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RESEARCH ARTICLE

An Effector Peptide Family Required for
Drosophila Toll-Mediated Immunity
AlexaW. Clemmons☯, Scott A. Lindsay☯, Steven A. Wasserman*

Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San
Diego, La Jolla, California, United States of America

☯ These authors contributed equally to this work.
* stevenw@ucsd.edu

Abstract
In Drosophila melanogaster, recognition of an invading pathogen activates the Toll or Imd

signaling pathway, triggering robust upregulation of innate immune effectors. Although the

mechanisms of pathogen recognition and signaling are now well understood, the functions

of the immune-induced transcriptome and proteome remain much less well characterized.

Through bioinformatic analysis of effector gene sequences, we have defined a family of

twelve genes – the Bomanins (Boms) – that are specifically induced by Toll and that encode

small, secreted peptides of unknown biochemical activity. Using targeted genome engineer-

ing, we have deleted ten of the twelve Bom genes. Remarkably, inactivating these ten

genes decreases survival upon microbial infection to the same extent, and with the same

specificity, as does eliminating Toll pathway function. Toll signaling, however, appears unaf-

fected. Assaying bacterial load post-infection in wild-type and mutant flies, we provide evi-

dence that the Boms are required for resistance to, rather than tolerance of, infection. In

addition, by generating and assaying a deletion of a smaller subset of the Bom genes, we

find that there is overlap in Bom activity toward particular pathogens. Together, these stud-

ies deepen our understanding of Toll-mediated immunity and provide a new in vivomodel

for exploration of the innate immune effector repertoire.

Author Summary

Dedicated defense systems in the bodies of humans and other animals protect against dan-
gerous microbes, such as bacteria and fungi. We study these processes in the fruit fly Dro-
sophila, which can be readily grown and manipulated in the laboratory. In this animal, as
in humans, protective activities are triggered when fragments of bacteria or fungi activate
a system for defense gene regulation known as the Toll signaling pathway. The result is the
large-scale production of defense molecules and, in many cases, clearance of the infection
and survival of the animal. Although the systems for recognizing and initiating responses
are well described, the role of many defense molecules is not understood. We have identi-
fied a group of closely related defense molecules in flies and used state-of-the-art genomic
engineering to simultaneously eliminate most of the genes in the group. By comparing the
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effect of fungal or bacterial infection on the genetically altered flies and normal siblings,
we find that this group of defense molecules is essential for disease resistance.

Introduction
Constant interaction with microbes is a fact of life, and sometimes death, for animals. Many
microbes are neutral or beneficial to the host’s health. Some, however, are pathogenic and
threaten the host’s viability. In vertebrates and invertebrates alike, immune responses are initi-
ated by recognition of pathogen associated molecular patterns (PAMPs) following invasion of
host tissues [1, 2]. This recognition of conserved microbial products triggers innate immune
signaling pathways that are closely related in species as divergent as flies and humans [3–5]. In
each case, pathway activation initiates a transcriptional program encoding an array of effector
peptides and proteins.

In the fruit fly Drosophila melanogaster, Toll and Imd proteins define the two major im-
mune signaling pathways [6–11]. Fragments of fungal cell walls and bacterial peptidoglycan
serve as PAMPs for these pathways. Toll signaling is triggered by the β-1,3-glucans of fungal
cell walls or by Lys-type peptidoglycan [12–16]. In contrast, the Imd pathway is activated by
DAP-type peptidoglycan [17–21]. Upon activation, Toll and Imd direct expression of distinct
but overlapping effector gene repertoires. These effector genes bring about the humoral im-
mune response via factors, including antimicrobial peptides (AMPs), that circulate throughout
the fly hemolymph. Effector genes also support other immune processes by, for example, upre-
gulating genes promoting melanization and wound healing [22].

The Drosophila immune effector repertoire has been characterized by microarray, RNA-
seq, and mass spectrometry experiments [23–27]. The most highly upregulated genes include
most known AMPs, but also many as yet uncharacterized effector peptides. For both the char-
acterized and novel effectors, delineation of in vivo requirements based on loss-of-function
phenotypes is largely lacking.

Here, we describe the application of recent advances in genome engineering technology to
the genetic dissection of innate immune effector function. Generating a designer deletion of
multiple members of an effector gene family, we demonstrate an essential role for these genes
in Toll-mediated defense against microbial pathogens.

Results

The Bom genes encode a family of short, secreted, Toll-regulated
peptides
Carrying out sequence comparisons among Drosophila melanogaster loci induced by the Toll
pathway [24], we identified a family of twelve genes encoding secreted peptides lacking similar-
ity to known AMPs. Each of the twelve peptides contains one or two copies of a 16 amino acid-
long motif that includes a CXXC bend surrounded by a region of high sequence conservation
(Fig 1A). All orthologs identified to date are from members of the Drosophila genus. We pro-
pose naming this family of genes the Bomanins (Boms), after Hans Boman, who carried out pi-
oneering work in peptide-mediated innate immunity [28–31].

Several Bom peptides belong to the set of Immune-induced Molecules (IMs) first identified
in mass spectrometry studies carried out by Bulet, Hoffmann, and colleagues [23, 25]. Combin-
ing those findings with detailed sequence comparisons reveals post-translational processing
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events: signal peptide cleavage and, often, removal of additional residues at the amino-terminal
end as well as carboxyl-terminal amidation (Fig 1B).

The Bom peptides fall into three distinct groups (Fig 1B and S1 Table). For six of the twelve,
the mature peptide is just 16 or 17 amino acids long. The sequences of these six short-form pep-
tides are highly similar and correspond to the conserved, CXXC-containing region that we
have defined as the Bom motif (see Fig 1A and 1B). Three other Bom peptides have a tailed
form—a Bommotif followed by a C-terminal extension or tail, 15 to 82 amino acids in length.
The remaining three peptides have a Bom motif at each end, connected by a linker region of 43
to 103 amino acids. We refer to these peptides as two-headed or bicipital. Sequence identity

Fig 1. Bom genes share a conserved 16-aa motif. (A) Alignment of Bommotifs. Top. Mature Bom peptide
sequences of the short-form Boms. Middle. Bom peptide motifs of the tailed Boms. Bottom. Bom peptide
motifs from the N- and C-terminal ends of the three bicipital Boms. Shading indicates sequence identity
(black) or similarity (gray). (B) Schematic of the three Bom peptide forms. ‘Bom’ represents the conserved
16-aa motif depicted in Fig 1A. Drawings are to scale and arrows indicate sites of cleavage. (C) Schematic of
55C Bom gene cluster on chromosome 2R. Lines beneath schematic demarcate areas deleted in BomΔ55C

and BomΔleft chromosomes. The proximal end of the gene cluster is shown to the left.

doi:10.1371/journal.ppat.1004876.g001
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and similarity within the Bommotif is reduced, but still significant, in the tailed and bicipital
forms (see Fig 1A). In contrast, the tail and linker regions in these two classes are rich in homo-
polymeric stretches and contain no appreciable sequence conservation either with each other
or with other proteins in available databases.

Published microarray, RNA-seq, and mass spectrometry experiments document robust ex-
pression of the Bom transcripts and peptides after bacterial or fungal infection [22–27]. Indeed,
induced expression of many Boms is at levels equal to or greater than those of AMP loci. Fur-
thermore, Bom peptides, like AMPs, are abundant in the hemolymph of infected flies [23, 32].

Ten of the twelve D.melanogaster Bom genes are clustered on chromosome 2 at cytogenetic
position 55C (henceforth 55C Bom cluster, Fig 1C). The two remaining Bom genes, CG5791
and CG5778, reside in a mini-cluster on chromosome 3 and encode a bicipital and a tailed
Bom peptide, respectively. Because the predicted mature Bom peptides are highly similar and
hence potentially overlapping in function, we began our investigation of the Boms by precisely
deleting the ten genes of the 55C Bom cluster using a TALEN-based approach. The deletion,
henceforth BomΔ55C, is 9 kb long and removes no annotated loci other than the Bom genes.

The 55C Bom cluster is specifically required for the Toll-mediated
immune defense
Because Toll signaling induces Bom expression, we challenged BomΔ55C adults with Enterococ-
cus faecalis, a bacterium that has Lys-type peptidoglycan and therefore specifically induces the
Toll pathway. Using septic wounding, we systemically infected adult flies and then monitored
survival. In control experiments, we found that flies lacking a functional Toll pathway
(MyD88-) were much more susceptible to E. faecalis infection than were flies with wild-type
immune competence (w1118), as reported previously [7, 33]. Following infection, more than
50% ofMyD88- flies died within one day and nearly all (>90%) were dead within two days (Fig
2A). In contrast, more than 95% of wild-type adults were alive one day post-infection and
more than 50% survived two days or longer.

Strikingly, BomΔ55C flies were as susceptible to E. faecalis infection asMyD88- flies. Indeed,
the survival curves of BomΔ55C andMyD88- flies were almost indistinguishable, suggesting that
loss of the 55C Bom cluster is as detrimental to defense against this bacterial pathogen as is loss
of Toll signaling entirely.

Having observed that BomΔ55C flies rapidly succumb to septic wounding with E. faecalis (see
Fig 2A), we wondered if this phenotype reflected a defective response to wounding or stress
rather than infection per se. To test this idea, we wounded wild-type and mutant flies with a
clean needle or with one dipped in a suspension of heat-killed E. faecalis. The survival of
BomΔ55C flies was markedly better for either challenge compared to septic wounding over the
same time period. Specifically, upon either clean wounding or wounding with heat-killed bacte-
ria, more than 75% of BomΔ55C flies survived for four or more days, comparable to the wild type
(Fig 2B and S1 Fig). We conclude that active infection, rather than wounding itself or response
to PAMP recognition, causes the rapid death of BomΔ55C flies challenged with live E. faecalis.

Toll mediates resistance not only to a number of bacteria, but also to fungi, including yeast
[6, 34]. To determine if this Toll activity is also Bom-dependent, we assayed the effect of delet-
ing the 55C Bom genes on survival after infection with the yeast Candida glabrata. Wild-type
flies exhibit significant resistance to C. glabrata, with over 80% of wild-type flies surviving five
days after infection (Fig 2C). In contrast, 50% ofMyD88- flies succumbed just two days after
being infected. BomΔ55C flies were similarly affected. Although it took BomΔ55C flies slightly
longer thanMyD88- flies to drop to 50% survival (three days), survival rates were nearly coinci-
dent at later time points.
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We next tested the survival of BomΔ55C flies after infection with a filamentous fungus, Fusari-
um oxysporum, that also triggers a Toll-dependent immune response. Among wild-type flies,
roughly 80% survived for four or more days (Fig 2D). In contrast, bothMyD88- and BomΔ55C

flies succumbed much more quickly. Specifically, BomΔ55C flies had a median survival of just
over two days post-infection, nearly identical toMyD88- flies. We conclude that the 55C Boms
are also essential for Toll-mediated defense against both a unicellular and a filamentous fungus.

Because the Imd pathway does not appear to regulate Bom expression [24], we predicted
that the Bom genes would be dispensable for Imd-mediated defenses. We could test this hy-
pothesis with Enterobacter cloacae, a bacterium that has a DAP-type peptidoglycan and there-
fore triggers Imd signaling. We used E. cloacae to infect BomΔ55C flies, as well as control flies
lacking imd function. Whereas more than 90% of imd- flies died within 24 hours of septic
wounding with E. cloacae, greater than 80% of BomΔ55C,MyD88-, and wild-type flies survived
for four or more days (Fig 2E). Taken together, these studies indicate that the 55C Bom peptides
are specifically required in the Toll-mediated, acute phase defense against systemic infection.

Fig 2. The 55C Boms are essential for Toll-mediated defense.Graphs indicate survival at indicated
intervals post-infection with (A) E. faecalis, (B) heat-killed E. faecalis, (C) C. glabrata, (D) F. oxysporum, and
(E) E. cloacae. Each curve represents the pooled results of at least three independent experiments involving
20 or more flies per genotype. Survival curves were compared using the Gehan-Breslow-Wilcoxon test.
Significance is shown relative to the wild type (w1118) and adjusted for multiple comparisons (*** p<0.0003,
n.s. = not significant, p>0.0167).

doi:10.1371/journal.ppat.1004876.g002
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Bom peptides are not required to maintain, protect, or amplify Toll
signaling
Given the similarity in phenotypes between BomΔ55C andMyD88- flies, we wondered if loss of
the 55C Boms disrupts Toll signaling. These Boms might, for example, be required to counter-
act pathogen virulence factors that target Toll signaling. They might also provide positive feed-
back, spreading and amplifying Toll signaling after initial pathogen detection. According to
such models, induction of Toll-responsive genes should be reduced in BomΔ55C flies relative to
the wild type. To test this idea, we infected flies with E. faecalis and used qRT-PCR to measure
induction of marker loci. For this purpose, we chose two genes that are strongly expressed
upon Toll activation but that lie outside of the 55C cluster: IM4 and Drosomycin (Drs). Six
hours after E. faecalis infection, we detected robust expression of IM4 and Drs in the wild type
but, as expected, negligible induction inMyD88- (Fig 3A and 3B). In BomΔ55C flies, induction
of both Toll-responsive genes was comparable to that in the wild type. In fact, expression of
IM4 was greater in BomΔ55C flies than wild-type flies, perhaps reflecting the enhanced induc-
tion of Toll by an unchecked infection.

These experiments reveal that the susceptibility of BomΔ55C flies to microbial infection does
not reflect a general block in Toll signaling. Further, they strongly suggest that flies lacking
Bom gene function have increased susceptibility to E. faecalis, C. glabrata, and F. oxysporum
despite normal, Toll-mediated induction of AMP genes.

Fig 3. Toll-mediated activation of immune genes is normal in BomΔ55C flies. Transcript levels of the Toll-
responsive genes (A) IM4 and (B) Drs in flies were measured in the absence of infection and six hours after
infection with E. faecalis. Expression was measured by qRT-PCR and normalized to that of the ribosomal
protein gene rp49 (rp49 = 1). Error bars represent SEM. Significance was measured by two-way ANOVA (**
p<0.01, *** p<0.001, n.s. = not significant, p>0.05).

doi:10.1371/journal.ppat.1004876.g003
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Bom peptides mediate infection resistance, not tolerance
Infection resistance is defined as the ability to clear microbes, while infection tolerance is the
ability to endure the presence of microbes [35]. Expression of Toll-responsive genes appears
unaffected in BomΔ55C flies. Is it the case that AMPs and other Toll-induced effectors kill path-
ogens in BomΔ55C flies, but the flies nevertheless die due to an inability to tolerate the infection?
Alternatively, do BomΔ55C flies succumb because Bom peptides are in fact required to control
and clear infections? We set out to distinguish between these hypotheses.

To assess resistance and tolerance, we assayed bacterial load over the course of an E. faecalis
infection, using wild-type,MyD88-, and BomΔ55C flies in parallel. Because BomΔ55C and
MyD88- flies have a median survival after E. faecalis infection of about 23 hours, time points
were taken at intervals up to 18 hours. At two hours post-infection, all flies had similar bacterial
loads (Fig 4A). At later time points, however, differences emerged. At six hours, the bacterial
load was on average 3-fold greater in BomΔ55C than in the wild type. The bacterial load of
MyD88- flies was similarly elevated relative to wild-type flies. At 18 hours, both BomΔ55C and
MyD88- flies had a bacterial load at least 20-fold greater than did wild-type flies. This elevation
in bacterial load inMyD88- and BomΔ55C flies over the course of infection suggests that Toll sig-
naling in general, and Bom peptides specifically, contribute to resistance.

To further explore the questions of resistance and tolerance, we measured bacterial load in
wild-type flies at 44 hours post-infection, an interval slightly shorter than their median survival
time (48 hours). If Boms contribute to resistance rather than tolerance, the bacterial load in
wild-type flies at 44 hours post-infection should be similar to the bacterial load of BomΔ55C and
MyD88- flies at 18 hours post-infection.

The response of the wild type to E. faecalis infection necessitated a minor modification in
our protocol for assaying bacterial load. In particular, some wild-type flies appear to clear E.

Fig 4. Deletion of the 55C Bom genes impairs resistance to E. faecalis infection rather than tolerance.
(A) Points indicate the mean CFU/fly from individual experiments using pools of 5–10 flies per genotype after
E. faecalis infection at the indicated time point. Horizontal bars represent the means of the (four or more)
independent experiments shown. Significance was measured by two-way ANOVA and is relative to the wild
type (w1118) at the same time point (** p<0.01, *** p<0.001). (B) CFU of individual wild-type (w1118) flies at 44
hours post-infection. Horizontal bars represent means. “Low” (<3800 CFU/fly) and “high” (>3800 CFU/fly)
populations were measured simultaneously during four independent collections of individual flies. Data were
binned (indicated by boxes), and means were calculated separately.

doi:10.1371/journal.ppat.1004876.g004
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faecalis infection, as evident in survival curves that do not reach 0% survival, but instead level
out at an intermediate value (see, for example, Fig 2A). Foreseeing a bimodal distribution of
bacterial loads among wild-type flies at 44 hours—some clearing infection and others not—we
measured bacterial load for this time point in individual flies, rather than in groups. Measured
in this way, there were indeed two groups with quite distinct bacterial loads. Of 32 wild-type
flies still alive at this time point, 23 had a bacterial load less than 4,000 colony forming units
(CFU) (Fig 4B, “low”). These low CFU flies presumably represent the fraction of the population
that survives infection. The other nine wild-type flies had bacterial loads at 44 hours ranging
from 60,000 to 36,000,000 CFU, comparable to those of BomΔ55C andMyD88- flies at 18 hours
(compare Fig 4B, “high” to Fig 4A, 18h). Thus wild-type flies that succumb to infection do so
at a bacterial load comparable to that in the mutants. We conclude that the BomΔ55C flies suc-
cumb to infection more quickly than the wild type due to a defect in resistance.

Deleting a subset of 55C Bom genes reveals overlap in Bom gene
activity
Our experiments with BomΔ55C flies demonstrate that the 55C Bom cluster is required to provide
Toll-mediated resistance to our test set of pathogens. Is the entire gene cluster required? If not, to
what extent do the 55C genes overlap in function? To address these questions, we set out to assay
how flies expressing a subset of the 55C Bom genes fare when infected with the same test set.

In the course of investigating the 55C cluster, we came across a publically available stock car-
rying an insertion in the 3’UTR of IM2 of aMiMIC (Minos-mediated integration cassette) trans-
poson [36]. By inducing the excision of thisMiMIC element, we obtained two chromosomes that
had lost the insertion. In one case the excision was imprecise. The resulting chromosome, hereaf-
ter BomΔleft, lacks IM2 and the five Bom genes to the left (proximal) of IM2, but retains the four
Bom genes to the right (distal) of IM2 (see Fig 1C). The other chromosome, hereafter IM2ΔMi,
had undergone a precise excision and thus provided a valuable control for subsequent studies.

To assay the activity of the four 55C Bom genes present in the imprecise excisant, we chal-
lenged BomΔleft, IM2ΔMi, and BomΔ55C flies by infection and monitored survival. For all patho-
gens tested, we defined the phenotype of BomΔ55C flies as lacking resistance and that of IM2ΔMi

flies as having full resistance over a four to five day post-infection interval. Based on this scale,
BomΔleft flies lacked resistance to E. faecalis, exhibited partial resistance to F. oxysporum, and
had full resistance to C. glabrata (Fig 5A–5C). The BomΔleft chromosome thus provided a sub-
set of the 55C Bom cluster immune activity.

We draw three conclusions from the experiments shown in Fig 5. First, the wild-type resis-
tance of BomΔleft flies to challenge with C. glabrata demonstrates that the complete 55C Bom
gene set is not a prerequisite for Bom function. Second, the fact that BomΔleft flies have partial
resistance to F. oxysporum indicates that at least some Bom genes overlap in specificity. Third,
resistance to some pathogens requires more than one Bom peptide. In particular, wild-type re-
sistance to F. oxysporummust require at least one of the genes present in BomΔleft but deleted
in BomΔ55C, as well as one or more of the genes deleted in in BomΔleft. In and of themselves,
these studies do not reveal whether Bom peptides have a narrow- or broad-spectrum of activi-
ty, but do provide clues in this regard, as addressed in the discussion.

Discussion

A gene family essential for infection resistance
We report here that Toll-mediated defenses against a bacterium, yeast, or filamentous fungus
require Bom gene function. Having reached this conclusion based on loss-of-function
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phenotypes, we note that such an approach has only rarely been applied to the role of innate
immune effectors [37–40]. The paucity of such studies has several likely causes. First, many ef-
fector genes, such as the Boms and the known AMP genes, encode peptides that are sufficiently
small as to be relatively refractory to random mutagenesis. Second, large-scale screens that rely
on reporter genes are useful for identifying lesions that block pathogen recognition or response
pathway signaling, but opaque to disruptions in more downstream processes.

Perhaps the biggest obstacle, real or imagined, to loss-of-function studies of immune effec-
tors has been the existence of families of closely related genes. One might reasonably expect sig-
nificant overlap in gene function, meaning that multiple family members would need to be
inactivated to uncover reliable phenotypes. Instead, researchers interested in knockout pheno-
types have typically focused on those examples where paralogs are absent. Thus, for example,
the loss-of-function study demonstrating that disruption of a mouse cathelicidin gene promot-
ed invasive skin infection with Group A Streptococcus [40] relied on the fact that mice, unlike
some other mammals, encode only one member of this gene family.

Bomanin peptide function
How do Bom peptides promote infection resistance? One possibility is that the Bom peptides
support cellular immune function. To explore this question, we infected BomΔ55C flies with
Staphylococcus aureus. Defense against S. aureus has been shown to involve cellular immune ac-
tivities to a greater extent than for some other Toll-activating bacteria, including E. faecalis [41–
46]. Although BomΔ55C flies succumbed to S. aureus infection more quickly than did the wild
type, BomΔ55C survival was indistinguishable from that ofMyD88- and the genetic background
control, IM2ΔMi (S2A Fig). We thus found no evidence that the 55C Bom gene cluster contrib-
utes to Toll-independent cellular mechanisms of resistance. In additional studies of cellular

Fig 5. Loss of a subset of the 55CBom genes has an intermediate effect on survival.Graphs indicate
survival at indicated intervals post-infection with (A) E. faecalis, (B) C. glabrata, and (C) F. oxysporum. Each
curve represents the pooled results of at least three independent experiments involving 20 or more flies per
genotype. Survival curves were compared using the Gehan-Breslow-Wilcoxon test. Significance is relative to
IM2ΔMi and adjusted for multiple comparisons (*** p<0.0003, n.s. = not significant, p>0.0167).

doi:10.1371/journal.ppat.1004876.g005
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immune functions, we found neither defects in wound site melanization in BomΔ55C adults nor
any deficiency in hemocyte number in BomΔ55C larvae (S2B and S2C Fig). These experiments
do not, however, preclude a role for for the Boms in Toll-dependent cellular immunity.

A likely alternative is that the Bom genes encode antimicrobial peptides (AMPs). Like many
AMPs, Bom peptides are short, secreted, have intramolecular disulfide bonds, and undergo
post-translational processing. Although short-form Bom peptides would be the shortest char-
acterized Drosophila AMP, the mature form of Drosocin is just three amino acids longer [47].
Furthermore, both the Boms and the known AMPs populate the upper echelons of the sets of
genes most highly upregulated upon activation of the Toll pathway. Specifically, at 12, 24, and
96 hours after natural infection by the fungus Beauveria bassiana, the 30 most highly upregu-
lated genes include five or more Bom family members and five or more known AMP genes
[24]. Additionally, mass spectrometry data indicate that a number of Bom peptides are as
abundant as known AMPs, which after infection reach concentrations of 10–100 μM in the he-
molymph [23, 32].

The structure and sequence of the 55C Bom cluster suggests that the Bom family arose by
multiple gene duplications. Such events are enriched among loci involved in pathogen resis-
tance and provide the opportunity for divergence in gene function driven by positive selection
[48, 49]. One example is the Peptidoglycan Recognition Protein (PGRP) gene family, which con-
sists of 13 genes, some clustered, encoding 19 proteins. While all PGRPs share a peptidogly-
can-recognition domain, the functions of the proteins vary considerably [50]. Some activate
the Toll or Imd signaling pathways and promote phagocytosis, autophagy, and melanization.
Others suppress the Imd pathway, protecting commensal gut bacteria. A third class has direct
bactericidal activity.

Gene duplications need not, however, result in functional divergence. Rather, there are cir-
cumstances in which gene duplications instead lead to changes in the level, location, or timing
of expression of what is essentially the same gene product. Minor sequence variation will arise,
but in general the coding regions will not bear the hallmarks of positive selection [51–53].

Comparing the effects of eliminating some or all Bom genes in the Bom 55C cluster, we ob-
serve differential effects on resistance to particular pathogens. How does this observation fit
with the alternative potential outcomes for gene duplication?

If functional divergence has occurred, we would expect that at least some Bom peptides
have a narrow-spectrum effector activity, i.e., are specific for a particular pathogen or set of
pathogens. One or more of the six Bom genes deleted in the BomΔleft chromosome would be
specific for E. faecalis, while one or more of the four 55C Bom genes remaining in BomΔleft

would protect specifically against C. glabrata. There would need to be at least two peptides spe-
cific for F. oxysporum: one or more of the six genes deleted in the BomΔleft chromosome, as well
as one or more of the four remaining 55C Bom genes.

Although our data can accommodate a narrow-spectrum activity model, we favor the idea
that Bom peptides have a common, broad-spectrum activity. In this scenario, resistance to dif-
ferent pathogens would require different total Bom peptide levels, as could be produced by var-
iation in the numbers of Bom genes. In particular, defense against E. faecalis would require the
greatest level of Bom activity, while C. glabrata would require the least. Defense against F. oxy-
sporum would require a level intermediate to that required for E. faecalis and C. glabrata.

When considered in toto, our survival data support this broad-spectrum effector model: the
predicted hierarchy of Bom activity levels required for particular pathogens parallels the overall
virulence levels for these pathogens (E. faecalis> F. oxysporum> C. glabrata). This holds true
when virulence is measured either by the proportion of wild-type flies that succumb to infec-
tion or by the rates at which the mutants succumb after infection (compare Fig 2A, 2C and
2D). The parallel between required Bom activity level and pathogen virulence makes sense if
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we make the reasonable assumption that the broad-spectrum activity of Bom peptides is more
efficient and rapid at higher concentrations.

Future comprehensive consideration of the Bom genes will necessitate taking into account
four additional loci. Two of these, CG5778 and CG5791, are Bom genes located outside the 55C
cluster. The remaining two, IM4 and IM14, encode peptides that lack a CXXCmotif, but never-
theless exhibit sequence similarity with Bom family members. Furthermore, the IM4 and IM14
peptides, like the Bomanins listed in Fig 1A, are small, secreted, specific to the Drosophila
genus, and robustly induced by Toll.

The functional relationship of Bom peptides and Drosomycin
Lemaitre and colleagues have reported that overexpression of a UAS-Drs construct using a
ubiquitous GAL4 driver restores F. oxysporum resistance to flies lacking both Toll and Imd
pathway function [54]. In our studies, however, we found that BomΔ55C flies induce Drs expres-
sion upon infection (see Fig 3B), but succumb as rapidly as flies lacking Toll signaling (see Fig
2). Why was a requirement for Bom gene function not apparent in the Lemaitre study? One
possibility is that loading the flies with high levels of Drosomycin prior to infection obviates
the need for additional Toll-induced loci, including the Bom genes. An alternative explanation
lies in the fact only inducible Bom expression was blocked in the Lemaitre study, whereas our
study eliminated all Bom gene function. It might be that the synergistic activity of both Droso-
mycin and Boms is required to defend against F. oxysporum, but that a basal, Toll-independent
level of Bom expression is sufficient for this synergy. In support of this idea, RNA-seq data
from modENCODE demonstrate that expression of many Bom genes is robust even in the ab-
sence of infection [55].

Contribution of Bom activity to Toll-mediated defense
Given that innate immune signaling pathways direct expression of large batteries of effector
genes upon infection, including many AMPs, one might have expected that disabling a small
subset of that repertoire would have only minor effects on the overall immune response. That is
not what we observe. Instead, elimination of Bom activity is indistinguishable in phenotype from
loss of the entire Toll-mediated immune defense for the pathogens tested, although Toll signaling
is intact. We envision at least four explanations for the essential role of the Bom gene family:

1. The Boms have a unique and central role in Toll-mediated defense. This might seem unlike-
ly, given that the Bom family is apparently specific to the Drosophila genus and thus repre-
sents a relatively young family of effectors. However, such a model is, in fact, in keeping
with recent studies on genes that are essential in the sense of being required for viability. In
particular, we now know that essentiality is found in equal proportions among old and
young Drosophila genes, where age is measured on the scale of divergence time between spe-
cies [56]. It could therefore be that a gene family and associated function that arose fairly re-
cently has become a dominant and essential feature of the innate immune response.

2. The Boms are essential for Toll-mediated responses specific to certain microbial pathogens.
We know from a variety of expression studies that the entire Toll effector repertoire is upre-
gulated regardless of the source of the activating signal, PAMP or otherwise. By this model,
Toll activates a large number of effectors, each attacking a subset of pathogens, rather than
collectively fighting a common target pathogen. If so, there should be additional pathogens
for which Toll is required and the Bom peptides are not.

3. The Bom genes and other effectors synergize, such that loss of just a single factor disrupts
defense as strongly as loss of all components. By this model, innate immunity involves a
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network of effector functions that comprise multiple hubs, each making a vital contribution
to defense.

4. The Bom family and other components of the Toll repertoire are each expressed at the mini-
mal level required for resistance. There is good evidence that immune activation requires an
energy tradeoff with metabolic processes [57, 58]. As a result, limiting the resources used by
an immune response can be beneficial to overall health.

By either of the last two models, knocking out other effector families should result in the
same phenotype observed with the BomΔ55C deletion, i.e., inactivation of Toll defenses. Testing
this prediction thus holds promise for a broader understanding of innate immune effector
function in vivo.

Materials and Methods

Flies and mutant generation
Flies were raised at 25°C on standard cornmeal agar media. The w1118 strain was used as the
wild type.MyD88- flies wereMyD88kra1, and imd- flies were imdshadok. All flies were homozy-
gous for the listed mutations.

TALEN mutagenesis was conducted as previously described [59]. In vitro transcription was
conducted using the Ambion Megascript kit with a Promega 5’-cap analog. TALEN transcripts
were injected into a fly line containing aMiMIC element in the IM2 gene (y1w�;Mi[MIC]
IM2MI01019, Bloomington stock center, #32727). TheMiMIC element carries the mini-yellow
marker. F0 flies were crossed to yw; Sco/CyO and the resulting y- F1 flies were collected and
crossed to yw; Sco/CyO. Stocks were established and genotyped using Phusion polymerase and
primers flanking the predicted deletion end points. We confirmed the exact endpoints of the
deletions by sequencing the PCR product.

Excision of theMiMIC element fromMi[MIC]IM2MI01019 was conducted as described pre-
viously [60] with the transposase source coming from stock y1 w�; snaSco/SM6a, P{hsILMiT}2.4
(obtained from Bloomington stock center, stock #36311).

Microbial culture
Microbes were prepared for infection experiments as follows. Enterococcus faecalis strain
NCTC 775 (ATCC 19433) and Enterobacter cloacae were cultured in LB media at 37°C and
concentrated to OD600 = 10 in 20% glycerol. For heat-killed E. faecalis challenges, cultures were
concentrated to OD600 = 10 in 20% glycerol and then boiled for 30 minutes. Staphylococcus au-
reus subsp. aureus Rosenbach (ATCC 29213) was cultured in LB media at 37°C and concen-
trated to OD600 = 0.5 in 20% glycerol. Candida glabrata strain CBS 138 (ATCC 2001) was
cultured in YPD media at 30°C and concentrated to OD600 = 50 in 20% glycerol for infection.
Fusarium oxysporum f. sp. lycopersici (obtained from the Fungal Genetics Stock Center) was
cultured on oatmeal agar plates for 7–10 days at 29°C before being strained through steel wool
to isolate spores. Purified spores were resuspended in 20% glycerol and stored at -80°C
until infection.

Drosophila infection, survival analysis, and bacterial load analysis
For infection, at least 20 2–7 day old, male flies per genotype were anaesthetized and septically
wounded in the anterior lateral thorax with a size 000 insect pin dipped in a suspension of
pathogen. Survival analysis was conducted essentially as described previously [61]. After infec-
tion, flies were incubated at 25°C (live or heat-killed E. faecalis or live S. aureus) or 29°C (clean
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wounding, F. oxysporum, C. glabrata, and E. cloacae), and the number of dead flies were
counted at least once per day for the given time interval. Flies that died within 6 hours of infec-
tion were excluded from analysis, except in challenges with a clean needle or heat-killed E. fae-
calis. Colony forming units (CFUs) were assayed as described previously [62].

Cellular immunity assays
For the wound site melanization assay, 2–7 day old males were wounded as described above
with a clean insect pin, incubated for three days at 25°C, and visually inspected for melani-
zation at the wound site. Hemocytes from five wandering third instar larvae per genotype per
experiment were obtained and counted as previously described [63].

Gene expression quantitation
RNA was prepared using Trizol (Ambion) from 2–7 day old males, and first-strand cDNA was
synthesized with the SuperScript II kit (Invitrogen). Quantitative RT-PCR was performed on
an iQ5 cycler (BioRad) using iQ SYBR Green Supermix (BioRad).

Data analysis
GraphPad Prism was used to run statistical analyses. Survival data were plotted on a Kaplan-
Meier curve and the Gehan-Breslow-Wilcoxon test was used to determine significance. The
Gehan-Breslow-Wilcoxon test is recommended for analysis of infection with sublethal patho-
gen doses; where a sublethal dose is defined as a dose where some proportion of wild-type flies
survive. Hemocyte count data were analyzed by one-way ANOVA using the Bonferroni post
method. Quantitative RT-PCR and bacterial load data were analyzed by two-way ANOVA
using the Bonferroni post method.

Supporting Information
S1 Table. Mature Bom peptide sequences. Comparison of mature sequences for the three
classes of Bom peptides. Bom motif sequences (as shown in Fig 1A) are highlighted in red. An
asterisk indicates that processing was confirmed by published mass spectrometry [23, 25].
Those studies indicate that a number of Bom peptides (indicated by dagger) undergo C-
terminal amidation.
(PDF)

S1 Fig. Deletion of 55C Bom gene cluster does not affect ability to recover from wounding
alone. Survival rate of flies after wounding with a clean needle. Each curve represents the
pooled results of three independent experiments involving 20 or more flies per genotype. Ex-
periment-wide Log-rank test shows no significant difference between curves for any genotype.
(TIF)

S2 Fig. The 55C Bom genes do not appear to contribute to cellular immunity. (A) Survival
at indicated intervals post-infection with S. aureus. Each curve represents the pooled results of
three independent experiments involving 20 or more flies per genotype. Survival curves were
compared using the Gehan-Breslow-Wilcoxon test. Significance is relative to w1118 and adjust-
ed for multiple comparisons (��� p<0.00017, n.s. = not significant, p>0.0083). There is no sig-
nificant difference betweenMyD88-, BomΔ55C-, and IM2ΔMi. (B) Proportion of flies to develop
melanization at wound site three days after wounding with a clean needle. (C) Hemocyte
counts in uninfected larvae of the indicated genotypes. Six groups of five larvae per genotype
were counted and averaged. Error bars represent SEM. Significance was measured by one-way
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ANOVA (�� p<0.01, n.s. = not significant, p>0.05).
(TIF)
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