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MODELS FOR KINETICS OF SOLID STATE SINTERING 

*" Boon Wong and Joseph A. Pask 

Materials and Molecular Research Division, Lawrence Berkeley Laboratory 
and Department of Materials Science and Mineral Engineering, 

University of California, Berkeley, California 94720 

ABSTRACT 

Kinetic equations for the isothermal densification of a single phase 

powder compact are formulated for the initial and intermediate stages of 

sintering; these are identified as continuous open pore stages, with a 

decreasing number of voids and grains per unit volume accompanied by 

grain growth occurring in the latter. Each stage can be represented by 

one of two equations: one based on mass transport along the forming 

grain boundary to the "neck" region as the rate controlling step, and 

one on movement from the neck t:o the free surface regions as the rate 

controlling step • 

* Based on part of a thesis submitted by Boon Wong for the Ph.D. degree 
in Materials Science at the University of California, Berkeley. Now at 
GTE Lab~ratories (Sylvania) Waltham, Mass. 
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I. INTRODUCTION 

Solid state sintering is the critical step in the fabrication and 

development of ceramic, metallic and polymeric materials. It is a high 

temperature process during which a powder compact generally shrinks and 

decreases its pore volume, and increases its bulk density. From a 

thermodynamic point of view, solid state sintering is a thermally activa-

ted process during which an assembly of particles of equilibrium chemical 

composition decreases its total interfacial free energy by a larger 

decrease in the total solid-vapor interfacial energy relative to the total 

increase of the solid-solid interfacial, i.e. grain bound~ry, energy in the 

system by means of mass transport mechanisms. Therefore, the driving 

force for the process is this reduction of the total interfacial energy 

1 of the system. 

Normally, the goal of solid state sint~ring is to develop at the 

lowest possible temperature a dense polycrystalline material with a 

controlled microstructure. In order to achieve this goal, an understand-

ing of the fundamentals of the process is essential. This paper presents 

some models and derives kinetic equations for different isothermal sinter-

ing stages and conditions. 2 
A separate paper presents an experimental 

application of the derived equations to the sintering of an MgO powder. 

II. NATURE OF SOLID STATE SINTERING 

The solid state sintering process during which shrinkage occurs can 

be divided into three stages: initial, intermediate and final. 1 The 

formation of a framework of particles by formation of grain boundaries 

at particle contacts has been occasionally referred. to in the literature 

as the initial stage, but it will be here classified as the preliminary 

• 
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stage. This stage is also being identified on the basis of any 

rearrangement of particles that may occur as the framework forms. Little, 

if any, shrinkage occurs due to mass transport processes. 

The initial and intermediate stages of crystalline particle compacts 
• 

are identified by the presence of continuous open pore channels with no 

change in the number of voids occurring in the former and a decreasing 

number of voids per unit volume in the latter. These stages are also 

identified on the basis of no grain growth and grain growth, respectively. 

The final stage is identified as the closed pore stage; grain growth 

invariably occurs during this stage. Grain growth also generally con-

tinues with continued heating after the system reaches theoretical or 

endpoint density. 

The decrease in the number of voids and grain growth in the 

intermediate stage occurs in real systems because of the presence of a 

range of particle and aggregate sizes, nonhomogeneity of packing, and 

anisotropy of interfacial energies. Thus, in an ideal system of uniform 

size spheres with isotropic surface and grain boundary energies that are 

packed uniformly, no intermediate stage would exist. In real system 

clumps, aggregates and agglomerates with denser packing relative to the 

whole system densify first because of their smaller voids; with the 

closing of voids, larger particles form and the distances between re-

• maining voids increase. The respective lengths of the initial and inter-

• mediate periods are therefore dependent on the character of the powder . 

In some cases, the initial stage may be so short as to essentially merge 

with the preliminary stage. 
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Detailed analyses of sintering during the open pore periods have 

3-11 been presented in the literature by a number of workers. Coble made 

a critical analysis and presented diffusion models for the initial (as 

·1o 12 
defined here) and final stages. ' Improper identification of stages 

and mass transport mechanisms have undoubtedly contributed to the differ-

ences in kinetic studies that have appeared in the literature. 

In this discussion kinetic equations are derived for the initial 

and intermediate stages of sintering as defined. The models are all-

important. In this case a two-step mass transport mechanism or process 

is used: (1) material moves along the grain boundary to the solid/ 

vapor/solid dihedral angle or "neck" regions, and (2) then to the free 

surface regions. For each of the stages, depending on the experimental 

conditions, either step (1) or (2) can be the slow step in the mass 

transport and thus control the kinetics although shrinkage always occurs 

by the step (1) mechanism. It is thus logical that different equations 

should be needed to represent each of the four conditions. 

Ill. THERMODYNAMIC CONSIDERATIONS OF SINTERING 

The change in free energy during sintering of a powder compact at 

chemical composition equilibrium can be expressed as 

oG = afy ciA + ojy dA sys sv sv ss ss 
(1) 

where G is the total interfacial energy of the system, y represents 
s~ ~ 

the specific surface free energies, and y , specific interfacial or ss 

grain boundary energies, A is the free surface area, and A is the· 
sv ss 

interfacial area. The first term is negative since the surface areas 

decrease, and the second term is positive since the grain boundary areas 

• 
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increase. As long as the net change in free energy for the system at any 

instant (oG ) is negative, a driving force for sintering exists. sys 

This concept can be illustrated by a model of two spheres with an 

interface, as shown in Fig. 1. Ideal multisphere models utilize the same 

densification concept but each particle has more contacts or developing 

grain boundaries, the number bein~ dependent on the packing of the parti-

cles; attention is then directed to the voids whose structure is depend-

ent on the packing of particles. The growth of the grain boundary areas 

and resultant shrinkage in all cases is realized by the indicated two 

step mass transport process. The ge~metry of the neck region is deter-

mined by whether step (1) or ·(2) is the slow step. Figure lA illustrates 

the ideal configuration that results when step (1) is the slow step; and 

Fig. lB, when step (2) is the slow step. The driving force for mass 

transport for step (1) results from a chemical potential gradient estab-

lighes by the existence of non-equilibrium dihedral angles, and for step 

(2) by reverse curvature in the surfaces in the neck region. 

The Fig~ lA configuration represents an ideal condition in which 

the reverse curvature does not develop due to a faster step (2) which 

maintains a minimum free surface area; the dihedral angle under these 

conditions starts at 0° and increases until the equilibrium dihedral 

angle is reached which would correspond to equilibrium shrinkage and 

minimum surface area as determined by Eq. (1) when oG becomes zero. · sys 

The equilibrium dihedral angle at this point can be expressed by 

ysv 
2 cos % . ( 2) 

During continuing shrinkage, however, it can be seen that ¢ starts at 
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0° and increases until ~ is reached; the corresponding transient value 
eq 

for the left term starts at 2 and decreases until the value for 

(y /y ) is reached, which is represented in Eq. (1). A thermodynamic ss sv eq 

driving force for mass transport by step (1) then exists as long as the 

dihedral angle is not at equil2brium, and can be expressed as 

oG sys 

~ 
~-

2 cos~). (3) 

OG becomes zero in both Eqs. (1) and (3) when the equilibrium dihedral sys 

angle is reached; no further shrinkage then occurs. 

The Fig. lB configuration represents a condition in which a neck 

with an equilibrium dihedral angle builds up quickly and is maintained 

due to a faster step (1). The resulting reverse curvature of the free 

surface in the neck region becomes the source of the thermodynamic 

driving force for mass transport in step (2) than controls the kinetics. 

The resulting mass transport to remove the curvature causes ~ to be eq 

upset which immediately is brought back to equilibrium by a faster 

step (1) process. When the reverse curvature is eliminated, the equi-

librium Fig. lA configuration is reached and no further shrinkage occurs. 

IV. PHENOMENOLOGICAL VISCOUS 

CONCEPT FOR SOLID STATE SINTERING KINETICS 

Mass transport along the grain boundary region to the neck (step 1) 

and from the neck along the free surface region (step 2) is due to 

chemical potential gradients set up because of nonequilibrium conditions 

and normally visualized and expressed as vacancy gradients. The mass 

transport or diffusion is phenomenologically equivalent to viscous shear 

• 

. -
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flow. Since such flow or diffusion takes place at every contact point 

in the compact, it.can be related to the bulk shrinkage of the whole 

compact. 

Regardless of the detailed mechanisms, when a porous isotropic 

viscous solid is under uniform pressure and at a constant temperature, 

the rheological equation derived, based on the law of conservation of 

13 energy, is 

where the right side of the equation is the algebraic sum of the 

(4) 

pressures (capillary pressures, external, etc.) on the solid, s is bulk 

viscosity, V is total specific bulk volume of the porous compact, and t 

is time. Since 
vs 

V=-
1-P 

where v
8 

is specific true volume of the material and P is fractional 

porosity, differentiating Eq. (5) with respect to time, we have 

Substituting Eq. (6) and Eq. (5) into Eq. (4), we have 

1 
(1-P) 

n 
dP 
dt =- E ai. 

i=l 

14 According to Skorokhod, the bulk viscosity of a porous viscous 

material can be expressed in terms of porosity and the effective shear 

viscosity, n, along the active grain boundaries as 

s = i n (1-P) 
3 p 

(5) 

(6) 

(7) 

(8) 
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for all values of P. Upon substitution of Eq. 8 into Eq. 7 we obtain 

the general phenomenological sintering kinetic equation: 

n 
= - E a .• 

i=l 1 

V. ASSUMED GEOMETRY FOR THE MODELS 

In determining mass transport by diffusion or shear flow, it is 

necessary to take into account variations in vacancy concentration 

gradients that the controlling mass transport step is dependent upon. 

These are dependent upon the distances of movement along the contact 

(9) 

planes or grain boundaries during step (1) which increase with shrinkage 

and along the free surface regions during step (2) which can conveniently 

be expressed in terms of grain size and porosity. 

It is assumed that the individual grains will have a uniform 

average size and an average shape. The developing shape during the 

initial stage is determined by the degree of packing or the number of 

contacts that an individual particle has. The ultimate final shape 

formed by grain boundary motion is represented by the polyhedron 

tetrakai-decahedron which is a truncated octahedron with 14 faces, 36 

edges and 24 corners, as shown in Fig. 2, because it has the smallest 

interfacial area in a polycrystalline compact for a given grain size. 

The configuration is formed directly, and thus most readily by a start-

ing body-centered cubic packing of uniform-sized spheres; the 8 near· 

neighbor contacts for a given sphere cause its conversion to an acta-

hedron shape which transforms to the truncated shape when contacts are 

made with the 6 second neighbors and .closed pores develop representing 

• 

• 

• 

• 
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the final stage. The development of sintering equations is based on 

this configuration. 

Cob1e10 showed that the relationship between the volume of the 

polyhedron, V 
1 

, its edge length, ~ , and average grain size, G, can po y p 

be expressed as 

(10) 

During the open pore stages, it is assumed for calculation 

purposes that the pores or voids are essentially cylinders lying along 

the to-be three-grain edges of the polyhedrons. The volume of cylindri-

cal pores associated with each grain can be expres·sed as 

v cyl = 13.5 G r
2 
c 

(11) 

where r is the radius of the cylindrical pore. Therefore, the porosity 
c 

during the open pore stages is 

or 

p = 
v cyl 
v poly 

r 
c 

2 
13.5 G r 

= ----,--...;...c 
0.52 G3 

VI. SINTERING KINETICS 

Sintering equations for the initial and intermediate stages are 

developed on the basis of whether step (1) or step (2) of the mass 

(12) 

(13) 

transport process is the kinetic controlling step as outlined in Section 

II. The basic transport mechanism for a given controlling step is 
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essentially the same for the two stages. The distinction between the 

initial and intermediate stages is the initiation of grain growth, or 

decrease in number of voids, in the latter with maintenance of some con-

tinuous open pores. Grain growth results in a condition where the 

number of active grain boundary contacts and voids or pores per unit 

bulk volume decrease with a corresponding decrease in fractional bulk 

volume shrinkage rate. 

A. Step (2) Controlled Kinetics 

In this case a dynamic equilibrium dihedral angle is formed at the 

solid/vapor/solid triple line in the neck during the preliminary stage. 

The resulting inverse curvature in the free surface as seen in Fig. lB 

provides the controlling driving force for sintering by establishing a 

vacancy concentration gradient between the free surface and the neck 

regions:(J,lS) 

2C Q o Ysv 
kTr. c 

where C is the vacancy concentration on a flat surface, n is atomic 
0 

(molecular) volume, k is Boltzmann's constant, r is the cylindrical 
c 

radius of the pore, and T is absolute temperature. Multiplying both 

sides of Eq. (14) by 6D /2Tir results in the following flux equation 
v c 

between the free surface and neck regions: 

2D C Ov 2D Y v o""'sv B sv J ~ ~___;;~...;.. 

- kTr2 kTr2 
c c 

where Dv is the vacancy diffusion coefficient, and DB is the bulk 

(14) 

(15) 

• 

• 

• 

• 
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diffusion coefficient since DB 

2Tir /6 is the diffusion path. 
c 

= D C Q and J = 3D ~C/2 r where 
v 0 v c 

The creep rate will then approximately be: 

since, from Eq. 

E: = -4JQ ~ -SD~ny sv ""-22~Bn (Y sJ 

t kTr t kTr G r p c p c c 

(10), t = 0.36G. 
p 

From Eq. (16), the corresponding 

effective shear viscosity coefficient n can be expressed as: 

Substituting Eq. (17) into Eq. (9) and rearranging, results in the 

equation: 

n 
~ 

i-1 a .. 
1 

(16) 

(17) 

(18) 

If it is assumed that during the initial stage of sintering ~a. = y /r 
1 sv c 

and substituting Eq. (13) into Eq. (18), with rearrangement of terms, we 

obtain 

_d_P = _-_4_25_D...:.B::...ny--=s~v = 
dt kTG3 

(19) 

where A1 is a proportionality constant, and N is the number of inter

connected voids per unit volume and inversely proportional to G, the 

grain size, which also determines the number of grains per unit volume 

for a given packing. For the initial stage of sintering then Eq. (19) 
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can be integrated to give 

-A D nv N3 
1 B""' sv (P-p ) = _ __;;;;.,........;;;...;.._-

o kT 
(t-t ) • 

0 
(20) 

Although the derivation of and the constant terms in this equation are 

different from that of Coble's equation, (lO) the indication of a linear 

densification rate is the same. 

During the intermediate stage in real systems, grain growth and a 

corresponding reduction of number of voids or pores interconnected by 

channels or grain boundaries occur due to the presence of a range of 

particle sizes and nonuniform packing of particles and agglomerates. 

It is postulated that the reduction of the number of voids follows a 

3 1 
cubic law represented by N = mt where m is a time-independent coefficient. 

Substituting this relationship in Eq. (19) and integrating, we obtain 

(21) 

B. Step (1) Controlled Kinetics 

In this case, the dihedral angle at the solid/vapor/solid triple 

line in the neck increases as sintering proceeds. If in a multisphere 

compact the equilibrium angle is reached according to the model in Fig. 

1A before complete densification of the system is reached because of a 

sufficiently large value for (y /y ) , the system reaches an end point ss sv eq 

density. The existence of the nonequilibrium angle during sintering 

provides the driving force for densification because of the establishment 

of a vacancy concentration gradient along the grain boundary from its 

center to the triple point line due to tension at the triple line and 

• 

• 

• 
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compression at the center according to Nabarro(l6) and Herring. (ll) 

Using the thermodynamic driving force expressed in Eq. (3) in the format 

of Eq. (14), ~C becomes 

Since Dgb = D b C rl, the flux of material becomes: 
g v 0 

(22) 

(23) 

where D b is grain boundary diffusion coefficient, D b is grain boundary 
. g . g v 

diffusion coefficient of vacancies, and w is the grain boundary width. 

The creep rate due to material flow along grain boundaries, 
3 3 . 

considering that t = 0.046G according to Eq. (10), then is 
p 

(~~:~t3 = -4:::~u>l CYsv (cos tr: cos f)} 
p 

From Eq. (24) the effective shear viscosity coefficient n can be 

expressed as 

n 
kTG3 

43ogbwn 

(24) 

(25) 

The relationship between ~ and P during the open pore stage when the 

11 porosity of the green or unfired compact is assumed to be 0.54 is 

~ "'(o. 36 - o. 49P
112

). (26) 
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UsingEq. (26) and arbitrarily assuming 'Pe = .140° for oxides we obtain 

. ·. [. ( 1/2) cr ~ 2y
8
vcos0.36 ~ 0.49P · - 0.341 

(27). 
c r 

c 

Mathematical treatment of :Eq. (27) results in 

0 
~ 2y sv( 0. 60 + 0.17P

1
/

2
- 0.12P) 

c · r (28) 
c 

Substituting Eqs. (25) and (28) into Eq. (9), using the relationship 

of Eq. (13) for rc' and substitutingN for Gas in Eq. (19), we obtain 

. . -A D w.Q . N4 

[ 
· . 1 ]· dP . 2 gb . sv (29) 

P112 (0.60 + 0.17P1/ 2 - 0.12P) dt = kT . 

For the initial stage of sintering when N remains essentially constant 

Eq. (20) can be integrated to give 

[tanh-
1 (-o.43P112 + 0.3)- tanh-

1 (-0.43P
0

112 + 0.3)] = 

4 
A

3
y D bw.QN 

sv g (t-t ). 
kT o 

(30) 

During the intermediate stage with the occurrence of grain growth and 

3 reduction of number of voids, substituting the relationship of N = 1/mt 

into Eq. (29) and integrating, we obtain 

(31) 

... 

.. 



-15-

where A
2

, A
3 

and A
4 

are constants. 

The numerical values in Eq. (30) and (31) are based on the 

selection of ci> eq 
140° and an unfired porosity of 0.54 which were con-

sidered to be approximate average values. Other values for these para-

meters will change the numerical factors'in the equations with a shift of 

the positions of the curves plot.ted as the porosity function versus the 

time parameter. The slopes of the straight line portions for each of 

these equations, however, will not change. 

VII. SUMMARY 

Three stages have been identified in the densification process: 

1 initial, intermediate, and final. In the real systems, particularly 

with low unfired bulk densities, a preliminary stage can be identified in 

which some rearrangement of particles occurs before grain boundaries are 

formed. Continuous open porosity is maintained in the first two stages, 

with grain growth and decrease of number of voids or pores interconnected 

by channels or grain boundaries occurring in the intermediate stage. 

Only closed pores are present in the final stage. The grain growth, and 

decrease of numbers of grains and voids, identifying the intermediate 

stage occurs only in real systems due to the presence of a range of 

particle and aggregate sizes and nonuniformity of packing. The respec-

tive lengths of the preliminary, initial and intermedi~te stages are 

dependent on the character and packing characteristics of the powders. 

Grain growth upon pore closures and subsequent annealing is due to 

anisotropy· of surface and grain boundary energies, curvature of grain 

boundaries, and nonequilibdum solid/solid/solid dihedral angles formed 

during the sintering process. 
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Kinetic equations for the isothermal densification of a single phase 

powder compact are based on the slow or controlling step of the mass 

transport process. In all cases the mass transport process is divided 

into two steps: movement of material along the particle/particle contact 

or grain boundary to the neck regions, and then movement from the neck 
. . 1 

to t~e free surface regions. 

Kinetic equations have been formulated for the initial and 

intermediate stages of isothermal sintering for cases when step (1) 

(Eqs. 30 and 31) and when step (2) (Eqs. 20 and 21) were the rate 

controlling steps in the mass transport process. Experimental verifica-

2 tion of these equations is being published in another paper. 
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FIGURES 

1. Two-sphere ideal models with isotropic interfacial energies: (A) 

minimum free energy geometric configuration when step (1) is rate 

controlling for mass transport, and (B) neck formation configuration 

with maintained equilibrium dihedral angle when step (2) is rate 

controlling. 

2. Model of tetrakaidecahedron or truncated octahedron shape assumed by 

uniform size spherical particles in body-centered cubic packing after 

complete densification with no grain growth . 

• 
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YGB = 2 Ysv cos q,/2 

X 8 L 789-5743 

Fig. 1 
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Fig. 2 
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