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Ranking Causal Anomalies via Temporal and Dynamical 
Analysis on Vanishing Correlations

Wei Cheng1, Kai Zhang1, Haifeng Chen1, Guofei Jiang1, Zhengzhang Chen1, and Wei 
Wang2

1NEC Laboratories America

2Department of Computer Science, University of California, Los Angeles

Abstract

Modern world has witnessed a dramatic increase in our ability to collect, transmit and distribute 

real-time monitoring and surveillance data from large-scale information systems and cyber-

physical systems. Detecting system anomalies thus attracts significant amount of interest in many 

fields such as security, fault management, and industrial optimization. Recently, invariant network 

has shown to be a powerful way in characterizing complex system behaviours. In the invariant 

network, a node represents a system component and an edge indicates a stable, significant 

interaction between two components. Structures and evolutions of the invariance network, in 

particular the vanishing correlations, can shed important light on locating causal anomalies and 

performing diagnosis. However, existing approaches to detect causal anomalies with the invariant 

network often use the percentage of vanishing correlations to rank possible casual components, 

which have several limitations: 1) fault propagation in the network is ignored; 2) the root casual 

anomalies may not always be the nodes with a high-percentage of vanishing correlations; 3) 

temporal patterns of vanishing correlations are not exploited for robust detection. To address these 

limitations, in this paper we propose a network diffusion based framework to identify significant 

causal anomalies and rank them. Our approach can effectively model fault propagation over the 

entire invariant network, and can perform joint inference on both the structural, and the time-

evolving broken invariance patterns. As a result, it can locate high-confidence anomalies that are 

truly responsible for the vanishing correlations, and can compensate for unstructured measurement 

noise in the system. Extensive experiments on synthetic datasets, bank information system 

datasets, and coal plant cyber-physical system datasets demonstrate the effectiveness of our 

approach.
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1. INTRODUCTION

With the rapid advances in networking, computers, and hardware, we are facing an explosive 

growth of complexity in networked applications and information services. These large-scale, 

often distributed, information systems usually consist of a great variety of components that 

work together in a highly complex and coordinated manner. One example is the Cyber-

Physical System (CPS) which is typically equipped with a large number of networked 

sensors that keep recording the running status of the local components; another example is 

the large scale Information Systems such as the cloud computing facilities in Google, 

Yahoo! and Amazon, whose composition includes thousands of components that vary from 

operating systems, application soft-wares, servers, to storage, networking devices, etc.

A central task in running these large scale distributed systems is to automatically monitor the 

system status, detect anomalies, and diagnose system fault, so as to guarantee stable and 

high-quality services or outputs. Significant research efforts have been devoted to this topic 

in the literatures. For instance, Gertler et al. [9] proposed to detect anomalies by examining 

monitoring data of individual component with a thresholding scheme. However, it can be 

quite difficult to learn a universal and reliable threshold in practice, due to the dynamic and 

complex nature of information systems. More effective and recent approaches typically start 

with building system profiles, and then detect anomalies via analyzing patterns in these 

profiles [5, 13]. The system profile is usually extracted from historical time series data 

collected by monitoring different system components, such as the flow intensity of software 

log files, the system audit events and the network traffic statistics, and sometimes sensory 

measurements in physical systems.

The invariant model is a successful example [13, 14] for large-scale system management. It 

focuses on discovering stable, significant dependencies between pairs of system components 

that are monitored through time series recordings, so as to profile the system status and 

perform subsequent reasoning. A strong dependency between a pair of components is called 

invariant (correlation) relationship. By combining the invariants learned from all monitoring 

components, a global system dependency profile can be obtained. The significant practical 

value of such an invariant profile is that it provides important clues on abnormal system 

behaviors and in particular the source of anomalies, by checking whether existing invariants 

are broken. Figure 1 illustrates one example of the invariant network and two snapshots of 

broken invariants at time t1 and t2, respectively. Each node represents the observation from a 

monitoring component. The green line signifies an invariant link between two components, 

and a red line denotes broken invariant (i.e., vanishing correlation). The network including 

all the broken invariants at given time point is referred to as the broken network.

Although the broken invariants provide valuable information of the system status, how to 

locate true, causal anomalies can still be a challenging task due to the following reasons. 

First, system faults are seldom isolated. Instead, starting from the root location/component, 

anomalous behavior will propagate to neighboring components [13], and different types of 

system faults can trigger diverse propagation patterns. Second, monitoring data often 

contains a lot of noises due to the fluctuation of complex operation environments.
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Recently, several ranking algorithms were developed to diagnose the system failure based on 

the percentage of broken invariant edges associated with the nodes, such as the egonet based 

method proposed by Ge et al. [8], and the loopy belief propagation (LBP) based method 

proposed by Tao et al. [22]. Despite the success in practical applications, existing methods 

still have certain limitations. First, they do not take into account the global structure of the 

invariant network, neither how the root anomaly/fault propagates in such a network. Second, 

the ranking strategies rely heavily on the percentage of broken edges connected to a node. 

For example, the mRank algorithm [8] calculated the anomaly score of a given node using 

the ratio of broken edges within the egonet1 of the node. The LBP-based method [22] used 

the ratio of broken edges as the prior probability of abnormal state for each node. We argue 

that, the percentage of broken edges may not serve as a good evidence of the causal 

anomaly. This is because, although one broken edge can indicate that one (or both) of related 

nodes is abnormal, lack of a broken edge does not necessary indicate that related nodes are 

problem free. Instead, it is possible that the correlation is still there when two nodes become 

abnormal simultaneously [13]. Therefore the percentage of broken edges could give false 

evidences. For example, in Figure 1, the causal anomaly is node ⓘ. The percentage of 

broken edges for node ⓘ is 2/3, which is smaller than that of node ⓗ (which is equal to 1). 

Since there exists a clear evidence of fault propagation on node ⓘ, an ideal algorithm 

should rank ⓘ higher than ⓗ. Third, existing methods usually consider static broken 

network instead of multiple broken networks at successive time points together. While we 

believe that, jointly analyzing temporal broken networks can help resolve ambiguity and 

achieve a denoising effect. This is because, the root casual anomalies usually remain 

unchanged within a short time period, even though the fault may keep prorogating in the 

invariant network. As an example shown in Figure 1, it would be easier to detect the causal 

anomaly if we jointly consider the broken networks at two successive time points together.

To address the limitations of existing methods, we propose several network diffusion based 

algorithms for ranking causal anomalies. Our contributions are summarized as follows.

1. We employ the network diffusion process to model propagation of causal 

anomalies and use propagated anomaly scores to reconstruct the vanishing 

correlations. By minimizing the reconstruction error, the proposed methods 

simultaneously consider the whole invariant network structure and the potential 

fault propagation. We also provide rigid theoretical analysis on the properties of 

the proposed methods.

2. We further develop efficient algorithms which reduce the time complexity from 

(n3) to (n2), where n is the number of nodes in the invariant network. This 

makes it feasible to quickly localize root cause anomalies in large-scale systems.

3. We employ effective normalization strategy on the ranking scores, which can 

reduce the influence of extreme values or outliers without having to explicitly 

remove them from the data.

1An egonet is the induced 1-step subgraph for each node.
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4. We develop a smoothing algorithm that enables users to jointly consider dynamic 

and time-evolving broken network, and thus obtain better ranking results.

5. We evaluate the proposed methods on both synthetic datasets and two real 

datasets, including the bank information system and the coal plant cyber-physical 

system datasets. Experimental results demonstrate the effectiveness of our 

methods.

2. BACKGROUND AND PROBLEM DEFINITION

In this section, we first introduce the technique of the invariant model [13] and then define 

our problem.

2.1 System Invariant and Vanishing Correlations

The invariant model is used to uncover significant pairwise relations among massive set of 

time series. It is based on the AutoRegressive eXogenous (ARX) model [10] with time 

delay. Let x(t) and y(t) be a pair of time series under consideration, where t is the time index, 

and let n and m be the degrees of the ARX model, with a delay factor k. Let ŷ(t; θ) be the 

prediction of y(t) using the ARX model parametarized by θ, which can then be written as

(1)

(2)

where θ = [a1,…,an, b0,…,bm, d]⊤ ∈ ℝn+m+2, φ(t) = [y(t−1),…,y(t−n), x(t−k),…,x(t−k−m), 

1]⊤ ∈ ℝn+m+2. For a given setting of (n, m, k), the parameter θ can be estimated with 

observed time points t = 1,…,N in the training data, via least-square fitting. In real-world 

applications such as anomaly detection in physical systems, 0 ≤ n, m, k ≤ 2 is a popular 

choice [6, 13]. We can define the “goodness of fit” (or fitness score) of an ARX model as

(3)

where ȳ is the mean of the time series y(t). A higher value of F(θ) indicates a better fitting 

of the model. An invariant (correlation) is declared on a pair of time series x and y if the 

fitness score of the ARX model is larger than a pre-defined threshold. A network including 

all the invariant links is referred to as the invariant network. Construction of the invariant 

network is referred to as the model training. The model θ will then be applied on the time 

series x and y in the testing phase to track vanishing correlations.
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To track vanishing correlations, we can use the techniques developed in [6, 15]. At each time 

point, we compute the (normalized) residual R(t) between the measurement y(t) and its 

estimate by ŷ(t; θ) by

(4)

where εmax is the maximum training error εmax = max1≤t≤N |y(t) − ŷ(t; θ)|. If the residual 

exceeds a prefixed threshold, then we declare the invariant as “broken”, i.e., the correlation 

between the two time series vanishes. The network including all the broken edges at given 

time point and all nodes in the invariant network is referred to as the broken network.

2.2 Problem Definition

Let l be the invariant network with n nodes. Let b be the broken network for l. We use 

two symmetric matrices A ∈ ℝn × n, P ∈ ℝn × n to denote the adjacency matrix of network l 

and b, respectively. These two matrices can be obtained as discussed in Section 2.1. The 

two matrices can be binary or continuous. For binary case of A, 1 is used to denote that the 

correlation exists between two time series, and 0 denotes the lack of correlation; while for P, 

1 is used to denote that the correlation is broken (vanishing), and 0 otherwise. For the 

continuous case, the fitness score F(θ) (3) and the residual R(t) (4) can be used to fill the two 

matrices, respectively.

Our main goal is to detect the abnormal nodes in l that are most responsible for causing the 

broken edges in b. In this sense, we call such nodes “causal anomalies”. Accurate detection 

of causal anomalous nodes will be extremely useful for examination, debugging and repair 

of system failures.

3. RANKING CAUSAL ANOMALIES

In this section, we present the algorithm of Ranking Causal Anomalies (RCA), which takes 

into account both the fault propagation and fitting of broken invariants simultaneously.

3.1 Fault Propagation

We consider a very practical scenario of fault propagation, namely anomalous system status 

can always be traced back to a set of root cause anomaly nodes, or causal anomalies, as 

initial seeds. As the time passes, these root cause anomalies will then propagate along the 

invariant network, most probably towards their neighbors via paths identified by the 

invariant links in l. To explicitly model this spreading process on the network, we have 

employed the label propagation technique [16, 24, 26]. Suppose that the (unknown) root 

cause anomalies are denoted by the indicator vector e, whose entries ei’s (1 ≤ i ≤ n) indicate 

whether the ith node is the casual anomaly (ei = 1) or not (ei = 0). At the end of propagation, 

the system status is represented by the anomaly score vector r, whose entries tell us how 

severe each node of the network has been impaired. The propagation from e to r can be 

modeled by the following optimization problem
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where D ∈ ℝn × n is the degree matrix of A, c ∈ (0, 1) is the regularization parameter, r is the 

anomaly score vector after the propagation of the initial faults in e. We can re-write the 

above problem as

(5)

where In is the identity matrix, Ã = D−1/2 AD−1/2 is the degree-normalized version of A. 

Similarly we will use P̃ as the degree-normalized P in the sequel. The first term in Eq. (5) is 

the smoothness constraint [26], meaning that a good ranking function should assign similar 

values to nearby nodes in the network. The second term is the fitting constraint, which 

means that the final status should be close to the initial configuration. The trade-off between 

these two competing constraints is controlled by a positive parameter c: a small c encourages 

a sufficient propagation, and a big c actually suppresses the propagation. The optimal 

solution of problem (5) is [26]

(6)

which establishes an explicit, closed-form solution between the initial configuration e and 

the final status r through propagation.

To encode the information of the broken network, we propose to use r to reconstruct the 

broken network b. The intuition is illustrated in Figure 2. If there exists a broken link in b, 

e.g., P̃
ij is large, then ideally at least one of the nodes i and j should be abnormal, or 

equivalently, either ri or rj should be large. Thus, we can use the product of ri and rj to 

reconstruct the value of P̃
ij. In Section 5, we’ll further discuss how to normalize them to 

avoid extreme values. Then, the loss of reconstructing the broken link P ̃
ij can be calculated 

by (ri · rj − P̃
ij)2. The reconstruction error of the whole broken network is then 

. Here, ○ is element-wise operator, and M is the logical matrix of the 

invariant network l (1 with edge, 0 without edge). Let B = (1 − c)(In − cÃ)−1, by 

substituting r we obtain the following objective function.

(7)

Considering that the integer programming in problem (7) is NP-hard, we relax it by using 

the ℓ1 penalty on e with parameter τ to control the number of non-zero entries in e [23]. Then 

we reach the following objective function.
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(8)

3.2 Learning Algorithm

In this section, we present an iterative multiplicative updating algorithm to optimize the 

objective function in (8). The objective function is invariant under these updates if and only 

if e are at a stationary point [17]. The solution is presented in the following theorem, which 

is derived from the Karush-Kuhn-Tucker (KKT) complementarity condition [3]. Detailed 

theoretical analysis of the optimization procedure will be presented in the next section.

Theorem 1. Updating e according to Eq. (9) will monotonically decrease the objective 

function in Eq. (8) until convergence.

(9)

where ○,  and  are element-wise operators.

Based on Theorem 1, we develop the iterative multiplicative updating algorithm for 

optimization and summarize it in Algorithm 1. We refer to this ranking algorithm as RCA.
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3.3 Theoretical Analysis

Algorithm 1. 
Ranking Causal Anomalies (RCA)

3.3.1 Derivation—We derive the solution to problem (9) following the constrained 

optimization theory [3]. Since the objective function is not jointly convex, we adopt an 

effective multiplicative updating algorithm to find a local optimal solution. We prove 

Theorem 1 in the following.

We formulate the Lagrange function for optimization . 

Obviously, B, M and P̃ are symmetric matrix. Let F = (Bee⊤ B⊤) ○ M, then

(10)

It follows that
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(11)

and thereby

(12)

Thus, the partial derivative of Lagrange function with respect to e is:

(13)

where 1n is the n × 1 vector of all ones. Using the Karush-Kuhn-Tucker (KKT) 

complementarity condition [3] for the non-negative constraint on e, we have

(14)

The above formula leads to the updating rule for e that is shown in Eq. (9).

3.3.2 Convergence—We use the auxiliary function approach [17] to prove the 

convergence of Eq. (9) in Theorem 1. We first introduce the definition of auxiliary function 

as follows.

Definition 3.1. Z(h, ĥ) is an auxiliary function for L(h) if the conditions

(15)

are satisfied for any given h, ĥ [17].

Lemma 3.1. If Z is an auxiliary function for L, then L is non-increasing under the update 

[17].

(16)

Theorem 2. Let L(e) denote the sum of all terms in L containing e. The following function
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(17)

is an auxiliary function for L(e). Furthermore, it is a convex function in e and has a global 

minimum.

Theorem 2 can be proven in a similar way as [7] by validating Z(e, ê) ≥ L(e), Z(e, e) = L(e), 

and the Hessian matrix ∇∇eZ(e, ê) ⪰ 0. Due to space limitation, we omit the details.

Based on Theorem 2, we can minimize Z(e, ê) with respect to e with ê fixed. We set ∇eZ(e, 
ê) = 0, and get the following updating formula

(18)

which is consistent with the updating formula derived from the KKT condition 

aforementioned.

From Lemma 3.1 and Theorem 2, for each subsequent iteration of updating e, we have L(e0) 

= Z(e0, e0) ≥ Z(e1, e0) ≥ Z(e1, e1) = L(e1) ≥ … ≥ L(eIter). Thus L(e) monotonically 

decreases. Since the objective function Eq. (8) is lower bounded by 0, the correctness of 

Theorem 1 is proven.

3.3.3 Complexity Analysis—In Algorithm 1, we need to calculate the inverse of an n × n 
matrix, which takes (n3) time. In each iteration, the multiplication between two n × n 
matrices is inevitable, thus the overall time complexity of Algorithm 1 is (Iter · n3), where 

Iter is the number of iterations needed for convergence. In the following section, we will 

propose an efficient algorithm that reduces the time complexity to (Iter · n2).

4. COMPUTATIONAL SPEED UP

In this section, we will propose an efficient algorithm that avoids the matrix inverse 

calculations as well as the multiplication between two n × n matrices. The time complexity 

can be reduced to (Iter · n2).

We achieve the computational speed up by relaxing the objective function in (8) to jointly 

optimize r and e. The objective function is shown in the following.
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(19)

To optimize this objective function, we can use an alternating scheme. That is, we optimize 

the objective with respect to r while fixing e, and vise versa. This procedure continues until 

convergence. The objective function is invariant under these updates if and only if r, e are at 

a stationary point [17]. Specifically, the solution to the optimization problem in Eq. (19) is 

based on the following theorem, which is derived from the Karush-Kuhn-Tucker (KKT) 

complementarity condition [3]. The derivation of it and the proof of Theorem 3 is similar to 

that of Theorem 1.

Theorem 3. Alternatively updating e and r according to Eq. (20) and Eq. (21) will 

monotonically decrease the objective function in Eq. (19) until convergence.

(20)

(21)

Based on Theorem 3, we can develop the iterative multiplicative updating algorithm for 

optimization similar to Algorithm 1. Due to page limit we skip the details. We refer to this 

ranking algorithm as R-RCA. From Eq. (20) and Eq. (21), we observe that the calculation of 

the inverse of the n × n matrix and the multiplication between two n × n matrices in 

Algorithm 1 are not necessary. As we will see in Section 7.4, the relaxed versions of our 

algorithm can greatly improve the computational efficiency.

5. SOFTMAX NORMALIZATION

In Section 3, we use the product ri · rj as the strength of evidence that the correlation 

between node i and j is vanishing (broken). However, it suffers from the extreme values in 

the ranking values r. To reduce the influence of the extreme values or outliers, we employ 

the softmax normalization on the ranking values r. The ranking values are nonlinearly 

transformed using the sigmoidal function before the multiplication is performed. Thus, the 

reconstruction error is expressed by , where σ(·) is the softmax 

function with:

(22)
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The corresponding objective function in Algorithm 1 is modified to the following

(23)

Similarly, the objective function for Eq. (19) is modified to the following

(24)

The optimization of these two objective functions are based on the following two theorems.

Theorem 4. Updating e according to Eq. (25) will monotonically decrease the objective 

function in Eq. (23) until convergence.

(25)

where Ψ = {diag [σ(Be)] − σ(Be)σ⊤(Be)}.

Theorem 5. Updating r according to Eq. (26) will monotonically decrease the objective 

function in Eq. (24) until convergence.

(26)

where Λ = σ(r)σ⊤(r) and ρ = σ⊤(r)σ(r).

Theorem 4 and Theorem 5 can be proven with a similar strategy to that of Theorem 1. We 

refer to the ranking algorithms with softmax normalization (Eq. (23) and Eq. (24)) as RCA-

SOFT and R-RCA-SOFT respectively.

6. TEMPORAL SMOOTHING ON MULTIPLE BROKEN NETWORKS

As discussed in Section 1, although the number of anomaly nodes could increase due to fault 

propagation in the network, the root cause anomalies will be stable within a short time 

period T [14]. Based on this intuition, we further develop a smoothing strategy by jointly 

considering the temporal broken networks. Specifically, we add a smoothing term 

 to the objective functions. Here, e(t−1) and e(t) are causal anomaly ranking 

vectors for two successive time points. For example, the objective function of algorithm 

RCA with temporal broken networks smoothing is shown in Eq. (27).
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(27)

Here, P̃(t) is the degree-normalized adjacency matrix of broken network at time point t. 
Similar to the discussion in Section 3.3, we can derive the updating formula of Eq. (27) in 

the following.

(28)

The updating formula for R-RCA, RCA-SOFT, and RRCA-SOFT with temporal broken 

networks smoothing is similar. Due to space limit, we skip the details. We refer to the 

ranking algorithms with temporal networks smoothing as T-RCA, T-R-RCA, T-RCA-SOFT 

and T-R-RCA-SOFT respectively.

7. EMPIRICAL STUDY

In this section, we perform extensive experiments to evaluate the performance of the 

proposed methods (summarized in Table 1). We use both simulated data and real-world 

monitoring datasets. For comparison, we select several state-of-the-art methods, including 

mRank and gRank in [8, 13], and LBP [22]. For all the methods, the tuning parameters were 

tuned using cross validation. We use several evaluation metrics including precision, recall, 

and nDCG [12] to measure the performance. The precision and recall are computed on the 

top-K ranking result, where K is typically chosen as twice the actual number of ground-truth 

causal anomalies [12, 22]. The nDCG of the top-p ranking result is defined as 

, where  IDCGp is the DCGp value on the 

ground-truth, and p is smaller than or equal to the actual number of ground-truth anomalies. 

The reli represents the anomaly score of the ith item in the ranking list of the ground-truth.

7.1 Simulation Study

We first evaluate the performance of the proposed methods using simulations. We have 

followed [8, 22] in generating the simulation data.

7.1.1 Data Generation—We first generate 5000 synthetic time series data to simulate the 

monitoring records2. Each time series contains 1,050 time points. Based on the invariant 

model introduced in Section 2.1, we build the invariant network by using the first 1,000 time 

points in the time series. This generates an invariant network containing 1,551 nodes and 

157,371 edges. To generate invariant network of different sizes, we randomly sample 200, 

2http://cs.unc.edu/~weicheng/synthetics5000.csv
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500, and 1000 nodes from the whole invariant network and evaluate the algorithms on these 

sub-networks.

To generate the root cause anomaly, we randomly select 10 nodes from the network, and 

assign each of them an anomaly score between 1 and 10. The ranking of these scores is used 

as the ground-truth. To simulate the anomaly prorogation, we further use these scores as the 

vector e in Eq. (6) and calculate r (c = 0.9). The values of the top-30 time series with largest 

values in r are then modified by changing their amplitude value with the ratio 1+ri. That is, 

if the observed values of one time series is y1, after changing it from y1 to y2, the manually-

injected degree of anomaly  is equal to 1 + ri. We denote this anomaly generation 

scheme as amplitude-based anomaly generation.

7.1.2 Performance Evaluation—Using the simulated data, we compare the performance 

of different algorithms. In this example, we only consider the training time series as one 

snapshot; multiple snapshot cases involving temporal smoothing will be examined in the real 

datasets. Due to the page limit, we report the precision, recall and nDCG for only the top-10 

items considering that the ground-truth contains 10 anomalies. Similar results can be 

observed with other settings of K and p. For each algorithm, reported result is averaged over 

100 randomly selected subsets of the training data.

From Figure 3, we have several key observations. First, the proposed algorithms 

significantly outperform other competing methods, which demonstrates the advantage of 

taking into account fault prorogation in ranking casual anomalies. We also notice that 

performance of all ranking algorithms will decline on larger invariant networks with more 

nodes, indicating that anomaly ranking becomes more challenging on networks with more 

complex behaviour. However, the ranking result with softmax is less sensitive to the size of 

the invariant network, suggesting that the softmax normalization can effectively improve the 

robustness of the algorithm. This is quite beneficial in real-life applications, especially when 

data are noisy. Finally, we observe that RCA and RCASOFT outperform R-RCA and R-

RCA-SOFT, respectively. This implies that the relaxed versions of the algorithms are less 

accurate. Nevertheless, their accuracies are still very comparable to those of the RCA and 

RCA-SOFT methods. In addition, the efficiency of the relaxed algorithms is greatly 

improved, as discussed in Section 4 and Section 7.4.

7.1.3 Robustness Evaluation—Practical invariant network and broken edges can be 

quite noisy. In this section, we further examine the performance of the proposed algorithms 

w.r.t. different noise levels. To do this, we randomly perturb a portion of non-broken edges 

in the invariant network. Results are shown in Figure 4. We observe that, even when the 

noise ratio approaches 50%, the precision, recall and nDCG of the proposed approaches still 

attain 0.5. This indicates the robustness of the proposed algorithms. We also observe that, 

when the noise ratio is very large, RCA-SOFT and R-RCA-SOFT work better than RCA and 

R-RCA, respectively. This is similar to those observations made in Section 7.1.2. As has 

been discussed in Section 5, the softmax normalization can greatly suppress the impact of 

extreme values and outliers in r, thus improves the robustness.
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7.2 Ranking Causal Anomalies on Bank Information System Data

In this section, we apply the proposed methods to detect causal abnormal components on a 

Bank Information System (BIS) data set [8, 22]. The monitoring data are collected from a 

real-world bank information system logs, which contain 11 categories. Each category has a 

varying number of time series, and Table 2 gives five categories as examples. The data set 

contains the flow intensities collected every 6 seconds. In total, we have 1,273 flow intensity 

time series. The training data is collected at normal system states, where each time series has 

168 time points. The invariant network is then generated on the training data as described in 

Section 2.1. The testing data of the 1,273 flow intensity time series are collected during 

abnormal system states, where each time series contain 169 time points. We track the 

changes of the invariant network with the testing data using the method described in Section 

2.1. Once we obtain the broken networks at different time points, we will then perform 

causal anomaly ranking in these temporal slots jointly. Properties of the networks 

constructed are summarized in Table 3.

Based on the knowledge from system experts, the root cause anomaly at t = 120 in the 

testing data is related to “DB16”. An illustration of two “DB16” related monitoring data are 

shown in Figure 5. We highlight t = 120 with red square. Obviously, their behaviour looks 

anomalous from that time point on. Due to the complex dependency among different 

monitoring time series (measurements), it is impractical to obtain a full ranking of abnormal 

measurement. Fortunately, we have a unique semantic label associated with each 

measurement. For example, some semantic labels read “DB16:DISK hdx Request” and 

“WEB26 PAGE-OUT RATE”. Thus, we can extract all measurements whose titles have the 

prefix “DB16” as the ground-truth anomalies. The ranking score is determined by the 

number of broken edges associated with each measurement. Here our goal is to demonstrate 

how the top-ranked measurements selected by our method are related to the “DB16” root 

cause. Altogether, there are 80 measurements related to “DB16”, so we report the precision, 

recall with K ranging from 1 to 160 and the nDCG with p ranging from 1 to 80.

The results are shown in Figure 6. The relative performance of different approaches is 

consistent with the observations in the simulation study. Again, the proposed algorithms 

outperform baseline methods by a large margin. To examine the top-ranked items more 

clearly, we list the top-12 results of different approaches in Table 4 and report the number of 

“DB16”-related monitors in Table 5. From Table 4, we observe that the three baseline 

methods only report one “DB16” related measurement in the top-12 results, and the actual 

rank of the “DB16”-related measurement appear lower (worse) than that of the proposed 

methods. We also notice that the ranking algorithms with softmax normalization outperform 

others. From Tables 4 and 5, we can see that top ranked items reported by RCA-SOFT and 

R-RCASOFT are more relevant than those reported by RCA and R-RCA, respectively. This 

clearly illustrates the effectiveness of the softmax normalization in reducing the influence of 

extreme values or outliers in the data.

As discussed in Section 1, the root anomalies could further propagate from one component 

to related ones over time, which may or may not necessarily relate to “DB16”. Such 

anomaly propagation makes anomaly detection even harder. To study how the performance 

varies at different time points, we compare the performance at t = 120 and t = 122, 
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respectively in Figure 7 (p, K=80). Clearly, the performance declines for all methods. 

However, the proposed methods are less sensitive to anomaly propagation than others, 

suggesting that our approaches can better handle the fault propagation problem. We believe 

this is attributed to the network diffusion model that explicitly captures the fault propagation 

processes. We also list the top-12 abnormal at t = 122 in Table 6. Due to page limit, we only 

show the results of mRank, gRank, RCA-SOFT and R-RCA-SOFT. By comparing the 

results in Tables 4 and 6, we can observe that RCA-SOFT and R-RCA-SOFT significantly 

outperform mRank and gRank, the latter two methods based on the percentage of broken 

edges are more sensitive to the anomaly prorogation.

We further validate the effectiveness of proposed methods with temporal smoothing. We 

report the top-12 results of different methods with smoothing at two successive time points t 
= 120 and t = 121 in Table 7. The number of “DB16”-related monitors in the top-12 results 

is summarized in Table 8. From Tables 7 and 8, we observe a significant performance 

improvement of our methods with temporal broken networks smoothing compared with 

those without smoothing. As discussed in Section 6, since causal anomalies of a system 

usually do not change within a short period of time, utilizing such smoothness can 

effectively suppress noise and thus give better ranking accuracy.

7.3 Fault Diagnosis on Coal Plant Data

In this section, we test the proposed methods in the application of fault diagnosis on a coal 

plant cyber-physical system data. The data set contains time series collected through 1625 

electric sensors installed on different components of the coal plant system. Using the 

invariant model described in Section 2.1, we generate the invariant network that contains 

9451 invariant links. For privacy reasons, we remove sensitive descriptions of the data.

Based on knowledge from domain experts, in the abnormal stage the root cause is associated 

with component “X0146”. We report the top-12 results of different ranking algorithms in 

Table 9. We observe that the proposed algorithms all rank component “X0146” the highest, 

while the baseline methods could give higher ranks to other components. In Figure 8(a), we 

visualize the egonet of the node “X0146” in the invariant network, which is defined as the 1-

step neighborhood around node “X0146”, including the node itself, direct neighbors, and all 

connections among these nodes in the invariant network. Here, green lines denote the 

invariant link, and red lines denote vanishing correlations (broken links). Since the node 

“Y0256” is top-ranked by the baseline methods, we also visualize its egonet in Figure 8(b) 

for a comparison. There are 80 links related to “X0146” in the invariant network, and 14 of 

them are broken. Namely the percentage of broken edges is only 17.5% for a truly 

anomalous component. In contrast, the percentage of broken edges for the node “Y0256” is 

100%, namely a false-positive node can have a very high percentage of broken edges in 

practice. This explains why baseline approaches using the percentage of broken edges could 

fail, because the percentage of broken edges does not serve as a reliable evidence of the 

degree of causal anomalies. In comparison, our approach takes into account the global 

structures of the invariant network via network propagation, thus the resultant ranking is 

more meaningful.
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7.4 Time Performance Evaluation

In this section, we study the efficiency of proposed methods using the following metrics: 1) 

the number of iterations for convergence; 2) the running time (in seconds) ; and 3) the 

scalability of the proposed algorithms. Figure 9(a) shows the value of the objective function 

with respect to the number of iterations on different data sets. We can observe that, the 

objective value decreases steadily with the number of iterations. Typically less than 100 

iterations are needed for convergence. We also observe that our method with softmax 
normalization takes fewer iterations to converge. This is because the normalization is able to 

reduce the influence of extreme values [21]. We also report the running time of each 

algorithm on the two real data sets in Figure 10. We can see that the proposed methods can 

detect causal anomalies very efficiently, even with the temporal smoothing module.

To evaluate the computational scalability, we randomly generate invariant networks with 

different number of nodes (with network density=10) and examine the computational cost. 

Here 10% edges are randomly selected as broken links. Using simulated data, we compare 

the running time of RCA, R-RCA, RCA-SOFT, and R-RCA-SOFT. Figure 9(b) plots the 

running time of different algorithms w.r.t. the number of nodes in the invariant network. We 

can see that the relaxed versions of our algorithm are computationally more efficient than the 

original RCA and RCA-SOFT. These results are consistent with the complexity analysis in 

Section 4.

8. RELATED WORK

In this section, we review related work on anomaly detection and system diagnosis, in 

particular along the following two categories: 1) fault detection in distributed systems; and 

2) graph-based methods.

For the first category, Yemini et al. [25] proposed to model event correlation and locate 

system faults using known dependency relationships between faults and symptoms. In real 

applications, however, it is usually hard to obtain such relationships precisely. To alleviate 

this limitation, Jiang et al. [13] developed several model-based approaches to detect the 

faults in complex distributed systems. They further proposed several Jaccard Coefficient 

based approaches to locate the faulty components [14, 15]. These approaches generally 

focus on locating the faulty components, they are not capable of spotting or ranking the 

causal anomalies.

Recently, graph-based methods have drawn a lot of interest in system anomaly detections [2, 

5], either in static graphs or dynamic graphs [2]. In static graphs, the main task is to spot 

anomalous network entities (e.g., nodes, edges, subgraphs) given the graph structure [4, 11]. 

For example, Akoglu et al. [1] proposed the OddBall algorithm to detect anomalous nodes in 

weighted graphs. Liu et al. [18] proposed to use frequent subgraph mining to detect non-

crashing bugs in software flow graphs. However, these approaches only focus on a single 

graph; in comparison, we take into account both the invariant graph and the broken 

correlations, which provides a more dynamic and complete picture for anomaly ranking. On 

dynamic graphs, anomaly detection aims at detecting abnormal events [19]. Most 

approaches along this direction are designed to detect anomaly time-stamps in which 
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suspicious events take place, but not to perform ranking on a large number of system 

components. Sun et al. proposed to use temporal graphs for anomaly detection [20]. In their 

approach, a set of initial suspects need to be provided; then internal relationship among these 

initial suspects is characterized for better understanding of the root cause of these anomalies.

In using the invariant graph and the broken invariance graph for anomaly detection, Jiang et 

al. [14] used the ratio of broken edges in the invariant network as the anomaly score for 

ranking; Ge et al. [8] proposed mRank and gRank to rank causal anomalies; Tao et al. [22] 

used the loopy belief propagation method to rank anomalies. As has been discussed, these 

algorithms rely heavily on the percentage of broken edges in egonet of a node. Such local 

approaches do not take into account the global network structures, neither the global fault 

propagation spreading on the network. Therefore the resultant rankings can be sub-optimal.

9. CONCLUSIONS

Detecting causal anomalies on monitoring data of distributed systems is an important 

problem in data mining research. Robust and scalable approaches that can model the 

potential fault propagation are highly desirable. We develop a network diffusion based 

framework, which simultaneously takes into account fault propagation on the network as 

well as reconstructing anomaly signatures using propagated anomalies. Our approach can 

locate causal anomalies more accurately than existing approaches; in the meantime, it is 

robust to noise and computationally efficient. Using both synthetic and real-life data sets, we 

show that the proposed methods outperform other competitors by a large margin.
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Figure 1. 
Invariant network and vanishing correlations(red edges).
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Figure 2. 
Reconstruction of the broken invariant network using anomaly score vector r.
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Figure 3. 
Comparison on synthetic data(K, p = 10).
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Figure 4. 
Performance with different noise ratio(K, p = 10).
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Figure 5. 
Two example monitoring data of BIS.
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Figure 6. 
Comparison on BIS data.
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Figure 7. 
Performance at t:120 v.s. t:122 on BIS data(p,K=80).
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Figure 8. 
Egonet of node “X0146” and “Y0256” in invariant network and vanishing correlations(red 

edges) on coal plant data.
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Figure 9. 
Number of iterations to converge and time cost comparison.
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Figure 10. 
Running time on real data sets.

Cheng et al. Page 29

KDD. Author manuscript; available in PMC 2017 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cheng et al. Page 30

Table 1

Summary of notations

Symbol Definition

n the number of nodes in the invariant network

c, λ, τ the parameters 0 < c < 1, τ > 0, λ > 0

σ(·) the softmax function

l the invariant network

b the broken network for l

A (Ã) ∈ ℝn × n the (normalized) adjacency matrix of l

P (P̃) ∈ ℝn × n the (normalized) adjacency matrix of b

M ∈ ℝn × n the logical matrix of l

d(i) the degree of the ith node in network l

D ∈ ℝn × n the degree matrix: D = diag(d(i), …, d(n))

r ∈ ℝn × 1 the prorogated anomaly score vector

e ∈ ℝn × 1 the ranking vector of causal anomalies

RCA the basic ranking causal anomalies algorithm

R-RCA the relaxed RCA algorithm

RCA-SOFT the RCA with softmax normalization

R-RCA-SOFT the relaxed RCA with softmax normalization

T-RCA the RCA with temporal smoothing

T-R-RCA the R-RCA with temporal smoothing

T-RCA-SOFT the RCA-SOFT with temporal smoothing

T-R-RCA-SOFT the R-RCA-SOFT with temporal smoothing
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Table 2

Examples of categories and monitors.

Categories Samples of Measurements

CPU utilization, user usage time, IO wait time

DISK # of write operations, write time, weighted IO time

MEM run queue, collision rate, UsageRate

NET error rate, packet rate

SYS UTIL, MODE UTIL
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Table 3

Data set description

Data Set #Monitors #invariant links #broken edges at given time point

BIS 1273 39116 18052

Coal Plant 1625 9451 56
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Table 6

Top 12 anomalies on BIS data(t:122).

mRank gRank RCA-SOFT R-RCA-SOFT

WEB21:NET eth1 BYNETIF WEB21:NET eth0 BYNETIF DB17:DISK hdm Block DB17:DISK hdm Block

WEB21:NET eth0 BYNETIF WEB21:NET eth1 BYNETIF DB17:DISK hdba Block DB17:DISK hdba Block

WEB21:FREE UTIL HUB18:MEM UsageRate DB16:DISK hdm Block DB16:DISK hdm Block

AP12:DISK hd45 Block WEB21:FREE UTIL DB18:DISK hdm Block DB16:DISK hdj Request

AP12:DISK hd1 Block WEB26:PAGEOUT RATE DB16:DISK hdj Request DB16:DISK hdax Request

DB18:DISK hday Block AP12:DISK hd45 Block DB18:DISK hdba Block DB18:DISK hdm Block

DB18:DISK hdk Block AP12:DISK hd1 Block DB16:DISK hdax Request DB18:DISK hdx Request

DB18:DISK hday Request DB18:DISK hday Block DB16:DISK hdba Block DB18:DISK hdba Block

DB18:DISK hdk Request DB18:DISK hdk Block DB18:DISK hdx Request DB16:DISK hdba Block

WEB26:PAGEOUT RATE DB18:DISK hday Request DB18:DISK hdbl Request DB18:DISK hdax Request

DB17:DISK hdm Block DB18:DISK hdk Request DB16:DISK hdx Busy DB16:PACKET Inputx

DB16:DISK hdm Block AP11:DISK hd45 Block DB16:DISK hdx Request DB18:DISK hdbl Request
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Table 7

Top 12 anomalies reported by methods with temporal smoothing on BIS data(t:120–121).

T-RCA T-RCA-SOFT T-R-RCA T-R-RCA-SOFT

WEB14:NET eth0 BYNETIF DB17:DISK hdm Block WEB14:NET eth0 BYNETIF DB17:DISK hdm Block

WEB16:DISK BYDSK DB17:DISK hdba Block WEB21:NET eth0 BYNETIF DB17:DISK hdba Block

DB18:DISK hdba Block DB16:DISK hdm Block WEB16:DISK BYDSK PHYS DB16:DISK hdm Block

DB18:DISK hdm Block DB18:DISK hdm Block WEB21:FREE UTIL DB18:DISK hdm Block

DB17:DISK hdba Block DB16:DISK hdj Request DB15:PACKET Output DB16:DISK hdj Request

DB16:DISK hdm Block DB18:DISK hdba Block DB16:DISK hdj Request DB18:DISK hdba Block

DB17:DISK hdm Block DB16:DISK hdax Request DB17:DISK hdm Block DB16:DISK hdax Request

DB16:DISK hdba Block DB16:DISK hdba Block DB16:DISK hdba Block DB18:DISK hdx Request

DB16:DISK hdj Request DB18:DISK hdx Request DB17:DISK hday Block DB16:DISK hdba Block

DB16:DISK hdax Request DB18:DISK hdbl Request DB16:DISK hdm Block DB18:DISK hdbl Request

DB16:DISK hdx Busy DB16:DISK hdx Busy DB16:DISK hdax Request DB16:DISK hdx Request

DB16:DISK hdbl Busy DB16:DISK hdx Request DB18:DISK hdba Block DB16:DISK hdx Busy
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Table 8

Comparison on the number of “DB16” related anomalies in top-12 results on BIS data.

RCA RCA-SOFT R-RCA R-RCA-SOFT

Without temporal smoothing 4 4 3 4

With temporal smoothing 6 6 4 6
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