consisting of d subsam-
pling stages collects time-domain samples, as guided by the CRT. d = 3 is typically chosen
for reasonable degrees of sparsity, although more stages are required as k increases. The
aliased frequency spectra of the subsampled data are calculated by n1- and n2-point FFTs.
The toy example in Fig. 4.4 (with d = 2) illustrates the FFT outputs after subsampling by
5 (left) and 4 (right) respectively.

Assume that singleton bins can be distinguished from multiton bins and that the locations
and values of signals in singleton bins can be easily identified. As these signal properties are
iteratively discovered, they can be “peeled o↵” of the bipartite graph resulting from FFAST
subsampling to recover additional signals (Fig. 4.4) [78]. The bipartite graph consists of
“variable nodes,” which are associated with the unknown non-zero frequency bins in the
n-length ~X. It also consists of “check nodes” with unresolved singleton and multiton bins
containing aliased DFT coe�cients. If, after subsampling, a particular bin in ~X (variable
node) contributes to a subsampled singleton or multiton bin (check node), the corresponding
variable node and check node are connected together. Singleton bins only have a single
associated variable node, whereas multiton bins are connected to multiple variable nodes.
The number of peeling iterations needed to resolve ~X is dependent on the input sparsity;
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Figure 4.4: Signal recovery from subsampled inputs, where n1 = 4, n2 = 5 are coprime. The
j = 14 signal recovered from the blue singleton bin in stage 1 is peeled o↵ (i.e., subtracted)
from the associated multiton bin in stage 2 (orange, determined by j ⌘ a2 mod n2), such
that the multiton bin becomes a recoverable singleton bin on the next peeling iteration.
Zeroton bins, which can be determined via simple thresholding, are not included in the
graph, because they are already known.

more iterations are needed as k increases, up until k is higher than supported by the chosen
FFAST parameters. The process of “peeling” is known as sparse-graph decoding [79].

Table 4.1: Fourier relationships.

Time Frequency

x[a] X[j]

x[a� ⌧ ] X[j]e�i!⌧

To di↵erentiate between singleton and multiton bins, recall the relationship in Table
4.1. Here, ! = 2⇡j/N , and the phase rotation is ✓ = !⌧ . Ignoring noise, if only a single
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Figure 4.5: High-level FFAST architecture, consisting of frontend subsampling, sub-FFTs,
and a peeling reconstruction backend.

tone is present in a subsampled frequency bin b, the magnitude at that bin should remain
unchanged, regardless of whether the time-domain input was delayed or not prior to sub-
sampling. This is not true in the case of multiton bins, since aliased frequency components
rotate by di↵erent amounts before folding. Therefore, to resolve singleton bins from multiton
bins, each subsampling stage must contain D delay chains. In the noiseless case, D = 2 can
be used. The delay chains of a given subsampling stage use the same sampling period, but
the input signal is circularly time-shifted by a fixed amount prior to subsampling, as shown
in Figs. 4.5 and 4.6.

For the subsampled frequency bin b, Yni,b,t corresponds to the original input, and Yni,b,t+1

corresponds to the delayed input. Therefore, an estimate of the phase rotation of a singleton
bin can be determined via

✓est = \
⇥
Yni,b,t+1Yni,b,t

⇤
. (4.2)

From this, a location estimate can be calculated as

⌘est =
✓estn

2⇡⌧
. (4.3)

To support the analysis of less sparse spectra, coprime subsampling factors 25, 27, and
32 (each associated with a computation stage) are chosen, decreasing the likelihood that
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Figure 4.6: n = 20 time-domain sequence, subsampled by 5. ⌧ = 1 is used to disambiguate
singletons from multitons.

a specific frequency collision in one stage occurs in other stages. This leads to “peeling-
friendly” aliasing patterns that aid in multiton recovery.

Peeling 1, Stg 2ADC Capture Sub FFTs Populate
CBs Peeling 0, Stg 1 Peeling 0, Stg 2 Peeling 0, Stg 3 Peeling 1, Stg 1

Rocket-Chip Windowing Early Termination: Any CB Empty or All CB Lengths Unchanged 

Figure 4.7: Signal acquisition and analysis stages.

A high-level sequence of FFAST analysis steps is shown in Fig. 4.7. For n = 21, 600,
n0
1 = n/25, n0

2 = n/27, n0
3 = n/32 are not coprime (requiring a more general version of the

CRT), but the number of recoverable signals is O(n0
1, n

0
2, n

0
3).

4.2.2 Noise-Robust FFAST

4.2.2.1 Problem Setup

To improve the robustness of the FFAST algorithm when time-domain samples are cor-
rupted by white Gaussian noise, i.e., ~y = ~x + ~z and ~x is the desired signal, instead of
using consecutive shifts in the subsampling stages’ delay chains, a greater number of pseudo-
random delay shifts are used. This implies that the input is shifted by a random (but fixed,
for ease of hardware implementation) amount prior to subsampling. Because of hardware
limitations, redundant time samples are collected, making the sample complexity worse than
the theoretical best-case in practice. Random delay shifts are used, so that, as in compressed
sensing [80], the sensing matrix satisfies the restricted isometry property (RIP) [81] and has
reasonable mutual incoherence [78]. Matrices characterized by RIP are nearly orthonormal
when operating on sparse vectors.

Assume that the time-domain input in Fig. 4.3 is now corrupted by noise and D = 4
delay chains are used, corresponding to delays of 0, 1, 6, and 9. The set of observations
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associated with the zeroton bin Yni,b = Y5,0 is given by

~Y5,0 =

2

664

z5,0,0
z5,0,1
z5,0,6
z5,0,9

3

775 . (4.4)

Here, the zni,b,⌧ terms are uncorrelated and result from noise at higher frequencies folding
down due to subsampling. The set of observations associated with the singleton bin Y5,3 is
given by

~Y5,3 =

2

664

1
e�i2⇡(1⇥3)/20

e�i2⇡(6⇥3)/20

e�i2⇡(9⇥3)/20

3

775X[3] +

2

664

z5,3,0
z5,3,1
z5,3,6
z5,3,9

3

775 . (4.5)

The set of observations associated with the multiton bin Y5,4 containing two aliased tones
is given by

~Y5,4 =

2

664

1
e�i2⇡(1⇥9)/20

e�i2⇡(6⇥9)/20

e�i2⇡(9⇥9)/20

3

775X[9] +

2

664

1
e�i2⇡(1⇥14)/20

e�i2⇡(6⇥14)/20

e�i2⇡(9⇥14)/20

3

775X[14] +

2

664

z5,4,0
z5,4,1
z5,4,6
z5,4,9

3

775 (4.6)

=
⇥
~a(4) ~a(9) ~a(14) ~a(19)

⇤

2

664

X[4]
X[9]
X[14]
X[19]

3

775+

2

664

z5,4,0
z5,4,1
z5,4,6
z5,4,9

3

775 (4.7)

= A5,4
~X + ~z5,4 . (4.8)

Ani,b = A5,4 is the bin measurement matrix associated with bin b = 4 of the n2 = 5
subsampling stage. Its jth column is

~a(j) =

8
>>>>>><

>>>>>>:

2

6664

1

e�i2⇡(1⇥j)/20

e�i2⇡(6⇥j)/20

e�i2⇡(9⇥j)/20

3

7775
if j ⌘ 4 mod 5

~0 otherwise .

(4.9)

4.2.2.2 FFAST Peeling Decoding

The pseudo-code of the noise-robust FFAST algorithm to recover the non-zero X[j]’s
from these observations is given in Algorithm 2. In an actual hardware implementation
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Algorithm 2: Noise-robust FFAST algorithm [78] with early termination. Derived
from [82].

Input : Noise-corrupted singleton and multiton bin observations ~Yni,b stored in
check nodes i per subsampling stage i. ni corresponds to the sub-FFT
computed at stage i, and b is the subsampled bin.

Input : Noise threshold Tnoise, below which a bin does not contain a signal, only
noise.

Output: An estimate ~X of the n-point FFT compressed to O(k).

. Keep iterating if signal info was recovered on the previous peeling cycle.
while length of any check nodesi was updated do

for each subsampling stage i do
for each bin b in check nodesi do

if ||~Yni,b||
2 < Tnoise then

bin b is a zeroton
remove b from check nodes i

else
. vj is the zero-delay signal estimate at j.
(isSingleton, vj, j) = SingletonEstimator(~Yni,b, Tnoise)
if isSingleton then

. Peel o↵ for all stages. Assumes all stages use the same delays.
~Yni,b = ~0
. j ⌘ q mod nl

if ||~Ynl 6=ni,q||
2 < Tnoise then

~Ynl 6=ni,q = ~0
else

~Ynl 6=ni,q = ~Ynl 6=ni,q � vj~a(j)
end
add X[j] = vj to output
remove b from check nodes i

else
. No new information uncovered from bin b.
bin b is a multiton

end
end

end
if check nodesi is empty then

. Done!
break out of while loop

end
end

end

return ~X
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check nodes i are implemented as O(k) circular bu↵ers that keep track of non-zeroton bin
locations. Observed bins b are peeled one-at-a-time, and early termination is implemented
to minimize energy. Fig. 4.8 illustrates how this is accomplished with read and write
pointers that remove singleton or zeroton bins from the circular bu↵ers as they are discovered.
Unresolvable multiton bins are replaced back into the circular bu↵ers for a decoding attempt
during the next peeling iteration.

X[12] X[9] X[14]
X[3]
X[7]

X[9]
X[14]X[3]

X[7]
X[12] Peel X[12]

K[12] X[9] X[14]
X[3]
X[7]

X[9]
X[14]X[3]

X[7]
X[12] Peel X[9]

K[12] K[9] X[14]
X[3]
X[7]

X[9]
X[14]X[3]

X[7]
X[12] Peel X[14]

K[12] K[9] K[14]
X[3]
X[7]

X[9]
X[14]X[3]

X[7]
X[12]

Iteration 0,
Stage 1

Do Nothing
Can’t resolve multi yet

X[3]
X[7]

K[9] K[14]
K[3]
K[7]

X[9]
X[14]X[3]

X[7]
X[12] Peel X[7]

X[3]
X[7] K[9] K[14]

K[3]
K[7]

X[9]
X[14]X[3]

K[7]
K[12] Peel X[3]

Iteration 0,
Stage 2

X[3]
X[7] K[9] K[14]

K[3]
K[7]

X[9]
X[14]K[3]

K[7]
K[12] Remove zeroton

Iteration 1,
Stage 1

X[3]
X[7] K[9] K[14]

K[3]
K[7]

K[9]
K[14]K[3]

K[7]
K[12] Remove zeroton

K[3]
K[7] K[9] K[14]

K[3]
K[7]

K[9]
K[14]K[3]

K[7]
K[12]

Done
Circular buffer empty

Figure 4.8: Peeling using circular bu↵ers. Read pointers (brown) are updated for each b
read. When a zeroton or singleton bin is discovered, b is removed from the corresponding
circular bu↵er. Write pointers (white) are updated when subsampled bins are determined
to be unresolvable multitons. In such a case, bin b is replaced back into the circular bu↵er.

The noise-robust FFAST algorithm is able to reconstruct a sparse frequency spectrum
with probability of at least 1 � O(1/k) using O(k log3 n) time-domain samples [78]. The
noise-robust algorithm has a computational complexity of O(k log4 n).

4.2.2.3 Singleton Estimator

To understand the function of the singleton estimator, first consider N evenly spaced
observations of a single complex sinusoid corrupted by white Gaussian noise:

y(t) = Aei(!t+�) + z(t) , t = 0, 1, 2, ..., N � 1 , (4.10)
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where the amplitude A, frequency !, and phase � are fixed but unknown. When the input
SNR is su�ciently high (e.g., 5-7dB) [83], the observations can be approximated as

y(t) ⇡ Aei(!t+�+u(t)) , (4.11)

where u(t) is zero-mean white Gaussian noise. The phase of y(t) is thus

\y(t) = !t+ �+ u(t) . (4.12)

Assuming that only ! needs to be estimated, phase unwrapping can be avoided by considering
[83]

�(t) = \y(t+ 1)� \y(t) , t = 0, 1, ..., N � 2 (4.13)

= ! + u(t+ 1)� u(t) . (4.14)

The minimum mean square error (MMSE) estimate, also known as Kay’s estimate, of the
unknown frequency ! is then given by [83]

!est =
N�2X

t=0

�(t)\
h
y(t+ 1)y(t)

i
, �(t) =

3N/2

N2 � 1

(
1�


t� (N/2� 1)

N/2

�2)
. (4.15)

Note that when two samples delayed by unit time (whatever that is chosen to be) are used,

west = \
h
y(t+ 1)y(t)

i
. (4.16)

Because matching delays across subsampling frontends is extremely di�cult in practice, and
Kay’s estimator requires evenly spaced time samples, Kay’s estimator is applied only to two
samples at a time, with (parameterizable) unit delays of ⌧0 = 1, ⌧1 = 3, and ⌧2 = 7.

As mentioned earlier, the total number of delay chains per stage is given by D. For noise
robustness, D is split into C clusters, with each cluster consisting of K = 2 delay chains.
Therefore, D = 2C. Singleton estimation occurs in two steps. First, Kay’s estimator is used
to obtain C estimates of !s, for s = 0, ..., C � 1, from sets of two bin observations. The
estimates are combined using successive refinement to obtain a final !est corresponding to
the location of the (potential) singleton bin. The 0th delay chain in each cluster delays the
input by an amount ds, a number pseudo-randomly chosen between 0 and n � 1 to satisfy
RIP. To use successive refinement, the rth delay chain in the sth cluster delays the input
signal by ds+ r2s (where we define the unit delay used by Kay’s estimator to be ⌧s = 2s and
r 2 [0, 2) for K = 2) in typical software implementations. As s increases, larger powers of
two are used. In our implementation, d0 = 0, d1 = 6, and d2 = 12. However, to ease ADC
layout, as described later, rather than using powers of two, ⌧0 = 1, ⌧1 = 3, and ⌧2 = 7 are
used for Kay’s estimator. Therefore, a total of D = 6 delay chains are used per stage. The
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jth column of the bin measurement matrix is thus

~a(j) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

2

666666664

e�i2⇡((0+0)⇥j)/n

e�i2⇡((0+1)⇥j)/n

e�i2⇡((6+0)⇥j)/n

e�i2⇡((6+3)⇥j)/n

e�i2⇡((12+0)⇥j)/n

e�i2⇡((12+7)⇥j)/n

3

777777775

if j ⌘ b mod ni

~0 otherwise .

(4.17)

Kay’s estimator is used for processing observations in cluster s:

✓s = ⌧s! + � , (4.18)

where � represents the noise term. When ⌧s = 1, an estimate of ! can be directly obtained.
However, in the presence of noise, the range around ✓s containing the true ⌧s! with high
probability is given by

⌦s =

✓
✓s �

⇡

c1
, ✓s +

⇡

c1

◆
(4.19)

for some constant c1. Here, the length of the interval is denoted as |⌦s| = 2⇡/c1. To illustrate
how successive refinement works, take ⌧s = 2s (Fig. 4.9). Because h2!i2⇡ = h2(! + ⇡)i2⇡, !
and !+⇡ map to the same frequency after multiplication by two. Therefore, for su�ciently
large c1, |⌦0\⌦1/2|  2⇡/(2c1). As more delay clusters are added to C, the refined estimate
of ! is isolated to [78]

��\C�1
s=0 ⌦s/2

s
��  2⇡

2C�1c1
. (4.20)

This corresponds to the region of red/blue overlap in Fig. 4.9. Similar reasoning applies
when ⌧s’s are not powers of two, as long as c1 is su�ciently small. Hardware to perform
successive refinement and obtain an estimate of the signal location jest is described in Section
4.3.3 and illustrated in Fig. 4.20.

Once jest is found for a given stage i and bin b, a signal estimate is obtained by rotating
the delayed signals back and averaging i.e.,

vj = ~Yni,b~a(jest)/D . (4.21)

Finally, the bin contains a singleton if

||~Yni,b � vj~a(jest)||
2 < Tnoise . (4.22)

Otherwise, it is a multiton, because the location estimate does not justify the actual bin
observations.
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Figure 4.9: Successive refinement of the ! estimate for ⌧s = 2s [84].

4.2.2.4 Theoretical Limits via Simulation Results

When the FFAST architecture is fixed, the designer must provision for worst-case sparsity.
To support a more realistic sparsity of ⇠3.6% for n = 21, 600, n0

1 = 25 ⇥ 33 = 864, n0
2 =

25 ⇥ 52 = 800, and n0
3 = 33 ⇥ 52 = 675 are used. A Matlab implementation of FFAST using

floating point numbers was used to determine upper bounds on algorithm performance. The
results are shown in Figs. 4.10 and 4.11. The percentage of false negatives remains at a
reasonable level for input sparsities below 8.5%. Above 8.5% sparsity, the percentage of false
negatives dramatically increases, due to the FFAST architecture’s inability to further resolve
multiton bins. The subsampling factor can be reduced to improve this metric, at greater
hardware cost. Additionally, as additional tones are introduced into the spectrum, the
number of peeling iterations required to decode the frequency spectrum increases. However,
above the ⇠ 8.5% sparsity “cli↵,” the number of peeling iterations rapidly drops o↵, because
the algorithm has been written to terminate early when no further multiton bins can be
resolved.



CHAPTER 4. A REAL-TIME, SPARSE SPECTRAL ANALYSIS RISC-V SOC 104

1 2 3 4 5 6 7 8 9 10
Sparsity [%]

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

%
 F

al
se

 N
eg

at
iv

e

Relative to FFT

Unresolved Bins
Cause Failure

%
 F

a
lse

 N
e

g
a

tiv
e

Sparsity [%]

Figure 4.10: Percentage of false negatives vs. input sparsity.
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4.3 Implementation Details

4.3.1 Analog Frontend
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Figure 4.12: Analog frontend with shift-register-based clock dividers that generate (non-50%
duty cycle) 151.2MHz, 140MHz, and 118.125MHz subsampling clocks with unit delays of 0,
1, 6, 9, 12, and 19 from a 3.78GHz source. Data from associated 9-wire, < radix-2, SAR
ADC slices are time-synchronized and stored in memory using 8 bits, following capacitor
mismatch, o↵set, and gain correction.

In the analog frontend illustrated in Fig. 4.12, a flip-flop-based clock divider generates
3 di↵erent clock frequencies for CRT-guided subsampling with 6 di↵erent phase shifts each
for singleton/multiton disambiguation and noise resilience from a 3.78GHz input. The clock
frequencies have coprime ÷25, ÷27, and ÷32 relationships with the input frequency. The ⌧0,
⌧1, and ⌧2 delay deltas are used to create the three delay clusters (themselves containing two
delays) used for the successive approximation procedure in singleton estimation. These clocks
are used to run 18 lanes of asynchronous, constant VCM -switched SAR ADC slices generated
using [32] (Fig. 4.13). The ADC has a 9-wire output, where < radix-2 is used for the 3 MSBs
to provide redundancy against missing decision levels, which can only be corrected in the
analog domain with capacitor tuning. The resultant missing output codes (corresponding
to the discontinuities in the mean input vs. raw ADC code plot in Fig. 4.15 and where the
number of code occurrences is zero for a particular code in Fig. 4.14) are corrected digitally
by re-weighing the output bits [85]. The coe�cients that maximize the SNDR, determined
via a least-squares fit to a known sinusoidal input, are used to generate calibration LUT
parameters so that mismatch corrections (in addition to gain/o↵set corrections) can be done
on-the-fly before 8-bit data is stored into memory. The 9-bit raw ADC outputs are used to
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address the LUTs, and 8-bit remapped outputs with the improved mean input vs. calibrated
ADC code characteristics shown in Fig. 4.16 are output.

Async. 
Clock 

Generator

SAR Logic + Retimer

Cap DAC

T/H

Vin

Clk Out[8:0]

+

-

×18ADC Slice Details
Figure 4.13: Asynchronous SAR ADC slice [86].

Figure 4.14: Missing raw ADC output codes due to using < radix-2 for the 3 MSBs.
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Figure 4.15: Fitted input (and its standard deviation) vs. raw ADC code. Missing codes are
due to < radix-2 capacitor weights. Gain and o↵set mismatches across di↵erent ADC slices
are evident. A 0.875MHz sine input and a 3.78GHz input clock were used for calibration.

Figure 4.16: Fitted input (and its standard deviation) vs. calibrated ADC code after the
LUT. The post-processed data is 8 bits wide, and missing codes are mostly eliminated.

Because the divided clocks are aligned once every 21,600 cycles, an alignment circuit
(Fig. 4.17) generates appropriate valid signals used by asynchronous FIFOs at the eigh-
teen subsampling-clock-to-core-clock boundaries. The digital core clock runs at 400MHz,
regardless of whether the ADC clock input is at 3.24GHz or 3.78GHz, necessitating the
asynchronous FIFOs. The state of the alignment circuit stabilizes some time after the initial



CHAPTER 4. A REAL-TIME, SPARSE SPECTRAL ANALYSIS RISC-V SOC 108

ADC clock reset without regard for the DSP state, so handshake bits are used to ensure that
downstream processing is able to get properly aligned frames of data, which are mapped to
SRAM banks and addresses via a LUT version of the index vector generator described in
Chapter 2.

Overall, due to delay redundancy added for noise robustness (i.e., the 6 phase shifts), the
ADCs sample 35% fewer time-domain samples compared to a 3.78Gs/s full-rate ADC. Note
that there is a trade-o↵ between number of added delays for noise robustness and performance
degradation due to mismatches in bandwidth, etc. from PVT (and especially spatial locality)
variations across the ADC lanes. PVT denotes process, voltage, and temperature.
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Figure 4.17: ADC-to-core FIFO alignment circuit (aligned every 21,600 ADC clock cycles).

4.3.2 Sub-FFTs

The subsampled ADC outputs are fed into complex (20, 20)-bit, mixed-radix, 864-, 800-,
and 675-point FFTs, corresponding to n0

1, n
0
2, and n0

3, respectively. This requires 70.2kB
of memory. The decimation-in-frequency, non-2n sub-FFTs are generated via the Chisel
[27] FFT generator [28] described earlier. As shown in Fig. 4.18, each sub-FFT utilizes a
single-PE, conflict-free memory access scheme with runtime-configurable butterfly units that
reallocate hardware blocks to support multiple radices (e.g., 4, 2, and 3 for the 864-point
FFT). Control logic is shared between the six lanes associated with a subsampling stage,
and memory banks are calculated via mixed-radix counters and simple subtract/mux-based
modulo units. Finally, depending on the current FFAST analysis stage, FFT input/output
unscrambling (i.e., the index-to-memory-bank/address mapping) is done by muxing between
LUTs whose values are associated with in-order inputs and outputs indexed in quasi-digit-
reversed order, as described by the FFT generator. The fixed-point representations of the
complex outputs are normalized by the sub-FFT size and reinterpreted (so that the location
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Figure 4.18: Sub-FFT DSP blocks with shared control logic and runtime-reconfigurable
butterflies. Abusing notation, kni corresponds to the current sub-FFT bin b, and the m in
km represents the position that the bin is stored in the circular bu↵er.

of the binary point is changed, but the bitwidth stays the same). Therefore, rather than
dividing by nx for renormalization, the location of the binary point is shifted to the left by
9 places (corresponding to a divide by 512), and the output is instead multiplied by 512/nx.
Normalization is necessary for digital reconstruction.

4.3.3 Singleton Estimation and Peeling Reconstruction

Bins that only contain noise are pre-determined via thresholding and discarded from
future analysis. The locations of the remaining bins, which may either be singleton or
multiton, are stored in per-sub-FFT circular bu↵ers (Fig. 4.18). As described earlier, because
signals at di↵erent frequencies do not rotate by the same amount when delayed (h✓i2⇡ =
2⇡hj⌧iN/N), delayed versions of the signal are collected to distinguish between singleton
bins and multiton bins. As shown in Fig. 4.20, the phase di↵erences ✓i between ⌧i delayed
versions of the subsampled signals are calculated via vectoring CORDICs. Note that the
delays are chosen pseudo-randomly, but in a way to make ADC layout (specifically routing)
more regular.

Successively larger ⌧i are used to obtain better estimates of the ✓ associated with unit
T , and, thus, the signal’s frequency location, in the presence of uncorrelated noise between
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Figure 4.19: Peeling reconstruction backend with a singleton estimator. Abusing notation,
kni corresponds to the current sub-FFT bin b, and the m in km represents the position that
the bin is stored in the circular bu↵er.

ADC channels. In software implementations of FFAST, the ⌧i are usually chosen to be
incrementally larger powers-of-two. However, to maintain layout regularity, the ⌧i’s increase
at a faster rate. This is still a valid configuration if the angle uncertainty due to noise
is su�ciently small. The frequency location of the signal is estimated and refined with
knowledge of the subsampled bin location (i.e., snapped to a location, as shown in Fig. 4.20),
and a signal estimate is obtained by undoing the delay-based phase rotations via another set
of rotation-mode CORDICs and averaging (Fig. 4.19). Modulo operations are performed via
the Barrett reduction algorithm [88]. Singletons are determined by a runtime-reconfigurable
decision threshold.

The algorithm does not require timing calibration at the ADC outputs, because the (DC)
lane-to-lane skew can be determined and corrected via adjustments to the delays and ⌧i’s
stored in the Rocket processor’s status & control registers (SCRs). A known sine input is
fed into the system, and a sine fit is used to calculate the real delay o↵set given limited
bandwidth mismatch between slices. The amount of bandwidth mismatch is estimated by
observing the gain di↵erences between the eighteen FFT outputs across the input bandwidth,
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Figure 4.20: Successive approximation used to improve the signal location estimate from the
angle deltas (obtained via CORDIC [87]) of delayed input samples.

as shown in Fig. 4.21. The relevant control registers are then updated with the estimated
delay o↵sets shown in Fig. 4.22.
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Figure 4.21: Gains across di↵erent ADC slices and input frequencies @ 3.78GHz ADC input
clock. This plot gives a designer perspective on bandwidth mismatch between lanes. Gains
are not monotonically decreasing with higher input frequency, since they are not completely
determined by the input samplers’ bandwidths, and signals above individual subsampling
frequencies are folded down.

Figure 4.22: Actual delay o↵sets across di↵erent ADC slices and input frequencies @ 3.78GHz
ADC input clock. Delay calibration is required, as DC lane-to-lane skew shifts the delays
away from ideal. The analog layout does not need to be optimized to minimize skew, as the
amount of skew can be determined after chip fabrication and delay-related control registers
used by the singleton estimator can be updated from their nominal values.
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As illustrated in Fig. 4.19, discovered singletons are iteratively peeled o↵ by subtracting
their contributions from bins associated with other sub-FFTs and removing their locations
from the list of unresolved bins. If a bin is still unresolvable after singleton estimation, its
location is placed back into the circular bu↵er list. This peeling process is terminated early
when any circular bu↵er is empty or no new signal information is uncovered (i.e., when the
lengths of all circular bu↵ers have not changed after a peeling iteration). As singletons are
found, their bin locations and signal values are output into a FIFO readable by the processor
via SCR. Note that this data is not sorted. The frequency/signal data output is compressed
to the same order of magnitude as the input sparsity (4.4% for an input spectrum with 3.2%
sparsity, accounting for bin indices not required in the normal FFT case, which are 15 bits
wide).

4.3.3.1 Calculating x mod n

Modulo operations are used extensively in the singleton estimator and peeling decoder.
When x  2n� 1,

x mod n = Mux(x� n  0, x� n, x) . (4.23)

However, if x is arbitrarily large, x mod n can be calculated using Barrett reduction [88], as
described in Algorithm 3. Here, the smallest k is chosen, given that the maximum allowable

Algorithm 3: Barrett reduction for computing x mod n.
Input : x, unsigned.
Input : n, unsigned and constant.
Output: x mod n

m = b2k/nc
q = bxm/2kc
r = x� qn
if n  r then

return r - n
else

return r
end

value of x is

x <
1

1

n
�

b2k/nc

2k

. (4.24)

4.3.3.2 CORDIC

CORDIC is an iterative algorithm—requiring only additions, subtractions, and shifts—
used by the singleton estimator and peeling decoder to determine the phase di↵erence be-
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tween two delayed samples (in vectoring mode) and rotate signals for signal estimates (in
rotation mode). Its computation converges to the desired value at a rate of 1 bit per iter-
ation. n-bit signed angles used by CORDIC span the full [�⇡, ⇡) interval, although they
can likewise be interpreted as unsigned [0, 2⇡). This means the 4-bit value 0b1100 can be
interpreted either as �⇡/2 or 3⇡/2. Likewise, 0b1000 can be interpreted as either �⇡ or ⇡
and 0b0100 is ⇡/2. The pseudo-code for CORDIC is found in Algorithm 4.

Algorithm 4: CORDIC (Coordinate Rotation Digital Computer) algorithm [87].

Input : x, n bits, signed.
Input : y, n bits, signed.
Input : ✓, n bits. The signed interpretation is ✓s 2 [�⇡, ⇡). It is equivalently

represented as unsigned ✓u 2 [0, 2⇡).
Input : isRotation. If not, then CORDIC is in vectoring mode.
Output: x, y, ✓

. CORDIC can rotate an input by a maximum of ±⇡/2.
if (isRotation and ⇡/2 < ✓u < 3⇡/2) or (!isRotation and x < 0) then

x = �x
y = �y
✓s = ✓s � ⇡

end
for i in 0 < i < numStages do

if (isRotation and ✓s � 0) or (!isRotation and y < 0) then
d = +1

else
d = �1

end
x0 = x� 2�idy
y = y + 2�idx
x = x0

. Angle constant needs to be properly normalized to bitwidth.

✓s = ✓s � round(
2n arctan(2�i)

2⇡
)d

end
return x, y, ✓

4.3.4 Rocket Processor

The SoC includes a 64-bit RISC-V Rocket core with 1MB of main memory and a 128-kB
L2 cache (Fig. 4.23). In addition to supplying calibration and control information to the
spectral analysis engine, the Rocket processor post-processes data. C code can be run to
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Figure 4.23: The Rocket RISC-V processor & Xilinx Zynq FPGA testing setup.

output signal locations and bandwidths after sorting the compressed frequency information.
The processor can also aid the spectral analysis engine, e.g., if latency requirements are re-
laxed, the processor can window the ADC data to suppress spectral leakage. Finally, because
Rocket has visibility into the sparse FFT memories, individual blocks in the signal processing
chain like the SAR ADC slices and FFTs can be re-purposed for general applications.

As with the chip described in Chapter 2, the Rocket core interfaces with the FFAST
DSP via memory-mapped SCR registers. Interfaces heavily rely on the TileLink on-chip
interconnect fabric. The Rocket processor asynchronously communicates with the Xilinx
Zynq FPGA used for testing via a serial adapter. Although the main memory is on-chip for
this application, the general protocol for using the ARM frontend server on the FPGA to
communicate with the chip and load tests remains the same.

4.4 Measurement Results

The e↵ective number of bits (ENOBs) for individual ADC slices (corresponding to specific
FFT lengths and delays) were measured both at 3.24GHz and 3.78GHz input clocks. In the
ideal case, calibration LUT parameters were updated to maximize SNDR at each input
frequency. Additionally, the positive and negative ADC inputs were tuned to remove phase
imbalance and maintain a 180� phase o↵set. Fig. 4.24 indicates that there is an ENOB
degradation of approximately 0.2 bits at lower unit delays when using the higher frequency
input clock. This ENOB degradation is worse at higher unit delays, which are associated
with ADC slices further away from the reference supply. In general, as indicated by Fig.
4.25, ENOBs are better at lower delay o↵sets due to spatial proximity resulting in reduced
Vref noise.
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Figure 4.24: Ideal ENOB comparison between 3.24GHz and 3.78GHz clocks. Unit delays
are ideal.

Figure 4.25: ENOBs calibrated at di↵erent input frequencies (with a 3.78GHz clock) for
di↵erent ADC slices. ENOBs are higher at lower delay o↵sets due to the corresponding
ADCs’ closer proximity to the voltage reference, resulting in less noise. Phase imbalance is
tuned during testing.

An important observation is that optimal calibration parameters are frequency-dependent,
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so SNDR can only be maximized at one frequency point in practice. In Fig. 4.26, the SNDR
is optimized around a 0.875MHz input, whereas in Fig. 4.27, the SNDR is optimized around
a 15.575MHz input.

Figure 4.26: ENOBs @ 3.78GHz clock using calibration parameters taken with a 0.875MHz
input. Phase imbalance was tuned during testing. SNDR is input-frequency dependent and
optimized at 0.875MHz.

Figure 4.27: ENOBs @ 3.78GHz clock using calibration parameters taken with a 15.575MHz
input. Phase imbalance was tuned during testing. SNDR is input-frequency dependent and
optimized at 15.575MHz.
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To understand system performance in a real application setting, the ADCs were calibrated
at one input frequency (0.875MHz), and those calibration values were stored and used to
determine the ENOBs across the desired input bandwidth. Additionally, a balun with ap-
proximately 5� of phase imbalance was used, resulting in SNDR degradation from HD2. The
ENOBs achieved using a discrete balun are shown in Fig. 4.28. Fig. 4.29 shows the fre-
quency spectrum obtained when a balun is not used, whereas Fig. 4.30 shows the frequency
spectrum with a balun. In the first FFT plot, the second harmonic of the input frequency
is not readily observable, but in the latter plot, it is one of the dominant contributors to the
approximately 2.3dB SNDR degradation.

Figure 4.28: ENOBs @ 3.78GHz clock using calibration parameters taken with a 0.875MHz
input. A balun with ⇠ 5� of phase imbalance is used to measure SNDR at higher input
frequencies.
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Figure 4.29: Frequency spectrum at a sub-ADC output (0.875MHz input). Tuning the
di↵erential P and N phase imbalance reduces HD2.

Figure 4.30: Frequency spectrum at a sub-ADC output (0.875MHz input). HD2 caused by
the external balun’s phase imbalance degrades SNDR.
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Figure 4.31: Recovered spectra over time for 3- to 37-tone (dense) vector signal generator
inputs. The input tones are spread out across an approximately 80MHz bandwidth and
have center frequencies ranging from 300MHz to 1.2GHz. Gray vertical regions indicate
time spent on analysis, when the ADC input is not observed. A full signal acquisition and
analysis cycle takes 13.3µs.

As shown in Fig. 4.31, functionality across the entire ADC/DSP chain has been veri-
fied by successfully recovering the spectrum of ⇠80-MHz bandwidth, 3- to 37-tone inputs
generated by a vector signal generator at 300-MHz to 1.2-GHz center frequencies. Note
that the ADC input is not observed when analysis on a previous frame is being performed,
corresponding to the gray periods in Fig. 4.31. The multi-tone signal at various stages
of analog/digital processing is illustrated in Figs. 4.32 (time-domain output of one of the
eighteen ADC slices), 4.33 (frequency-domain representation of the previous result, after
the FFT), and 4.34 (the fully reconstructed sparse spectrum). Approximately 7.6µs elapse
between the end of signal acquisition and the start of processor spectrum availability.
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Figure 4.32: 37 tones (corresponding to 0.35% sparsity) are generated from a vector signal
generator, centered at 700MHz, with a 1.925MHz spacing. The time-domain waveform is
subsampled 25⇥ in the stage corresponding to an 864-point FFT.

Figure 4.33: Subsampled frequency domain result at the output of the 864-point FFT. Tones
have been folded down to di↵erent locations due to subsampling.
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Figure 4.34: FFAST is able to reconstruct 100% of the spectrum in 13.3µs (including signal
capture and analysis). The data is compressed to 0.48%, including 15-bit bin locations.

The analysis of a synthesized 3.2% sparse spectrum (achieving 4.5% false –’s and 0.8%
false +’s) has been benchmarked. ⇠4,700 Rocket core clock cycles elapse before the proces-
sor sees valid reconstruction data. ⇠1,500 cycles are allocated for the sub-FFTs, and the
remainder are used during peeling. The worst-case number of clock cycles required by the
sub-FFTs corresponds to the calculation of 864-point FFTs with single iterating butterflies
(although 2 radix-2 butterflies operate simultaneously). The peeling time (and number of
iterations required) is a function of sparsity and increases when there are more frequency
collisions. The total reconstruction time is 17.5µs; signal acquisition accounts for 5.71µs.
This determines the minimum signal duration to guarantee SoC observability. An example
of a spectrum generated from C test vectors is shown in Fig. 4.35. In this case, although the
FFAST hardware is able to recover all real signals, some noise bins are also interpreted to be
low-magnitude signal bins, resulting in false positives. These false positives can be cleaned
up with an additional thresholding step during post-processing.
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Figure 4.35: FFAST vs. normal FFT for C test vectors with 33.5dB SNR and 0.79% sparsity.
Reconstruction with 0% false negatives and 0.5% false positives.

The percentages of false positives and false negatives for inputs with di↵erent sparsities
and SNRs are illustrated in Figs. 4.36 and 4.37 respectively. In general, the system is more
susceptible to false negatives. Unfortunately, false negatives tend to be the more application-
critical metric. Therefore, further tuning of noise/signal thresholds can be performed to trade
o↵ a decrease in false negatives for an acceptable increase in false positives.

Figure 4.36: False positive rates. False positives remain below 5% for sparsities < 5.0%.
With respect to the number of false positives, FFAST supports input SNRs > 8.4dB for less
populated spectra.
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Figure 4.37: False negative rates. False negatives (worst case) remain below 5% for sparsities
< 2.7%. With respect to the number of false negatives, FFAST supports input SNRs > 9.7dB
for less populated spectra.

4.5 Chip Summary

Figure 4.38: Power vs. frequency/supply with an FFAST workload.
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The sparse signal analysis system has been designed as a set of highly parameterized
analog/digital hardware generators for the ease of design exploration, and the described
instance has been fabricated in a 16-nm FinFET process. The chip (Fig. 4.40), summa-
rized in Table 4.2, operates at 400MHz at 0.7V VDD. The RISC-V Rocket core consumes
65.2mW, and the FFAST DSP consumes 68.3mW (Figs. 4.38, 4.39). The set of ⇠6 ENOB
ADCs (at 0.85V) and associated clock dividers (at 0.95V) consume 49.8mW/48.1mW with
a 3.78GHz/3.24GHz input clock. At 3.24GHz, the SAR ADC cores consume 33.7mW, while
the clock dividers consume 14.4mW. At 3.78GHz, the SAR ADC cores consume 33.8mW,
while the clock dividers consume 16mW.

The set of analog and digital hardware generators enabled the rapid 16-nm implementa-
tion of the FFAST algorithm in < 2 months. This is the first fully-integrated sparse spectral
analysis SoC, with an on-chip ADC (see Table 4.3). The < 20µs runtime enables real-time
frequency adaptation in closed-loop systems.

Finally, one might wonder why the supported sparsity in hardware is only ⇠ 3.2% when
a floating-point Matlab implementation achieves ⇠ 8.5%. The ADCs and fixed-point arith-
metic incur a quantization noise penalty (SNR = 6.02B + 1.76dB). Furthermore, because
of the computational complexity required by the singleton estimator, individual operations
are heavily pipelined. Since pipeline stalls were not implemented, occasionally, data from
a bin b at a given stage i is requested before its value has been updated. The probability
that this occurs increases as sparsity degrades, limiting the achievable sparsity of the sys-
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Table 4.2: Chip summary.
3.2% sparsity, signal dependent.1 @ 3.78Gs/s e↵ective, 0.85V/0.95V ADC/Clk supplies.⇤

Technology 16nm FinFET

Sensing Bandwidth 1.89GHz

Sensing Resolution 175kHz

Signal Acquisition Time 5.71µs

Analysis Time 11.8µs (3.2% Sparsity, 4.5% False –, 0.8% False +, Signal Dependent)

ADC ENOBs Up to 6.3 ENOB/Slice

Compression
ADC Output 65% of Samples

FFAST Output 4.4% of Samples1

Sub-FFT SQNRs
675-pt FFT 38-52dB (Signal Dependent)

800-pt FFT 42-56dB (Signal Dependent)

864-pt FFT 41-56dB (Signal Dependent)

Area

Analog (ADC + Clocks) 0.27mm2

FFAST Digital 0.85mm2

Rocket Core 0.37mm2 (Including L2$)
Main Memory 1.07mm2

Memory

Main Memory 1MB

L2$ 128kB

L1$ 2 ⇥ 16kB (Data + Instruction)

FFAST 97kB

Power
SAR ADC 49.8mW⇤

FFAST DSP 68.3mW (400MHz, 0.7V)

64-Bit Rocket-Chip 65.2mW (400MHz, 0.7V)

tem. Additional tones can be supported if pipeline stalls are properly inserted, although the
analysis time will be slightly degraded. Eliminating the data hazard in the deeply pipelined
data path of the sparse FFT’s reconstruction back end should roughly double the number
of signals detectable in real time. Furthermore, to support more realistic, o↵-grid signals—
which e↵ectively degrade sparsity—in real time, windowing can be performed at the front
end (either digitally or in the analog domain, using an architecture similar to that reported
in [90]). Again, this requires that the lane-to-lane skew be accurately measured.
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Figure 4.40: Die photo.

Table 4.3: Comparison with state-of-the-art.

Abari et al. [23] Bailey et al. [89] This Work

Technology 45nm 28nm 16nm

Bandwidth (GHz) - 8.5 1.89

FFT Points 746,496 8,192 21,600

Integrated ADC N N Y

Power (mW), *incl. ADC 174.8 5200* 183.3*

Supported Sparsity 0.1% 100% 3.2%

Can Post-Process N N Y

Data Compressed Y N Y

Noise Robust N - Y

Runtime, *incl. ADC 6.8µs - 17.5µs*

FOM (Pts. ⇥ BW) / Pwr. - 13.4 222.7
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Chapter 5

Conclusions

This work presents a methodology, associated tools, and general examples of agile devel-
opment of DSP hardware systems. The ACED library has been developed to augment Chisel
and specifically address the needs of agile DSP development. Namely, it o↵ers end-to-end
support for the algorithm-to-hardware translation process, providing systems designers with
the ability to rapidly evaluate algorithms at high levels of abstraction via extensive parame-
terization and cycle-accurate floating-point support, automatic translation into synthesizable
hardware via DSP typeclasses, verification support that spans abstraction and tool bound-
aries, and unobtrusive optimization/platform specialization via FIRRTL compiler passes.
It has been used extensively to build DSP generators. Examples include FFT generators,
CORDIC generators, FIR filter generators, etc. In particular, this thesis has focused on
the methodology used to build a runtime-reconfigurable, mixed-radix, memory-based hard-
ware FFT generator. It outlined the algorithm and architecture understanding necessary
to generalize (and parameterize) a hardware FFT template, and illustrated how the hard-
ware template can be populated via a separate software firmware block that analyzes user
requirements. The FFT generator has been used in two rapidly designed DSP systems that
have been tightly coupled to the Rocket-Chip ecosystem. The first fabricated 16-nm chip
included a Wi-Fi/LTE compatible FFT engine. The second fabricated 16-nm chip, a real-
time, high-bandwidth, high-resolution sparse signal analysis SoC, used mixed-radix FFTs as
part of the back end signal processing chain.

5.1 Summary of Contributions

This work adapts the agile hardware methodology—previously used to develop and tape-
out RISC-V processors [91] and built around the Chisel [27] and FIRRTL [57] ecosystem—to
the design of DSP generators. In particular, it presents:

• The first generator of runtime-reconfigurable, mixed-radix FFTs recorded in open liter-
ature, capable of producing hardware instances that are comparable to custom-tailored
state-of-the-art,
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• A mixed-radix control logic representation that simplifies the design of the FFT gen-
erator and simplifies modulo operations in hardware while supporting the prime factor
algorithm,

• A new scheduling approach to support multiple parallel butterflies—where the FFT
N is divisible by the number of butterflies B—in runtime-reconfigurable, mixed-radix
FFTs,

• A demonstration of a DSP (FFT) system designed in Chisel as an accelerator attached
to a RISC-V core and measured in a 16nm process to have performance comparable
to state-of-the-art,

• A DSP library for Chisel called ACED that simplifies the mapping of algorithms into
hardware by supporting:

– Operator and data type parameterization that enables DSP generators to target
various data types like complex or real numbers without any redesign,

– A unified design and systems modeling environment enabling float-to-fixed veri-
fication and the automatic propagation of tests across abstraction boundaries,

– Design profiling to automatically reduce bitwidths, and

– FIRRTL compiler passes that trim bitwidths via range propagation, and

• The first automatically generated, fully on-chip sparse spectral analysis SoC, with
a BAG-designed custom SAR ADC frontend, generated mixed-radix FFTs, digital
reconstruction backend based o↵ of the FFAST algorithm [31], and RISC-V processor.
The system targets realistic spectral sparsities/SNR and is able to operate in real time.

5.2 Future Work

This work presents a complete, self-contained DSP development cycle—from methodolo-
gies, algorithms, and libraries to implementations and applications. Many extensions and
applications are possible. Future work may continue to iterate on this development cycle,
focusing on individual classes of improvements, as highlighted below:

• ACED Library Improvements and Additional Use Cases

– ACED can be used to perform a more comprehensive system-level SQNR study
of various DSP blocks like the FFT for more aggressive bitwidth optimization.

– Block floating-point can be generalized and natively supported with ACED. Its
use along the FFT data path would enable better trade-o↵s between SQNR and
power/area.
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– More advanced FIRRTL compiler passes (e.g., using a�ne analysis) can be de-
veloped for range analysis and bitwidth reduction.

• Higher-Level DSP Generators and Building a Generator Library

– A streaming FFT generator can be designed, so that a top-level generator can
choose to use either the steaming- or memory-based flavor depending on appli-
cation constraints (e.g., throughput vs. area, degree of runtime reconfigurability
needed, etc.).

– Ultimately, it is desirable to create a library of common high- or low-level DSP
generators so that their outputs can be easily stitched together through a common
interface to quickly prototype complex DSP systems. Example blocks include
correlators, Viterbi decoders, frequency equalizers, etc.

• Improved Systems and Further Application Exploration

– Further analysis can be performed to better understand the impact of analog non-
idealities on FFAST performance (in terms of the amount of sparsity supported,
false positives and negatives, etc.).

– Future sparse spectral analysis chips can support reconfigurable hardware that
would allow runtime adaptation for di↵erent spectral sparsities and enable sparsity
vs. power trade-o↵s.

– Although not considered in this work, windowing, either in the analog domain via
capacitor multiplication or in the digital domain, can be performed to improve
the robustness of the sparse spectrum analyzer against unknown, o↵-grid signals
that degrade e↵ective sparsity.

– It would be interesting to evaluate the performance of the spectrum analyzer in
the feedback path of a closed-loop system for interference mitigation.

– It would likewise be interesting to see the FFT generator applied towards systems
not in the wireless space (e.g., in convolutional neural networks).
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