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Abstract

The Process Dissociation Procedure as applied to episodic
recognition requires subjects to study two lists and then
determine which of the words in a test list appeared in the
second list (Exclusion condition) or on either list (Inclusion
condition). We demonstrate that the dual processing account
of episodic recognition (Jacoby 1991) does not account for
the effects of manipulating the amount of time between the
study lists. In contrast, the Bind Cue Decide Model of
Episodic Memory (BCDMEM) is fit to the list separation
data.

Introduction
Episodic recognition refers to the task of identifying a
stimulus as having occurred within a particular episode or
context. In a typical recognition experiment, subjects
process a study list of items and are then presented with a
test list containing some old items from the study list and
some new items which did not appear in the study list. The
subject’s task is to determine which of the test items
appeared in the study list. This basic design can be
elaborated in a number of ways by adding additional study
lists and requiring subjects to recognize items from
individual lists or from all of the lists.

In this paper, we contrast two models of episodic
memory: the dual processing model (Jacoby 1991,
Yonelinas 1994) and the Bind Cue Decide Model of
Episodic Memory (BCDMEM, Dennis & Humphreys in
press, Dennis & Humphreys submitted). Firstly, we outline
the dual-processing model and describe the process
dissociation procedure. Then we outline BCDMEM.
Finally, we demonstrate that data on the effect of
manipulating study list separation in the PDP are
problematic for the dual-processing model, but are well
captured by BCOMEM.

The Dual Processing Model and the Process
Dissociation Procedure
The Dual Processing model of episodic recognition hinges
on the distinction between automatic and controlled
processes (sometimes denoted conscious and unconscious
processes, intentional and unintentional processes or aware
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and unaware processes). Automatic processes produce a
feeling of familiarity which, in the context of episodic
recognition, tends to evoke an old response independent of
subject control. This familiarity is not specific to an
individual list context and is thought to be the same
information on which subjects base decisions in implicit
tasks such as lexical decision and perceptual identification.
In contrast, controlled processes are based on recollection
retrieving some aspect of the study opportunity that can be
used to infer that the item appeared in the list (i.e. “I
remembering solving an anagram for this item so this item
must have been in the study list”). This source of
information is subject to control by the participant and is
thought to be vulnerable to disruption at both storage and
retrieval.

To separate the influences of familiarity and recollection
in episodic recognition, Jacoby (1991) has used a number of
procedures. In this paper, we focus on the Process
Dissociation Procedure (PDP), which was introduced in the
third experiment. In a typical application of the PDP, a
subject studies two lists and is asked to make one of two
recognition decisions at test. In the inclusion condition, they
are required to respond “old” if the item was in either of the
two lists. In the exclusion condition, they are required to
respond “‘old"” only if the item appear in the target list (either
list 1 or list 2). In Jacoby's third experiment, list one
contained read and anagram words and list two contained
heard words. Subjects were asked either to recognize words
from both lists (inclusion) or from list two only (exclusion).

To estimate the independent contributions of familiarity
and recollection, Jacoby assumes that in the inclusion
condition the subject will respond old if the item is familiar
or if the item is unfamiliar but is recollected:

P (Inclusion) = F + (1-F) R

In the exclusion condition, when the subject should be
responding new, it is assumed that they will mistakenly
respond old if the item is familiar but they fail to recollect
which list it occurred in:

P (Exclusion) = F (1-R)
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These equations can be solved for R and F giving:
R = P (Inclusion) - P (Exclusion)

F = P (Exclusion) / (1 P (Inclusion) + P (Exclusion))

The estimates of familiarity generated using the equations
outlined above have been shown not to vary in a number of
manipulations that have an effect on recollection estimates
(Jacoby 1991, Yonelinas 1994) suggesting that the
procedure was providing estimates of independent
familiarity and recollection processes.

The dual-processing framework has generated a number
of important insights. Firstly, it suggests that episodic
recognition involves more than one process and that the
application of these processes can vary depending on the
conditions, 1n particular. whether attention is divided.

Secondly, the dual-processing framework has focused
attention on multi-list paradigms. Because previous
approaches to episodic memory were primarily sensitive to
manipulations of the other items in the target list, efforts to
test these models have focused on single list paradigms.
However, it is only possible to be certain you are dealing
with the episodic memory system when multi-list paradigms
are employed and so the process dissociation procedure can
provide useful data for testing how models approach the use
of contextual information.

In the next section, we outline the Bind Cue Decide
Model of Episodic Memory.

The Bind Cue Decide Model of Episodic

Memory

As the name suggests there are three critical components to
BCDMEM - the binding mechanism, the cues employed and
the decision rule. The binding mechanism specifies how
elements of an episode including items, contexts and other
information are associated in episodic memory. The cues are
the elements that are used to initiate retrieval. Not all of the
information available to a subject need be used as a cue, so
part of the theory involves specifying which components are
used as cues in a given experimental paradigm. Finally, the
decision rule takes the results of retrieval and outputs the
required information in the form of an item in recall
paradigms or a yes/no decision in recognition paradigms. A
complete theory of episodic memory must address these
components and in the following sections, the each will be
considered in turn.

The Binding Mechanism
Figure 3 depicts the BCDMEM architecture, which consists
of three layers of units. Items and contexts (e.g., “the list of
words | saw today™ or “the list in which [ was forming
anagrams”) are represented as sparse binary distributed
vectors.

The components present at a given moment are added to
form an input vector (a composite encoding). For instance,
if a subject were studying the pair "pencil grass" in the listl
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context (i.e. the study list) the input vector would be
PENCIL+GRASS+LISTI where PENCIL and GRASS are
sparse vectors representing the items and LISTI is a sparse
vectlor representing the context (see Figure 1),

List | + Pencil + Grass

Enterhinal Cortex
- e %
Listl &PenciaOrass P Uit \Lhu\ahnu]
cat (@ ) @ ( e (o ) eee
S
-\\‘“‘-..
CA3/ Entorhinal Cortex

List 1 + Pencil + Orass

Figure 1: The BCDMEM architecture. The layer names
are intended to give an indication of the hippocampal
structures that might be involved.

Bindings are formed in the middle layer (the binding or
CAl layer), which is assumed to be a set of pools of
competitive units. Each pool will contain a unit representing
either a single item or a combination of the input items (a
conjunctive encoding - see Figure 1) that will be reactivated
if any of those components are presented at a later time. It is
assumed that a node will only be reactivated if the current
input pattern is very similar to the input pattern to which it
responds. So, for instance, the plural form of a word may
reactivate the same node as its singular form, but
semantically similar items would reactivate different units.
In the “pencil grass” example, bindings would be formed
representing LIST1 & PENCIL & GRASS, LIST] &
PENCIL, LIST1 & GRASS, PENCIL & GRASS, LISTI,
PENCIL and GRASS. The relative proportions of these
bindings will depend on factors such as the sparsity of
connectivity between CA3/Entorhinal cortex and CAl as
well as the sparsity of the item and context representations.

Finally, the system is assumed auto-associative, so that
the input layer is also the output layer. Associative weights
connect the binding layer to the output layer forming the
memory of the system. For modeling purposes these
weights are considered to be binary (either they form or not)
and will be present with a probability that depends on the
amount of time and attention employed.

In constructing the binding mechanism we have attempted
to produce the simplest architecture that captures three key
behavioural constraints. The conjunctive pools allow the
system to bind three-way information. The bindings are
symmetric so that learning the pair AB will allow A to be
used to retrieve B and B to be used to retrieve A to
approximately the same extent. And, the bindings are
formed rapidly rather than as the result of a large number of
repetitions. It would be possible to produce a more
complicated model that described the sparsity of the
connections and provided a more realistic account of
learning. Such a model will be necessary to capture the
affect on binding formation of training (c.f. Chalmers &



Humphreys in press). However, at this stage, there is
insufficient data to constrain the neural mechanism and so
we have chosen a simple option that embodies the existing
behavioural constraints.

The Cues
The cues presented to the memory system at test play an
important role in determining the sources from which
interference will anise. In BCDMEM, it is assumed that
recognition paradigms primarily involve cueing with an
item or items (Anderson & Bower 1972, Dennis &
Humphreys, in press), while recall paradigms primarily
involve cueing with a context. In recognition, interference is
generated mainly from the other contexts in which the item
has been seen. In recall, interference is generated mainly
from the other items from the same context (i.e., in the same
list). Of course, circumstances may predispose a subject to
use a different cueing strategy (for instance, in some
associalive recognition experiments subjects may employ
recall, Clarke & Gronlund 1996). Making this general
distinction, however, provides insight into a number of
dissociations between recall and recognition including word
frequency effects and the null list-strength effect (Dennis &
Humphreys in press, Dennis & Humphreys submitted).
Cueing with the item for contexts in recognition is a
major departure from previous approaches, where it is
uniformly assumed that the primary source of interference is
the other list items. However, we believe that cueing with
the item is more consistent with the intuitions behind the
dual processing approach. Recollection involves the
retrieval of contextual elements associated with the item, as
if the item were being used as a cue. Furthermore,
familiarity is a property of an item, as if retrieval is starting
with the item. So for both familiarity and recollection, the
assumption is that subjects focus first on the item, as is the
case in BCDMEM.

The Decision Rule

The final essential component of the memory mechanism is
the decision rule, which selects the response of the model
(Humphreys. Wiles & Dennis 1994). In recall paradigms,
the decision rule selects an item for output. In yes/no
recognition paradigms, the decision rule selects an old or
new response. In BCDMEM, we assume that the neural
mechanisms underpinning these decisions will approximate
the optimal decision rule in a Bayesian sense (c.f. Anderson
& Milson 1989, Glanzer & Adams 1990, Shiffrin &
Steyvers 1997, McClelland & Chappell in press). In
recognition, the decision can be characterized as the odds
ratio:

plold | data)
p(new | data)

where the data is the evidence retrieved from the memory
system.
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Figure 2 outlines the components of the architecture of
BCDMEM relevant to recognition. At study, an item is
represented as a single node (i.e. a local code) in the binding
layer. Each node at the binding layer is connected via
associative weights to the memory layer which contains a
distributed representation of the context (with sparsity s and
length 1) in which the item is being studied. These weights
are originally zero, but are set to one with probability r
(amount of learning) if the corresponding component of the
context vector is one. The item may also have appeared in
non-study contexts so that there will also be weights that
have been learned during these episodes. The probability
that a weight is one as a result of previous learning is called
memory noise (p).

In a single item recognition test, the item node is
reactivated which in turn reinstates at the memory layer a
binary addition (the bit-wise OR operation) of the contexts
in which this item has been seen weighted by the amount of
learning in those contexts (see Figure 2). In addition, the
context vector that was present at study is reconstructed. For
a target item, the binary addition will contain the study
context whereas for a distracter it will not. There may,
however, be components of the study context that are
activated even when a distracter is presented as a
consequence of the overlap between the study context and
the contexts in which the distracter has been seen. Likewise,
the target pattern may be missing components of the study
context because they were not learned.

Target

o o @ ) e=C1
Entorhinal Cortex @ o eo® ® ) ._ci.cic3:c4
Cal

I
Distractor
c=C1

Entorhinal Cortex m=C2+C5+CB+C9
CAl

Distractor

Figure 2: The BCDMEM architecture for recognition.

The decision rule must discriminate outputs that contain
the target pattern from those that do not. It is in making the
discrimination that the majority of the noise is added to the
system. Following work by Glanzer & Adams (1990),
Shiffrin and Steyvers (1997) and McClelland and Chappell
(in press) on the nature of retrieval in recognition, we have
specified the discrimination problem as a Bayesian
procedure and have derived the expressions for the



likelihood of a yes or no response given the history of the
item.

The odds ratio, P (oldldata)/P (newldata), can be rewritten
as follows:

p(old | data)  p(old) p(datalold)
p(newldata) p(new) p(datalnew)

The data referred to in the likelihood expression are the
vector retrieved from memory (im) and the reinstated context
vector (c). The probabilities depend on how well these
vectors match. The item will be considered old if the
probability that it is old given the data is greater than the
probability that it is new given the data (i.e. if the odds ratio
exceeds one).

In many experiments subjects see equal numbers of
targets and distracters, so that it could be assumed that in the
absence of specific manipulations of criterion, P (old) = P
(new) = 0.5, and the prior probabilities cancel. In this case,
the odds ratio is equal to the likelihood ratio (ie. P
(datalold)/P (datalnew)).

Since both the context vector and the memory vector are
binary there are four types of match (i.e. c=1 & mi=1, ¢;=1
& mi=0, ¢;=0 & mi=1, ¢;=0 & m,=0). The probability of a
given sort of match is independent of the component in
which that match occurs, so the data can be summarized by
n;: the number of components in which¢;=j & m; =k.

Now,
P (datalold) = IT; P(c; & m; | old)

=P(c;=1 & m=1 | old)""" P(¢;=0 & m=0 | old) "®
P(c=0 & m=1 1 old)™' P(c,=1 & m,=0 | old)"°

=[P (c,=1 lold) P (m=1 I ¢=1 & old)]™"
[P (¢;=0 | old) P (m=0 | ¢;=0 & old)] "™
(P (¢,=010ld) P (m=11¢=0 & old)] ™
[P (c;i=1 1 0ld) P (m;=0 | ;=1 & old)]""°

Similarly for P (data | new).

We can now restate the likelihood ratio in terms of the
parameters of the model that have been introduced. In
summary they are:

Sparsity (s): the probability a component cf a context vector
1s a one.

Learning (r): the probability that the link between an item
node and a context component of one is learned during
study.

Memery Noise (p): the probability that a component of the
memory veclor is a one because of other contexts in which
this item has been seen. Memory noise incorporates both the
number of other contexts in which the item has been seen
and the amount of learning in those contexts. However,
adding additional contexts is likely to affect the memory
noise more than repeating an item within the same context
(because the context representations are sparse and chosen
independently). Therefore, the number of different contexts
in which an item appears should be a sensitive measure of
memory noise. However, since the correlation between the
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number of contexts an item has appeared in and its word
frequency is very high (Dennis 1996), we will assume word
frequency reflects memory noise under most conditions.
Vector Dimensionality (l): the length of the context and
memory vectors. Note | = ngy + ngy + nyp + ny;.

Substituting into the previous equations, we get:

P (datalold) = [s(r+p-rp)] ™" [(1-s) (1-p)]"®
(s (1-r)(1-p)1 "' [(1-5) p} "'

P (datalnew) = [s p] ™" [(1-s)(1-p)] "™
s (1-p)1 " [(1-5) p} "

So,
P(datalold)/P(datalnew) = [(r+p-rp)/p]™" [1-r]""°

Note that the 01 and 00 matches have no impact on the
likelihood ratio. They affect the P(datalold) in the same way
as they affect the P(datalnew).

As mentioned previously, when there is no specific
manipulation of criterion it is assumed that an item will be
called old if the probability that it is old given the data is
greater than the probability that it is new given the data,
which is true when the likelihood ratio is greater than one.
In general, then, as the mean likelihood ratio approaches
one, from above in the case of targets and from below in the
case of distracters, we expect performance to degrade. We
can begin to understand how the above likelihood function
simulates performance by looking at how its expected value
varies as a function of the parameters (note a full exposition
would consider the complete likelihood distribution).
Firstly, as memory noise (p), which represents word
frequency, approaches one, (r+p-rp)/p approaches one and
the expected value of nyo approaches zero, so the expected
value of P(datalold)/P(datalnew) approaches one. In other
words performance decreases as word frequency increases.
Secondly, as learning (r), approaches zero, (r+p-rp)/p
approaches one and 1-r approaches one, so the expected
value of P (datalold)/P(datalnew) approaches one. So as
study time or number of repetitions decreases so does
performance.

Adding the Contextual Reinstatement Parameter In the
derivations outlined above, it is assumed that the ability to
retrieve or otherwise reconstruct the study context at test
(contextual reinstatement) is perfect. The context employed
at test is identical to that used at study. It seems more likely,
however, that features of the original context vectors will be
lost. The ability to reinstate context is likely to be
compromised by factors such as the length of the list and
somewhat by delay.

The contextual reinstatement parameter (d) is the
probability that a unit that was a one in the study context is
a zero in the reconstructed context. The likelihood ratio can



be re-derived taking into account contextual reinstatement
(see Dennis & Humphreys in press) to give:

P (data | old)/ P (data | new)

= [(1-s+d (1-r) s)/(1-s+ds)] " [1-r] "'°

[(p (1-s)+d(r+p-1p) s)/(p (1-s)+dps)] """ [(r+p-rp)/p] "'

If d is set to zero, indicating that reinstatement is perfect,
the likelihood ratio reduces to that previously derived and
the 00 and 01 matches have no impact.

Another way in which we might expect the reinstated
context to differ from that at study would occur when the
test context must encompass more than the study context.
For instance, in a dual list design we might expect that the
subject would form a reinstated context that incorporates the
context vectors from both lists, particularly in the inclusion
condition. In BCDMEM, we model the experiment wide
context by taking the bitwise OR of the contexts for each
study list. The resulting reinstated context will contain more
ones (i.e. be less sparse) than either of the study list contexts
and the sparsity will decrease if the lists are separated in
time (so that the amount of overlap decreases). Likewise, we
might expect study list contexts that incorporate different
tasks (such as the anmagram/read list in the Jacoby, 1991,
design) would be less sparse than if only one task was
performed.

The Effect of List Separation

One of the important distinctions between BCDMEM and
the dual processing approach is the use of a graded temporal
context. In BCDMEM, temporal context is represented by a
vector and different context vectors can overlap to different
degrees. Lists that appear in close temporal proximity will
have a greater degree of overlap making it more difficult to
determine which list an item appeared in. Under the dual
processing assumptions, however, one would not expect the
temporal separation of the lists to influence performance.
The familiarity of a word is insensitive to whether it
appeared in the target or non-target list, so one would not
expect the separation of the lists to affect performance when
recency is controlled. Recollection is related to the
prevailing conditions when a word is being studied. While
one might anticipate that decreasing the separation between
lists would increase the probability of misidentifying the list
in which an item appeared, to allow the solution of the PDP
equations it is assumed that recollection is never in error in
this way (Dodson & Johnson 1995). So one would not
anticipate that the separation of the lists would affect it
Consequently, the temporal separation of the lists in the
process dissociation procedure is an important variable to
manipulate when distinguishing the two approaches,
particularly if this is done in the absence of a study task
distinction.

Hall (1996) varied the temporal separation between the
lists in a PDP design by including an eight-minute filled
interval. In the after lists condition, subjects studied list 1,
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then list 2, then spent eight minutes solving a puzzle task
before being tested. In the between lists condition, the
sequence was list 1 — filled interval — list 2 — test. The
Jacoby (1991) version of the process dissociation procedure
was used with inclusion instructions that covered both lists
and exclusion instructions that targeted list two. The critical
items were those from list one and the design controls for
the recency of these items. In both study lists, subjects were
asked to make pleasantness ratings. So, unlike the Jacoby
(1991) design, the study task was constant across lists.

Figures 3 and 4 show the results. While the inclusion
results for the list one words differed very little as a function
of list two placement (0.825 verses 0.865), the exclusion
probability of the list one words is much lower when the
lists are separated by the filled interval than when they
follow each other (0.365 verses 0.590). By varying the
placement of list two, Hall (1996) was able to alter both the
familiarity and recollection of the list one items (familiarity
was 0.68 in the between lists condition and 0.82 in the after
lists condition, while recollection was 0.46 in the between
lists condition and 0.28 in the after lists condition). This
result is inconsistent with the dual processing framework
and underlines the importance of temporal context.

To model the manipulation of inter-list interval in
BCDMEM we allowed the overlap between the list one and
list two context vectors to change. The overlap parameter
was defined as the probability that a component is a one in
the context vectors of both lists in the PDP paradigm.
Placing the filled eight-minute interval between the lists
should lead to a lower value of this parameter (i.e. a
decrease in the similarity of the list one and list two context
vectors).

Bias may also play a role in the Hall (1996) results. All of
the exclusion probabilities are below the corresponding
inclusion probabilities suggesting the use of a more
stringent bias in exclusion. In the exposition of the
BCDMEM likelihood ratio we argued that prior odds could
be eliminated on the basis that in most experiments the
probability of an old word is equal to the probability of a
new word. When inclusion instructions include both lists,
the probability that a word should be called “old™ is higher
than in exclusion, which only includes one list. In Hall’s
(1996) experiment, the actual probabilities of an old word
were 0.66 in the inclusion case and 0.33 in the exclusion
case. While it is unclear how accurate subjects might be at
estimating prior odds, the results suggest they are playing a
role. Rather than add two new free parameters to model the
prior odds, we chose to set the exclusion probability to 0.33
and allow the inclusion probability to be optimized. A least
squares optimization procedure was used to find parameter
values and Figures 3 and 4 show the fits to the data for the
between lists interval and after lists interval respectively.
The paramelters of the fit were Inclusion Prior = 0.9093,
Exclusion Prior = 0.33, learning rate: r = 0.3540, memory
noise: p = 0.1604, sparsity: s = 0.02, vector length: 1 = 1000,
context overlap: o(Between) = 0.0099, o(After) = 0.0152,
contextual reinstatement: d 0.3368. The maximum



absolute difference was 0.056 and the correlation between
the model and the data was 0.993, So, BCDMEM seems (o
have captured the effect of temporal separation.

Between Lists Interval

| [—e—L1(Data)
&2 (Data)
& New (Data)
——L 1({Model) |
—&— .2 (Model)
—a—New (Model)

Probability of Yes
Response

Inclusion Exclusion

Test Instructions

Figure 3: Fit of BCDMEM to Hall (1996) data experiment
one for the Between Lists Interval

After Lists Interval

+-Li(Data) |
—~#— L2 (Data)

| |—#— New (Data)
| |=—e—L1 (Model)
| |-=—12 (Model) |
| New (Moded |

Probability of Yes
Response

Inclusion Exclusion

Test Instructions

Figure 4: Fit of BCDMEM to Hall (1996) data experiment
one for the After Lists Interval

Conclusion

We have demonstrated that the dual processing approach to
episodic recognition is unable to account for the effects of
manipulating the temporal separation of lists in the process
dissociation procedure. BCDMEM is able to model these
effects primarily because it proposes that contexts be
modeled as vectors and allows these vectors to overlap to
varying degrees. Some construct of this nature would seem
necessary in order to provide an account of the effects of
context in episodic recognition.
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