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Abstract

Probabilistic Performance Analysis of Fault Diagnosis Schemes

by

Timothy Josh Wheeler

Doctor of Philosophy in Engineering–Mechanical Engineering

University of California, Berkeley

Professor Andrew K. Packard, Co-chair

Professor Peter J. Seiler, Co-chair

The dissertation explores the problem of rigorously quantifying the performance of a fault

diagnosis scheme in terms of probabilistic performance metrics. Typically, when the perfor-

mance of a fault diagnosis scheme is of utmost importance, physical redundancy is used

to create a highly reliable system that is easy to analyze. However, in this dissertation, we

provide a general framework that applies to more complex analytically redundant or model-

based fault diagnosis schemes. For each fault diagnosis problem in this framework, our

performance metrics can be computed accurately in polynomial-time.

First, we cast the fault diagnosis problem as a sequence of hypothesis tests. At each

time, the performance of a fault diagnosis scheme is quantified by the probability that

the scheme has chosen the correct hypothesis. The resulting performance metrics are

joint probabilities. Using Bayes rule, we decompose these performance metrics into two

parts: marginal probabilities that quantify the reliability of the system and conditional

probabilities that quantify the performance of the fault diagnosis scheme. These conditional

probabilities are used to draw connections between the fault diagnosis and the fields of

medical diagnostic testing, signal detection, and general statistical decision theory.

Second, we examine the problem of computing the performance metrics efficiently

and accurately. To solve this problem, we examine each portion of the fault diagnosis

problem and specify a set of sufficient assumptions that guarantee efficient computation. In

particular, we provide a detailed characterization of the class of finite-state Markov chains

that lead to tractable fault parameter models. To demonstrate that these assumptions enable

efficient computation, we provide pseudocode algorithms and prove that their running time

is indeed polynomial.

Third, we consider fault diagnosis problems involving uncertain systems. The inclusion

of uncertainty enlarges the class of systems that may be analyzed with our framework. It

also addresses the issue of model mismatch between the actual system and the system used
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to design the fault diagnosis scheme. For various types of uncertainty, we present convex

optimization problems that yield the worst-case performance over the uncertainty set.

Finally, we discuss applications of the performance metrics and compute the perfor-

mance for two fault diagnosis problems. The first problem is based on a simplified air-data

sensor model, and the second problem is based on a linearized vertical take-off and landing

aircraft model.
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Chapter 1

Introduction

In safety-critical applications, a system must not only be highly reliable, but that reliability

must be certifiable in some way. For example, the Federal Aviation Administration (faa)

requires designers of civil aircraft to demonstrate that their products will have no more

than 10−9 catastrophic failures per flight-hour [18]. Such demonstrations are based on two

factors: the reliability of the system hardware in a given operating environment and the

ability of the system to detect when that hardware has failed. In the aviation industry, both

of these issues are addressed by the use of parallel redundant components [18,103,104]. This

type of redundancy, known as physical redundancy, ensures the availability of the system,

even in the presence of component failures. In a physically redundant configuration, a failed

component is detected by directly comparing the behavior of each redundant component.

Hence, these schemes tend to detect faults accurately, and their performance is relatively

simple to certify using fault trees [41, 77].

However, in some applications, such as unmanned aerial vehicles (uavs), the designer

cannot afford the extra size, weight, and power needed to support multiple redundant com-

ponents. In such situations, the analytical redundancies between dissimilar components

can be exploited to detect faults. More specifically, mathematical models of the system are

used to establish analytical relationships that hold only when the constituent components

of the system are functioning properly. Then, when a component fails, one or more of these

relationships is violated and the failure can be detected and diagnosed. This approach,

known as model-based fault diagnosis [24, 48], certainly reduces the number of individual

components needed; however, there are two main drawbacks to consider. First, merely iden-

tifying a fault cannot prevent system-wide failure if the failed component is indispensable

(i.e. no other components can perform the same critical function). Second, the performance

of fault detection schemes based on analytical redundancy can be difficult to quantify if the

analytical relationships are dynamic or nonlinear. While the first difficulty is unavoidable,

this dissertation addresses the second difficulty.

Although there is a vast body of literature on model-based fault diagnosis (see [9, 24, 48]

and references therein), little attention is given to the rigorous performance analysis of

model-based fault diagnosis schemes. In this dissertation, we present a set of probabilis-
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tic metrics that rigorously quantify the performance of a reasonably general class of fault

diagnosis schemes that includes many model-based schemes. Of course, such metrics

are only useful if they are efficiently computable. Monte Carlo methods [79] provide a

general-purpose solution to this problem, but it can be difficult to quantify the error present

in the results. Moreover, component failures are inherently rare by design, so a thorough

Monte Carlo analysis would entail the subtleties and complications of rare-event simu-

lation [1]. In this dissertation, we take a more practical approach—we establish a class

of linear systems and fault diagnosis schemes for which the performance metrics can be

efficiently computed without resorting to approximations. We also consider the effects of

adding uncertainty to various aspects of the fault diagnosis problem. Again, emphasizing

the need for computational tractability, we describe a set of uncertainty models for which

the worst-case performance can be efficiently and accurately computed without the need

for approximation.

1.1 Thesis Overview

The terminology and notation used throughout this dissertation are established in Chapter 2.

For the sake of brevity, only the most basic concepts of probability and reliability theory

are introduced. In addition to the core definitions, we present two probabilistic models for

component failure times. In this chapter, we also give a brief survey of the field of fault

diagnosis. After defining the key terminology used in fault diagnosis, we present a survey

of some of the most popular techniques used to design fault diagnosis schemes, and we

discuss some of the strategies used to design more reliable systems. Finally, we present a

survey of the existing performance analysis techniques that can be found in the literature.

Chapter 3 examines the quantitative performance analysis of a class of fault diagnosis

problems, in which faults affect the system via a stochastic parameter. First, we cast the

problem of fault detection as a sequence of hypothesis tests regarding the value of the fault

parameter at each time. Building on the vast hypothesis testing literature, we establish a

set of joint probabilities that fully quantify the time-varying performance of a given fault

diagnosis scheme. Bayes’ rule is then used to decompose these performance metrics into

two parts: conditional probabilities that characterize the performance of the fault diagnosis

scheme and marginal probabilities that characterize the reliability of the underlying system.

The receiver operating characteristic, a popular tool in hypothesis testing, medical diagnostic

testing, and signal detection theory, is used to develop a set of informative visualizations.

Finally, the performance analysis framework is extended to the more general problems of

fault isolation and fault identification.

In Chapter 4, we examine the computational issues involved in evaluating the perfor-

mance metrics. By examining each component of the fault diagnosis problem separately,

we arrive at a set of sufficient conditions and assumptions, which guarantee that the per-
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formance metrics can be computed in polynomial time. In particular, we state and prove a

number of theoretical results regarding Markov chains with finite state spaces. In this chap-

ter, we also explore a simplified class of systems, based on independent faults with additive

effects, for which the performance metrics can be computed even more efficiently. Finally,

we present pseudocode algorithms for computing the performance metrics and we prove

that their running time is indeed polynomial, given that the aforementioned conditions are

met.

Chapter 5 extends the results of Chapters 3 and 4 by considering fault diagnosis prob-

lems with some uncertain aspect. In particular, we examine systems with uncertain inputs,

unknown disturbances, uncertain fault signals, and unmodeled or uncertain system dynam-

ics. For each type of uncertainty, we consider the problem of computing the worst-case

values of the performance metrics over the given uncertainty set. Hence, these performance

analyses take the form of optimization problems. We show that, under some reasonable

assumptions, these optimization problems can be written as convex programs, which are

readily solved using off-the-shelf numerical optimization packages.

Chapter 6 describes some practical applications of the performance metrics and demon-

strates these applications on numerical examples. More specifically, we discuss how the

performance metrics can be used in engineering applications such as trade studies, se-

lecting a fault diagnosis scheme, and safety certification. We demonstrate some of these

applications using two examples. The first is an air-data sensor system, which measures an

aircraft’s airspeed and altitude. The second example is a linearized model of the longitudinal

dynamics of a fixed-wing vertical take-off and landing (vtol) aircraft.

Finally, Chapter 7 summarizes the conclusions drawn from this research work and

discusses some avenues for future research.

1.2 Thesis Contributions

1. Performance of fault detection schemes: In Chapter 3, we present a rigorous proba-

bilistic framework that can be used to assess the performance of any fault diagnosis

scheme applied to a system with a parametric fault model. Unlike existing perfor-

mance analyses, the performance metrics produced by this framework capture the

time-varying nature of the fault-diagnosis problem. Moreover, this framework can be

applied to the problems of fault detection, fault isolation, and fault identification.

2. Time-complexity analysis: By closely examining the time-complexity of each step

in computing the performance metrics, we arrive at a broad class of fault diagnosis

problems for which our performance analysis is computationally tractable.

• Efficient Algorithms: We present algorithms for efficiently and accurately computing

the performance metrics without resorting to Monte Carlo methods or approxima-
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tion.

• Complexity of Markov Chains: We establish sufficient conditions on the structure

of a finite-state Markov chain, which guarantee that the number of paths with

nonzero probability grows polynomially. For time-homogeneous Markov chains,

the conditions are necessary, as well as sufficient. In each case, the conditions are

easily and efficiently verified using a graph-theoretic test.

3. Worst-case performance of fault detection schemes with uncertain elements: We

extend our performance analysis by considering systems with uncertain input signals

and model uncertainty. The worst-case values of the performance metrics are defined

as the optimum points of two optimization problems. We show that, under reasonable

assumptions, these optimization problems may be written as convex programs that

are easily solved using off-the-shelf numerical optimization routines.
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Chapter 2

Background

2.1 Introduction

The purpose of this chapter is to establish the context and background for our discussion

of probabilistic fault diagnosis problems. First, we provide a brief summary of the key

definitions of probability theory. Then, we review some standard terminology and definitions

from reliability theory. Finally, we provide a brief survey of fault diagnosis. This survey

includes a list of commonly-used terminology, an outline of the key techniques used to

design fault diagnosis schemes, and some comments on existing performance analyses for

fault diagnosis problems.

2.2 Probability Theory

In this section, we review the basic definitions of probability theory and establish some

notation. A complete survey of probability theory is beyond the scope of this dissertation,

and the informal definitions stated here are only meant to clarify the subsequent usage of

probability notation. See Rosenthal [81] or Williams [99] for a rigorous measure-theoretic

introduction to probability theory, and see Papoulis and Pillai [72] or Jazwinski [50] for an

introduction to stochastic processes.

2.2.1 Foundations

Suppose that Ω is a nonempty set called the sample space. Each point ω ∈Ω is an outcome.

Assume that F is a σ-algebra of subsets of Ω. Each set E ∈F is called a event. Let P be a

measure on the measurable space (Ω,F ), such that P(Ω) = 1. Then, P is called a probability

measure and the triple (Ω,F ,P) is called a probability space.

Given a space S, let T be a topology defined on S. Then, a Borel set is any subset of S that

can be formed by taking a countable union, a countable intersection, or the complement of

open sets in T . The collection of Borel sets in S, denoted B(S), forms a σ-algebra known as

the Borel σ-algebra. We use the simpler notation B when the space S is clear from context.
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Given an event B ∈ F with P(B) > 0, the conditional probability of any event A ∈ F ,

given B , is defined as

P(A | B) = P(A∩B)

P(B)
.

Essentially, the function P(• | B) is a probability measure on the space (B ,G ), where

G := {A∩B : A ∈F } ⊂F .

Note that the conditional probability P (A | B) is undefined if P(B) = 0.

2.2.2 Random Variables

Given a probability space (Ω,F ,P) and a measurable space (S,E ), a random variable is

a measurable function x : Ω→ S. That is, for all E ∈ E , the preimage x−1(E) is in F . In

this dissertation, we mainly use random variables taking values in the measurable space(
Rn ,B(Rn)

)
. Given a random variable x and a measurable set B ∈B(Rn), the event

x−1(B) = {
ω ∈Ω : x(ω) ∈ B

}
is often written using the informal notation {x ∈ B}. The cumulative distribution function

(cdf) of x is defined for all c ∈Rn as the probability

Px(c) := P
(
{x1 ≤ c1}∩ {x2 ≤ c2}∩·· ·∩ {xn ≤ cn}

)
.

Informally speaking1, the probability density function (pdf) of x is a function px : Rn →R+,

such that

P(x ∈ B) =
∫

x−1(B)
dP =

∫
B

px(s) ds,

for any B ∈B(Rn). If the partial derivatives exists, then px can be defined for all c ∈Rn as

px(c) := ∂nPx

∂x1 · · ·∂xn

∣∣∣∣
x=c

.

If x takes countably many values in Rn , then the probability mass function (pmf), defined as

px(c) = P(x = c),

for all c ∈ x(Ω), takes the place of the pdf.

If two random variables are defined on the sample space, then they are said to be jointly

1Technically, the probability density function of x, if it exists, is defined as the Radon–Nikodym derivative
of the measure P◦ x−1 with respect to Lebesgue measure on Rn . Precise conditions for the existence of the
Radon–Nikodym derivative can found in [82].
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distributed. Let x : Ω→Rm and y : Ω→Rn . The joint cdf of x and y is defined as

Px,y (c,d) := P
(
{x1 ≤ c1} · · ·∩ {xm ≤ cm}∩ {y1 ≤ d1} · · ·∩ {yn ≤ dn}

)
,

for any c ∈Rm and d ∈Rn , and the joint pdf is a function px,y : Rm ×Rn →R+, such that

P(x ∈ A, y ∈ B) =
∫

x−1(A)∩y−1(B)
dP =

∫
A

∫
B

px,y (s, t ) ds dt ,

for any A ∈ B(Rm) and B ∈ B(Rn). If x and y are jointly distributed, then the marginal

density of y is defined as

py (d) =
∫
Rm

px,y (t ,d) dt ,

for all d ∈Rn . The marginal density px is similarly defined. The conditional distribution of x

given y is defined as

px|y (s | t ) := px,y (s, t )

py (t )
,

for all s ∈Rm and all t ∈Rn , such that py (t ) > 0.

2.2.3 Expectation, Mean, and Variance

Given a function f : Rn →Rm and a random variable x : Ω→Rn , the expected value of the

random variable f (x) is defined as

E
(

f (x)
)

:=
∫
Ω

f
(
x(ω)

)
dP(ω),

when the integral exists. If the pdf px exists, then E
(

f (x)
)

may be written as

E
(

f (x)
)= ∫

Rn
f (s)px(s) ds.

This integral naturally becomes a sum if px is a pmf. The mean of x is defined as E(x) and

the variance of x is defined as

var(x) := E
((

x −E(x)
)(

x −E(x)
)T

)
.

Given jointly distributed random variables x : Ω → Rm and y : Ω → Rn and a function

f : Rm → Rp , the conditional expectation of f (x) given y can be stated in terms of the

conditional density (if it exists) as follows:

E
(

f (x) | y
)= ∫

Rm
f (s)px|y (s | y) ds.
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Note that E
(

f (x) | y
)

is a random variable taking values in Rp . See [99] for a more rigorous

definition of conditional expectation.

2.2.4 Independence

Let (Ω,F ,P) be a probability space. There are three notions of probabilistic independence:

• Two events, E1 ∈F and E2 ∈F , are independent if P(E1 ∩E2) = P(E1)P(E2).

• Two σ-algebras G1 ⊂ F and G2 ⊂ F are independent if, for all G1 ∈ G1 and G2 ∈ G2,

P(G1 ∩G2) = P(G1)P(G2) (i.e., the events G1 and G2 are independent).

• Two jointly distributed random variables x : Ω→Rm and y : Ω→Rn are independent

if, for all B1 ∈B(Rm) and B2 ∈B(Rn), the events x−1(B1) and y−1(B2) are independent.

This independence is denoted as x Í y . Note that x Í y implies that, for all a ∈Rm and

b ∈Rn ,

px,y (a,b) = px(a)py (b),

if these densities exist.

2.2.5 Stochastic Processes

Given an index set T , a stochastic process is a function x : T ×Ω→ Rn , such that xt is a

random variable, for all t ∈ T . Alternatively, we could view x as a random variable which

takes values in the set of functions mapping T to Rn . We often use the notation {xt }t∈T

or simply {xt } to distinguish the stochastic process x from a single random variable. If

the index set is T = [0,∞), then {xt } is called a continuous-time stochastic process, and if

T =Z+ = {0,1, . . .}, then {xt } is called a discrete-time stochastic process. Given a discrete-time

stochastic process {xt }, define the notation xi : j := {xi , xi+1, . . . , x j }, for all i , j ∈Z+.

A stochastic process {xt } is called a Markov process if

px(xtn | xt1 , . . . , xtn−1 ) = px(xtn | xtn−1 ),

for any set of indices {t1, t2, . . . , tn} ⊂ T , such that t1 < t2 < ·· · < tn . A white stochastic process

{xt } is defined as a Markov process, such that

px(xt2 | xt1 ) = px(xt2 ),

for all t1, t2 ∈ T . A discrete-time Markov process {zk } taking values in some countable set

M ⊂Rm is called a Markov chain.

Given a stochastic process {xt : Ω→Rn}t∈T , the mean function of x is defined as

mx(t ) := E(xt ),
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for all t ∈ T , the autocorrelation function of x is defined as

Rx(s, t ) := E(xs xT
t ),

for all s, t ∈ T , and the autocovariance function of x is defined as

Cx(s, t ) := E
((

xs −mx(s)
)(

xt −mx(t )
)T

)
,

for all s, t ∈ T . The random process {xt } is said to be strictly stationary if

p(xt1 , xt2 , . . . , xtm ) = p(xt1+τ, xt2+τ, . . . , xtm+τ)

for all finite sets of indices t1, t2, . . . , tm ∈ T , where m ∈ N, and all τ ≥ 0. The random pro-

cess {xt } is said to be wide-sense stationary (wss) if for some constant m̄ ∈Rn ,

mx(t ) = m̄,

for all t ∈ T , and for any τ ∈ T ,

Rx(s +τ, s) = Rx(t +τ, t ),

for all s, t ∈ T . If {xt } is wss, then Rx only depends on the difference between its arguments

and we may write Rx(s +τ, s) = Rx(τ), for all s,τ ∈ T . Given a wss process {xt }, the power

spectral density of x is defined as

Sx(ξ) := F(Rx)(ξ) =
∫

e−2πiξτRx(τ) dτ,

where F is the Fourier transform operator.

2.2.6 Common Probability Distributions

1. A Gaussian random variable x : Ω→ Rn with mean µ ∈ Rn and variance Σ ∈ Rn×n , such

that ΣÂ 0, is defined by the pdf

px(s) := 1p
(2π)n |Σ| exp

(
−1

2
(s −µ)TΣ−1(s −µ)

)
.

This distribution is denoted x ∼N (µ,Σ). If we define z := Σ−1/2(x −µ), then z ∼N (0, I ),

which is known as the standard Gaussian distribution. If z is scalar, then the cdf of z can

be written as

Pz(c) = 1

2

(
1+erf

(
cp
2

))
,
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for all c ∈R, where

erf(c) := 2p
π

∫ c

0
e−t 2

dt ,

is known as the error function. Similarly, in the scalar case, the cdf of x can be written as

Px(c) = 1

2

(
1+erf

(
c −µp

2Σ

))
.

Although there is no closed-form solution for computing the cdf of a Gaussian, there are

many strategies for computing accurate numerical approximations [17, 38].

The following fact is perhaps the most useful property of the Gaussian distribution.

Fact 2.1. Suppose that x ∼N (µ,Σ) takes values in Rn . Then, for all A ∈Rm×n and b ∈Rm ,

the random variable y = Ax +b is also Gaussian with mean Aµ+b and variance AΣAT .

2. A Gaussian stochastic process is a stochastic process {xt }t∈T , such that xt is a Gaussian

random variable, for all t ∈ T . If {xt } is also a white process, then

Cx(t , s) =Q(t )δ(t − s),

where Qt º 0 for all t ∈ T . Hence, the power spectral density of a white Gaussian process

is a constant function.

3. An exponentially-distributed random variable τ : Ω→ R+ with parameter λ> 0 has the

pdf

pτ(t ) :=λe−λt

and the cdf

Pτ(t ) := 1−e−λt ,

for all t ≥ 0. This distribution is denoted τ∼ Exp(λ).

4. A geometrically-distributed random variable κ : Ω→Z+ with parameter q > 0 has the pmf

pκ(k) = (1−q)k−1q,

and the cdf

Pκ(k) = 1− (1−q)k ,

for all k ∈Z+. This distribution is denoted κ∼ Geo(q).
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2.3 Reliability Theory

In this section, we present a select set of definitions and results from the vast field of

reliability theory. The purpose is to establish two useful probabilistic models for the failure

time of a system or component. For a thorough treatment of reliability theory, see Rausand

and Høyland [77] or Singpurwalla [85].

Let (Ω,F ,P) be a probability space, and let τ : Ω→R+ := [0,∞) be a random variable that

represents the time at which some system or component fails. As in the previous section,

let Pτ and pτ denote the cumulative distribution function (cdf) and probability density

function (pdf) of τ, respectively.

Definition 2.2. The mean time to failure (mttf) of τ is defined as E(τ).

Definition 2.3. The failure rate is defined as the expected number of failures in some interval

of time, given that no failure has occurred yet. For ∆> 0, the failure rate of τ at time t ≥ 0 is

ρ∆(t ) := P(t < τ≤ t +∆ | τ> t )

∆
= Pτ(t +∆)−Pτ(t )

∆
(
1−Pτ(t )

) .

Definition 2.4. The hazard rate of τ at time t ≥ 0 is defined as

h(t ) := lim
∆→0

ρ∆(t ) = pτ(t )

1−Pτ(t )
.

Suppose that, for a given sample time Ts > 0, the failure time is modeled as a discrete-

valued random variable κ : Ω→ Z+ := {0,1, . . .}. That is, for all k ∈ Z+, the event {κ = k}

indicates a failure at time kTs . In this case, the interval ∆ must be a multiple of the sample

time Ts , so the hazard rate converges to

h(k) = ρTs (k) = Pκ(k +1)−Pκ(k)

Ts
(
1−Pκ(k)

) .

However, there are cases where the discrete failure time κ does not have an underlying

sample time. In such cases, the hazard rate is defined as

h(k) = ρ1(k) = Pκ(k +1)−Pκ(k)

1−Pκ(k)
.

For many physical systems, the graph of the hazard rate takes the shape of a “bathtub

curve”, shown in Figure 2.1 [77,85]. Initially, the system goes through a break-in phase where

failures are more likely. If the system survives the break-in phase, the hazard rate remains

roughly constant until the systems begins to wear out and failures become more likely again.

In modeling physical systems, it is common to assume that the break-in phase has already
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Figure 2.1. “Bathtub” shape of the hazard rate curve for a typical system. Failures are more likely as
the component is broken in (t < t1) and as the component wears out (t > t2). In the intermediate
period (t1 ≤ t ≤ t2), the hazard rate is roughly constant.

taken place, but the wear-out phase has not yet begun. Hence, the class of random variables

with a constant hazard function play an important role in reliability theory.

Definition 2.5. A random variable with constant hazard rate is said to be memoryless.

Next, we consider two useful probability distributions, one defined on R+ and one

defined on Z+, that yield memoryless failure times. Verifying these facts is simply a matter

of applying the definition of the hazard rate to their respective cdfs and pdfs.

Fact 2.6. If τ∼ Exp(λ), then τ is memoryless with h(t ) =λ, for all t .

Fact 2.7. If κ∼ Geo(q), then κ is memoryless with h(k) = q
Ts

, for all k ∈Z+, where Ts > 0 is

either the underlying sample time of the model or the constant Ts = 1.

Suppose that τ∼ Exp(λ) models the failure time of some component. For a given sample

time Ts > 0, it is often useful to define a discrete-valued random variable κ : Ω→Z+, such

that the cdf Pκ approximates the cdf Pτ. The following fact shows that the geometric

distribution provides an ideal discretization of the exponential distribution.

Fact 2.8. Fix Ts > 0, let τ∼ Exp(λ), and let κ∼ Geo(q), such that q = 1−e−λTs . Then,

Pκ(k) = Pτ(kTs),

for all k. Moreover, the hazard rate of κ at time step k is

h(k) =λ− λ2Ts

2
+O(T 2

s ),
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so the hazard rate of κ converges to the hazard rate of τ as Ts → 0.

Proof. For k ≥ 0, the cdf of κ is

Pκ(k) = 1− (e−λ∆)k = 1−e−λk∆ = Pτ(k∆).

Since the second-order Taylor approximation of the exponential function is

e−x = 1−x + x2

2
+O(x3),

the hazard rate of κ is approximated by

h(k) = q

Ts
= 1−e−λTs

Ts
=λ− λ2Ts

2
+O(T 2

s )

Hence, h(k) →λ as Ts → 0.

2.4 Fault Diagnosis

This section provides a brief survey of the fault diagnosis literature. To begin, we establish a

lexicon of common fault diagnosis terminology. Then, we briefly review some of the existing

techniques used to design fault diagnosis schemes. Although this dissertation is focused on

performance analysis, rather than design, this survey provides some context for our analysis.

Similarly, we survey some of the ways in which redundancy can be used, in conjunction with

fault diagnosis schemes, to produce more reliable systems. Finally, we discuss the existing

approaches to analyzing the performance of fault diagnosis schemes.

2.4.1 Basic Terminology

Because fault diagnosis research spans many engineering disciplines, there is some dis-

agreement about even the most basic terminology. In the late 1980s, the International

Federation of Automatic Control (ifac) formed the Technical Committee on Fault Detection,

Supervision, and Safety of Technical Processes (safeprocess). One key contribution of the

ifac safeprocess committee was to establish a set of commonly accepted definitions. The

following list, taken directly from [49], is comprised of these definitions:

fault — an unpermitted deviation of at least one characteristic property or

parameter of the system from the acceptable/usual/standard condition.

failure — a permanent interruption of a system’s ability to perform a required

function under specified operating conditions.
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malfunction — an intermittent irregularity in the fulfilment of a system’s desired

function.

disturbance — an unknown (and uncontrolled) input acting on a system.

residual — a fault indicator, based on a deviation between measurements and

model-equation-based computations.

fault detection — determination of the faults present in a system and the time

of detection.

fault isolation — determination of the kind, location and time of detection of a

fault. Follows fault detection.

fault identification — determination of the size and time-variant behaviour of a

fault. Follows fault isolation.

fault diagnosis — determination of the kind, size, location and time of detection

of a fault. Follows fault detection. Includes fault identification.

reliability — ability of a system to perform a required function under stated

conditions, within a given scope, during a given period of time.

safety — ability of a system not to cause danger to persons or equipment or the

environment.

availability — probability that a system or equipment will operate satisfactorily

and effectively at any point of time.

2.4.2 Brief Survey of Fault Diagnosis

In this section, we present a brief survey of the vast field of fault diagnosis. For a thorough

treatment, see Chen and Patton [9], Ding [24], or Isermann [48]. Consider the general fault

diagnosis problem in Figure 2.2. The system G is affected by known inputs u, stochastic

noises v , unknown deterministic disturbances w , and an exogenous signal f representing

a fault. The fault diagnosis scheme is comprised of two parts: a residual generator F and

a decision function δ. The residual generator F uses the known input u and the measured

output y to produce a residual r , which carries information about the occurrence of faults.

The decision function δ evaluates the residual and determines what type of fault, if any, has

occurred. The output of the residual generator, d , is called the decision issued by the fdi

scheme. Typically, d takes values in some finite set of decisions D. This separation of a fault

diagnosis scheme into two stages was first proposed in [13].

There are a number of approaches to constructing meaningful residual signals. In a

structured residual set, the residual r is a vector such that each component ri is sensitive to

a subset of faults. If each residual component ri is sensitive to a single component fi of the

fault vector, then r is said to be a dedicated residual set. Another approach is to make each
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Figure 2.2. General fault diagnosis problem. The plant G is subject to a known deterministic input u,
a random input v , a deterministic disturbance w , and a fault input f . The residual generator F uses
the plant input u and output y to produce a residual r , and the decision function δ uses the residual r
to produce a decision d about the current value of f . Together, F and δ form a fault detection scheme
denoted by V = (F,δ). Figure adapted from [9, p. 21].

component ri sensitive to all faults except fi , in which case r is called a generalized residual

set. For all structured residual sets, the occurrence of fault fi is determined by comparing

the components of the residual vector.

Taking a more geometric approach, the residual generator F may be constructed in

such a way that when fault fi occurs (and no other faults occur) the residual r lies in some

subspace Ci . Using this approach, faults are detected by determining which subspace Ci is

closest to the residual vector r , in some geometric sense. Such residual vectors are called

directional residual vectors in the literature.

There are many techniques for constructing residual generators. Here, we present a brief

survey of some of the most popular methods. Because this dissertation focuses on the per-

formance analysis of fdi schemes, rather than design, this survey is neither exhaustive nor

self-contained. The presentation, especially the section on parity equation-based methods,

closely follows the survey given in [9, Chap. 2].

Observer-Based Methods

Let the dynamics of G be described by a finite-dimensional ordinary differential equation

with state x. In observer-based methods, the residual generator F is an observer that

produces an estimate z of some linear function of the output, Ly , where L is chosen by the

designer of the fault diagnosis scheme. The residual is defined as

r :=Q(z −Ly),
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where the matrix Q is chosen to appropriately weight the estimation errors. The idea behind

observer-based methods is to construct the observer F and the weighting matrix Q such that

the residual is sensitive to faults. Early presentations of the observer-based method (e.g., [3])

assumed that there were no disturbances or noises affecting the system. For such systems, F

consists of a Luenberger observer [64] with weighted estimation error. For systems affected

by noises, a Kalman filter [50–53] may be used to obtain an estimate of Ly that minimizes

the mean-squared estimation error [67]. For systems affected by a disturbance, an unknown

input observer is used to decouple the residual from the effect of the disturbance [10, 58].

Typically, unknown input observers are not full-order and the remaining degrees of freedom

may be used to address some other design objective. For example, in systems affected

by disturbances and noise, the remaining degrees of freedom may be selected such that

mean-squared estimation error is as small as possible [8, 9].

Parity Equation-Based Methods

The parity equation approach is similar to the notion of physical redundancy, in the sense

that the residual is formed by comparing the system outputs y . For simplicity, assume that

the output y ∈Rm is given by

y =C x + v + f ,

where v is a noise process and f is a fault signal. Note that parity equation methods typically

assume that there are no disturbances affecting the system. The residual is defined as

r :=Q y,

where Q 6= 0 is chosen such that QC = 0. Hence, the residual can be written as

r =Q(v + f ) = q1(v1 + f1)+·· ·+qm(vm + fm),

where qi is the i th column of Q. Since each fault fi enters the residual in the direction of

the vector qi , faults are isolated by choosing the largest component (in magnitude) of the

vector QT r . See [78] for an early survey of parity equation-based methods.

Of course, the requirement that QC = 0 can only be met with a nonzero Q when C has a

nontrivial null space. For systems where this requirement is not met, a form of temporal

redundancy may be used [14,68]. This approach is usually restricted to discrete-time systems

with no disturbances or noises. Suppose that the system is of the form

xk+1 = Axk +Bk uk +R1 fk

yk =C xk +Dk uk +R2 fk .
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Fix s ∈N, and consider the following temporal relations:
yk−s

yk−s+1
...

yk


︸ ︷︷ ︸

Yk

−H


uk−s

uk−s+1
...

uk


︸ ︷︷ ︸

Uk

=W xk−s +M


fk−s

fk−s+1
...

fk


︸ ︷︷ ︸

Φk

,

where

H :=


D 0 · · · 0

C B D · · · 0
...

...
. . .

...

C As−1B C As−2B · · · D

 , M :=


R2 0 · · · 0

C R1 R2 · · · 0
...

...
. . .

...

C As−1R1 C As−2R1 · · · R2

 , W :=


C

C A
...

C As

 .

The residual is defined as

rk :=Q(Yk −HUk ) =QW xk−s +QMΦk .

Hence, Q should be chosen such that QW = 0 and QM 6= 0. By the Cayley–Hamilton Theorem

[59], these conditions can always be satisfied if s is large enough [14].

Parameter Estimation-Based Methods

In the parameter estimation approach to fault diagnosis it is assumed that faults cause

changes in the physical parameters of the system, which in turn cause changes in the system

model parameters [47]. Consider the block diagram shown in Figure 2.3. The system Gθ is

parameterized by a vector of model parameters θ taking values in some parameter set Θ.

Since faults enter the system Gθ via changes in the parameter θ, no exogenous fault signals

are considered. The general idea is to detect faults by observing changes in θ. Since θ is

not measured directly, its value must be estimated using the system inputs u and outputs y .

If θ0 is the nominal value of the model parameter and θ̂ is the estimate, then the residual

may be defined as

r := θ̂−θ0.

Another approach to defining the residual is to compare the output of the nominal system

(i.e., Gθ0 ) with the measured output y , in which case the residual is defined as

r := y −Gθ0 u.

Typically, fault isolation is more difficult using parameter estimation-based methods [9].
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Figure 2.3. General parametric fault diagnosis problem. Here, faults affect the system G via the
parameter θ, rather than an exogenous fault signal f , as in Figure 2.2.

2.5 Designing for Reliability

2.5.1 Physical Redundancy

In physically redundant configurations, multiple components performing the same function

are used in parallel. A physically redundant system of four sensors is shown in Figure 2.4.

Note that each identical sensor S is affected by different noises vi , disturbances di , and

faults fi , making each of the outputs yi different. The outputs are aggregated into a single

measurement ȳ using some sort of averaging or voting scheme. To detect a component

failure, each output yi is subtracted from the aggregate output ȳ to form a residual ri .

Advantages of physical redundancy

Generally speaking, physically redundant systems can survive multiple component failures

and still perform their prescribed function. For example, a quadruplex system of four

components, such as the sensor system in Figure 2.4, can survive two component failures.

After one failure, the failed component is taken off-line and the remaining three components

function in a triplex configuration. Note that the voting scheme must adapt to this new

configuration. If a second failure occurs, the failed component is taken off-line, and the

system functions in a duplex configuration. In the event of a third failure, the system is

unable to determine which component is healthy and which is failed, rendering the whole

system in a failed state.
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Figure 2.4. System of four physically redundant sensors. Although each sensor Si is affected by the
same input u, each sensor is also affected by a distinct noise vi , disturbance wi , and fault signal fi .
The Voting Scheme uses the vector of measurements y to produce a single aggregate output ȳ . The
residual vector r is formed by directly comparing each component of the measured output vector y to
the aggregate output ȳ .

Disadvantages of physical redundancy

The most apparent disadvantage to using physically redundant components is the additional

size, weight, power, and cost needed to support multiple copies of the same component. For

some systems, such as commercial airliners, the need for reliability justifies the additional

cost and physical redundancy is used extensively [18, 69]. However, for other systems, such

as Unmanned Aerial Vehicles (uavs), the use of physically redundant components is less

practical.

2.5.2 Analytical Redundancy

An alternative approach to physical redundancy is analytical redundancy. In analytically

redundant configurations, analytical relationships are used to derive redundant estimates of

measured quantities. Consider, for example, the sensor system shown in Figure 2.5. Each

of the distinct sensors Si senses a different physical quantity ui and produces a different

measurement yi . Suppose that, under ideal conditions (i.e., no noises vi , disturbances wi ,

or faults fi ), the measurements satisfy known analytical relationships:

y1 = g1(y2, y3),

y2 = g2(y1, y4),

y3 = g3(y2, y4),

y4 = g4(y1, y3).
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These relationships can be used to form residual signals. For example,

r1 = y3 − g3(y2, y4),

r2 = y4 − g4(y1, y3),

r3 = y2 − g2(y1, y4),

r4 = y1 − g1(y2, y3).

For i = 1,2,3,4, let εi > 0 and define

si :=
0, if |ri | < εi ,

1, otherwise.

Then, faults can be detected based on the following symptom table [48, §17]:

Symptoms
Fault s1 s2 s3 s4

1 0 1 1 1

2 1 0 1 1

3 1 1 0 1

4 1 1 1 0

Note that when Sensor i fails (i.e., Fault i occurs), all of the residual except ri are affected.

Hence, this is an example of a generalized residual set. For this example, when two sensors

fail, all the symptoms are present and there is no way to determine which faults have

occurred.

Advantages of analytical redundancy

The key advantage of using analytical redundancy is the reduced physical complexity of the

system. For example, in Figure 2.5, four sensors are used to measure four different quantities

y1, y2, y3, and y4. Thus, each sensor is performing a unique useful task and no extraneous

hardware is being used. By moving the redundancy to the software side, the overall system

consumes less space, weight, and power.

Disadvantages of analytical redundancy

In general, analytically redundant configurations are less reliable. Since each component

performs a unique function, the loss of a single component may compromise an entire

subsystem. For example, suppose that Sensor 1 in Figure 2.5 fails. Then, the system no

longer has access to a measurement of the quantity y1. At best, the signal ŷ1 = g (y2, y3)
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Figure 2.5. System of four analytically redundant sensors. Each sensor Si is affected by a distinct
input ui , noise vi , disturbance wi , and fault signal fi . The block labeled g represents a set of analytical
relationships, which use the vector of measurements y to produce a residual vector r . Then, the
decision function δ uses the residual vector r to produce a decision d .

can be used as a substitute. Also, the ability of the system to detect other sensor failures is

reduced, because y1 enters into all four of the residuals.

2.6 Existing Performance Analyses

2.6.1 Standard Approaches

In the fault detection literature, there are two primary ways to assess the performance of

a fault detection scheme: simulation and design criteria. The simulation-based approach,

used in [12, 15, 25, 32, 42, 62, 89, 107–109], involves simulating a number of realizations of the

residual r given that a particular fault occurs at a particular time (see Figure 2.6 for a typical

plot of a single simulation). From these simulation data, one can generally get a sense of

how well the fault detection scheme detects the fault in question. However, the number of

simulations—usually just one—is often too small to say anything statistically meaningful

about the performance. Moreover, it is impractical to produce such a plot for every possible

fault that may affect the system. By simulating the effect that a particular fault has on the

residual, these simulation-based performance assessments assume that either the residual

has reached steady-state when the fault occurs or, for some other reason, the time at which

the fault occurs is irrelevant. Such assumptions are only meaningful when the residual is

completely decoupled from the known inputs, unknown disturbances, and noise signals.

The second approach to assessing the performance of fault detection schemes is to quote

the numerical value of design criteria. Examples of design criteria are given in Section 2.4.2.

This approach, used in [10, 12, 14, 26, 39], is most useful for comparing fault detection

schemes designed using similar criteria. Although it may be possible to produce a scheme

using one set of design criteria and then assess their performance with respect to another set,
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Figure 2.6. Typical plot of the response of the residual to the occurrence of a particular fault at time
T f . The residual crosses the threshold ε at time Td , giving a detection delay of Td −T f .

the actual values of the criteria may be hard to interpret in terms of the desired system-level

performance (e.g., overall reliability, false alarm rate).

2.6.2 Probabilistic Approaches

Recognizing the need for more rigorous and informative performance metrics, some authors

in the fault diagnosis community (e.g., [8, 24, 100]) have proposed the probability of false

alarm as a performance metric. For a fixed time k, a false alarm is defined as the event that

the fault detection scheme indicates a fault at time k, given that no fault has occurred at

or before time k. Conditional on the event that no fault has occurred, the only source of

randomness in the residual {rk } is the noise signal {vk }. In many cases, the distribution of

the stochastic process {rk } is easily computed, and the probability of a false alarm can be

evaluated (or at least bounded above).

However, the probability of false alarm alone cannot characterize the performance of

a fault detection scheme. Consider, for example, the trivial decision function defined as

δ0 : (k,rk ) 7→ 0, for all k and rk . Paired with any residual generator F , the fault detection

scheme V = (F,δ0) will have zero probability of false alarm, but V is incapable of detect-

ing faults. Hence, it is also necessary quantify the probability of detection, which is the

probability that the fault detection scheme correctly detects a fault when one is present. In

general, the probability of detection must be computed for each fault or each class of faults.

Performing these computations can be intractable unless special care is taken. For example,

the class of fault signals considered in [100] is restricted to the set of randomly occurring

biases, which are easily parameterized by the time of occurrence and the magnitude of the

bias. More commonly, authors use simulation or design criteria, as in the previous section,

to complement the probability of false alarm (e.g., [8]). One of the main objectives of this
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thesis is to provide a probabilistic framework, in which the probability of detection can
be efficiently computed for a large class of random fault signals.

2.6.3 Quickest Detection Problem

A related problem, which lends itself to more rigorous probabilistic analysis, is the quickest

detection problem. Suppose that we measure a sequence of independent random variables

{yk }k≥0. Initially, the random variables are independent and identically distributed (iid)

according to some distribution P0. Then, at some random time t f , a change or fault occurs

which alters the distribution of the random sequence. After t f , the sequence {yk }k≥t f is still

iid, but the distribution is P1. The goal is to detect that the distribution of {yk } has changed,

as quickly as possible, after the fault time t f . This problem is also known as statistical

change-point detection or simply change-point detection.

A quickest detection scheme is a procedure that processes the measurements {yk } and

produces an alarm time ta , which is an estimate of the fault time t f . Given a quickest

detection scheme, the performance is typically assessed by two performance metrics [2, 76,

84]. First, the mean time between false alarms is defined as

T̄ := E(ta | ta < t f ),

Second, the mean delay is defined as

τ̄ := E(ta − t f +1 | ta ≥ t f ).

Although these metrics quantify the performance of the scheme in a meaningful way, their

application to fault diagnosis problems is limited. When the sets of measurements {yk }k<t f

and {yk }k≥t f are each iid, these metrics are easy to compute. However, for more complex

fault diagnosis problems, as in Figures 2.2 and 2.3, the distribution of yk changes at each

time step and the measurements are usually correlated in time. Hence, computing T̄ and τ̄

is intractable for most fault diagnosis problems. Moreover, these metrics do not generalize

to the case where many types of changes may occur (i.e., the distribution may change from

P0 to any member of the set {P1,P2, . . . ,Pm} at time t f ). Despite the strong assumptions re-

quired, some authors (e.g., [44]) have successfully applied the quickest detection framework

to fault detection problems.
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Chapter 3

Probabilistic Performance Analysis

3.1 Introduction

The goal of this chapter is to provide a rigorous probabilistic analysis of fault diagnosis

systems. In Section 3.3, fault detection is treated as a type of statistical hypothesis test and

the accuracy of the test is analyzed probabilistically. Basic performance metrics, as well as

common aggregate measures of performance, are presented. In Section 3.4, the limits of

achievable fault detection performance are considered. In Section 3.5, some approaches

for certifying and visualizing the time-varying performance of a fault detection system are

considered. Finally, Section 3.6 briefly considers some extensions of this analysis to the

more general fault isolation problem.

3.2 Problem Formulation

The main objective of this dissertation is to provide a rigorous probabilistic performance

analysis of fault diagnosis schemes. Our analysis focuses on the parametric model shown in

Figure 3.1. Both the system Gθ and residual generator F are assumed to be discrete-time

dynamic systems. The time-varying model parameter {θk } is a discrete-time stochastic

process taking values in some set Θ, where θk = 0 is the nominal value (i.e., no faults or

failures). The system Gθ is affected by a known deterministic input {uk }, an unknown

deterministic disturbance {wk }, and a stochastic noise signal {vk }. We assume that the

distributions of {θk } and {vk } are known and that {wk } lies in some convex bounded set.

In the parametric framework, the designer of the fault diagnosis scheme partitions the

parameter space into two or more disjoint subsets

Θ=Θ0 tΘ1 t·· ·tΘq ,

where t denotes the disjoint union and Θ0 := {0} is the nominal parameter value. The
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Figure 3.1. General parametric fault diagnosis problem. Faults affect the physical parameters of
the system, which in turn affect the system model parameter θ. The plant G is subject to a known
deterministic input u, a random input v , and a deterministic disturbance w . The residual generator
uses the plant input u and output y to produce a residual r , and the decision function δ uses the
residual r to produce a decision d about the current value of θ. Together, F and δ form a fault
diagnosis scheme, denoted V = (F,δ).

corresponding set of possible decisions is defined as

D := {0,1, . . . , q}.

The purpose of the fault diagnosis scheme V = (F,δ) is to produce a decision dk ∈D, at each

time k, indicating which subset Θdk ⊂Θ most likely contains the parameter θk . Of course,

the scheme V does not have direct access to the parameter. Instead, V must make a decision

based on the known input {uk } and the measured output {yk }, which is corrupted by the

noise signal {vk } and the disturbance {wk }. Therefore, the performance of the scheme V is

quantified by the probability that the correct decision is made.

The number of partitions q determines what type fault diagnosis problem the scheme V

is designed to address. If q = 1, the set Θ1 contains all faulty parameter values, and V is

interpreted as a fault detection scheme. If q > 1, each subset Θi ⊂Θ represents a different

class of faulty behavior, and V is interpreted as a fault isolation scheme. If the parameter

space Θ is finite and each partition Θi a singleton set, then V achieves fault identification,

as well. In Section 3.3, we define probabilistic performance metrics for the fault detection

problem (q = 1). Then, in Section 3.6, these results are extended to the more general fault

isolation problem (q > 1).

In this chapter and in Chapter 4, we assume that the deterministic input {uk } is known

and fixed, that there is no deterministic disturbance {wk }, and that Gθ is a known function of

the parameter {θk }. Chapter 5 extends these results by considering how uncertainty impacts

the performance metrics. In particular, Chapter 5 presents some techniques for computing
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the worst-case performance under a given uncertainty model.

3.3 Quantifying Accuracy

Our performance analysis of fault detection is rooted in the theory of statistical hypothesis

testing. This approach not only allows us to utilize the tools and terminology of hypothesis

testing, it also allows us to draw connections between fault detection and other fields,

such as signal detection [54, 61, 75, 93], medical diagnostic testing [31, 73, 111], and pattern

recognition [34, 57]. For a standard mathematical treatment of statistical hypothesis testing,

see Lehmann and Romano [60].

3.3.1 Fault Detection and Hypothesis Testing

For the sake of simplicity, this section focuses on the problem of fault detection, while the

more general fault isolation problem is treated in Section 3.6. Hence, the parameter space is

partitioned into two sets: the set containing the nominal parameter, Θ0 = {0}, and the set

containing all faulty parameter values, Θ1 =Θc
0. At each time k, define the hypotheses

H0,k : θk ∈Θ0,

H1,k : θk ∈Θ1,

and let Hi ,k be the event that hypothesis H i ,k is true, for each i . Since exactly one hypothesis

is true at each time, the sets H0,k and H1,k form a partition of the sample space Ω. The

fault detection scheme V is interpreted as a test that decides between the hypotheses H0,k

and H1,k . Although the input data u0:k = {u0, . . . ,uk } are known and deterministic, the

distribution of the output data y0:k = {y0, . . . , yk } clearly depends on which hypothesis is

true. Together, u0:k and y0:k are interpreted as a test statistic, which is used by the test V to

produce a decision dk in D = {0,1}, at time k. Let D0,k be the event that dk = 0 and let D1,k

be the event that dk = 1. Of course, exactly one of these events is true at each time, so the

sets D0,k and D1,k form another partition of the sample space Ω.

3.3.2 Probabilistic Analysis

Let the prior probabilities of the hypotheses be denoted

Q0,k := P(H0,k ),

Q1,k := P(H1,k ).

Since exactly one hypothesis is true and exactly one decision is made at each time k, the

performance of the test V is characterized by the probability that the events Di ,k and H j ,k
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are simultaneously true, for each i and j . The four possible cases are typically given the

following names [61, 73]:

D0,k ∩H0,k is a true negative,

D1,k ∩H0,k is a false positive,

D0,k ∩H1,k is a false negative,

D1,k ∩H1,k is a true positive.

The corresponding probabilities of these events are denoted

Ptn,k := P(D0,k ∩H0,k ), (3.1)

Pfp,k := P(D1,k ∩H0,k ), (3.2)

Pfn,k := P(D0,k ∩H1,k ), (3.3)

Ptp,k := P(D1,k ∩H1,k ). (3.4)

In the literature (e.g., [31, 34, 73]), these event are often organized into an array[
Ptn,k Pfn,k

Pfp,k Ptp,k

]
, (3.5)

called a confusion matrix or contingency table. Since, for each k, the collection of events

{Di ,k ∩ H j ,k : i , j ∈ D} forms a partition of the sample space, the probabilities (3.1)–(3.4)

satisfy the following useful identities:

Ptn,k +Pfn,k = P(D0,k ), (3.6)

Pfp,k +Ptp,k = P(D1,k ), (3.7)

Ptn,k +Pfp,k = P(H0,k ) =Q0,k , (3.8)

Pfn,k +Ptp,k = P(H1,k ) =Q1,k , (3.9)

Ptn,k +Pfp,k +Pfn,k +Ptp,k = 1. (3.10)

The identity in equation (3.10) implies that there are only three independent probabilities.

In the sequel, we refer to the probabilities Ptn,k , Pfp,k , Pfn,k , and Ptp,k as the performance

metrics for the test V at time k.

Although the probabilities (3.1)–(3.4) quantify every possible state of affairs, with respect

to the hypotheses H0,k and H1,k , the numerical values of these probabilities may be difficult

to interpret. For example, suppose that Q1,k ≈ 0. By equation (3.9), Q1,k ≈ 0 implies that

Pfn,k ≈ 0 and Ptp,k ≈ 0. From the small numerical values of Pfn,k and Ptp,k , it may be difficult

to get a sense of how the fault diagnosis scheme will behave in the event that a fault actually

occurs. An alternative approach is to consider the relative magnitudes of the probabilities.
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For example,
Ptp,k

Pfn,k +Ptp,k
= P(D1,k ∩H1,k )

P(H1,k )
= P(D1,k | H1,k ).

Hence, we consider the following conditional probabilities:

Pd,k := P(D1,k | H1,k ), (3.11)

Pf,k := P(D1,k | H0,k ). (3.12)

Typically, Pd,k is called the probability of detection and Pf,k is called the probability of a false

alarm [54, 61]. Note that the other conditional probabilities P(D0,k | H1,k ) and P(D0,k | H0,k )

are given by 1−Pd,k and 1−Pf,k , respectively.

Proposition 3.1. The probabilities {Pf,k } and {Pd,k }, together with the prior probabilities {Q0,k },

provide a set of performance metrics that are equivalent to the joint probabilities (3.1)–(3.4).

Proof. At each time k, the original performance metrics (3.1)–(3.4) are directly computed

from Pf,k , Pd,k , and Q0,k as follows:

Ptn,k = P(D0,k | H0,k ) P(H0,k ) = (1−Pf,k )Q0,k ,

Pfp,k = P(D1,k | H0,k ) P(H0,k ) = Pf,k Q0,k ,

Pfn,k = P(D0,k | H1,k ) P(H1,k ) = (1−Pd,k ) (1−Q0,k ),

Ptp,k = P(D1,k | H1,k ) P(H1,k ) = Pd,k (1−Q0,k ).

Also, these equations can be inverted to compute Pf,k , Pd,k , and Q0,k as follows:

Pf,k = P(D1,k ∩H0,k )

H0,k
= Pfp,k

Ptn,k +Pfp,k

Pd,k = P(D1,k ∩H1,k )

H1,k
= Ptp,k

Pfn,k +Ptp,k

Q0,k = P(D0,k ∩H0,k )+P(D1,k ∩H0,k ) = Ptn,k +Pfp,k .

Remark 3.2. Since the sequence {Q0,k } quantifies the reliability of the system Gθ, using the

conditional probabilities {Pf,k } and {Pd,k } as performance metrics decouples the perfor-

mance of the test V from the underlying system. In the sequel, we will often assume that

the system Gθ, as well as the probabilities {Q0,k }, are fixed, in which case the pair (Pf,k ,Pd,k )

will completely capture the performance of the test.
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3.3.3 Aggregate Measures of Performance

Although the performance metrics {Ptn,k }, {Pfp,k }, {Pfn,k }, and {Ptp,k } fully characterize the

time-varying behavior of the fault detection scheme V = (F,δ), it is often useful to aggregate

these probabilities into a single meaningful quality. In this section, we consider two com-

mon aggregate performance measures. These approaches are included to further elucidate

the connection between statistical hypothesis testing and performance analysis for fault

detection schemes.

Probability of Correctness

The probability of correctness of a test V , denoted ck , is defined as the probability that the

decision dk corresponds to the correct hypothesis. More precisely, for each time k,

ck := Ptn,k +Ptp,k = (1−Pf,k )Q0,k +Pd,k Q1,k .

Equivalently, one may consider the probability ek := 1−ck , which is known as the probability

of error [61].

Bayesian Risk

To generalize the concept of accuracy, we utilize the concepts of loss and risk used in

hypothesis testing [60] and general statistical decision theory [4, 22]. Fix a time k. In general,

a loss function Lk : Θ×D → R is a nonnegative bounded function that quantifies the loss

Lk (ϑk ,dk ) incurred by deciding dk when ϑk is the true state of affairs. Since the parameter

space is partitioned as Θ=Θ0 ∪Θ1 and the set of decisions is D = {0,1}, a loss function for

the fault detection problem can be expressed as a matrix Lk ∈R2×2 with nonnegative entries.

The value Lk (i , j ) can be interpreted as the loss incurred by deciding dk = j “averaged” over

all ϑk ∈Θi .

The loss matrices {Lk }k≥0 provide a subjective way to quantify the importance of making

the correct decision in each possible case. The Bayesian risk Rk (Q,V ) is defined to be the

expected loss incurred by the test V at time k, given that the parameter {θk } is distributed

according to Qk = {Q0,k ,Q1,k }. More precisely, for each time k,

Rk (Q,V ) := E
(
L(θk ,dk )

)
=

1∑
i=0

1∑
j=0

Lk (i , j )P(D j ,k ∩Hi ,k ).

In terms of the performance metrics, the risk is

Rk (Q,V ) = L(0,0)Ptn +L(1,0)Pfn +L(0,1)Pfp +L(1,1)Ptp

= L(0,0)Q0 +L(1,0)Q1 +
(
L(0,1)−L(0,0)

)
Pf Q0 +

(
L(1,1)−L(1,0)

)
Pd Q1,

(3.13)
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where the subscript k has been omitted for the sake of clarity.

Example 3.3 (0-1 Loss). Suppose that the loss matrix

L =
[

0 1

1 0

]

is used for all time. This is typically referred to as “0-1 loss” in the literature [4, 61]. By equa-

tion (3.13), the corresponding Bayesian risk of a test V at time k is

Rk (Qk ,V ) = Pfp,k +Pfn,k

= Pf,k Q0,k + (1−Pd,k )Q1,k

= 1− ck .

Thus, placing an upper bound on the 0-1 risk Rk (Qk ,V ) is equivalent to placing a lower bound

on the probability of correctness ck .

3.4 Characterizing the Range of Achievable Performance

In Section 3.3, the performance of a test was given in terms of the probabilities {Pf,k }

and {Pd,k }. In this section, we consider the complementary problem of determining what

performance values (Pf,k ,Pd,k ) ∈ [0,1]2 are achievable by some test. Again, we draw on the

tools of statistical hypothesis testing to address this issue. Namely, we use the Neyman–

Pearson Lemma [71] and the receiver operating characteristic (roc) [57] to characterize the

limits of achievable performance. To facilitate our discussion, we first introduce the concept

of a randomized test.

3.4.1 Randomized Tests

Up to this point, we have focused our attention on tests V = (F,δ), where both the residual

generator F and the decision function δ are deterministic. However, it is possible to design

and implement tests that are nondeterministic. In this section, we introduce nondetermin-

istic or randomized tests and use them to characterize the set of achievable performance

points.

Definition 3.4. A hypothesis test V is said to be a randomized test if, for a given realization

of the test statistic (û0:k , ŷ0:k ), the decision dk =V (û0:k , ŷ0:k ) is a random variable.

Define V to be set of all deterministic and randomized hypothesis tests, and define Wk

to be the set of all performance points (α,β) ∈ [0,1]2 that are achieved by some test V ∈ V ,

at time k. The following example shows how to derive randomized tests from the class of

30



deterministic tests.

Example 3.5. One common way to produce a randomized test is to randomly select a test from

some finite collection of deterministic tests {V1,V2, . . . ,Vm} ⊂ V and use the decision produced by

that test. More precisely, let p be a point in the simplex

Sm :=
{

p ∈Rm : pi ≥ 0,
m∑

i=1
pi = 1

}
,

and define λ to be a random variable that takes values in the set {1,2, . . . ,m}, such that

P(λ= i ) = pi .

Let the randomized test Vp be defined by

Vp (u0:k , y0:k ) :=Vλ(u0:k , y0:k ), (3.14)

for all k and all (u0:k , y0:k ). Then, probability of a false alarm for Vp at time k is

Pf,k (Vp ) = P(D1,k | H0,k )

=
m∑

i=1
P(D1,k | H0,k ,λ= i )P(λ= i )

=
m∑

i=1
Pf,k (Vi ) pi .

By a similar calculation, the probability of detection for Vp at time k is

Pd,k (Vp ) =
m∑

i=1
Pd,k (Vi ) pi .

The case m = 4 is shown in Figure 3.2, where the shaded region represents the performance

points achieved by the family of randomized tests {Vp }p∈S4 obtained using this method.

Fact 3.6. The set of achievable performance points Wk is convex.

Proof. Let (α1,β1) and (α2,β2) be any two points in Wk , and let V1 and V2, respectively, be

tests in V that achieve these performance points at time k. Let γ ∈ [0,1]. To show that Wk is

convex, we must exhibit a test with performance

(α,β) := γ(α1,β1)+ (1−γ)(α2,β2),

at time k. Since the point p := (γ,1−γ) is in the simplex S2, we can use the procedure

outlined in Example 3.5 to construct a randomized test Vp that utilizes V1 and V2. The
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Figure 3.2. Illustration of Example 3.5 showing the range of performance points (shaded region)
achievable by randomly selecting the decision made by one of four deterministic tests.

probability of a false alarm for this test is

Pf,k (Vp ) = Pf,k (V1)γ+Pf,k (V2)(1−γ) =α1γ+α2(1−γ) =α.

Similarly, the probability of detection is

Pd,k (Vp ) = Pd,k (V1)γ+Pd,k (V2)(1−γ) =β1γ+β2(1−γ) =β.

Hence, Vp has the desired performance at time k, and Wk is convex.

Fact 3.7. The set Wk contains the points (0,0) and (1,1).

Proof. Let Vno ∈ V be the test makes the decision dk = 0, for all k. Similarly, let Vyes ∈ V be

the test that makes the decision dk = 1, for all k. The performance of the test Vno is clearly

(0,0), while the performance of Vyes is (1,1).

Since Wk is convex and always contains the points (0,0) and (1,1), Wk also contains the

point (γ,γ), for any γ ∈ (0,1). One test that achieves performance (γ,γ), is the randomized

test that uses Vno with probability 1−γ and Vyes with probability γ. Since such tests make

random decisions, independent of the value of the test statistic (u0:k , y0:k ), they are often

called uninformative tests [73]. Hence, we are mostly concerned with tests whose perfor-

mance point is above the diagonal (i.e., Pd,k > Pf,k ). However, the following fact shows that

a test whose performance point falls below the diagonal can also be useful.
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Figure 3.3. Visual summary of Facts 3.6–3.8. At each time k, the set Wk is convex, it contains the
extreme points (0,0) and (1,1), and it is symmetric about the point

( 1
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)
.

Fact 3.8. The set Wk is symmetric about the point
(1

2 , 1
2

)
, in the sense that if (α,β) ∈Wk , then

(1−α,1−β) ∈Wk , as well.

Proof. Let (α,β) ∈Wk and take V ∈ V to be a test whose performance, at time k, is given by

(α,β). Define V̄ to be the test that always decides the opposite of what V decides. Then, the

probability of a false alarm for V̄ is 1−α, and the probability of detection for V is 1−β.

To summarize, at each time k, the set of achievable performance points Wk is a convex

set that is symmetric about the point
(1

2 , 1
2

)
and contains the extreme points (0,0) and (1,1)

(see Figure 3.3). Although Facts 3.6–3.8 are well known and can be found in the literature

(e.g., [61]), the brief proofs provided here provide some insight into the structure of the

sets {Wk }k≥0.

3.4.2 Receiver Operating Characteristic

The ideal performance point (Pf,k ,Pd,k ) = (0,1) is achieved by a test that always chooses

the correct hypothesis. However, such perfect tests rarely exist, because the test statistic

(u0:k , y0:k ) contains only partial information about the parameter θk . Indeed, the test statistic

is related to the parameter through the dynamics of the system Gθ, which is unlikely to

yield a one-to-one relation. Moreover, the exogenous noise process {vk } corrupts the limited

information available about θk . Therefore, the set Wk of achievable performance points is

separated from the ideal (0,1) by a curve passing through (0,0) and (1,1).

33



Definition 3.9. The upper boundary between the set Wk and the ideal point (0,1) is called

the receiver operating characteristic (roc) for the set of all tests V .

Since the set Wk changes with time, the roc is time-varying, as well. Also, since Wk is

convex (Fact 3.6), the roc is concave. By Fact 3.8, there is a equivalent convex curve that

separates Wk from the point (1,0). However, the term roc only refers to the upper boundary.

Characterizing the ROC

Although it may not be possible to compute the roc for the set of all tests V , the set of

tests whose performance points lie on the roc can be characterized theoretically. For any

α ∈ (0,1], let Vα be the set of tests for which Pf,k ≤α, at time k. The set of Neyman–Pearson

tests are defined as

Vnp = argmax
V ∈Vα

Pd,k (V ). (3.15)

In general, the set Vα is too abstract to properly formulate and solve this constrained opti-

mization problem. However, the following lemma shows that Vnp is nonempty and explicitly

characterizes one element in Vnp.

Lemma 3.10 (Neyman–Pearson [71]). The likelihood ratio test with Pf,k =α is in Vnp.

Therefore, the roc is given by the set of likelihood ratio tests (see [61] for details).

In the optimization problem (3.15), the probability of a false alarm is constrained to

be less than some α ∈ (0,1]. However, we can also interpret the roc in terms of the vector

optimization problem

max
V ∈V

(−Pf,k ,Pd,k ). (3.16)

Since the objective takes values in [0,1]2, it not immediately clear what it means for one

point to be better than another. Clearly, the ideal point (0,1) is the best and points on the

diagonal are of little use. The notion of Pareto optimality provides one way to compare

values of the objective (−Pf,k ,Pd,k ). We say that a point (Pf,k ,Pd,k ) = (α,β) is Pareto optimal

if no other test can simultaneously improve both Pf,k and Pd,k . That is, for any other test

with performance (α′,β′) 6= (α,β), either α′ > α or β′ < β. Hence, the roc can be defined

as the set of Pareto optimal points for the vector optimization problem (3.16). One well-

known method for generating the set of Pareto optimal points (i.e., the roc) is to solve the

“scalarized” optimization problem

max
V ∈V

−γPf,k + (1−γ)Pd,k (3.17)

for all γ ∈ [0,1] [5, 106]. Since the roc is concave, a lower bound may be computed by

solving (3.17) at a finite collection of points 0 < γ0 < γ1 < ·· · < γm < 1 and linearly interpo-
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lating between the achieved performance values. (By Fact 3.7, the points (0,0) and (1,1)

should also be included in this lower bound.) However, as mentioned above, the set V is

too abstract to make this approach practical. Therefore, in the next section, we consider an

extended definition of the roc that applies to more concrete sets of tests.

Extending the ROC to Specific Families of Tests

In Definition 3.9, the roc is defined with respect to the set of all tests, including randomized

tests. This definition allowed us to characterize the roc in terms of likelihood ratio tests, via

the Neyman–Pearson Lemma (Lemma 3.10), or in terms of Pareto optimality. In practice,

however, we want to be able to evaluate the performance of a given test or a given family of

tests. For example, consider the parameterized family of fault detection schemes

V̂ = {
Vε ∈ V : Vε = (F,δε) and ε> 0

}
, (3.18)

where the residual generator F is fixed and δε is a threshold function defined as

δε(r ) :=
0, if |r | < ε,

1, otherwise.

Clearly, Vε → Vyes as ε→ 0, regardless of the choice of F . Similarly, Vε → Vno as ε→ ∞.

Hence, the set of achievable performance points is a curve passing through (0,0) and (1,1)

(see Figure 3.4). Using randomization, as in Example 3.5, the tests in V̂ can be used to

achieve any performance point between this curve and the diagonal (i.e., any point in the

convex hull of the curve). Hence, we have the following natural extension of the definition

of the roc.

Definition 3.11. Let V̂ ⊂ V be some subset of tests. Define Ŵk ⊂Wk to be the set of perfor-

mance points that are achieved by some test in V̂ . The upper boundary of the set Ŵk is

called the receiver operating characteristic (roc) for the class of tests V̂ at time k.

3.5 Certifying and Visualizing Performance

3.5.1 Bounds on Performance Metrics

Given a fault detection scheme V , the system Gθ is said to be available at time k if no fault

has occurred and no false alarm has been issued. Hence, the probability of availability is

given by the performance metric Ptn,k . In a physical system affected by wear and deterio-

ration, Q1,k → 1 as k →∞, so Ptn,k → 0 as k →∞. Therefore, any bound on Ptn,k can only

be enforced over a specified time window. Given N ∈N and a > 0, one criterion for system
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Figure 3.4. Set of performance points achieved by the family of tests given in equation (3.18). Varying
the threshold ε yields a curve of performance points passing through (0,0) and (1,1). Randomization
can be used to achieve any performance in the convex hull of this curve (shaded region).

availability is to require that

Ptn,k > a,

for k = 0,1, . . . , N . This type of bound is shown in Figure 3.5(a), where the constraint fails to

hold for k > k f . In terms of the performance metrics, the availability may be written as

Ptn,k = (1−Pf,k )Q0,k ,

for all k. Thus, the lower bound on availability can be translated to a time-varying upper

bound on Pf,k , as follows:

Pf,k < 1− a

Q0,k
,

for k = 0,1, . . . , N . This type of bound is shown in Figure 3.5(b). Note that no fault detection

scheme can satisfy the bound on availability once Q0,k ≤ a.

Given β>α> 0, another natural performance criterion is to assert that the performance

metrics Pf,k and Pd,k satisfy the constraints

Pf,k <α and Pd,k >β,

for all k. A visualization of this type of bound is shown in Figure 3.6. In Figure 3.7, this

constraint can be visualized in roc space by plotting the roc curves at a number of time

steps {k0,k1, . . . ,km}. Unlike Ptn,k which eventually converges to 0, the metrics Pf,k and

Pd,k often converge to steady-state values, so the visualization in Figure 3.7 can depict the
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Figure 3.5. Visualization of a constraint on availability. On the top axes (a), the performance metrics
{Ptn,k ,Pfp,k ,Pfn,k ,Ptp,k } are plotted against time, and the constraint on availability is represented by
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Figure 3.6. Visualization of a constraint on the performance metrics {Pf,k } and {Pd,k } over time. Here,
the constraint is Pd,k >β and Pf,k <α, for k = 0,1, . . . , N . The marginal probability that the system is
in the nominal mode, denoted {Q0,k }, is shown for reference.

steady-state performance metrics if km is large enough.

3.5.2 Bound on Bayesian Risk

As discussed in Section 3.3.3, the Bayesian risk provides a general linear framework for

aggregating the performance of a fault detection scheme into a single performance metric.

For the sake of simplicity, assume that the loss matrix L ∈R2 is constant for all time. Given a

sequence {R̄k }, such that R̄k > 0 for all k, the bound on the Bayesian risk at time k is

Rk (Q,V ) = L00Q0,k +L01Q1,k + (L01 −L00)Pf,kQ0,k + (L11 −L10)Pd,kQ1,k < R̄k .

At each k, the set of performance points (Pf,k ,Pd,k ) satisfying this bound is the intersection

of some half-space in R2 with the roc space [0,1]2 (see Figure 3.8). The boundary of this

half-space is determined the loss matrix L and the probability Q0,k . Clearly, if the ideal

performance point (0,1) does not lie in this half-space at time k, then the bound Rk < R̄k is

too stringent.

Note that as Q0,k → 1, the bound on risk approaches

L00 + (L01 −L00)Pf,k < R̄ ⇐⇒ Pf,k < R̄ −L00

L01 −L00
.

Similarly, as Q0,k → 0, the bound approaches

L01 + (L11 −L10)Pd,k < R̄ ⇐⇒ Pd,k > L01 − R̄

L10 −L11
.
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Figure 3.8. Visualization of a constraint on Bayesian risk in roc space. Each blue line represents the
Bayesian risk bound at a different time step. Note that as Q0,k decreases with time, the slope of the
bound decreases and the probability of detection Pd,k plays a more significant role in satisfying the
constraint. A roc curve corresponding to a single time step is plotted for reference.
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In general, as Q0,k decreases, the slope of the boundary line that delineates the set of

acceptable performance points also decreases. Hence, from a Bayesian risk perspective,

when Q0,k is large and faults are unlikely to occur, it is more important to avoid false alarms.

On the other hand, when Q0,k is small and faults are likely to occur, it is more important

to detect faults. Figure 3.8 shows a typical plot of the evolution of the Bayesian risk bound

through time.

3.6 Extension to Fault Isolation and Identification

In this section, we extend our performance analysis to fault isolation and identification prob-

lems. As in the fault detection case, there is a set of joint probabilities that fully characterizes

the performance, and a set of conditional probabilities that characterize the performance

relative to the marginal probabilities of the hypotheses being considered. We show that

these sets of performance metrics are equivalent. We also show how the concept of Bayesian

risk is defined in the multi-hypothesis case. Finally, we provide some brief comments on

how the roc curve can be extended, as well.

3.6.1 Quantifying Accuracy

Consider the general fault isolation problem, where the parameter space is partitioned as

Θ=Θ0 tΘ1 t·· ·tΘq ,

for some q > 1. As in the simpler fault detection case, Θ0 = {0} represents the nominal

parameter value, while the set Θi , for i > 0, represents the i th class of faulty behavior. If Θ

is finite, fault identification can be achieved by taking each Θi to be a singleton set. The

corresponding set of decisions is

D := {0,1, . . . , q}.

At each time k, define the events

Di ,k := {dk = i } and H j ,k := {θk ∈Θ j },

for all i , j ∈ D. The performance metrics (3.1)–(3.4) are extended to the multi-hypothesis

case by the performance matrix Jk ∈R(q+1)×(q+1), which is defined as

Jk (i , j ) := P(Di ,k ∩H j ,k ), i , j ∈D.

Hence, Jk can be viewed as a confusion matrix for the multi-hypothesis case. Because

{D0,k ,D1,k , . . . ,Dq,k } and {H0,k , H1,k , . . . , Hq,k } form partitions of the sample space Ω, the

performance matrix satisfies identities analogous to those in equations (3.6)–(3.10). As in
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equations 3.6 and 3.7, the i th row-sum of Jk is

q∑
j=0

Jk (i , j ) =
q∑

j=0
P(Di ,k ∩H j ,k ) = P

(
Di ,k ∩

q⋃
j=0

H j ,k

)
= P(Di ,k ∩Ω) = P(Di ,k ).

Similarly, the j th column-sum of Jk is

q∑
i=0

Jk (i , j ) =
q∑

i=0
P(Di ,k ∩H j ,k ) = P(H j ,k ), (3.19)

as in equations 3.8 and 3.9. Of course, summing all the entries of Jk gives P(Ω) = 1, as in

equation 3.10. This implies that there are only (q +1)2−1 independent performance metrics

that need to be evaluated in the multi-hypothesis case.

As in the fault detection case, it is often useful to decouple the issue of test performance

from the reliability of the underlying system. Consider the matrix of conditional probabilities

Ck ∈R(q+1)×(q+1) defined as

Ck (i , j ) := P(Di ,k | H j ,k ), i , j ∈D. (3.20)

Also, define the matrix Qk ∈R(q+1)×(q+1) of prior probabilities as

Qk := diag
{

P(H0,k ),P(H1,k ), . . . ,P(Hq,k )
}

. (3.21)

Proposition 3.12. The matrix Jk and the pair of matrices (Ck ,Qk ) provide equivalent sets of

performance metrics.

Proof. By the definition of conditional probability (see Section 2.2.1),

(CkQk )(i , j ) =
q∑
`=0

Ck (i ,`)Qk (`, j )

=Ck (i , j )Qk ( j , j )

= P(Di ,k | H j ,k )P(H j ,k )

= P(Di ,k ∩H j ,k )

= Jk (i , j ),

for all i , j ∈ D, so Jk = CkQk . Also, by equation (3.19), the matrix Qk can be computed
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from Jk by taking column-sums. If Q†
k is the pseudoinverse of Qk [46], then

(JkQ†
k )(i , j ) =

q∑
`=0

Jk (i ,`)Q†
k (`, j )

= Jk (i , j )Q†
k ( j , j )

=
{

P(Di ,k ∩H j ,k )P(H j ,k )−1, if P(H j ,k ) 6= 0,

0, otherwise

= P(Di ,k | H j ,k )

=Ck (i , j ),

for all i , j ∈ D, so Ck = JkQ†
k . Hence, the pair (Ck ,Qk ) provides an alternate means of

quantifying performance that is numerically equivalent to the performance matrix Jk .

Remark 3.13. At a high level, evaluating (Ck ,Qk ) requires the same amount of effort as

evaluating Jk , in the sense that both formulations have the same number of independent

quantities to compute. Indeed, the j th column-sum of Ck is

q∑
i=0

Ck (i , j ) =
q∑

i=0
P(Di ,k | H j ,k ) = P

( q⋃
i=0

Di ,k | H j ,k

)
= P(Ω | H j ,k ) = 1,

so Ck has (q +1)2 − (q +1) independent entries. Also, the sum of all the elements of Qk is

q∑
i=0

Qk (i , i ) =
q∑

i=0
P(Hi ,k ) = P

( q⋃
i=0

Hi ,k

)
= P(Ω) = 1,

so Qk has q independent entries. Therefore, in total, there are (q +1)2 −1 quantities that

must be computed to obtain Ck and Qk , which is the same as the number of independent

entries of Jk . However, it is often the case that computing a single entry of Jk is more

straightforward.

3.6.2 Bayesian Risk

As in the fault detection case, we can define a loss matrix L ∈R(q+1)×(q+1) with nonnegative

entries, such that Li j reflects the subject loss of deciding dk = j when hypothesis H i ,k is

true. The corresponding Bayesian risk is given by

Rk (Q,V ) =
q∑

i=0

q∑
j=0

Li j P(D j ,k ∩Hi ,k ) =
q∑

i=0

q∑
j=0

Li j Jk ( j , i ) =
q∑

i=0

q∑
j=0

Li j Ck ( j , i )Qk (i , i ).

Of course, a different loss matrix Lk can be used at each time step.
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3.6.3 ROC Curves for Multiple Hypotheses

Recall that the performance of a fault detection scheme is decoupled from the reliability of

the underlying system by considering the conditional probabilities Pf,k and Pd,k . Similarly,

the performance of a fault isolation scheme is given by the matrix Ck , which has q(q +1)

independent entries. In [33] and [30], the roc for fault isolation is defined as the set of Pareto

optimal values of Ck plotted in the hypercube [0,1]q(q+1). As in the binary case, the set of

achievable performance points Wk is a convex set [88]. The interpretation of the volume

of this set is given in [45] for q = 2 and in [36, 43] for the general case. Unfortunately, it is

difficult to visualize the time-varying nature of the multi-hypothesis roc surface.
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Chapter 4

Computational Framework

4.1 Introduction

In this chapter, we discuss the computational issues involved in evaluating the performance

metrics defined in Chapter 3. First, we give an overview of these computational issues, which

serves as a framework for the remainder of the chapter. Then, we address these issues by

imposing assumptions on each component of the fault diagnosis problem: the fault model,

the dynamics of the system and residual generator, and the decision function. Together,

these assumptions ensure that the performance metrics can be computed efficiently. Finally,

we provide algorithms in pseudocode form and prove that the assumptions do indeed result

in algorithms with polynomial running time.

Recall that the performance metrics, at time k, are given by the formula

Jk (i , j ) := P
(
D j ,k ∩Hi ,k

)= P
(
D j ,k ∩ {θk ∈Θi }

)= ∫
Θi

P
(
D j ,k ∩ {θk =ϑk }

)
dϑk ,

for each i , j ∈ D. Because the residual rk is the output of a dynamic system, each of the

random variables v0, v1, . . . , vk has an impact on rk , as well as the decision dk . However,

the relationship between rk and the noise sequence v0:k is not specified unless the entire

parameter sequence θ0:k is known. This issue is addressed by marginalizing over the random

variables θ0:k−1 as follows:

P
(
D j ,k ∩ {θk =ϑk }

)= ∫
Θk

P
(
D j ,k ∩ {θ0:k =ϑ0:k }

)
dϑ0:k−1

=
∫
Θk

P
(
D j ,k | θ0:k =ϑ0:k

)
pθ(ϑ0:k ) dϑ0:k−1,

where Θk is the k-fold Cartesian product Θ×·· ·×Θ. Thus, the (i , j )th element of the matrix Jk

can be written as

Jk (i , j ) =
∫
Θi

∫
Θk

P
(
D j ,k | θ0:k =ϑ0:k

)
pθ(ϑ0:k ) dϑ0:k−1 dϑk . (4.1)
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Writing the performance metrics in this manner reveals the following computational issues:

1. We must be able to efficiently evaluate the probability density function pθ(θ0:k ). This

issue is addressed by assuming that {θk } is a Markov chain with known distribution.

2. The integral must be taken over all ϑ0:k ∈ Θk ×Θi . Unless a closed-form analytical

solution exists, this integral must be evaluated numerically, in which case the high

dimensionality makes computation intractable. To address this issue, we make the

assumptions necessary to reduce Θk ×Θi to a finite set of manageable size.

3. For each ϑ0:k ∈Θk ×Θi , computing the probability

P
(
D j ,k | θ0:k =ϑ0:k

)= P(dk = j | θ0:k =ϑ0:k ) (4.2)

requires knowledge of the conditional density pd |θ(dk | θ0:k ). This issue is addressed

in two stages. First, we assume that the system Gθ and the residual generator have

a sufficient structure to ensure that pr |θ(rk | θ0:k ) is a Gaussian density with known

mean and variance. Then, we consider classes of decision functions, such that the

probability in equation (4.2) can be efficiently computed.

4.2 Fault Model

Assume that the fault parameter process {θk }k≥0 is a Markov chain with finite state space

Θ := {0,1, . . . ,m}.

At each time k, let πk ∈ Rm+1 be the probability mass function (pmf) of θk , and let Πk ∈
R(m+1)×(m+1) be the transition probability matrix. That is,

πk (i ) := P(θk = i ), i ∈Θ

and

Πk (i , j ) := P
(
θk+1 = j | θk = i

)
, i , j ∈Θ.

Assume that the initial pmf π0 and the transition probability matrices {Πk } are known.

Note that the triple
(
Θ, {Πk },π0

)
completely defines the probability distribution of the fault

parameter sequence {θk }. We write θ ∼ (
Θ, {Πk },π0

)
to denote this fact.

The first computational issue raised in Section 4.1 is the efficient evaluation of the

probability mass function pθ(θ0:k ). The following simple fact about Markov chains indicates

that, under mild assumptions, this computation takes only O(k) time.
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Fact 4.1. Given a Markov chain θ ∼ (
Θ, {Πk },π0

)
, let `> 0 and ϑ0:` ∈Θ`+1. If Πk (i , j ) can be

computed or retrieved in O(1) time, for any k ≥ 0 and any i , j ∈Θ, then

pθ(ϑ0:`) = P(θ0:` =ϑ0:`)

can be computed in O(`) time.

Proof. By definition, P(θ0 =ϑ0) =π0(ϑ0). Let 0 < τ≤ `. Because {θk } is Markov, the probabil-

ity of the event {θ0:τ =ϑ0:τ} can be factored as

P(θ0:τ =ϑ0:τ) = P(θτ =ϑτ | θ0:τ−1 =ϑ0:τ−1) P(θ0:τ−1 =ϑ0:τ−1)

= P(θτ =ϑτ | θτ−1 =ϑτ−1) P(θ0:τ−1 =ϑ0:τ−1)

=Πτ−1(ϑτ−1,ϑτ) P(θ0:τ−1 =ϑ0:τ−1).

Hence, by induction on τ,

P(θ0:` =ϑ0:`) =Π`−1(ϑ`−1,ϑ`)Π`−2(ϑ`−2,ϑ`−1) · · ·Π0(ϑ0,ϑ1)π0(ϑ0).

Since this computation requires ` evaluations of the transition probability matrices and `

scalar multiplications, the overall time-complexity is `O(1)+`O(1) =O(`).

The second computational issue raised in Section 4.1 is the high dimensionality of

the integral in equation (4.1). Since the fault parameter space Θ is assumed to be finite,

equation (4.1) can be written as

Jk (i , j ) = ∑
ϑ0:k∈Θk×Θi

P(D j ,k | θ0:k =ϑ0:k ) P(θ0:k =ϑ0:k ), (4.3)

for all i , j ∈D and all k ≥ 0. Of course, exchanging an integral for a summation is of little

use if the summation has an intractable number of terms (i.e., the number of terms grows

exponentially with k). In general, the summation (4.3) has mk mi terms, where mi := |Θi |.
The following example illustrates the practical implications of this exponential growth.

Example 4.2. Suppose that {yk }k≥0 is a stochastic process taking values in R such that the condi-

tional density py |θ(yk | θ0:k = ϑ0:k ) is Gaussian for all k and all ϑ0:k ∈Θk+1. Then, the marginal

density of yk can be written as the sum

py (yk ) = ∑
ϑ0:k ∈Θk+1

py |θ(yk | θ0:k =ϑ0:k )P(θ0:k =ϑ0:k ).

In this sum, each term is represented by three scalars: the mean and variance of the Gaussian

density py |θ(yk | θ0:k = ϑ0:k ) and the probability P(θ0:k = ϑ0:k ). If these data are stored in ieee

single precision (i.e., 32 bits per number), then each term requires 3×32 = 96bits or 12bytes
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of storage. In the simplest case, where Θ = {0,1}, there are 2k+1 terms to store. For example,

at k = 36, the total storage needed is

12×236+1 ≈ 1.65×1012 bytes > 1terabyte!

Since physical systems are often sampled at twice their bandwidth or more, the amount of time

represented by 36 discrete samples is small compared to the time-scale of the system.

4.2.1 Limiting Complexity with Structured Markov Chains

Although the number of paths in Θk grows exponentially with k, not all of the paths need

to be considered in computing equation (4.3), because some paths have zero probability

of occurring. That is, some sequences of faults cannot occur under the given model. This

section explores, from a theoretical perspective, what properties the Markov chain must

have in order to reduce the number of terms in equation (4.3) to a tractable number.

Terminology

Definition 4.3. Given a Markov chain θ taking values in Θ, let `≥ 0 and ϑ0:` ∈Θ`+1. If the

event {θ0:` = ϑ0:`} has nonzero probability, then ϑ0:` is said to be a possible path of {θk }.

Otherwise, ϑ0:` is said to be an impossible path.

Definition 4.4. A Markov chain is said to be tractable if the number of possible paths of

length ` is O(`c ), for some constant c.

Definition 4.5. Let θ be a Markov chain taking values in Θ. A state ϑ ∈ Θ is said to be

degenerate if P(θk =ϑ) = 0, for all k (i.e., no possible path ever visits ϑ). A Markov chain with

one or more degenerate states is said to be degenerate.

Remark 4.6. Our definition of a tractable Markov chain is based on the conventional notion

that polynomial-time algorithms are tractable, whereas algorithms requiring superpoly-

nomial time are intractable [19]. This idea is known as Cobham’s Thesis or the Cobham–

Edmonds Thesis [16, 29].

Remark 4.7. Suppose that θ ∼ (
Θ, {Πk },π0

)
is a Markov chain with a nonempty set of degen-

erate states Θ̄ ⊂Θ. Let θ̂ be the Markov chain formed by removing the degenerate states

from Θ and trimming the matrices {Πk } and the pmf π0 accordingly. Clearly, any possible

path of θ is a possible path of θ̂, so the tractability of θ can be determined by analyzing the

non-degenerate Markov chain θ̂.

Since the goal is to relate the tractability of Markov chains to properties of directed

graphs, we must first establish some definitions from graph theory.
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v1

v2

v3

v4

Figure 4.1. Simple example of a directed graph with four vertices and five edges.

Definition 4.8. A directed graph is a collection of points, called vertices, and ordered pairs of

vertices, called edges, that begin at one vertex and end at another. More precisely, a graph is

a pair (V ,E ), where the set of vertices V is any nonempty set, and the set of edges E ⊂V ×V

is such that if (u, v) ∈ E , then the graph contains the edge u → v . The same graph may be

represented by the pair (V , A), where A ∈ {0,1}|V |×|V | is a matrix, such that (u, v) ∈ E if and

only if A(u, v) = 1. The matrix A is called the adjacency matrix of the graph (V ,E).

Definition 4.9. Given a directed graph (V ,E), a cycle is defined as a sequence of vertices

{v1, v2, . . . , vm , v1},

such that

v1 → v2 →···→ vm → v1.

That is, (vi , vi +1) ∈ E for i = 1,2, . . . ,m and (vm , v1) ∈ E . A directed graph with no cycles is

said to be acyclic.

Example 4.10. Consider the directed graph shown in Figure 4.1. The set of vertices is

V = {v1, v2, v3, v4},

and the set of edges is

E = {
(v1, v2), (v1, v3), (v2, v3), (v3, v4), (v4, v2)

}
.

The corresponding adjacency matrix is

A =


1 0 1 0

0 0 1 0

0 0 0 1

0 1 0 0

 .

Note that this graph contains the cycle {v2, v3, v4, v2}.
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Main Results

The following theorems relate the tractability of Markov chains to easily-verifiable properties

of directed graphs.

Theorem 4.11. Given a non-degenerate, time-homogeneous Markov chain θ ∼ (Θ,Π,π0),

define the matrix A as follows:

A(i , j ) :=
1 if i 6= j , Π(i , j ) 6= 0,

0 otherwise,
(4.4)

for all i , j ∈Θ. Then, the Markov chain θ is tractable if and only if the directed graph with

vertices Θ and adjacency matrix A is acyclic.

Theorem 4.12. Given a non-degenerate Markov chain θ ∼ (
Θ, {Πk },π0

)
with time-varying

transition probabilities, define the matrix A as follows:

A(i , j ) :=
1 if i 6= j , Πk (i , j ) 6= 0 for some k ≥ 0

0 otherwise,
(4.5)

for all i , j ∈Θ. Then, the Markov chain θ is tractable if the directed graph with vertices Θ and

adjacency matrix A is acyclic.

Remark 4.13. Note that Theorem 4.11 gives a necessary and sufficient condition for tractabil-

ity, while Theorem 4.12 only gives a sufficient condition. Indeed, Example 4.18 (below) shows

that the graph-theoretic condition stated in Theorem 4.12 is not necessary for tractability.

Remark 4.14. The presence of cycles in a directed graph G = (V ,E) can be determined

using the Depth-First Search (dfs) algorithm in O(|V | + |E |) time, where V is the set of

vertices and E is the set of edges [19, 21]. For the graphs considered in Theorems 4.11

and 4.12, the number of vertices is |Θ| = m +1, and the number of edges is no more than

(m+1)2− (m+1) = m2+m, since the diagonal entries of A must be 0. Hence, the tractability

of a given Markov chain can be verified using dfs in O(m2) time.

Example 4.15. Suppose that Θ= {0,1} and

Π=
[

1 0

1−p p

]
,
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for some p ∈ (0,1). Then, the corresponding adjacency matrix is

A =
[

0 0

1 0

]
.

The graph corresponding to (Θ, A) is

0 1

which is clearly acyclic, so (Θ,Π,π0) is tractable.

Example 4.16. Suppose that Θ= {0,1} and

Π=
[

p 1−p

1−q q

]
,

for some p, q ∈ (0,1). Then, the corresponding adjacency matrix is

A =
[

0 1

1 0

]
.

The graph corresponding to (Θ, A) is

0 1

which has the cycles {0,1,0} and {1,0,1}, so (Θ,Π,π0) is intractable (see Example 4.2).

Example 4.17. Suppose that Θ= {0,1} and

Πk =
[

1 0

max{0,1−kp} min{1,kp}

]
,

for some p ∈ (0,1) and all k ≥ 0. Then, the corresponding adjacency matrix is

A =
[

0 0

1 0

]
.

The graph corresponding to (Θ, A) is

0 1

which is clearly acyclic, so
(
Θ, {Πk },π0

)
is tractable.

Example 4.18. Suppose that Θ= {0,1} and

Πk =
[

pk 1−pk

1−q q

]
,
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where q ∈ (0,1) and

pk =
0.5 if k < 10

1 otherwise.

Then, the corresponding adjacency matrix is

A =
[

0 1

1 0

]
.

As in Example 4.16, the graph (Θ, A) contains cycles, so Theorem 4.12 does not apply. However, in

this simple case, we can see that the Markov chain θ ∼ (
Θ, {Πk },π0

)
is tractable. Indeed, consider

a path ϑ0:` ∈ Θ`+1, where ` ≥ 10. Split the path into two parts, ϑ0:9 and ϑ10:`, and let θ̂ be a

Markov chain, such that θ̂k = θk−10, for all k ≥ 0. The first part ϑ0:9 can take 210 different values,

while the second part ϑ10:` can be considered as a path of the shifted Markov chain θ̂. Since θ̂

has the same time-homogeneous distribution as the tractable Markov chain in Example 4.15, the

number of possible paths of the original Markov chain θ must be polynomial.

Before proving Theorems 4.11 and 4.12, we establish a series of lemmas, each of which

is useful in its own right. Then, these lemmas are used to formulate succinct proofs of the

main results.

Supporting Lemmas

The first two lemmas state the notion of tractability in terms of the structure of the transition

probability matrices.

Lemma 4.19. Let θ ∼ (
Θ, {Πk },π0

)
be a Markov chain, such that Πk is upper-triangular, for

all k. Then, every possible path ϑ0:` ∈Θ`+1 satisfies the inequalities

ϑ0 ≤ϑ1 ≤ ·· · ≤ϑ`−1 ≤ϑ`.

Proof. Let ϑ0:` ∈Θ`+1 be a possible path. Then, the inequality

Π`−1(ϑ`−1,ϑ`)Π`−2(ϑ`−2,ϑ`−1) · · ·Π0(ϑ0,ϑ1)π0(ϑ0) = P(θ0:` =ϑ0:`) > 0.

implies that Πi (ϑi−1,ϑi ) > 0, for i = 1,2, . . . ,`. Since each Πi is upper triangular, it must be

that ϑi−1 ≤ϑi , for i = 1,2, . . . ,`.

Lemma 4.20. Let θ ∼ (
Θ, {Πk },π0

)
be a Markov chain, such that Θ = {0,1, . . .m} and Πk is

upper-triangular, for all k. Then, the number of possible paths ϑ0:` ∈Θ`+1 is

`m

m!
+O(`m−1).
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Proof. Let ϑ0:` be a possible path. By Lemma 4.19, ϑi−1 ≤ϑi , for i = 1, . . . ,`, so the remainder

of the path ϑ1:` makes at most m −ϑ0 transitions from one state to another. If n such

transitions occur, then there are at most
(m−ϑ0

n

)
distinct sets of states that ϑ1:` may visit,

and there are no more than
(`

n

)
combinations of times at which these transitions may occur.

Therefore, the total number of possible paths up to time ` is upper-bounded by

C (`) :=
m∑

ϑ0=0

m−ϑ0∑
n=0

(
m −ϑ0

n

)(
`

n

)
.

The bound (
`

n

)
:= `(`−1) · · · (`−n +1)

n!
< `n

n!
,

implies that

C (`) <
m∑

ϑ0=0

m−ϑ0∑
n=0

(
m −ϑ0

n

)
`n

n!
= `m

m!
+O(`m−1).

Of course, the structure of the transition probability matrices {Πk } depends on how

the states of the Markov chain are labeled. Since a relabeling of the states is affected by a

permutation, the following lemma analyzes the relationship between a Markov chain and its

permuted counterpart.

Lemma 4.21. Let θ ∼ (
Θ, {Πk },π0

)
be a Markov chain, and let σ : Θ→ Θ be a permutation.

Define

π̂0(i ) =π0
(
σ(i )

)
, i ∈Θ, (4.6)

and for all k ≥ 0 define

Π̂k (i , j ) =Πk
(
σ(i ),σ( j )

)
, i , j ∈Θ, (4.7)

Then, the Markov chain θ̂ ∼ (
Θ, {Π̂k }, π̂0

)
has the same number of possible paths as θ.

Proof. Fix `> 0 and let ϑ̂0:` be a path of θ̂. For i = 0,1, . . . ,`, define ϑi := σ(ϑ̂i ). Then, the

equality

P(θ̂0:` = ϑ̂0:`) = Π̂(ϑ̂`−1, ϑ̂`) · · · Π̂(ϑ̂0, ϑ̂1) π̂(ϑ̂0)

=Π(
σ(ϑ̂`−1),σ(ϑ̂`)

) · · ·Π(
σ(ϑ̂0),σ(ϑ̂1)

)
π
(
σ(ϑ̂0)

)
=Π(ϑ`−1,ϑ`) · · ·Π(ϑ0,ϑ1)π(ϑ0)

= P(θ0:` =ϑ0:`)

implies that ϑ̂0:` is a possible path of θ̂ if and only if ϑ0:` is a possible path of θ. Since the

permutation σ is a bijection, θ and θ̂ have the same number of possible paths.
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Since relabeling the states of a Markov chain does not alter its tractability, the next step

is to seek conditions under which the states can be permuted to achieve upper-triangular

transition probability matrices. The following lemmas show that the existence of such

permutations can be related to the presence of cycles in the graph (Θ, A).

Lemma 4.22. Let Θ= {0,1, . . . ,m}. Given a matrix Π ∈R(m+1)×(m+1), define the matrix A as in

Theorem 4.11. Then, there exists a permutation σ : Θ→Θ, such that the matrix

Π̂(i , j ) :=Π(
σ(i ),σ( j )

)
, i , j ∈Θ (4.8)

is upper-triangular if and only if the directed graph with vertices Θ and adjacency matrix A

is acyclic.

Proof. Suppose that the permutation σ makes Π̂ upper triangular. Let n > 0 and let

v0 → v1,→···→ vn

be a path on the graph (Θ, A). For i = 1, . . . ,n, the existence of the edge vi−1 → vi implies

that vi−1 6= vi and

Π(vi−1, vi ) = Π̂(
σ−1(vi−1),σ−1(vi )

) 6= 0.

Since Π̂ is upper-triangular,

σ−1(v0) <σ−1(v1) < ·· · <σ−1(vn).

Therefore, no path can never visit the same vertex twice, i.e., the graph (Θ, A) is acyclic.

Now, suppose that the graph (Θ, A) is acyclic. The Depth-First Search (dfs) algorithm

generates a pre-visit and post-visit number for each vertex v ∈Θ as it begins exploring v

and finishes exploring v , respectively. Because (Θ, A) is acyclic, A(u, v) = 1 if and only if

pre(u) < pre(v) < post(v) < post(u) (4.9)

(see [21] for details). Define the map ρ : v 7→ pre(v), for all v ∈Θ. Since each vertex has a

unique pre-visit number in Θ, the map ρ is a permutation. Let σ := ρ−1 and define Π̂ as in

equation (4.8). Note that for any i , j ∈Θ, such that i > j ,

A
(
σ(i ),σ( j )

)= 0 =⇒ Π
(
σ(i ),σ( j )

)= Π̂(i , j ) = 0.

Therefore, the permutation σ makes Π̂ upper-triangular.

Lemma 4.23. Let Θ= {0,1, . . . ,m}. Given a sequence of matrices {Πk } in R(m+1)×(m+1), define
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the matrix A as in Theorem 4.12. Then, there exists a permutation σ : Θ→Θ, such that the

matrices

Π̂k (i , j ) :=Πk
(
σ(i ),σ( j )

)
, i , j ∈Θ, k ≥ 0, (4.10)

are upper-triangular if the directed graph with vertices Θ and adjacency matrix A is acyclic.

Proof. Assume the graph (Θ, A) is acyclic, and run dfs to get the pre-visit number for each

vertex. Define the map ρ : v → pre(v), for all v ∈Θ, and define σ := ρ−1. Using σ define the

matrices {Π̂k }, as in equation (4.10). If i , j ∈Θ, such that i > j , then A
(
σ(i ),σ( j )

)= 0, which

implies that

Πk
(
σ(i ),σ( j )

)= Π̂k (i , j ) = 0,

for all k. Therefore, the permutation σ makes all the matrices {Π̂k } upper-triangular.

Proof of the Main Results

The preceding lemmas provide all the machinery needed to prove Theorems 4.11 and 4.12.

Proof of Theorem 4.11. Suppose that the graph (Θ, A) is acyclic. By Lemma 4.22, there exists

a permutation σ, such that the matrix Π̂, defined in equation (4.8), is upper-triangular.

Define π̂0 =π0 ◦σ. By Lemma 4.20, the Markov chain θ̂ ∼ (Θ,Π̂, π̂0) is tractable. Therefore,

by Lemma 4.21, the Markov chain θ is also tractable.

Lemma 4.22 states that if the graph (Θ, A) contains a cycle, then there is no permutation

σ that makes Π̂, defined in equation (4.8), upper-triangular. Hence, the proof is complete if

we can show that the non-existence of such a permutation implies that θ is not tractable.

Suppose that no such permutation exists, and suppose that the graph (Θ, A) has the cycle

ϑ0 →ϑ1 →···→ϑ j−1 →ϑ j =ϑ0,

for some ϑ0 ∈Θ and j > 0. Because A is only nonzero where Π is nonzero (see equation (4.5))

and θ is non-degenerate, the cycle ϑ0: j is a possible path of θ. Hence, θ has a set of possible

paths that repeatedly visit ϑ0 by traversing this cycle. Since a longer cycle would only

increase the number of possible paths, it suffices to consider the simplest case where j = 1.

This case is equivalent to the two-state Markov chain considered in Example 4.2, which was

shown to be intractable.

Proof of Theorem 4.12. Lemma 4.23 states that if the graph (Θ, A) is acyclic, then there exists

a permutation σ, such that the matrices {Πk }, defined in equation (4.10), are all upper-

triangular. Define π̂0 =πi ◦σ. By Lemma 4.20, the Markov chain θ̂ ∼ (
Θ, {Π̂k }, π̂0

)
is tractable.

Therefore, by Lemma 4.21, the Markov chain θ is also tractable.
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4.2.2 Special Case: Fault Model Based on Component Failures

Consider a system with L components (e.g., sensors and actuators), and suppose that each

component may fail independently of the others. The term fail is used to indicate that the

component stops working altogether and never resumes normal function. The status of

each component (failed or not) at each time k is encoded by a binary variable b, where

b = 0 indicates that the component has not failed at or before time k, while b = 1 indicates

otherwise. Thus, the status of all L components at each time k is encoded by a L-bit binary

string bk ∈ {0,1}L . One possible parameter space for this model is the set of 2L nonnegative

integers whose binary representations require no more than L bits. That is,

Θ= {0,1, . . . ,2L −1}.

Converting each element of Θ into its binary representation reveals which component

failures are encoded by that state.

Proposition 4.24. Let θ be the stochastic process taking values in Θ, such that θk represents

which components have failed at or before time k. Then, θ is a Markov chain.

Proof. Let k > 0 and ϑ0:k ∈Θk+1. Consider the conditional probability

P(θk =ϑk | θ0:k−1 =ϑ0:k−1). (4.11)

Let i1, i2, . . . , i` be the indices of the components whose failure is encoded by the state

ϑk−1. Also, let i`+1, i`+2, . . . , i`+ j be the components whose failure is encoded by ϑk but

not ϑk−1. Since a failed component must remain in a failed state, the probability (4.11) is

determined by the probability that components i`+1, . . . , i`+ j fail at time k, given {θ0:k−1 =
ϑ0:k−1}. Although the event {θ0:k−1 = ϑ0:k−1} indicates at what times components i1, . . . , i`
failed, this information is irrelevant, since the failure times are independent. The only

meaningful information contained in the event {θ0:k−1 =ϑ0:k−1} is the fact that components

i`+1, . . . , i`+ j fail at time k, which is also indicated by the event {θk−1 =ϑk−1}. Therefore,

P(θk =ϑk | θ0:k−1 =ϑ0:k−1) = P(θk =ϑk | θk−1 =ϑk−1),

which implies that θ is a Markov chain.

Proposition 4.25. The transition probability matrices {Πk } for the Markov chain θ are upper-

triangular.

Proof. Suppose that θ transitions from i ∈Θ to j ∈Θ at time k. Let bi and b j be the binary

representations of i and j , respectively. The transition from i to j has zero probability unless
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every 1-bit of bi is a 1-bit of b j (i.e., components failures are irreversible). Since i 6= j , there

must be at least one bit, say the sth bit from the right, such that bi (s) = 0 but b j (s) = 1.

Hence,

j ≥ i +2s−1 > i .

In other words, Πk (i , j ) is only nonzero where j ≥ i .

Corollary 4.26. The stochastic process θ which encodes the independent irreversible failures

of L components is a tractable Markov chain.

Proof. Propositions 4.24 and 4.25 imply that θ is a Markov chain with upper-triangular

transition probability matrices. Hence, by Lemma 4.20, θ is a tractable Markov chain.

Example 4.27. Consider a system with L = 2 components. The corresponding state space is

Θ= {0,1,2,3}.

If, for example, θk = 2 = (10)2, then component 1 has failed by time k but component 2 has not.

Assume that the components fail at random times κ1 ∼ Geo(q1) and κ2 ∼ Geo(q2), respectively,

where κ1 and κ2 are independent. Then, the transition probability matrix for {θk } is

Π=


(1−q1)(1−q2) (1−q1)q2 q1(1−q2) q1q2

0 1−q1 0 q1

0 0 1−q2 q2

0 0 0 1


Note that Π is upper-triangular, so by Lemma 4.20, the Markov chain is tractable.

4.3 System Dynamics

Recall that the third computational issue presented in Section 4.1 is computing the proba-

bility

P(D j ,k | θ0:k =ϑ0:k ) = P(dk = j | θ0:k =ϑ0:k )

for each j ∈ Θ and ϑ0:k ∈ Θk+1. The first step toward ensuring that this computation is

tractable is to require that the conditional density pr |θ(rk | θ0:k ) is Gaussian with known

mean and variance. Conditional on the event {θ0:k =ϑ0:k }, the only source of randomness

in the fault detection problem is the noise sequence {vk }. Hence, we assume that {vk } is

a Gaussian random process. Without loss of generality, we may also assume that {vk } is

iid with vi ∼N (0, I ), for all i [50]. Although it is well-known that linear dynamical systems

driven by Gaussian noise have Gaussian outputs [50], we consider the following more general

class of systems with conditionally linear dynamics.
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Definition 4.28. Let x0 be a random variable, and let {vk } be a stochastic process. The

system Gθ is said to be conditionally linear if, conditional on the event {θ0:k = ϑ0:k }, the

system output yk is an affine function of the random variables x0, v0, v1, . . . , vk , as well as the

deterministic input u0:k . If x0 is Gaussian and {vk } is a Gaussian process, then the output {yk }

is a Gaussian process and the system Gθ is said to be conditionally linear-Gaussian (clg).

Our approach to ensuring that pr |θ(rk | θ0:k ) is a Gaussian density is to impose certain

assumptions on the structure of Gθ and F . The class of clg systems plays a central role in

these assumptions.

4.3.1 Assumptions Regarding the System Dynamics

In this section, we make assumptions about the structure of the system Gθ and the residual

generator F . After writing the combined dynamics of the interconnection of these systems,

we show that the conditional density pr |θ(rk | θ0:k ) is Gaussian, such that the mean and

variance are easily computed by simulating a set of linear recurrences.

Assumed Structure of the System

Let x0 ∼N (x̂0,Λx,0), assume that {vk } is Gaussian iid with vi ∼N (0, I ), and assume that Gθ

is given by

Gθ

 xk+1 = Âk (θk )xk + B̂u,k (θk )uk + B̂v,k (θk )vk + B̂ f fk (θ0:k ),

yk = Ĉk (θk )xk + D̂u,k (θk )uk + D̂v,k (θk )vk + D̂ f fk (θ0:k ),
(4.12)

where the sequence of functions {
fk : Θk+1 →Rn f

}
k≥0

represents an additive fault signal. Assume that fk (0,0, . . . ,0) = 0, for all k, so that { fk } does

not affect the system when θk remains at the nominal value 0. Conditional on the event

{θ0:k =ϑ0:k }, the sequence
{

fk (ϑ0:k )
}

may be viewed as another deterministic input driving a

linear-Gaussian system. Hence, the system Gθ given by equation (4.12) is clg.

Remark 4.29. Since {θk } is assumed to be a finite-state Markov chain, the clg model Gθ

described by equation (4.12) closely resembles a jump-Markov linear system [20] (also called

a state-space regime switching model in finance [56]). However, the inclusion of the additive

fault signal { fk } is a departure from the traditional jump-Markov linear framework. We

include this additional term, because it facilitates the modeling of sensor and actuator faults

and preserves the clg structure of the system.
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Assumed Structure of the Residual Generator

Given the Gaussian assumptions on x0 and {vk } and clg structure of the model Gθ, the

conditional density py |θ(yk | θ0:k ) is Gaussian, for all k. To ensure that pr |θ(rk | θ0:k ) is also

Gaussian, assume that the residual generator F is a linear time-varying (ltv) system of the

form

F

 ξk+1 = Ãkξk + B̃u,k uk + B̃y,k yk ,

rk = C̃kξk + D̃u,k uk + D̃ y,k yk .
(4.13)

Note that this system is unaffected by changes in the parameter {θk }, except through the

measured output {yk }.

Combined Dynamics

Assuming that Gθ is clg and F is linear, the interconnection of the two systems is a single

clg system that takes {uk }, {vk }, and { fk } as its inputs and outputs the residual {rk }. For

each k, let ηk := (xk ,ξk ) be the combined state of the system. The combined dynamics can

be written as

ηk+1 = Ak (θk )ηk +Bu,k (θk )uk +Bv,k (θk )vk +B f fk (θ0:k ), (4.14)

rk =Ck (θk )ηk +Du,k (θk )uk +Dv,k (θk )vk +D f fk (θ0:k ), (4.15)

where

Ak (θk ) :=
[

Âk (θk ) 0

B̃y,kĈk (θk ) Ãk

]
,

Bu,k (θk ) :=
[

B̂u,k (θk )

B̃u,k + B̃y,k D̂u,k (θk )

]
, Bv,k (θk ) :=

[
B̂v,k (θk )

B̃y,k D̂v,k (θk )

]
, B f :=

[
B̂ f

B̃y,k D̂ f

]
,

Ck (θk ) :=
[

D̃ y,kĈk (θk ) C̃k

]
,

Du,k (θk ) := D̃u,k + D̃ y,k D̂u,k (θk ), Dv,k (θk ) := D̃ y,k D̂v,k (θk ), D f := D̃ y,k D̂ f .

At this point, some remarks about the initial condition of F are in order. Intuitively, the

expected value of the residual at time k = 0 should be zero. Hence, assuming that θ0 = 0

58



almost surely and x̂0 = E(x0), the initial condition ξ0 should solve the equation

E(r0) =C0(0)

[
x̂0

ξ0

]
+Du,0(0)u0

= D̃ y,0Ĉ0(0)x̂0 + C̃0ξ0 +Du,0u0

= 0.

Since this equation may not always have a solution, a sensible choice is to take ξ0 to be the

minimum-norm solution [23] of the optimization problem

min
ξ

‖E(r0)‖2 = min
ξ

∥∥D̃ y,0Ĉ0(0)x̂0 + C̃0ξ+Du,0u0
∥∥2

. (4.16)

4.3.2 Computing the Conditional Mean and Variance

If the system Gθ and the residual generator F satisfy the assumptions stated above, it is

straightforward to compute the conditional mean and variance of the residual {rk }, given

a particular parameter sequence. Fix a final time step N ∈ N and a parameter sequence

ϑ0:N ∈ΘN+1. For all k, define the conditional expected values

η̂k (ϑ0:k ) := E(ηk | θ0:k =ϑ0:k )

and

r̂k (ϑ0:k ) := E(rk | θ0:k =ϑ0:k ).

The simpler notation η̂k and r̂k will be used when the sequence ϑ0:k is clear from context.

The sequences {η̂k } and {r̂k } are given by the linear recurrence

η̂k+1 = Ak (ϑk )η̂k +Bu,k (ϑk )uk +B f fk (ϑ0:k ), (4.17)

r̂k =Ck (ϑk )η̂k +Du,k (ϑk )uk +D f fk (ϑ0:k ). (4.18)

Similarly, define

Λk (ϑ0:k ) := var(ηk | θ0:k =ϑ0:k ),

and

Σk (ϑ0:k ) := var(rk | θ0:k =ϑ0:k ).

Then, the sequences {Λk } and {Σk } are given by the linear recurrence

Λk+1 = Ak (ϑk )Λk AT
k (ϑk )+Bv,k (ϑk )B T

v,k (ϑk ), (4.19)

Σk =Ck (ϑk )ΛkC T
k (ϑk )+Dv,k (ϑk )DT

v,k (ϑk ). (4.20)
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Therefore, conditional on the event {θ0:k =ϑ0:k }, the residual rk has the Gaussian distribution

N (r̂k ,Σk ), which is easily computed by simulating equations (4.17)–(4.20).

4.3.3 Special Case: Models with Only Additive Faults

As noted in Remark 4.29, the term fk (θ0:k ) in the clg model (4.12) facilitates the modeling of

additive sensor and actuator failures. In many treatments of fault detection, additive inputs

are the only source of faults considered (see [9] and [24] for surveys of fault models used in

the literature). As we will see in Section 4.5, this assumption can greatly reduce the amount

of computational effort required to evaluate the performance metrics.

Suppose that {θk } is a Markov chain representing the independent irreversible failures

of L components, as in Section 4.2.2. Hence, the parameter state space is

Θ= {0,1, . . . ,2L −1}.

Recall that if the j th component is in a failed state at time k, then the j th bit (from the left)

of the binary representation of θk is 1. Thus, the time at which component j fails can be

determined by examining the realized values of {θk }. For j = 1, . . . ,L, define the map

κ j (ϑ0:k ) :=
i if component j failed at time i ≤ k,

∞ otherwise,

for all k ∈ N and ϑ0:k ∈ Θk+1. That is, if the value of ϑ0:k indicates the failure of the j th

component at or before time k, then κ j (ϑ0:k ) is the corresponding failure time. Otherwise,

κ j (ϑ0:k ) just returns ∞.

For j = 1, . . . ,L, let the effect of the j th component failure be modeled by a function

ϕ j : {−∞}∪Z→Rn f ,

such that ϕ j (z) = 0, for all z < 0. That is, until component j fails, the function ϕ j has no

effect on the system. For each k, the combined fault signal is defined as

fk (ϑ0:k ) :=
L∑

j=1
ϕ j

(
k −κ j (ϑ0:k )

)
,

for all ϑ0:k ∈Θk+1. In other words, each component failure causes an additive fault signal ϕ j

to “switch on” at some random time κ j , which depends on the Markov chain {θk }.
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4.4 Decision Functions

The final step in evaluating the performance metrics is to compute the probabilities

P(dk = j | θ0:k =ϑ0:k ) =
∫

E j ,k

pr |θ(rk | θ0:k =ϑ0:k ) drk , (4.21)

where

E j ,k := {rk : δ(k,rk ) = j }.

Assuming that the dynamics are conditionally linear-Gaussian, as in Section 4.3, the con-

ditional distribution pr |θ(rk | θ0:k =ϑ0:k ) is the Gaussian N (r̂k ,Σk ). Although these assump-

tions generally make computation easier, the set E j ,k must be simple enough to enable

computation of the integral (4.21). In this section, we provide some practical examples of

decision functions for which computation is tractable.

4.4.1 Threshold Decision Functions

First, consider the case where {rk } is scalar-valued. One common decision function, used

frequently in fault detection [9, 32], is a time-varying threshold function of the form

δ(k,rk ) :=
0, if |rk | < εk ,

1, otherwise,

where εk > 0, for all k. Hence, E0,k = [−εk ,εk ], and the integral (4.21) can be written in terms

of the density of N (r̂k ,Σk ) as

P(D0,k | θ0:k =ϑ0:k ) =
∫ εk

−εk

1p
2πΣk

exp
(
− (rk − r̂k )2

2Σk

)
drk . (4.22)

Since rk is scalar, the error function, defined in Section 2.2.6, can be used to write the

conditional cumulative distribution function of rk ∼N (r̂k ,Σk ) as

P(rk < c | θ0:k =ϑ0:k ) = 1

2

[
1+erf

(
c − r̂kp

2Σk

)]
,

for all c ∈R. Similarly, the integral (4.22) can be written as

P(D0,k | θ0:k =ϑ0:k ) = 1

2

[
erf

(
εk − r̂kp

2Σk

)
−erf

(−εk − r̂kp
2Σk

)]
.

Since the error function can be approximated by a rational function with a maximum relative

error less than 6×10−19 [17], this expression can be evaluated accurately in O(1) time.

61



In the non-scalar case (i.e., rk ∈Rnr ), we define a threshold decision function as follows:

δ(k,rk ) :=
0, if

∣∣(rk )i
∣∣< (εk )i , i = 1,2, . . . ,nr

1, otherwise,

where εk ∈ Rnr+ is a vector-valued threshold, for all k. In this case, we must integrate the

conditional pdf over the hyper-rectangle

E0,k = [− (εk )1, (εk )1
]× [− (εk )2, (εk )2

]× . . .× [− (εk )nr , (εk )nr

]
.

If the residual is low-dimensional (nr < 4), the integral

P(D0,k | θ0:k =ϑ0:k ) =
∫

E0,k

1√
(2π)nr |Σk |

exp

(
−1

2
(rk − r̂k )TΣ−1

k (rk − r̂k )

)
drk ,

can be computed using adaptive quadrature methods [37, 38]. Although experimental

evidence shows that these methods are typically accurate and fast [37], their running time

has not been rigorously characterized. For higher-dimensional residuals (nr ≥ 4), there are a

number of quasi-Monte Carlo integration methods available [38], which are significantly

less accurate than the low-dimensional quadrature methods.

4.4.2 Dynamic Decision Functions

Next, we consider two examples of tractable decision functions that are dynamic. Consider

a decision function of the form

zk = g (zk−1,rk ), (4.23)

dk = h(zk ), (4.24)

where the functions g and h, as well as the initial condition z−1, are known and deterministic.

Notice that because zk is defined in terms of zk−1 and rk , it is possible for the residual rk

to have an immediate effect on the decision dk . Although equations (4.23) and (4.24) can

represent a large class of decision functions, the original goal of computing (4.21) efficiently

must still be met. Our approach is to consider cases where {zk } is a Markov chain.

Proposition 4.30. Suppose that the sequence {rk } is Gaussian and that the initial condition

z−1 is known and deterministic. The sequence {zk } is a Markov process if and only if the

residuals ri and r j are uncorrelated, for all i , j ≥ 0.

The proof of this well-known proposition can be found in [50, §3.9].
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0 zmax = 10τ.

Figure 4.2. State-transition diagram of an up-down counter with parameters (Cd,Cu,τ, zmax) =
(2,4,8,10). The threshold τ is shaded in blue.

Up-Down Counters

The up-down counter provides an intuitive means to improve the performance of an existing

decision function δ taking values in D = {0,1}. Let {dk }k≥0 be the sequence of decisions

produced by δ, and assume that, for all k ≥ 0 and ϑ0:k ∈Θk+1, the probability

P(dk = 0 | θ0:k =ϑ0:k )

is efficiently computable. The up-down counter produces another sequence of decisions

{d̂k }k≥0, defined by the recurrence

zk =
min{zmax, zk−1 +Cu}, if dk = 1,

max{0, zk −Cd}, otherwise,

d̂k =
0, if zk < τ,

1, otherwise,

where z−1 = 0 and the parameters Cd, Cu, τ, zmax, and εk are scalars, such that

0 <Cd ≤Cu ≤ τ≤ zmax.

For simplicity, assume that Cd, Cu, and zmax are all natural numbers, so the state space of

the sequence {zk } is

Z := {0,1, . . . , zmax}.

The graph depicted in Figure 4.2 is the state-transition diagram of a simple up-down counter

with parameters (Cd,Cu,τ, zmax) = (2,4,8,10). The arrows indicate which transitions are

possible.

Since z−1 = 0 almost surely, the initial distribution of {zk } is

λ−1(i ) = 1(i = 0), i ∈Z ,

where 1 is the indicator function. Let ϑ0:k ∈ Θk+1 and assume that, conditional on the

event {θ0:k = ϑ0:k }, the sequence {rk } is uncorrelated and Gaussian. By Proposition 4.30,

the sequence {zk } is conditionally a Markov chain, given {θ0:k = ϑ0:k }, and the transition
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probability matrix is given by(
Λk (ϑ0:k )

)
i j := P(zk = j | zk−1 = i ,θ0:k =ϑ0:k )

=


P(dk = 0 | θ0:k =ϑ0:k ), if j = max{0, i −Cd},

P(dk = 1 | θ0:k =ϑ0:k ), if j = min{zmax, i +Cu},

0, otherwise,

for all i , j ∈Z . The conditional distribution of zk , defined as(
λk (ϑ0:k )

)
i = P(zk = i | θ0:k =ϑ0:k ), i ∈Z ,

is computed via the equation

λT
k (ϑ0:k ) =λT

−1 Λ0(ϑ0)Λ1(ϑ0:1) · · ·Λk (ϑ0:k ).

The probability that the up-down counter exceeds the threshold τ is

P(d̂k = 1 | θ0:k =ϑ0:k ) =
zmax∑
i=τ

P(zk = i | θ0:k =ϑ0:k ) =
zmax∑
i=τ

(
λk (ϑ0:k )

)
i .

Suppose that, for some k1, the underlying decision function δ decides that a fault has

occurred in such a way that d` = 1, for `≥ k1. If zk1 = 0, then the decision sequence {d̂k }

will remain at 0 until dτ/Cue time steps have passed. That is, the up-down counter has an

inherent detection delay, specified by the ratio τ/Cu. Of course, this delay provides a degree

of robustness when the underlying decision function is prone to false alarms. When a

false alarm does occur, dCu/Cde time steps with no further false alarms must pass before the

counter state {zk } falls below its original value. Hence, the ratio Cu/Cd specifies how long it

takes for a spurious up-count to be “forgotten.”

Similarly, suppose that for some k2, the effect of a fault subsides and d` = 0, for all

`≥ k2. If zk2 happens to be at zmax, then the decision sequence {d̂k } will not return to 0 until

d(zmax−τ)/Cde time steps have elapsed. As in the previous scenario, the up-down counter has

an inherent delay, specified by the ratio (zmax−τ)/Cd. This particular delay provides a degree of

robustness against missed detections.

Although the up-down counter seems to have inherent delays in these idealized scenar-

ios, the robustness provided by the up-down counter can actually lead to a more responsive

fault detection scheme. Figures 4.3(a) and 4.3(b) show the realizations of the counter state

{zk } and the residual {rk }, respectively, for a typical up-down counter based on a ε-threshold

decision function. In this particular simulation, a fault occurs at time k1 and subsides at

time k2. The delay in the up-down counter can clearly be seen in Figure 4.3(a). However, the

original decision function has a large number of false alarms. If the threshold ε is increased
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Figure 4.3. Comparison of the behavior of an up-down counter (a) and the behavior of the underlying
threshold decision function (b). The horizontal blue lines indicated the threshold regions, and the
vertical shaded bands indicate the ranges of time where the respective decision function signals that a
fault has occurred. The actual fault starts at time k1 and stops at time k2.

to the point where the number of false alarms is reasonable, the delay of the original thresh-

old decision function would be even greater. Therefore, in this case, the up-down counter

actually responds more quickly.

Note that for α> 0, the parameters (Cdα,Cuα,τα, zmaxα) define an equivalent up-down

counter with state space

Zα := {0,α,2α, . . . , zmaxα}.

In the special case where

Cd =Cu = τ= zmax,

the decisions produced by the up-down counter are identical to those produced by the

original decision function (i.e., d̂k = dk , for all k).
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s0

s1

s2

...

sq

Figure 4.4. State-transition diagram for a system that reconfigures when a fault occurs. The state s0

represents the nominal configuration, while state si , i 6= 0, represents the configuration that is used
when dk = i . Since the fault diagnosis problem essentially restarts when a reconfiguration occurs, only
one level of reconfiguration is shown.

Systems that Reconfigure when a Fault is Detected

Thus far, we have considered fault diagnosis problems in which the decision sequence {dk }

may be nonzero at one instant and then return to zero at the next. Sometimes, however,

it is useful to consider the case where some action is taken once {dk } is no longer zero. In

particular, we consider the case where the system is reconfigured when dk 6= 0. For example,

if dk = i indicates that component i has failed at or before time k, then the system Gθ

should be reconfigured to no longer use that component. Similarly, the fault diagnosis

scheme V = (F,δ) must also be reconfigured. Once the system Gθ and scheme V have been

reconfigured, a new fault diagnosis problem begins. In this section, we demonstrate that

such reconfigurations can be modeled by a dynamic decision function, so that the property

of being in a given configuration can be computed efficiently using our performance analysis

framework.

Suppose that V = (F,δ) is a fault diagnosis scheme designed for the plant Gθ in its

nominal configuration, such that dk = δ(k,rk ) takes values in the set D = {0,1, . . . , q}. Let s0

denote the original configuration of Gθ and V . Similarly, for i = 1, . . . , q , let si denote the

reconfiguration of the system and scheme that takes place when dk = i . Assume that, after

reconfiguration, there is no returning to the original configuration s0. Hence, the set of

possible reconfigurations is governed by the state-transition diagram shown in Figure 4.4.

Let the sequence {zk } represent the configuration at each time step, and let {d̂k } be a

new sequence of decisions that is given by the recurrence

zk =
δ(k,rk ) if zk−1 = 0,

zk−1 otherwise,

d̂k = zk ,

where z−1 = 0. This recurrence defines a dynamic decision function that decides which con-

figuration is in use at each point in time. Note that the state space of {zk } is Z = {0,1, . . . , q}.
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If we assume that the system Gθ and the residual generator F meet the assumptions of

Section 4.3, then given a particular mode sequence {ϑk }, the conditional distribution of

the residual {rk } is Gaussian, at each k. Hence, {zk } is a stochastic process, and by Propo-

sition 4.30, {zk } is a Markov chain if and only if the sequence {rk } is uncorrelated in time.

Otherwise, if {rk } is correlated, then

P(zk = 0 | θ0:k =ϑ0:k ) = P
(
δ(k,rk ) = 0, δ(k −1,rk−1) = 0, . . . , δ(0,r0) = 0 | θ0:k =ϑ0:k

)
.

for all k. Clearly, as k becomes large, the joint probability on the right hand side becomes

intractable to compute numerically.

Assume that the sequence {rk } is Gaussian and uncorrelated. Since {zk } is a Markov

chain conditional on the event {θ = ϑ}, the probability distribution of {zk } is given by the

initial distribution and transition probability matrices. Since z−1 = 0 almost surely, the initial

distribution is

λ−1(i ) = 1(i = 0), i ∈Z ,

where 1 is the indicator function. Given {θ0:k = ϑ0:k }, the transition probability matrix at

time k is (
Λk (ϑ0:k )

)
i j := P

(
zk = j | zk−1 = i , θ0:k =ϑ0:k

)
=


P
(
δ(k,rk ) = j | θ0:k =ϑ0:k

)
if i = 0,

1 if i = j , 1 ≤ i ≤ q,

0 otherwise,

for all i , j ∈Z . The conditional distribution of zk , defined as(
λk (ϑ0:k )

)
i := P(zk = i | θ0:k =ϑ0:k ), i ∈Z ,

is computed via the equation

λT
k (ϑ0:k ) =λT

−1 Λ0(ϑ0)Λ1(ϑ0:1) · · ·Λk (ϑ0:k ).

Therefore, the main challenge in computing λk (ϑ0:k ) for a given ϑ0:k ∈Θk+1 is computing

the probability

P
(
δ(k,rk ) = j | θ0:k =ϑ0:k

)
,

for all i ∈ Z . Section 4.4.1 demonstrates how this probability is computed for threshold

decision functions.

If we define the event D̂i ,k = {d̂k = i }, for each i ∈Z and each k ≥ 0, then the performance
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metrics at time k are defined as

Ĵk (i , j ) := P(D̂ j ,k ∩Hi ,k ), i , j ∈D.

For each k, the value Ĵk (i , j ) is the probability that the system is in configuration si when it

should be in configuration s j . Note that the event D̂ j ,k∩Hi ,k may or may not represent a safe

state of affairs, depending on the values of i and j . For example, when the j th fault occurs

(i.e., {θk } enters the set Θ j ), the system is designed to reconfigure to a back-up mode s j .

Hence, it would be unsafe to continue operation in the nominal configuration s0 when the

j th fault occurs. In any case, the probability that the system is in a safe configuration at

time k can be computed by summing the appropriate entries of Ĵk .

4.5 Algorithms for Computing Performance

In this section, we present high-level algorithms for computing the performance metrics.

First, we consider systems that satisfy the restrictions discussed in Sections 4.2–4.4. Then,

we consider a special case, based on Sections 4.2.2 and 4.3.3, that consists of an ltv system

with L independent additive faults. Finally, this special case is further simplified by assuming

that the dynamics are lti. For each system class, the time-complexity of computing the

performance metrics is analyzed.

4.5.1 Sufficiently Structured Systems

Suppose that the fault parameter sequence θ is a tractable Markov chain satisfying the

conditions of Theorem 4.11 or 4.12. Also, assume that the combined clg dynamics of Gθ

and F can be written in the form of equation (4.12), and assume that the decision function

δ is such that the probability

P(D0,k | θ0:k =ϑ0:k )

can be computed in O(1) time. The most common class of decision functions meeting this

last criterion is the class of threshold functions.

If all these assumptions hold, then the joint probability performance metrics {Ptn,k },

{Pfp,k }, {Pfn,k }, and {Ptp,k } are computed using Algorithm 4.1. This algorithm consists of two

nested for-loops. The outer loop (Lines 1–21) considers all possible mode sequences, while

the inner loop (Lines 2–20) updates the performance metrics at each time step. The inner

loop can be divided into three parts, as follows:

• Lines 3–7 compute the probability of the fault parameter sequence ϑ0:N .

• Lines 8–11 update the recurrences for the mean r̂k and variance Σk of the residual,

conditional on the event {θ0:k =ϑ0:k }.

68



Algorithm 4.1. General procedure for computing the performance metrics, where the decision func-
tion δ is a time-varying threshold.

Require: A final time N ∈N, a Gaussian initial state η0 ∼N (η̂0,Λ0), a sequence of thresholds
{εk } such that εi > 0, and a fault model θ ∼ (

Θ, {Πk },π0
)
.

1 for all ϑ0:N ∈ΘN+1 with nonzero probability do
2 for k = 0,1, . . . , N do
3 if k = 0 then
4 P(θ0 =ϑ0) =π0(ϑ0)
5 else
6 P(θ0:k =ϑ0:k ) =Πk−1(ϑk−1,ϑk ) P(θ0:k−1 =ϑ0:k−1)
7 end if
8 η̂k+1 = Ak (ϑk )η̂k +Bu,k (ϑk )uk +B f fk (ϑ0:k )

9 r̂k =Ck (ϑk )η̂k +Du,k (ϑk )uk +D f fk (ϑ0:k )

10 Λk+1 = Ak (ϑk )Λk AT
k (ϑk )+Bv,k (ϑk )B T

v,k (ϑk )

11 Σk =Ck (ϑk )ΛkC T
k (ϑk )+Dv,k (ϑk )DT

v,k (ϑk )

12 Compute P
(
D0,k | θ0:k =ϑ0:k

)
13 if ϑk ∈Θ0 then

14 Ptn,k = Ptn,k +P
(
D0,k | θ0:k =ϑ0:k

)
P
(
θ0:k =ϑ0:k

)
15 Pfp,k = Pfp,k +

(
1−P

(
D0,k | θ0:k =ϑ0:k

))
P
(
θ0:k =ϑ0:k

)
16 else
17 Pfn,k = Pfn,k +P

(
D0,k | θ0:k =ϑ0:k

)
P
(
θ0:k =ϑ0:k

)
18 Ptp,k = Ptp,k +

(
1−P

(
D0,k | θ0:k =ϑ0:k

))
P
(
θ0:k =ϑ0:k

)
19 end if
20 end for
21 end for

• Line 12 computes the conditional probability P(D0,k | θ0:k =ϑ0:k ), and then Lines 13–19

use this probability to update the performance metrics. Note that Line 18 is technically

superfluous, because the performance metrics must sum to one.

Remark 4.31. While most of the computation is straightforward, Line 1 is the most difficult

portion of this algorithm, as it requires all possible parameter sequences to be generated.

One option is to generate and store all the sequences in an array. However, this size of

such an array would be prohibitively large. Another option is to dynamically generate the

sequences while bookkeeping which sequences have already been considered. This is the

approach taken with the special cases in Sections 4.5.2 and 4.5.3. However, we have not yet

discovered a practical implementation for this portion of the algorithm.
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Proposition 4.32. Let N be the final time used in Algorithm 4.1, and let Θ = {0,1, . . . ,m}.

In additions to the assumptions on {θk }, Gθ, F , and δ made above, assume that the fault

input fk (ϑ0:k ) can be computed in O(1) time, for any k and ϑ0:k . Then, the total running time

of Algorithm 4.1 is O(N m+1).

Proof. Because θ is assumed to be a tractable Markov chain, the for all-loop over possible

sequences ϑ0:N executes O(N m) times. Line 4 is a simple look-up and Line 6 is a single

multiplication, so Lines 3–7 take O(1) time to compute. Since fk (ϑ0:k ) can be computed

in O(1) time, Lines 8–11 can be computed in O(1) time, as well. By assumption, the decision

function δ is such that Line 12 can be computed in O(1) time. Clearly, the remaining

computations (Line 13–19) can also be computed in O(1) time. Since each individual line

takes O(1) time, we conclude that each iteration of the for-loop over k takes O(1) time.

Therefore, the total running time of Algorithm 4.1 is O(N m+1).

4.5.2 LTV Special Case Based on Component Failures

In this section we present a special system structure, based on Sections 4.2.2 and 4.3.3, that

permits a more straightforward implementation of Algorithm 4.1. Suppose that the system

consists of L components that fail independently at random, and assume that system is

only affected by additive faults. Hence, the combined dynamics of the system Gθ and the

residual generator F are given by

ηk+1 = Akηk +Bu,k uk +Bv,k vk +B f

L∑
j=1

ϕ j
(
k −κ j (θ0:k )

)
,

rk =Ckηk +Du,k uk +Dv,k vk +D f

L∑
j=1

ϕ j
(
k −κ j (θ0:k )

)
,

where κ j (θ0:k ) is the random time at which the j th component fails. Because θ0:k only affects

the system via the random failure times, specifying a particular parameter sequence ϑ0:N is

equivalent to specifying the corresponding failure times κ̂ j := κ j (ϑ0:N ), for j = 1,2, . . . ,L.

Another important feature of this special case is the additive structure of the fault input.

Since each ϕ j enters additively, the portion of the residual due to each ϕ j can be computed

separately and then combined using the principle of superposition. Similarly, the portion

of the residual due to the initial condition η0 and the known input u0:N can be computed

separately. Because ϕ j has no effect until the j th component fails (i.e., ϕ j (k − κ̂ j ) = 0,

for k < κ̂ j ), we only need to compute the portion of the residual due to ϕ j for k ≥ κ̂ j .

The procedure for computing the performance metrics for this special case is split

into two parts: Algorithm 4.2 computes each portion of the residual, while Algorithm 4.3

computes the performance metrics. Although Algorithm 4.2 applies to any system of L

components, Algorithm 4.3 focuses on the case L = 2. This greatly simplifies the presentation
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of the algorithm, and it is a straightforward matter to write a version of Algorithm 4.3 for

any finite number of components. Algorithm 4.2 consists of two parts:

• Lines 1–7 simulate the portion of the conditional mean of the residual due to the

initial condition η0 and the known input u0:N . Lines 1–7 also simulate the conditional

variance of the residual, which does not depend on the fault input
∑

j ϕ j (k −κ j ).

• Lines 8–16 simulate the portion of the conditional mean of the residual due to each

component failing at each possible time.

Algorithm 4.3, on the other hand, consists of four parts:

• Lines 2–4 compute the performance metrics Ptn,k and Pfp,k .

• Lines 5–10 update the performance metrics Pfn,k and Ptp,k by considering all possible

cases where component 1 fails but component 2 does not.

• Lines 11–16 update the performance metrics Pfn,k and Ptp,k by considering all possible

cases where component 2 fails but component 1 does not.

• Lines 17–24 update the performance metrics Pfn,k and Ptp,k by considering all possible

cases where both components fail.

Proposition 4.33. Assume that the probability P(κ j = k) can be computed in O(1) time,

for all j and k. Also, assume that the decision function δ is such that P(D0,k | θ0:k = ϑ0:k )

can be computed in O(1) time for any ϑ0:N ∈ ΘN+1 and all k ≥ 0. Then, the running time

of Algorithm 4.2 is O(LN 2) and the running time of Algorithm 4.3 is O(LN L). Therefore,

computing the performance metrics requires a total of O
(
LN max{2,L}

)
time.

Proof. First, we show that the running time of Algorithm 4.2 is O(LN 2). Since updating the

recurrences in Lines 3–6 takes O(1) time, Lines 2–7 take O(N +1) time to compute. Similarly,

Lines 12–13 take O(1) time to compute. The number of times that Lines 12–13 must be

executed is

L∑
j=1

N∑
κ̂ j=1

N∑
k=κ̂ j

1 =
L∑

j=1

N∑
κ̂ j=1

N − κ̂ j +1

=
L∑

j=1

N (N +1)

2

=O(LN 2).

Therefore, Lines 8–16 take O(LN 2) to compute, and the total running time of Algorithm 4.2

is O(LN 2).
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Algorithm 4.2. Procedure for computing the components of the mean and variance of the residual for
the ltv special case.

Require: A final time N ∈N and a Gaussian initial state η0 ∼N (η̂0,Λ0).

1 Let η̂(0,0)
0 = η̂0

2 for k = 0,1, . . . , N do
3 η̂(0,0)

k+1 = Ak η̂
(0,0)
k +Bu,k uk

4 r̂ (0,0)
k =Ck η̂

(0,0)
k +Du,k uk

5 Λk+1 = AkΛk AT
k +Bv,k B T

v,k

6 Σk =CkΛkC T
k +Dv,k DT

v,k
7 end for
8 for j = 1,2, . . . ,L do
9 for κ̂ j = 1,2, . . . , N do

10 Let η̂
( j ,κ j )
0 = 0

11 for k = κ̂ j , κ̂ j +1, . . . , N do

12 η̂
( j ,κ̂ j )
k+1 = Ak η̂

( j ,κ̂ j )
k +B f ϕ j (k − κ̂ j )

13 r̂
( j ,κ̂ j )
k =Ck η̂

( j ,κ̂ j )
k +D f ϕ j (k − κ̂ j )

14 end for
15 end for
16 end for
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Algorithm 4.3. Procedure for computing the performance metrics for the ltv special case with two
components.

Require: A final time N ∈N, a sequence of thresholds {εk } such that εi > 0, the conditional
variance of the residual {Σk }, and the components of the conditional mean of the residual
r̂ (0,0)

k , r̂ (1,s)
k , and r̂ (2,s)

k , for k = 0,1, . . . , N and s = 1,2, . . . , N .

1 for k = 0,1, . . . , N do
2 Compute P

(
D0,k | κ1 > k,κ2 > k

)
3 Ptn,k = P

(
D0,k | κ1 > k,κ2 > k

)
P
(
κ1 > k

)
P
(
κ2 > k

)
4 Pfp,k =

(
1−P

(
D0,k | κ1 > k,κ2 > k

))
P
(
κ1 > k

)
P
(
κ2 > k

)
5 for s = 1,2, . . . ,k do
6 r̂k = r̂ (0,0)

k + r̂ (1,s)
k

7 Compute P
(
D0,k | κ1 = s,κ2 > k

)
8 Pfn,k = Pfn,k +P

(
D0,k | κ1 = s,κ2 > k

)
P
(
κ1 = s

)
P
(
κ2 > k

)
9 Ptp,k = Ptp,k +

(
1−P

(
D0,k | κ1 = s,κ2 > k

))
P
(
κ1 = k

)
P
(
κ2 > k

)
10 end for
11 for t = 1,2, . . . ,k do
12 r̂k = r̂ (0,0)

k + r̂ (2,t )
k

13 Compute P
(
D0,k | κ1 > k,κ2 = t

)
14 Pfn,k = Pfn,k +P

(
D0,k | κ1 > k,κ2 = t

)
P
(
κ1 > k

)
P
(
κ2 = t

)
15 Ptp,k = Ptp,k +

(
1−P

(
D0,k | κ1 > k,κ2 = t

))
P
(
κ1 > k

)
P
(
κ2 = t

)
16 end for
17 for s = 1,2, . . . ,k do
18 for t = 1,2, . . . ,k do
19 r̂k = r̂ (0,0)

k + r̂ (1,s)
k + r̂ (2,t )

k

20 Compute P
(
D0,k | κ1 = s,κ2 = t

)
21 Pfn,k = Pfn,k +P

(
D0,k | κ1 = s,κ2 = t

)
P
(
κ1 = s

)
P
(
κ2 = t

)
22 Ptp,k = Ptp,k +

(
1−P

(
D0,k | κ1 = s,κ2 = t

))
P
(
κ1 = s

)
P
(
κ2 = t

)
23 end for
24 end for
25 end for
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Second, we show that the running time of the L-component version of Algorithm 4.3

is O(LN L). For i = 0,1, . . . ,L, we must consider all cases in which i components fail at or

before time N . There are
(L

i

)
ways to choose which i components fail, and each component

can fail at any time κ ∈ {1,2, . . . , N }. By the binomial theorem [40], the total number of cases

to consider is
L∑

i=0

(
L

i

)
N i = (1+N )L =O(N L).

In Algorithm 4.3, Lines 2-4, 6–9, 12–15, and 19–22 are essentially identical. In general, these

four lines must be executed for each possible case. By assumption, the probabilities of the

form

P(D0,k | κ j = s j , j = 1, . . .L),

as well as the component failure probabilities P(κ j = s j ) and P(κ j > k), can be evaluated

in O(1) time. Since we must compute L such component failure probabilities in each

possible case, the running time of Algorithm 4.3 is O(LN L). Therefore, the total time required

to compute the performance metrics is O(LN 2)+O(LN L) =O
(
LN max{2,L}

)
.

Remark 4.34. At first glance, the combined running time of Algorithms 4.2 and 4.3, seems lit-

tle better than the polynomial running time of the general procedure given in Algorithm 4.1.

However, as shown in Section 4.2.2, a system with L components leads to a Markov chain

with state space Θ= {0,1, . . . ,2L −1}. Therefore, the running time of Algorithm 4.1 would be

O
(
N 2L−1

)
, which is significantly worse than O(LN L) for practical values of L and N .

4.5.3 LTI Special Case Based on Component Failures

The special case considered in the previous section can be simplified further by assuming

that the dynamics are time-invariant. That is, we assume the combined dynamics are of the

form

ηk+1 = Aηk +Buuk +Bv vk +B f

L∑
j=1

ϕ j
(
k −κ j (θ0:k )

)
,

rk =Cηk +Duuk +Dv vk +D f

L∑
j=1

ϕ j
(
k −κ j (θ0:k )

)
,

As in the ltv case, superposition is used to reduce the amount of computation required.

However, because the system is now lti, the portion of the conditional mean of the residual

due to component j failing at time κ j can be obtained by time-shifting the portion due to

component j failing at time 1. For all n ∈N, let the n-shift operator zn be defined by

zn : x0:N 7→ {
0, . . . ,0︸ ︷︷ ︸
n zeros

, x0, x1, . . . , xN−n
}
,
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Algorithm 4.4. Procedure for computing the components of the mean and variance of the residual for
the lti special case.

Require: A final time N ∈N and a Gaussian initial state η0 ∼N (η̂0,Λ0).

1 Let η̂(0,0)
0 = η̂0

2 for k = 0,1, . . . , N do
3 η̂(0,0)

k+1 = Aη̂(0,0)
k +Buuk

4 r̂ (0,0)
k =C η̂(0,0)

k +Duuk

5 Λk+1 = AΛk AT +Bv B T
v

6 Σk =CΛkC T +Dv DT
v

7 end for
8 for j = 1,2, . . . ,L do

9 Let η̂( j ,1)
0 = 0

10 for k = 0,1, . . . , N do

11 η̂
( j ,1)
k+1 = Aη̂( j ,1)

k +B f ϕ j (k −κ j )

12 r̂ ( j ,1)
k =C η̂( j ,1)

k +D f ϕ j (k −κ j )

13 end for
14 end for

for all x0:N . Then, using the notation established in Algorithms 4.2 and 4.3,

r̂
( j ,κ j )
0:N = zκ j−1(r̂ ( j ,1)

0:N

)
, (4.25)

for all j , k, and κ j .

The procedure for computing the conditional mean and variance of the residual for the

lti special case is given in Algorithm 4.4, which is the lti analogue of Algorithm 4.2. The

analogue of Algorithm 4.3 for the lti case (not shown here) is obtained by applying the

formula (4.25) to each term r̂
( j ,κ j )

k .

Proposition 4.35. The running time of Algorithm 4.4 is O(LN ).

Proof. Lines 3–6 each take O(1) time to compute. Thus, Lines 1–7 require O(N ) time in total.

Similarly, Lines 11-12 take O(1) time to compute, so Lines 8–14 require O(LN ) time in total.

Therefore, the overall running time of Algorithm 4.4 is O(LN ).

The process of time-shifting the simulation results of Algorithm 4.4 can be done using

careful array indexing, so we assume that the time-shifing process does not increase the

complexity of evaluating the performance metrics. Hence, we have the following corollary
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Table 4.1. Time-complexity of computing the performance metrics using Algorithms 4.1–4.4. The
column labeled “Simulations” indicates the number of times the recurrence for the conditional mean
of the residual (equation (4.17)) must be simulated.

Problem Type Simulations Total Complexity Algorithm

General O
(
(m +1)N+1

)
O

(
N (m +1)N+1

)
4.1

Structured O(N m) O(N m+1) 4.1
ltv Special Case O(LN 2) O(LN L) 4.2 & 4.3
lti Special Case O(LN ) O(LN L) 4.4 & 4.3 (shifted)

to Proposition 4.35.

Corollary 4.36. The time to compute the performance metrics for the lti special case using

Algorithm 4.4 and a time-shifted version of Algorithm 4.3 is O(LN L).

Proof. By Proposition 4.33, the running time of the time-shifted version of Algorithm 4.3 is

O(LN L), which dominates the running time of Algorithm 4.4.

The time-complexity results established in Propositions 4.32–4.35 and Corollary 4.36 are

summarized in Table 4.1.

4.6 Comments on Continuous-Time Models

In Chapter 3, as well as the present chapter, the model Gθ and the residual generator F

are assumed to be discrete-time dynamic systems. Generally speaking, there is no reason

to assume that the model Gθ is discrete. Indeed, continuous-time jump-Markov linear

systems are treated in detail in [65] and [66], and more general hybrid stochastic differential

equations are considered in [105]. The biggest difficulty in using continuous-time models is

extending the Markov chain {θk } to the more general class of jump processes [105]. In prac-

tice, however, the residual generator F only has access to discrete observations
{

y(tk )
}

k≥0

of the output signal, where {tk }k≥0 is a sequence of discrete observation times. Hence, the

problem is greatly simplified by assuming that Gθ is a discrete-time system, as well.
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Chapter 5

Worst-Case Performance Analysis

5.1 Introduction

In this chapter, we consider the performance of a fault detection scheme under uncertain

conditions. First, we establish some notation and discuss the various types of uncertainty

under consideration. Next, we formulate well-defined optimization problems that char-

acterize the worst-case performance in terms of the probability of false alarm and the

probability of detection. Since these optimization problems are, in general, intractable, we

impose additional assumptions on the fault diagnosis problem, which yield much simpler

optimization problems. Using these assumptions, we consider two classes of optimization

problems: those with uncertain signals and those with model uncertainty. Finally, for each

class of problems, we show how the worst-case probability of false alarm and the worst-case

probability of detection can be formulated as convex programs that can be solved using

readily-available numerical optimization software. The results in this section are restricted to

fault detection problems involving scalar-valued residuals and threshold decision functions.

5.1.1 Notation

Up to this point, we have used the notation {uk }k≥0 to denote a discrete-time signal or

stochastic process. To simplify notation, we represent sequences by a single letter (e.g.,

u = {uk }) and the action of a dynamic system is represented in more compact operator

notation. For example, if the system G maps the input {uk } to the output {yk }, we write

y = Gu. Let S n be the set of one-sided deterministic sequences taking values in Rn . For

p ∈ [1,∞), define

`n
p :=

{
u ∈S n : ‖u‖p :=

( ∞∑
k=0

‖uk‖p
p

) 1
p

<∞
}

.

In the case where p =∞, define

`n
∞ :=

{
u ∈S n : ‖u‖∞ := sup

k≥0
‖uk‖∞ <∞

}
.

77



For p ∈ [1,∞], the `p -norm ball centered at u◦ ∈ `n
p with radius γ> 0 is defined as

B n
p (u◦,γ) := {

u +u◦ ∈S n : ‖u‖p < γ}
.

We may write Bp (u◦,γ) when the dimension of the sequence is clear from context or of

little significance. Given an input-output operator G : `n
p → `m

p , with p ∈ [1,∞], define the

induced norm

‖G‖i p := sup
u 6=0

‖Gu‖p

‖u‖p
.

For p ∈ [1,∞] and γ> 0, define the set of norm-bounded operators

∆m×n
p (γ) := {

∆ : S n →S m : ‖∆‖i p < γ}
.

Similarly, for p ∈ [1,∞], γ> 0, and q ∈N, define the set of block-structured norm-bounded

operators

∆̂
m×n
p (γ) :=

{
∆= diag{∆1,∆2, . . . ,∆q } : ∆i ∈∆mi×ni

p (γ),
q∑

i=1
mi = m,

q∑
i=1

ni = n

}
.

We may write ∆p (γ) or ∆̂p (γ) when the dimension of the operator is clear from context or of

little significance.

For each s ∈N, define the s-step truncation operator

τs : S n →S n : u 7→ {
u0,u1, . . . ,us−1,us ,0,0, . . .

}
.

The one-step shift operator z is defined as

z : S n →S n : u 7→ {
0,u0,u1, . . .

}
.

An operator G : S n →S m is said to be time-invariant if

Gz = zG .

Otherwise, G is said to be time-varying.

5.1.2 Types of Uncertainty Considered

Although there are many distinct ways to include uncertainty in the fault detection problem,

we consider the following four types of uncertainty:

1. Families of Inputs: In Chapters 3 and 4, the performance metrics are computed

for a single fixed input sequence u. Since this input sequence affects the values of
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the performance metrics, a comprehensive performance analysis would consider all

possible values of u, which is clearly not feasible. One reasonable compromise is to

compute the worst-case performance over a specified family of inputs. To this end,

we consider families of inputs that have the following form:

B nu
p (u◦,γ) = {

u +u◦ ∈S nu : ‖u‖p < γ}
,

where u◦ ∈ `nu
p is a fixed nominal input, p ∈ [1,∞] specifies the `p -norm, and γ> 0 is

the desired bound.

2. Bounded Disturbances: Thus far, we have assumed that the system Gθ is affected by

a noise signal v . It is also useful to consider the case where a deterministic signal w ,

called a disturbance, affects the system in such a way that the fault diagnosis scheme

cannot use w to generate a residual. We consider disturbances in the bounded set

B nw
p (0,γ) = {

w ∈S nw : ‖w‖p < γ}
,

where p ∈ [1,∞] specifies the `p -norm, and γ> 0 is the desired bound.

3. Uncertain Fault Signals: In Chapters 3 and 4, it is assumed that the fault signal fk

at time k is a known, fixed function of the fault parameter sequence θ0:k . While this

approach may work for certain types of faults, it often useful to consider the worst-case

performance of a fault diagnosis scheme over a set of possible fault signals. Hence, for

a given parameter sequence ϑ, we assume the fault signal lies in a bounded set of the

form

B
n f
p

(
f (ϑ)◦,γ

)= {
f + f ◦(ϑ) ∈S n f : ‖ f ‖p < γ}

,

where f ◦(ϑ) ∈ `n f
p is the nominal value of the fault signal, p ∈ [1,∞] specifies the

`p -norm, and γ> 0 is the desired bound.

4. Model Uncertainty: In model-based fault diagnosis schemes, the residual generator

is usually designed according to the nominal system model G0. However, it useful to

consider cases where G0 does not perfectly model the system or the designer of the

residual generator does not have accurate knowledge of the true model. Both of these

cases are addressed by assuming that the parameterized system Gθ is uncertain. In

particular, we assume that the system consists of an interconnection of the system Gθ

and an uncertain operator ∆. We consider two classes of uncertain operators. First,

we consider the class norm-bounded linear time-invariant uncertainties

∆2,lti(γ) := {
∆ ∈∆2(γ) : ∆ is lti, causal, stable

}
,

where γ> 0 is the desired bound. Second, we consider the class of norm-bounded
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linear time-varying uncertainties

∆2,ltv(γ) := {
∆ ∈∆2(γ) : ∆ is ltv, causal, stable

}
,

We may also assume that the uncertain operator ∆ is block-structured, in which case

the uncertainty sets are

∆̂2,lti(γ) := {
∆ ∈ ∆̂2(γ) : ∆ is lti, causal, stable

}
,

and

∆̂2,ltv(γ) := {
∆ ∈ ∆̂2(γ) : ∆ is ltv, causal, stable

}
.

The overall uncertainty in the fault diagnosis problem depends on which of these four

types of uncertainty are included in the model. For simplicity, we consider two classes of

problems. The first class has no model uncertainty, and the overall uncertainty set is

P s =
{(

u, w, f (ϑ)
)

: u ∈ Bp (u◦,γ1), w ∈ Bp (0,γ2), f (ϑ) ∈ Bp
(

f ◦(ϑ),γ3
)}

,

where u◦, ϑ and f ◦(ϑ) are fixed signals and γ1,γ2,γ3 > 0 are fixed bounds. The second class

only has model uncertainty, and the overall uncertainty set P∆ is either ∆2,lti or ∆2,ltv (or

one of their block-structured counterparts, ∆̂2,lti or ∆̂2,ltv).

For a given point ρ in either P s or P∆, the fault diagnosis problem is well-defined and

we can compute the performance metrics. Hence, the goal is to determine which value of ρ

leads to the worst-case performance in some well-defined sense.

5.1.3 Worst-case Optimization Problems

In order to find the worst-case value of an uncertain signal or operator, we must establish

quantitative criteria that lead to well-defined optimization problems. More precisely, we

must establish a meaningful way to transform the sequences {Pf,k } and {Pd,k } into scalar-

valued objective functions. Because the procedure is the same for both uncertainty sets, P s

and P∆, we let P (•) represent the unspecified uncertainty set. From the outset, we assume

that the residual is scalar-valued and that δ is a time-varying threshold function.

Maximizing the Probability of a False Alarm

For any ρ ∈P (•), the probability of false alarm at time k is

Pf,k (ρ) = P
(|rk (ρ)| ≥ εk | θ0:k = 00:k

)
= 1−P

(|rk (ρ)| < εk | θ0:k = 00:k
)
,
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where 00:k denotes the sequence of k+1 zeros. Clearly, uncertainty has a negative impact on

performance when the probability of false alarm increases. Hence, a worst-case parameter

ρ? ∈P (•), with respect to the probability of a false alarm, is defined as an optimum point of

the following optimization problem:

P?
f = max

ρ∈P (•)

max
0≤k≤N

Pf,k (ρ)

= 1− min
ρ∈P (•)

min
0≤k≤N

P
(|rk (ρ)| < εk | θ0:k = 00:k

)
,

(5.1)

where N ≥ 0 is a fixed final time.

Minimizing the Probability of Detection

We analyze the effect of uncertainty conditional on the occurrence of particular fault. Fix a

final time N , and let ϑ0:N ∈ΘN+1 be a possible fault parameter sequence, such that ϑN 6= 0.

Define

k f := min{k ≥ 0 :ϑk 6= 0}. (5.2)

That is, the fault represented by the sequence ϑ0:N occurs at time k f . For any ρ ∈P (•), the

probability of detecting the fault at time k is

Pd,k (ρ,ϑ0:N ) = P
(|rk (ρ)| ≥ εk | θ0:k =ϑ0:k

)
= 1−P

(|rk (ρ)| ≤ εk | θ0:k =ϑ0:k
)

With respect to the probability of detecting the fault parameterized by ϑ0:N , a worst-case

parameter ρ? ∈P (•) is defined as an optimum point of the following optimization problem:

P?
d (ϑ0:N ) = min

ρ∈P (•)

max
k f ≤k≤N

Pd,k (ρ,ϑ0:N )

= 1− max
ρ∈P (•)

min
k f ≤k≤N

P
(|rk (ρ)| < εk | θ0:k =ϑ0:k

)
.

(5.3)

In other words, a worst-case parameter ρ? ∈P (•) diminishes the effect of the fault parame-

terized by ϑ0:N as much as or more than any other parameter ρ ∈P (•).

5.2 Formulating Tractable Optimization Problems

Both optimization problems (5.1) and (5.3) involve the expression

min
k f ≤k≤N

P
(|rk (ρ)| < εk | θ0:k =ϑ0:k

)
, (5.4)
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for the appropriate choice of k f and ϑ0:N . The chief difficulty in solving (5.1) and (5.3) is

expressing the minimum (5.4) as a function of ρ, which can then be minimized or maximized

to compute P?
f or P?

d , respectively. To properly address this difficulty, we must make some

additional assumptions about the sequence {rk (ρ)}. Then, under these assumptions, we

develop a heuristic that allows us to write the minimization (5.4) in a more tractable form.

5.2.1 Simplifying Assumptions

Fix ρ ∈ P (•), and let r̂k (ρ,ϑ0:k ) and Σk (ρ,ϑ0:k ) be the mean and variance, respectively, of

the residual rk (ρ) conditional on the event {θ0:N = ϑ0:N }. To make the minimization (5.4)

tractable, we make the following assumptions:

Assumption 1. The variance {Σk } does not depend on the uncertain parameter ρ.

Assumption 2. The variance {Σk } does not depend on the sequence ϑ0:N .

Assumption 3. The threshold εk is chosen in proportion to the variance Σk . That is, for

some fixed ν> 0, εk = νΣk , for all k.

Remark 5.1. The purpose of Assumption 1 is to simplify the relationship between the un-

certain parameter ρ and the function being minimized in (5.4). Similarly, Assumption 3

simplifies the minimization (5.4) by removing the effect of the time-varying threshold {εk }.

Because the sequence of thresholds {εk } must be chosen a priori, Assumption 3 is only

possible when Assumptions 1 and 2 hold. An important special case where Assumptions 1

and 2 hold is the case where the noise signal v is added directly to the system output y

before it enters the residual generator F .

Proposition 5.2. Let ρ ∈P (•), 0 ≤ k f < N , and ϑ0:N ∈ΘN+1. If Assumptions 1–3 hold, then

argmin
k f ≤k≤N

P
(|rk (ρ)| < εk | θ0:k =ϑ0:k

)= argmax
k f ≤k≤N

∣∣r̂k (ρ,ϑ0:k )
∣∣

p
Σk

.

To facilitate the proof of this proposition, we first establish the following lemma:

Lemma 5.3. Let the function L : [0,∞)×R→ [0,1) be defined as

L(ν,µ) :=
∫ ν

−ν
1p
2π

exp

(
− (s −µ)2

2

)
ds.

For any ν> 0 and all µ1,µ2 ∈R,

|µ1| < |µ2| ⇐⇒ L(ν,µ1) >L(ν,µ2).
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Proof. Using the error function, defined in Section 2.2.6, we can write the function L as

L(ν,µ) = 1

2

[
erf

(
ν−µp

2

)
+erf

(
ν+µp

2

)]
.

Since the map µ 7→L(ν,µ) is clearly even, it suffices to consider 0 ≤ µ1 < µ2. We prove the

claim by showing that µ 7→L(ν,µ) is monotonically decreasing on [0,∞). The derivative of L
at µ0 ≥ 0 is

∂L(ν,µ)

∂µ

∣∣∣∣
µ=µ0

= 1

2

∂

∂µ

[
erf

(
ν−µp

2

)
+erf

(
ν+µp

2

)]
µ=µ0

= 1

2

[
2p
π

exp

(
− (ν−µ0)2

2

)(−1p
2

)
+ 2p

π
exp

(
− (ν+µ0)2

2

)(
1p
2

)]
= 1p

2π

[
exp

(
− (ν+µ0)2

2

)
−exp

(
− (ν−µ0)2

2

)]
.

Since µ0 ≥ 0,

(ν−µ0)2 ≤ (ν+µ0)2,

with equality if and only if µ0 = 0. This inequality, together with the fact that the map

x 7→ e−x is monotonically decreasing, implies that

∂L(ν,µ)

∂µ

∣∣∣∣
µ=µ0

≤ 0,

with equality if and only if µ0 = 0.

Proof of Proposition 5.2. Define the “scaled” residual

µk (ρ) := rk (ρ)p
Σk

,

and let ν> 0 be such that εk = νΣk , for all k. Note that the conditional mean of µk (ρ) is

µ̂k (ρ,ϑ0:k ) := E
(
µk (ρ) | θ0:k =ϑ0:k

)= r̂k (ρ,ϑ0:k )p
Σk

,

and the conditional variance of µk (ρ) is

E
((
µk (ρ)− µ̂k (ρ,ϑ0:k )

)2 ∣∣ θ0:k =ϑ0:k

)
= 1

Σk
E
((

rk (ρ)− r̂k (ρ,ϑ0:k )
)2 ∣∣ θ0:k =ϑ0:k

)
= 1.
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Hence, it is straightforward to show that

P
(|rk (ρ)| < εk | θ0:k =ϑ0:k

)= P
(∣∣∣∣rk (ρ)p

Σk

∣∣∣∣< εkp
Σk

∣∣∣ θ0:k =ϑ0:k

)
= P

(|µk (ρ)| < ν | θ0:k =ϑ0:k
)

=L
(
ν, µ̂k (ρ,ϑ0:k )

)
.

Let k1,k2 ∈N be any two time points in the interval [k f , N ]. By Lemma 5.3,

P
(|rk1 (ρ)| < εk1 | θ0:k1 =ϑ0:k1

)< P
(|rk2 (ρ)| < εk2 | θ0:k2 =ϑ0:k2

)
if and only if ∣∣µ̂k1 (ρ,ϑ0:k1 )

∣∣> ∣∣µ̂k2 (ρ,ϑ0:k2 )
∣∣.

5.2.2 Simplified Worst-case Optimization Problems

The section demonstrates how Assumptions 1–3 and Proposition 5.2 are applied to the

problems of computing P?
f and P?

d .

Maximizing the Probability of False Alarm

Suppose that Assumptions 1–3 hold and assume that no faults have occurred (i.e., ϑ= 0).

The worst-case probability of false alarm is

P?
f = 1− min

ρ∈P (•)

min
0≤k≤N

P
(|rk (ρ)| < εk | θ0:k = 00:k

)
By Proposition 5.2, optimum values of ρ and k are obtained by solving

µ̂? = max
ρ∈P (•)

max
0≤k≤N

|r̂k (ρ)|p
Σk

= max
0≤k≤N

max
ρ∈P (•)

|r̂k (ρ)|p
Σk

.

Because Σk does not depend on ρ, this optimization may be solved in two separate stages.

First, for k = 0,1, . . . , N , solve the optimization

r̂?k = max
ρ P (•)

|r̂k (ρ)|, (5.5)

and then compute

µ̂? = max
0≤k≤N

r̂?kp
Σk

.

At this point, we must consider what additional assumptions are needed to ensure

that the optimization (5.5) can be written as a convex program. Because the residual is
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scalar-valued, we can write r̂?k as the solution of the optimization

r̂?k =−min

{
min
ρ∈P (•)

−r̂k (ρ), min
ρ∈P (•)

r̂k (ρ)

}
.

This problem is convex if P (•) is a convex set and both r̂k (ρ) and −r̂k (ρ) are convex functions

of ρ (i.e., r̂k (ρ) is affine in ρ). Once optimum values k? and ρ? have been obtained, the

worst-case probability of false alarm is given by

P?
f = 1−P

(|rk?(ρ?)| < εk? | θ0:k? = 00:k?
)
.

To summarize, the problem of computing P?
f is a convex optimization if P (•) is a convex set

and r̂k is affine in ρ, for all k.

Minimizing the Probability of Detection

Suppose that Assumptions 1–3 hold. Let ϑ be a fault parameter sequence such that ϑN 6= 0,

and let k f be the fault time, as defined in equation (5.2). The worst-case probability of

detection is

P?
d = 1− max

ρ∈P (•)

min
k f ≤k≤N

P
(|rk (ρ)| < εk | θ0:k =ϑ0:k

)
.

By Proposition 5.2, optimum values of ρ and k are obtained by solving

µ̂? = min
ρ∈P (•)

max
k f ≤k≤N

|r̂k (ρ)|p
Σk

.

If we define the vector

R̂(ρ) :=


r̂k f (ρ)

r̂k f +1(ρ)
...

r̂N (ρ)


and the diagonal matrix

W := diag

{
1

Σk f

,
1

Σk f +1
, . . . ,

1

ΣN

}
, (5.6)

then we may write

µ̂? = min
ρ∈P (•)

∥∥W 1/2R̂(ρ)
∥∥∞.

Since the matrix W is fixed, taking the ∞-norm is equivalent to taking the weighted point-

wise maximum of r̂k f (ρ), . . . , r̂N (ρ). Because the pointwise maximum of convex functions is

convex [5], computing P?
d is a convex optimization if P (•) is convex and each r̂k is a convex

function of ρ, for k = k f , . . . , N . Once an optimum value ρ? has been computed, let k? be
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Figure 5.1. Uncertain fault diagnosis problem with uncertain signals but no model uncertainty. The
signals u, w , and f (θ) are constrained to lie in some bounded, convex uncertainty set.

such that k f ≤ k? ≤ N and
|r̂k?(ρ?)|√

Σk?
= µ̂?.

Then, the worst-case probability of detection is given by

P?
d = 1−P

(|rk?(ρ?)| < εk? | θ0:k? =ϑ0:k?
)
.

To summarize, the optimization to compute P?
d can be written as a convex program if P (•)

is a convex set and r̂k is a convex function of ρ, for k = k f , . . . , N .

5.3 Problems with No Model Uncertainty

First, we consider the class of problems with no model uncertainty. Fix a parameter sequence

θ = ϑ, an `p -norm with p ∈ [1,∞], and constants γ1,γ2,γ3 > 0. The uncertainty set under

consideration is

P s =
{(

u, w, f (ϑ)
)

: u ∈ Bp (u◦,γ1), w ∈ Bp (0,γ2), f (ϑ) ∈ Bp
(

f ◦(ϑ),γ3
)}

,

where u◦ and f ◦(ϑ) are fixed. Decompose the input and fault signals into nominal and

uncertain parts, as follows:

u = u◦+ ũ f (ϑ) = f ◦(ϑ)+ f̃ .

If the system Gϑ is partitioned as

Gϑ =
[
G1,ϑ G2,ϑ G3,ϑ G4,ϑ

]
,

then the system output can be written as

y =G1,ϑu +G2,ϑv +G3,ϑw +G4,ϑ f (ϑ).
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If the residual generator is partitioned as

F =
[

F1 F2

]
,

then the residual can be written as

r = F1 y +F2u

= (F1G1,ϑ+F2)u +F1G2,ϑv +F1G3,ϑw +F1G4,ϑ f (ϑ)

= (F1G1,ϑ+F2)(u◦+ ũ)+F1G2,ϑv +F1G3,ϑw +F1G4,ϑ
(

f ◦(ϑ)+ f̃
)
.

Divide the residual into the sum of its nominal, uncertain, and random parts as follows:

r = r nom + r unc + r rnd,

where

r nom = (F1G1,ϑ+F2)u◦+F1G4,ϑ f ◦(ϑ),

r unc = (F1G1,ϑ+F2)ũ +F1G3,ϑw +F1G4,ϑ f̃ ,

r rnd = F1G2,ϑv.

Since v is zero-mean by assumption, the conditional mean of the residual at time k is

r̂k = E(rk | θ0:k =ϑ0:k ) = r nom
k + r unc

k ,

and the conditional variance at time k is

Σk = E
(
(rk − r̂k )2)= E

((
r rnd

k

)2
)
.

Note that Assumption 1 holds because the variance Σ is not affected by any of the uncertain

signals ũ, w , or f̃ . However, Assumption 2 only holds if the operator G2,ϑ does not depend

on the fault parameter ϑ. That is,

Gϑ =
[
G1,ϑ G2 G3,ϑ G4,ϑ

]
.

A convenient choice is to take G2 = I , which corresponds to additive measurement noise

injected between the plant Gϑ and the residual generator F .
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Maximizing the Probability of False Alarm

Assume that no faults have occurred (i.e., ϑ= 0). The worst-case probability of false alarm is

P?
f = 1− min

(u,w)∈P s

min
0≤k≤N

P
(|rk | < εk | θ0:k = 00:k

)
.

As explained in Section 5.2.2, the crux of computing P?
f is computing

r̂?k = max
(u,w)∈P s

∣∣r nom
k + r unc

k

∣∣,
for k = 0,1, . . . , N . More formally, this optimization can be written as

r̂?k = maximize
ũ,w

∣∣r nom
k + r unc

k

∣∣
subject to r nom = (F1G1,0 +F2)u◦,

r unc = (F1G1,0 +F2)ũ +F1G3,0w,

‖ũ‖p < γ1,

‖w‖p < γ2,

for p ∈ [1,∞] and γ1,γ2 > 0. Note that the signal r nom is fixed. Since r unc is a linear function

of ũ and w , the mean of the residual r̂k = r nom
k + r unc

k is an affine function of the decision

variables ũ and w . For p ∈ [1,∞], the norm bounds on the decision variables are convex

constraints. Therefore, this optimization can be written as a convex program, for all k. In

particular, if p ∈ {1,∞}, this optimization can be written as a pair of linear programs (lp),

and if p = 2, this optimization can be written as a pair of second-order cone programs (socp).

Both lps and socps are readily solved with optimization packages, such as SeDuMi [90].

Minimizing the Probability of Detection

Let ϑ be a fault parameter sequence such that ϑN 6= 0, and let k f be the fault time, as defined

in equation (5.2). The worst-case probability of detection is

P?
d = 1− max

(u,w, f (ϑ))∈P s

min
k f ≤k≤N

P
(|rk | < εk | θ0:k =ϑ0:k

)
.

By Proposition 5.2, optimum values of u, w , f , and k are obtained by solving

µ̂? = min
(u,w, f (ϑ))∈P s

max
k f ≤k≤N

|r̂k |p
Σk

.
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As in Section 5.2.2, if the matrix W is defined by equation (5.6), then this optimization may

be written more formally as

µ̂? = minimize
ũ, w, f̃

∥∥W 1/2R̂
∥∥∞

subject to R̂i = r nom
k f +i−1 + r unc

k f +i−1, i = 1,2, . . . N −k f +1,

r nom = (F1G1,ϑ+F2)u◦+F1G4,ϑ f ◦,

r unc = (F1G1,ϑ+F2)ũ +F1G3,ϑw +F1G4,ϑ f̃ ,

‖ũ‖p < γ1,

‖w‖p < γ2,∥∥ f̃
∥∥

p < γ3,

for p ∈ [1,∞] and γ1,γ2,γ3 > 0. Since the signal r nom is fixed, R̂k is an affine function of the

decision variables ũ, w , and f̃ , for each k. Since the pointwise maximum of convex functions

is convex [5] and the matrix W is fixed, the objective function is convex. For p ∈ [1,∞] the

norm bounds on ũ, w , and f̃ are convex constraints. Therefore, this optimization is a convex

program. In particular, if p ∈ {1,∞}, this optimization is a linear program (lp), and if p = 2,

this optimization is a second-order cone program (socp). Both lps and socps are readily

solved with optimization packages, such as SeDuMi [90].

5.4 Problems with Model Uncertainty

In this section, we consider systems of the form shown in Figure 5.2, where the linear

operator ∆ represents model uncertainty and the signals u and f are known. Note that this

system is not affected by a disturbance w . If the system Gθ is partitioned as

Gθ =
[

G11,θ G12,θ G13,θ G14,θ

G21,θ G22,θ G23,θ G24,θ

]
,

then the signals labeled in Figure 5.2 are related as follows:

β=∆α,

α=G11,θβ+G12,θv +G13,θ f (θ)+G14,θu,

y =G21,θβ+G22,θv +G23,θ f (θ)+G24,θu.

Recall that Proposition 5.2 only applies if Assumptions 1–3 of Section 5.2.1 hold. Since the

residual generator F is a known linear operator with no uncertainty, the validity of these

assumptions depends on the manner in which the noise v affects the system output y .

Let Tv→y denote the map from v to y . If the interconnection shown in Figure 5.2 is
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Figure 5.2. Uncertain fault diagnosis problem with model uncertainty. The uncertain operator ∆
is constrained to lie in some bounded, convex uncertainty set. For simplicity, we assume that the
signals u and f (θ) are known.

well-posed (i.e., the inverse of I −G11,ϑ∆ exists for all ϑ ∈Θ and all admissible ∆), then

α= (I −G11,θ∆)−1(G12,θv +G13,θ f (θ)+G14,θu
)
,

which implies that

Tv→y =G21,θ∆(I −G11,θ∆)−1G12,θ+G22,θ.

Therefore, Assumptions 1 and 2 hold if the noise v does not pass through the uncertain

operator ∆ (i.e., G12,θ = 0), and the map G22,θ does not depend on the parameter θ. That is,

Gθ =
[

G11,θ 0 G13,θ G14,θ

G21,θ G22 G23,θ G24,θ

]
.

The important special case G22 = I corresponds to additive measurement noise.

Fix a parameter sequence ϑ and an input u. Assuming that G12,θ = 0 and θ = ϑ, the

signals α and β are given by the equations

α= (I −G11,θ∆)−1(G13,θ f (ϑ)+G14,θu
)
,

β=∆α=∆(
G13,θ f (ϑ)+G14,θu

)
. (5.7)

Since the signals f (ϑ) and u are known and ∆ is constrained to be a member of the set P∆,

these equations can be interpreted as a constraint on the signal β. Hence, our approach

to computing the worst-case performance is to compute the worst-case β, such that equa-

tion (5.7) is satisfied by some ∆ ∈P∆. The theoretical results that yield such constraints on

β can be found in the literature on interpolation theory and model invalidation.
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5.4.1 Interpolation Results

The general problem of interpolation consists of finding an operator ∆ in some prescribed

set P∆, such that ∆ maps some fixed input data α0:N to some fixed output data β0:N . This

section states, without proof, a number of relevant results from interpolation theory. The key

feature of these results is that, for a given α0:N , an interpolating operator exists if and only if

β0:N lies in some convex set. Therefore, these results can be used as convex constraints on

β0:N in the previously-defined worst-case optimization problems.

First, we establish some useful notation. For any a ∈ S m and any ` > 0, define the

block-Toeplitz matrix

T`(a) :=


a0 0 0 · · · 0

a1 a0 0 · · · 0

a2 a1 a0 · · · 0
...

. . .
...

a` a`−1 a`−2 · · · a0

 ∈Rm(`+1)×(`+1).

Let M : S m →S n be a causal linear operator with the impulse response{
M [i , j ] ∈Rn×m : i ≥ j ≥ 0

}
.

That is, if y = Mu, then

yk =
k∑

j=0
M [k, j ]u j ,

for all k ≥ 0. For any such M and any `> 0, define the block lower-triangular matrix

T̀ (M) =


M [0,0] 0 0 · · · 0

M [1,0] M [1,1] 0 · · · 0

M [2,0] M [2,1] M [2,2] · · · 0
...

. . .
...

M [`,0] M [`,1] M [`,2] · · · M [`,`]

 ∈Rn(`+1)×m(`+1).

Note that if M is time-invariant and y = Mu, then the matrix T̀ (M) is block-Toeplitz and

T`(y) = T̀ (M)T`(u),

for all `≥ 0.

Now, we are ready to state some key results from interpolation theory. These results

are summarized at the end of this section in Table 5.1. The following extension of the

Carathéodory–Fejér Theorem [80] is due to Fedčina [35] and is used in a number of model-

invalidation studies [11, 74, 87].
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Figure 5.3. Block diagrams for the interpolation results. Theorems 5.4 and 5.9 apply to diagram (a).
Corollaries 5.5 and 5.10 apply to diagram (b). Theorem 5.6 applies to diagram (c) and Theorem 5.7
applies to diagram to diagram (d).

Theorem 5.4. Given sequences α ∈ `n
2 and β ∈ `m

2 and constants γ> 0 and N ∈N, there exists

an operator ∆ ∈∆2,lti(γ), such that

τNβ= τN∆α

if and only if

T ∗
N (β)TN (β) ¹ γ2T ∗

N (α)TN (α).

For many applications, it is appropriate to impose additional structure on the inter-

polating operator ∆. One structure that appears frequently in the robust control litera-

ture [28, 86, 110] is the class of block-diagonal operators, which we denote ∆̂p (γ). As shown

in [11], Theorem 5.4 is extended to operators in set ∆̂2,lti(γ) by simply treating each block-

partition separately. Hence, we state this extension as a corollary of Theorem 5.4.

Corollary 5.5. Given sequences α ∈ `n
2 and β ∈ `m

2 and constants γ> 0 and N ∈N, there exists

an operator ∆= diag{∆1, . . . ,∆q } ∈ ∆̂2,lti(γ), such that

τNβ= τN∆α

if and only if

T ∗
N (βi )TN (βi ) ¹ γ2T ∗

N (αi )TN (αi ),

for i = 1,2, . . . , q, where α and β are partitioned such that βi =∆iαi .
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The following extension of Theorem 5.4, due to Chen and Wang [11], is useful when the

interpolating operator ∆ is in a feedback interconnection with another operator.

Theorem 5.6. Consider the feedback interconnection shown in Figure 5.3(c), in which

β=∆(I −M∆)−1z.

Fix γ> 0 and let M : `m
2 → `n

2 be a linear time-invariant operator, such that ‖M‖i 2 ≤ 1
γ

. Then,

given sequences z ∈ `n
2 and β ∈ `m

2 and N ∈N, there exists an operator ∆ ∈∆2,lti(γ), such that

τNβ= τN∆(I −M∆)−1z

if and only if[
T (β)T T (M)T T (z)+T (z)T T (M)T (β)+T (z)T T (z) T (β)T

T (β)
(

1
γ2 I −T (M)T T (M)

)−1

]
º 0,

where the subscript N on the operators T and T has been omitted for clarity.

As in Corollary 5.5, Theorem 5.6 can be extended to the case where ∆ is block-diagonal.

However, for general M , the matrix inequality in Theorem 5.6 becomes a nonconvex con-

straint on β, and there is no computationally tractable way to check for the existence of a

block-diagonal interpolating operator [11, 92]. However, Chen and Wang [11] show that this

matrix inequality is convex in β if M is sufficiently structured. The necessary structure is

stated in the following theorem.

Theorem 5.7. Consider the feedback interconnection shown in Figure 5.3(d), in which

β=∆(I −M∆)−1z.

Fix γ> 0, assume ∆= diag{∆1, . . . ,∆q }, and let M : `m
2 → `n

2 be a linear time-invariant opera-

tor, such that

M = diag{M1, M2, . . . , Mq },

where the dimensions of Mi are compatible with ∆i . Further, assume that ‖Mi‖i 2 ≤ 1
γ , for

all i . Then, given sequences z ∈ `n
2 and β ∈ `m

2 , there exists an operator ∆ ∈ ∆̂2,lti(γ), such that

τNβ= τN∆(I −M∆)−1z
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if and only if[
T (βi )T T (Mi )T T (zi )+T (zi )T T (Mi )T (βi )+T (zi )T T (zi ) T (βi )T

T (βi )
(

1
γ2 I −T (Mi )T T (Mi )

)−1

]
º 0,

for i = 1,2, . . . , q, where β and z are partitioned compatibly with ∆ and M.

Remark 5.8. The statement and proof of Theorems 5.6 and 5.7 involves the relationship

TN (α) =TN (M)TN (β)+TN (z),

which only holds when M is time-invariant. To the best of our knowledge, there is no

extension of these results in which M is time-varying.

The following time-varying extension of Theorem 5.4 is due to Poolla et al. [74] and used

in the model-invalidation context by [27, 87, 92].

Theorem 5.9. Given sequences α ∈ `n
2 and β ∈ `m

2 and constants γ> 0 and N ∈N, there exists

an operator ∆ ∈∆2,ltv(γ), such that

τNβ= τN∆α

if and only if

‖τkβ‖2 ≤ γ‖τkα‖2,

for k = 0,1, . . . , N .

As in Corollary 5.5, this result is easily extended to the case where ∆ is block-diagonal

by considering each block-partition separately. Hence, we have the following corollary of

Theorem 5.9.

Corollary 5.10. Given sequences α ∈ `n
2 and β ∈ `m

2 and constants γ > 0 and N ∈ N, there

exists an operator ∆= diag{∆1, . . . ,∆q } ∈ ∆̂2,ltv(γ), such that

τNβ= τN∆α

if and only if

‖τkβi‖2 ≤ γ‖τkαi‖2,

for k = 0,1, . . . , N and i = 1,2, . . . , q, where α and β are partitioned such that βi =∆iαi .

Remark 5.11. The condition τNβ= τN∆α used in these interpolation theorems implies that

the values α j and β j are irrelevant for j > N . In the model invalidation literature, this
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Table 5.1. Summary of interpolation results for linear operators with and without feedback. The
column labeled Diagram indicates which part of Figure 5.3 applies.

Result Diagram Uncertainty Set Feedback Operator

Theorem 5.4 (a) ∆2,lti(γ)
Corollary 5.5 (b) ∆̂2,lti(γ)
Theorem 5.6 (c) ∆2,lti(γ) M lti, ‖M‖i 2 < 1

γ

Theorem 5.7 (d) ∆̂2,lti(γ) M lti, M = diag{M1, . . . , Mq }, ‖Mi‖i 2 < 1
γ

Theorem 5.9 (a) ∆2,ltv(γ)
Corollary 5.10 (b) ∆̂2,ltv(γ)

condition is imposed because only a finite amount of data can be used to invalidate the

model. Although the theorems may be more naturally stated in terms of finite sequences

α0:N and β0:N , the truncation operator τN is more compatible with the operator-theoretic

notation used throughout this chapter.

Remark 5.12. In some instances, the time-invariance assumption of Theorems 5.4 and 5.6

is too restrictive and the time-varying assumption of Theorem 5.9 is too conservative. In

the model invalidation literature [91, 101], similar theorems are stated for a time-varying

operator ∆ such that the rate of variation ν, defined as

ν(∆) := ∥∥z−1∆−∆z−1
∥∥

i 2,

is bounded. However, these theorems are stated in the frequency-domain and cannot be

used to formulate worst-case optimization problems using Proposition 5.2. To the best of

our knowledge, there are no time-domain interpolation results that take into account the

rate of variation.

5.4.2 Using the Interpolation Results to Find Worst-case Performance

Having established a variety of interpolation results, we now consider how these results

are used as constraints in the worst-case optimization problems. For the sake of simplicity,

we only treat the cases where the uncertain operator ∆ is unstructured. In each case, the

extension to the block-diagonal case is straightforward.

Suppose that Assumptions 1 and 2 of Section 5.2.1 are met by taking G12,θ = 0 and

letting G22 be independent of the fault parameter θ. Then, the system output is given by

β=∆α
α=G11,θβ+G13,θ f (θ)+G14,θu

y =G21,θβ+G22v +G23,θ f (θ)+G24,θu
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Fix a parameter sequence θ =ϑ and let the residual generator F be partitioned as F = [
F1 F2

]
.

Divide the residual into its non-random and random parts, as follows:

r = r unc + r rnd,

where

r unc = F2G21,θβ+F2G23,θ f (θ)+ (F2G24,θ+F1)u

r rnd = F2G22v.

Since v is zero-mean by assumption, the conditional mean of the residual at time k is

r̂k = E(rk | θ0:k =ϑ0:k ) = r unc
k ,

and the conditional variance at time k is

Σk = E
(
(rk − r̂k )2)= E

((
r rnd

k

)2
)
.

Note that, as desired, the sequence {Σk } does not depend on β or θ.

Maximizing the Probability of False Alarm

Assume that no faults have occurred (ϑ= 0). Recall that the worst-case probability of false

alarm is

P?
f = 1− min

∆∈P∆

min
0≤k≤N

P
(|rk | < εk | θ0:k = 00:k

)
.

As explained in Section 5.2.2, the crux of computing P?
f is solving

r̂?k = max
∆∈P∆

∣∣r unc
k

∣∣,
for k = 0,1, . . . , N . There are two cases to consider: P∆ =∆2,lti(γ) and P∆ =∆2,ltv(γ).

Case 1. Suppose that ∆ belongs to the set ∆2,lti(γ) and assume that G11,0 is an lti operator

with ‖G11,0‖i 2 < 1
γ

. Then, for k = 0,1, . . . , N , applying Theorem 5.6 yields the following

optimization:

r̂?k = maximize
β

∣∣r unc
k

∣∣
subject to r unc = F2G21,0β+ (F2G24,0 +F1)u

z =G13,0 f (0)+G14,0u

J (β) º 0,
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where

J (β) :=
[

T (β)T T (G11,0)T T (z)+T (z)T T (G11,0)T (β)+T (z)T T (z) T (β)T

T (β)
(

1
γ2 I −T (G11,0)T T (G11,0)

)−1

]
.

Note that the subscript N has been omitted from the operators T and T for clarity.

Since u and f (0) are known, r unc is an affine function of β. Also, the signal z is fixed, so

the function J (β) is linear in β, and the constraint J (β) º 0 is a linear matrix inequality

(lmi). Therefore, this optimization can be cast as a semidefinite program (sdp), which is a

type of convex program that is readily solved with numerical optimization packages, such as

SeDuMi [90].

Case 2. Suppose that ∆ belongs to the set ∆2,ltv(γ) and assume that G11,0 = 0 (i.e., ∆ does

not experience feedback). Then, for k = 0,1, . . . , N , applying Theorem 5.9 yields the following

optimization:

r̂?k = maximize
β

∣∣r unc
k

∣∣
subject to r unc = F2G21,0β+F2G23,0 f (0)+ (F2G24,0 +F1)u

α=G13,0 f (0)+G14,0u

‖τ`β‖2 ≤ γ‖τ`α‖2, `= 0,1, . . . ,k.

As in Case 1, r unc
k is affine in β. Since the k +1 inequality constraints are quadratic in

β0:N , this optimization problem is a socp. As previously mentioned, socps are readily solved

with numerical optimization packages.

Minimizing the Probability of Detection

Let ϑ be a fault parameter sequence such that ϑN 6= 0, and let k f be the fault time, as defined

in equation (5.2). Recall that the worst-case probability of detection is

P?
d = 1− max

∆∈P∆

min
k f ≤k≤N

P
(|rk | < εk | θ0:k =ϑ0:k

)
.

By Proposition 5.2, the optimum values of ∆ and k are obtained by solving

µ̂? = min
∆∈P∆

max
k f ≤k≤N

|r̂k |p
Σk

.
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As in Section 5.2.2, if the matrix W is defined as in equation 5.6 and the vector R̂ is defined

as

R̂ =


r unc

k f

r unc
k f +1

...

r unc
N

 ,

then this optimization may be written as

µ̂? = min
∆∈P∆

‖W 1/2R̂‖∞.

There are two cases to consider: P∆ =∆2,lti(γ) and P∆ =∆2,ltv(γ).

Case 1. Suppose that ∆ belongs to the set ∆2,lti(γ) and assume that G11,ϑ is an lti operator

with ‖G11,ϑ‖i 2 < 1
γ

. Then, applying Theorem 5.6 yields the following optimization:

µ̂? = maximize
β

‖W 1/2R̂‖∞
subject to R̂i = r unc

k f +i−1, i = 1, . . . , N −k f +1,

r unc = F2G21,ϑβ+F2G23,ϑ f (ϑ)+ (F2G24,ϑ+F1)u

z =G13,ϑ f (ϑ)+G14,ϑu

J (β) º 0,

where

J (β) :=
[

T (β)T T (G11,ϑ)T T (z)+T (z)T T (G11,ϑ)T (β)+T (z)T T (z) T (β)T

T (β)
(

1
γ2 I −T (G11,ϑ)T T (G11,ϑ)

)−1

]
.

Note that the subscript N has been omitted from the operators T and T for clarity.

Since the matrix W is fixed, the objective function is a weighted pointwise maximum

of r unc
k f

, . . . ,r unc
N . Of course, r unc is an affine function of β, so the objective is convex in β.

Since z is fixed, J (β) is linear in β, and the constraint J (β) º 0 is a lmi. Therefore, this

optimization is a sdp.
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Case 2. Suppose that ∆ belongs to the set ∆2,ltv(γ) and assume that G11,ϑ = 0 (i.e., ∆ does

not experience feedback). Then, applying Theorem 5.9 yields the following optimization:

µ̂? = maximize
β

‖W 1/2R̂‖∞
subject to R̂i = r unc

k f +i−1, i = 1, . . . , N −k f +1,

r unc = F2G21,ϑβ+F2G23,ϑ f (ϑ)+ (F2G24,ϑ+F1)u

α=G13,ϑ f (ϑ)+G14,ϑu

‖τ`β‖2 ≤ γ‖τ`α‖2, `= 0,1, . . . ,k.

As in Case 1, the objective is a weighted pointwise maximum of affine functions of β, which

implies that it is convex. Since the signal α is fixed, each of the k +1 inequality constraints

is quadratic in β and the optimization problem is a socp.
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Chapter 6

Applications

6.1 Introduction

In this chapter, we explore various applications of the performance analysis framework

developed in the preceding chapters. To begin, we examine, from a high level, the various

usages of the performance metrics. Then, we demonstrate how the performance metrics

are computed for two aerospace examples. The first example is a simplified air-data sensor

system consisting of a pitot-static probe and a flight path angle measurement. The second

example is a linearized model of a vertical take-off and landing (vtol) fixed-wing aircraft. For

the first example, we consider the effects of uncertain signals, and for the second example,

we consider the effects of additive model uncertainty.

6.2 Types of Studies

Although there are many ways to interpret the performance metrics, the following types of

studies stand out as natural applications of our performance analysis framework:

1. Selecting a fault detection scheme: Given a fixed system Gθ, the performance met-

rics can be used to select the best fault diagnosis scheme from a finite set of schemes{
V (i ) = (F (i ),δ(i )) : i = 1,2, . . . ,m

}
.

This type of application is most useful when the fault diagnosis schemes are designed

using disparate methodologies with incomparable design criteria.

2. Trade studies: Given a collection of systems{
G (i )
θ

: i = 1,2, . . . ,m
}

and a collection of fault diagnosis schemes{
V (i ) = (F (i ),δ(i )) : i = 1,2, . . . ,m

}
,
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let ci be the cost of implementing the system G (i )
θ

with the scheme V (i ), for all i . A

trade study examines the trade-off between the cost ci and the performance of the

scheme V (i ), with respect to the system G (i )
θ

, for each i . For example, each system G (i )
θ

may consist of a different combination of sensors and components, in which case

a trade study may be used to decide if it is more beneficial, from a fault diagnosis

standpoint, to use higher-quality components or to use redundant copies of a lower-

quality component. In addition to size, weight, and monetary costs, ci may also

include a measure of how difficult it is to compute the performance metrics for the

fault diagnosis problem given by G (i )
θ

and V (i ).

3. Certifying system safety: Suppose that when a fault is detected, the system Gθ and

the fault diagnosis scheme V are reconfigured, as in Section 4.4.2. Recall that in

Section 4.4.2, we showed that

Ĵk (i , j ) = P(D̂ j ,k ∩Hi ,k )

is the probability of the system being in configuration s j when it should be in config-

uration s j . Note that for some (i , j ) pairs, the event D̂ j ,k ∩Hi ,k is safe, while for other

pairs it is not. For example, it is safe to be in the nominal mode when no faults have

occurred, but it is unsafe to be in the nominal mode when a critical sensor has failed.

Therefore, by computing and analyzing the matrices { Ĵk }, we can quantitatively certify

that the probability that system is in a safe configuration, at time k, is within some

acceptable range [1−α,1].

6.3 Air-Data Sensor Example

Nearly all aircraft use a pitot-static probe to determine airspeed V and altitude h. Because

these data are essential for flying, the pitot-static probe is integrated into the flight control

feedback loop. These sensors are prone to a number of failures, such as icing and blockage,

that cause them to produce incorrect values. If such a failure goes undetected, the autopilot

system or the pilot may use the erroneous values to issue commands that cause the aircraft

to crash. To avoid such disasters, large commercial aircraft, such as the Boeing 777 [103,104],

have multiple pitot-static probes in different locations. However, most aircraft designers

have developed a set of standard operating procedures that allow safe recovery of the aircraft

when a pitot-static probe failure is detected [6]. In this application we explore the detection

of such faults by exploiting the analytical redundancy between airspeed, altitude, and flight

path angle. This example was also studied less extensively in the conference papers [97, 98].
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Figure 6.1. Block diagram of a pitot-static probe with a fault detection scheme based on analytical
redundancy. The map φ (shown graphically in Figure 6.2) represents the system G , while the shaded
region, labeled F , is the residual generator.

6.3.1 Problem Formulation

Consider the fault detection problem shown in Figure 6.1, in which a pitot tube measures

the total pressure pt , and a static port measures the static pressure ps . These measurements

are corrupted by adding Gaussian white noise processes, vt and vs , and randomly occurring

faults, ft and fs . From the measured pressures, airspeed and altitude are derived using the

relations [
V

h

]
=φ(pt , ps) :=

sign(pt−ps)c3

(∣∣∣(pt−ps
p0

+1
)c4 −1

∣∣∣) 1
2

c1

(
1− ( ps

p0

)c2
)

 , (6.1)

where the constants

c1 = 44.331km,

c2 = 0.1903,

c3 = 760.427 m/s,

c4 = 2/7,

p0 = 101.325kPa

model the troposphere (up to 17km) [18]. These equations are plotted in Figure 6.2 for

subsonic flight in the troposphere. We use the notation V̂ for the derived airspeed and ĥ for

the derived altitude to indicate that these quantities are corrupted by random disturbances

and faults. Note φ actually gives the indicated airspeed, which is the airspeed that would

be measured if the sensors were at standard atmospheric conditions. To obtain the true

airspeed, we would also need a measurement of the outside air temperature [18]. However,

we ignore this issue for the sake of simplicity.

The fault signals are randomly-occurring biases, defined as

ft (t ) := bt 1(t ≥ τt ) and fs(t ) := bs 1(t ≥ τs),

for t ≥ 0, where bt and bs are known, fixed bias magnitudes, and τt and τs are independent
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exponential random variables τt ∼ Exp(λt ) and τs ∼ Exp(λs).

The dynamic portion of the fault detection scheme F is contained in the shaded region of

Figure 6.1. The input γ is the flight path angle of the aircraft, which we assume is measured

exactly with no noises or faults. Consider the following analytical relationship between V , h,

and γ:

h(t ) = h(0)+
∫ t

0
ψ

(
V (s),γ(s)

)
ds

= h(0)+
∫ t

0
V (s)sinγ(s) ds,

which is used to derive h̃ from γ and V̂ . The fault detection scheme attempts to detect the

faults ft and fs by analyzing the difference ĥ− h̃. However, as the noisy signal ψ(V̂ ,γ) passes

through the integrator, the noise accumulates and h̃ diverges from ĥ. To counteract this

effect, a high-pass or “washout” filter of the form

W (s) = s

s +a
, a > 0,

is applied to the difference ĥ − h̃ to produce the residual r . The drawback of using this filter

is that it removes the steady-state or “dc” component from the signal ĥ − h̃. We assume that

the decision function (not depicted in Figure 6.1) is a threshold function with threshold ε> 0.

6.3.2 Applying the Framework

To apply the computational framework developed in Chapter 4, the system G must be ltv.

As shown in Figure 6.2, the map φ is only mildly nonlinear for modest changes in differential

pressure pd := pt −ps and static pressure ps , so we take the first-order approximation

φ
(
pt + vt + ft (θ), ps + vs + fs

)≈φ(pt , ps)+Φ
[

vt

vs

]
+Φ

[
ft (θ)

fs

]
,

where Φ := (Dφ)(pt , ps) is the Jacobian linearization of φ. Then, the linearized system G is

given by the static equation

y = D̂uu + D̂v v + D̂ f f ,

where

y =
[

V̂

ĥ

]
, u =φ(pt , ps), v =

[
vt

vs

]
, f =

[
ft

fs

]
,

and D̂u = I and D̂v = D̂ f =Φ. Note that for a given flight path angle γ, the map ψ can be

interpreted as a linear function of V . Hence, the residual generator F can be written as the
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Figure 6.2. Visualization of the air-data sensor equations. Plot of (a) the (indicated) airspeed V as a
function of differential pressure pd = pt −ps and (b) the altitude h as a function of static pressure ps .
The values plotted here are typical for subsonic flight in the troposphere.

linear system

F

 ξ̇= Ãξ+ B̃y y,

r = C̃ξ+ D̃ y y,

where

Ã =−a, B̃y =
[

sin(γ) a
]

, C̃ =−1, D̃ y =
[

0 1
]

.

The final step in applying our performance analysis framework is to convert everything to

discrete time. Let Ts > 0 be a fixed sample time, and let N ∈N be the final time step (i.e., N Ts

is the time horizon considered). We use the “zero-order hold” method [7] to discretize the

continuous-time dynamics. For each k ≥ 0, define the input uk :=φ(
pt (tk ), ps(tk )

)
, where

tk = kTs . Since the discrete-time analogue of Gaussian white noise is an iid Gaussian

sequence [50,72], we define the iid sequences {vt ,k }k≥0 and {vs,k }k≥0 with vt ,i ∼N (0,σ2
t ) and

vs,i ∼N (0,σ2
s ), respectively, for all i . The fault signals are represented in discrete-time by

ft ,k = bt1(k ≥ κt ) and fs,k = bs1(k ≥ κs), for all k, where κt ∼ Geo(qt ) and κs ∼ Geo(qs) are

geometric random variables. As shown in Fact 2.8, the best discrete-time model is achieved

when qt = 1−e−λt Ts and qs = 1−e−λs Ts .

6.3.3 Numerical Results

First, we compute the joint probability and conditional probability performance metrics

defined in Chapter 3. For these simulations, the following parameters values are used:
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• Sample time: Ts = 0.05s

• Time horizon: N = 72,000 (i.e., N Ts = 1hour)

• Flight path angle: 0.5◦ (constant)

• Airspeed: V = 45 m/s (constant)

• Initial Altitude: h(0) = 200m

• Noise standard deviations: σt = 2.5Pa, σs = 2.5Pa

• Bias fault magnitudes: bt =−0.04kPa, bs = 0.05kPa

• Continuous failure time models: λt =λs = 0.001hr−1 = 2.78×10−7 s−1

• Discrete failure time models: qt = qs = 1.389×10−7

• Filter pole: a = 0.003 (before discretization)

• Threshold: ε= 2m

The resulting performance metrics are plotted in Figures 6.3(a) and 6.3(b). Note that, in this

case, the component failure rates are so small that the plots of {Pfn,k } and {Ptp,k } are barely

distinguishable from zero.

Next, we plot the roc curves as the threshold ε varies from 0.1 m to 50 m. The curves

shown in Figure 6.4 correspond to times ranging from 1 minute to 1 hour. Note that, in

Figure 6.3(b), the probability of detection {Pd,k } dips at about 7 minutes. Hence, some of the

roc curves in Figure 6.4 cross over one another. However, the general trend is that the roc

curves pass closer to the ideal point (0,1) as time increases.

For our third numerical experiment, we observe that the probability of detection, plotted

in Figure 6.3(b), converges to a steady-state value. To better understand the effects of

changing the washout filter pole a and the noise standard deviation σ, we compute the

steady-state values of {Pd,k } as a and σ vary. In Table 6.1, these steady-state values are

tabulated for a ranging from 0.0005 to 0.004 and σ ranging from 2Pa to 10Pa. Note that the

value of a listed in Table 6.1 corresponds to the continuous-time washout filter W before

discretization. Also, the same standard deviation σ is used for both noise signals, {vt ,k }

and {vs,k }. All other parameters remain the same as in the previous experiments.

In our fourth experiment, we seek to find the worst-case flight path, with respect to

the probability of false alarm. For these optimizations, we use the values a = 0.003 and

σt =σs = 2.5Pa, as in the first two experiments. We assume that there is no disturbance w

or model uncertainty ∆ affecting the system. The class of uncertain inputs considered is

B2(u◦,γ) = {
ũ +u◦ : ‖ũ‖2 < γ

}
,

where u◦ = (V ,h) is the flight path described in the first experiment. Since we only consider

additive input faults, the conditional variance of the residual, {Σk } does not depend on the

fault parameter sequence θ or the uncertain input. Hence, we can fulfill Assumptions 1–3 of
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Figure 6.3. Performance metrics for the air-data sensor system. Plot (a) shows the joint probability
performance metrics, and plot (b) shows the conditional probability performance metrics. Note that
the sequences {Pfn,k } and {Ptp,k } have small values and are barely distinguishable from zero.

Table 6.1. Steady-state performance of the air-data sensor system for various values of the washout
filter pole a and the noise standard deviation σ. Note that the values of the pole a refer to the
continuous-time dynamics before discretization, but the standard deviation σ refers to the discretized
iid Gaussian noise sequences (i.e., σs =σt =σ).

Noise Standard Deviation, σ (Pa)

Pole, a 2 4 6 8 10

0.0005 0.9742 0.9482 0.9216 0.8943 0.8662
0.001 0.9739 0.9469 0.9183 0.8875 0.8534
0.0015 0.9736 0.9454 0.9137 0.8756 0.8211
0.002 0.9732 0.9435 0.9064 0.8423 0.7303
0.0025 0.9729 0.9410 0.8879 0.7631 0.5968
0.003 0.9725 0.9373 0.8427 0.6517 0.4692
0.0035 0.9720 0.9291 0.7687 0.5387 0.3680
0.004 0.9715 0.9104 0.6790 0.4411 0.2933
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Figure 6.4. Performance metrics for the air-data sensor system plotted in roc space. Each roc curve
represents the performance of the fault detection scheme shown in Figure 6.1 at a particular time step
as the threshold ε on the decision function δ is varied.

Section 5.2.1 by using the proportional threshold

εk = ν
√
Σk ,

where ν= 2.25. We use the yalmip interface [63] to SeDuMi [90] to solve the optimization

problem. The resulting worst-case values P?
f (γ) are plotted in Figure 6.5 for γ ranging from 0

to 10.

Finally, we compute the worst-case fault signal, with respect to the probability of detec-

tion. For this computation, we assume that there are no other sources of uncertainty. Let ϑ

be the fault parameter sequence in which both sensors fail at k = 18,000 (15 minutes). The

class of uncertain fault signals considered is

B2( f ◦,γ) = {
f̃ + f ◦(ϑ) : ‖ f̃ ‖2 < γ

}
,

where f ◦(ϑ) is the nominal bias fault with magnitudes bs and b f defined above. The time

horizon of the simulation is shortened to 17 minutes (i.e., N = 20,400 time steps). Hence, the

signal f̃ must decrease the probability of detection (i.e., suppress the effect of the nominal

fault f ◦(ϑ)) over a 2 minute interval. Again, we use the yalmip interface [63] to formulate the

optimization problem and SeDuMi [90] to solve it. The resulting worst-case values P?
d (γ) are

plotted in Figure 6.6 for γ ranging from 1.5 to 2.0. Note that, for each γ, the value of P?
d (γ)

would increase as the number of time steps N is increased, because the perturbation f̃

would have to suppress the effect of f ◦(ϑ) over a longer time span. That is, increasing N
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Figure 6.5. Worst-case probability of false alarm for the air-data sensor system with an uncertain
input of the form u = u◦+ ũ, where u◦ is a fixed nominal input and ‖ũ‖2 < γ.

1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2.0

Uncertainty Bound,     

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ili

ty
 o

f 
D

et
ec

tio
n,

   
   

 

γ

P
? d

Figure 6.6. Worst-case probability of detection for the air-data sensor system with an uncertain fault
signal of the form f (ϑ) = f (ϑ)◦+ f̃ , where ϑ is a fixed fault parameter sequence, f (ϑ) is a fixed nominal
fault signal, and ‖ f̃ ‖2 < γ.

and decreasing γ have a similar effect on the worst-case performance. The relatively short

time span (2 minutes) used for these simulations was chosen to keep the computations

manageable.

108



G

∆W1 W2

F

v
f (θ)

u

r

.

y

α β

Figure 6.7. Block diagram of a linearized vertical take-off and landing (vtol) aircraft model with
additive model uncertainty.

6.4 VTOL Aircraft Example

In this section, we examine the effects of additive model uncertainty on the performance of

an observer-based fault detection scheme. The system under consideration is is a linearized

model of the longitudinal dynamics of a vertical take-off and landing (vtol) aircraft. The

original modeling and linearization of this system are due to Narendra and Tripathi [70].

Since the publication of [70], variants of this model have been used in a number of fault

detection studies (e.g., [83, 94–96, 102]).

6.4.1 Problem Formulation

Consider the block diagram shown in Figure 6.7. The additive uncertainty affects the map

from the input u to the output y . Assume that both W1 and W2 are fixed square matrices,

and assume that ∆ ∈∆2,ltv(γ). The continuous-time dynamics of the system are of the form

ẋ = Ax +Buu +Bv v +B f f (θ),

y =C x + (
Du +W2∆W1

)
u +Dv v,

where the states and inputs are defined as

x =


horizontal velocity (knots)

vertical velocity (knots)

pitch rate (deg/s)

pitch angle (deg)

 , u =
[

collective pitch control

longitudinal pitch control

]
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The following matrices correspond to the linearized vtol model at an airspeed of 135 knots:

A =


−9.9477 −0.7476 0.2632 5.0337

52.1659 2.7452 5.5532 −24.4221

26.0922 2.6361 −4.1975 −19.2774

0 0 1 0

 ,

Bu =


0.4422 0.1761

3.5446 −7.5922

−5.5200 4.4900

0 0

 , Bv =


0 0

0 1

1 0

0 0

 , B f = Bu ,

C =


1 0 0 0

0 1 0 0

0 0 1 0

0 1 1 1

 , Du =


0 0

0 0

0 0

0 0

 , Dv =


0 0.2

0 0.1

0.3 0

0 0

 , D f = Du .

Residual Generator

The residual generator is based on a Luenberger observer [64] with the observer gain L ∈R4×4.

Hence, the continuous-time dynamics of the residual generator F are of the form

F


ξ̇= Aξ+Buu +L(y − ŷ),

ŷ =Cξ+Duu,

r = M(y − ŷ).

To obtain a scalar-valued residual, we take M to be

M =
[

0 1 0 0
]

.

We consider the following observer gain matrices:

1. Gain proposed by Wei and Verhaegen [96]:

L1 =


0.6729 −1.4192 −0.0396 1.7178

5.0829 0.0881 0.2018 −1.5150

−5.0978 10.5595 3.4543 −11.2687

0.5041 −1.0298 −0.0012 1.0785


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2. Gain proposed by Wang, Wang, and Lam [95]:

L2 =


4.3021 −10.0144 −3.5587 4.8599

6.3561 −1.6791 −0.9140 −2.4219

−21.1044 47.6843 17.6497 −22.7378

2.9567 −6.7268 −2.7124 3.4869


3. Gain proposed by Wang and Yang [94]:

L3 =


0.6953 −1.3907 0 1.7402

4.9745 0.0509 0 −1.6751

−5.1998 10.3996 3.3333 −11.3239

0.5100 −1.0201 0 1.0781


The resulting residual r is passed to a threshold decision function δ.

Input Signals

For the system input u, we use the signals defined in [96], where u is the output of a

controller K . It is difficult to obtain the exact form of u without also implementing K , which

would add unnecessary complexity to our example. However, the plots of u shown in [96]

can be closely approximated by the following continuous-time signal:

u(t ) =
[

1.5−0.03(t mod 100)+0.25sin
(2πt

3

)
−0.75+0.03(t mod 50)

]
, (6.2)

where the terms of the form n(t mod m) are due to the “sawtooth wave” reference command

used in [96].

For the fault model, we assume that there are two components that fail independently

at random. For the sake of simplicity, we follow [96] and take the faults to be randomly

occurring biases:

f (t ) =
[

b11(t ≥ τ1)

b21(t ≥ τ2)

]
where τ1 ∼ Exp(λ1) and τ2 ∼ Exp(λ2) are the random failure times. Section 4.2.2 demon-

strates that the discrete-time version of this fault model (see Fact 2.8) can be parameterized

by a tractable Markov chain θ.

Finally, we assume that the noise signal v is a Gaussian white noise process.
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6.4.2 Applying the Framework

The main task in applying our computational framework is to convert the continuous-time

vtol aircraft model to a discrete-time system. For a fixed sample time Ts > 0, we use the

“zero-order hold” method [7] to discretize the system and the residual generator. The input

signal in equation (6.2) is sampled to obtain uk = u(kTs), for all k ≥ 0. Using Fact 2.8,

we convert the random failure times τ1 and τ2 to discrete failure times κ1 ∼ Geo(q1) and

κ2 ∼ Geo(q2), respectively, where qi = 1−e−λi Ts . Finally, we assume that the noise {vk } is an

iid Gaussian process with vi ∼N (0,σ2I ), for all i .

6.4.3 Numerical Results

First, we compute the joint probability and conditional probability performance metrics

defined in Chapter 3. For these simulations, the following parameter values are used:

• Sample time: Ts = 0.05s

• Time horizon: N = 72,000 (i.e., N Ts = 1hour)

• Noise standard deviation: σ= 5

• Bias fault magnitudes: b1 = 2, b2 =−2.

• Continuous failure time models: λ1 =λ2 = 0.002hr−1 = 5.56×10−7 s−1

• Discrete failure time models: q1 = q2 = 2.778×10−8

• Threshold: εk = νpΣk , ν= 2.25

Note that the threshold εk is proportional to the residual standard deviation
p
Σk , for all k.

This choice, which fulfils Assumption 3 in Section 5.2.1, is possible because the noise v

does not pass through the uncertain operator and the map from v to the output y does not

depend on the fault parameter θ (see Section 5.4). The performance metrics generated with

observer gain L1 are plotted in Figures 6.8(a) and 6.8(b). Since the component failure rates

are so small, the plotted values of {Pfn,k } and {Ptp,k } are barely distinguishable from zero.

Next, we compare the performance of the three residual generators parameterized by

the observer gain matrices L1, L2, and L3. Because the performance metrics plotted in

Figures 6.8(a) and 6.8(b) converge to steady-state values, we compare the performance of

the residual generators by examining their values at the final time step N . The resulting

steady-state performance metrics are listed in Table 6.2. Note that the probability of false

alarm is the same for all three cases. This is because the residual is zero-mean when no

faults occur and the threshold is proportional to the noise standard deviation
p
Σk . Thus,

the parameter ν can be chosen to achieve a desired false alarm probability.

Our next experiment involves finding the worst-case additive uncertainty, with respect

to the probability of false alarm. The uncertainty set considered here is

∆2,ltv(γ) = {
∆ : `2

2 → `4
2 : ∆ ltv, causal stable , ‖∆‖i 2 < γ

}
,
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Figure 6.8. Performance metrics for the vtol aircraft example with observer gain L1. Plot (a) shows
the joint probability performance metrics, and plot (b) shows the conditional probability performance
metrics. Note that the sequences {Pfn,k } and {Ptp,k } are barely distinguishable from zero.

Table 6.2. Steady-state values of the performance metrics for the vtol aircraft example. For each
observer gain Li , the steady-state value is taken to be the value achieved at the final time step N .

Performance Metrics

Gain Ptn,N Pfp,N Pfn,N Ptp,N Pf,N Pd,N

L1 0.9735 0.02439 1.082×10−5 1.998×10−3 0.02444 0.9946
L2 0.9735 0.02439 4.496×10−5 1.965×10−3 0.02444 0.9776
L3 0.9735 0.02439 1.082×10−5 1.998×10−3 0.02444 0.9946
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Figure 6.9. Worst-case probability of false alarm P?
f for the vtol aircraft example with additive model

uncertainty (see Figure 6.7), where ∆ ∈∆2,ltv(γ).

and the weight matrices are W1 = I2×2 and W2 = I4×4. Because the worst-case optimization

problems involve a large number of constraints and decision variables, we shorten the time

horizon to 1 minute (i.e., N = 1,200). We use the residual generator based on the observer

gain L1. The matlab toolbox yalmip [63] is used to formulate the optimization problem,

which is solved by SeDuMi [90]. The resulting worst-case values are plotted in Figure 6.9

for γ ranging from 0 to 0.015.

Finally, we consider the problem of finding the worst-case additive uncertainty, with

respect to the probability of detection. As in the previous experiment, we assume that

W1 = I , W2 = I , and ∆ lies in the set

∆2,ltv(γ) = {
∆ : `2

2 → `4
2 : ∆ ltv, causal stable , ‖∆‖i 2 < γ

}
.

Again, to keep the size of the optimization problem manageable, we reduce the time horizon

to 1 minute. Let ϑ be the fault parameter sequence in which both faults occur at t = 10s

or k = 200. Again, yalmip [63] is used to formulate the optimization problem in matlab, and

SeDuMi [90] is used to compute an optimal solution. The resulting worst-case values are

plotted in Figure 6.10 for γ ranging from 0.11 to 0.18. As in the air-data sensor example

(Section 6.3), computing the worst-case probability of detection P?
d is a matter of suppressing

the nominal fault signal. In this case, it becomes increasingly difficult to find a ∆ with

bounded induced 2-norm to suppress the effect of the fault signal as the simulation time

horizon N Ts is increased or as the norm-bound γ is decreased.
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Figure 6.10. Worst-case probability of detection P?
d for the vtol aircraft example with additive model

uncertainty (see Figure 6.7), where ∆ ∈∆2,ltv(γ).
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Chapter 7

Conclusions & Future Work

This dissertation considers the problem of rigorously quantifying the performance of a fault

diagnosis scheme using accurate and efficient numerical algorithms. In Chapter 3, we estab-

lished a set of quantitative performance metrics, based on a sequence of hypothesis tests,

that apply to the class of parametric fault diagnosis problems. We also showed how these

performance metrics can be decoupled into two parts: one quantifying the reliability of the

underlying system and the other quantifying the performance of the fault diagnosis scheme.

Throughout the dissertation, we emphasized simpler problems with exact solutions over

more complex problems with approximate solutions. Hence, in Chapter 4, we established

a set of sufficient assumptions, which limit the class of fault diagnosis problems in such

a way that the performance metrics can be computed efficiently and accurately. To make

these assumptions less restrictive, and to address the common problem of modeling errors,

we considered the effects of uncertainty in Chapter 5. For various types of uncertainty,

we formulated convex optimization problems that define the worst-case performance of a

given fault diagnosis scheme. Finally, in Chapter 6 we demonstrated the application of our

framework on two aerospace examples.

The framework developed in this dissertation is just a preliminary step toward a more

rigorous approach to the design and analysis of fault diagnosis schemes. Although there

are many avenues open for future research, the following issues seem to provide natural

extensions to the results presented here.

1. Tractable Markov chains: As discussed in Remark 4.13, the graph-theoretic condition

stated in Theorem 4.12 is sufficient but not necessary for a Markov chain with time-

varying transition probability matrices to be tractable. The simple case considered in

Example 4.18 seems to suggest that there may be more complex conditions involving

multiple graphs that are indeed necessary for tractability. Finding such a necessary

condition would make it possible to study the tractability of a wider class of non-time-

homogeneous Markov chains.

2. Decision functions: Although threshold decision functions are commonly found in

the fault diagnosis literature, there are a number of other popular decision functions
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that deserve equal attention.

• Likelihood ratio tests: As stated in Chapter 3, likelihood ratio tests provide the high-

est probability of detection for a given probability of false alarm (see Lemma 3.10).

A decision function based on a likelihood ratio test between two hypotheses H0,k

and H1,k can be written as

δ(k,r0:k ) =
0 if Λ(r0:k ) > εk

1 otherwise,

where the likelihood ratio test statistic is defined as

Λ(r0:k ) := pr (r0:k | H0,k )

pr (r0:k | H1,k )
.

Note that, at each time k, the decision function δ depends on the entire sequence of

residuals r0:k . Therefore, δ must be written in terms of a dynamic decision function

with a state that “remembers” the past values of rk , or the decision function must

become increasingly complex with each time step.

• Decision functions based on norms: There are a number of decision functions in

the fault detection literature that are based on taking some norm of the residual

signal. For example, when the residual is vector-valued, the decision function may

be of the form

δ(k,rk ) := 1(‖rk‖2 > εk
)
,

where 1 is the indicator function. Similarly, one may define a norm over some time

window T , as follows:

‖r0:k‖2,T :=
(

1

T

k∑
`=max{0,k−T+1}

‖r`‖2
2

)1/2

The corresponding decision function is

δ(k,r0:k ) := 1(‖r0:k‖2,T > εk
)
.

Both of these norm-based decision functions can be found in the literature (see [24]

and references therein); however, neither of them fit the computational framework

presented here.

• Dynamic decision functions applied to correlated residuals: Recall that in Sec-

tion 4.4.2, the state of the dynamic decision function is a Markov chain if and

only if the residuals are Gaussian and uncorrelated in time. This strong assumption

usually only occurs when the noise signal is added directly to the system output as
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measurement noise. Hence, the applicability of dynamic decision functions would

be significantly increased if the Gaussian residuals were allowed to be correlated in

time. Even if exact results cannot be obtained, bounds on the performance metrics

could still be useful in most applications.

3. Model uncertainties: In Section 5.4.1, we present interpolation results in which the

induced 2-norm of the interpolating operator ∆ is bounded. Then, in Section 5.4.2,

we show how these results can be used to form convex optimization problems that

yield the worst-case performance. Using a similar approach, we may also consider

uncertainties with bounded induced ∞-norm. Indeed, in [74], Poolla et al. prove an

interpolation result, where ∆ is lti casual, stable, and

‖∆‖i∞ := sup
α6=0

‖∆α‖∞
‖α‖∞

< γ,

for some γ> 0. The necessary and sufficient conditions for the existence of such an

interpolating operator are stated in terms of the feasibility of a linear program (lp).

The linear constraints in this lp are readily incorporated into our worst-case optimiza-

tion problems. The ltv version of this result, due to Khammash and Pearson [55], can

also be used as constraints in our worst-case optimization problems.

4. Approximations: Although the emphasis throughout this dissertation has been placed

on exact computation, there is considerable value in computing approximate solu-

tions with known error bounds. Such approximate algorithms would fulfill the same

practical purpose of their more exact counterparts while saving a great deal of com-

putation time. Indeed, such algorithms could be used for preliminary analyses to

determine which input and fault signals are most interesting. Then, the exact algo-

rithms could be used to refine the approximate solutions.
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