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Abstract 

Reducing cognitive phenomena to neural activity is seen by 
many as lacking in scientific utility. The conceptual chasm 
between electrochemical activity and the act of making a 
choice is too broad to span in a single step. Instead, we adopt 
a multi-scale approach to cognitive neuroscience by 
constructing a conceptual ladder that incrementally climbs 
from neuronal spikes to cognitive processes with each step 
offering theoretic reductions. Here we propose a sequence of 
intermediate neurocomputational processes that are promising 
for understanding an array of cognitive phenomena. We 
illustrate this approach in the context of the dynamics of 
choice. These dynamics emerge from serial evaluation 
mediated by systems in frontal cortex and the basal ganglia. 
The effect is to promote neural oscillations that provide a 
substrate for communication through coherence. Both 
empirical and simulation studies are described to support this 
view of emergent behavior. 
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Introduction 

 
In this paper, we construct a conceptual ladder upon which 

we climb from the foundations of neuroscience -- spiking 

neurons -- to the dynamical patterns of brain activity and 

behavior that arise during decision making. In spite of broad 

acceptance of the general idea that, in some way, high level 

cognitive processes are grounded in the electrical and 

chemical processes of neurons, there are relatively few 

instances in which cognition has been clearly mapped onto 

cellular actions. In part, this may be due to the tremendous 

difference in scale: the human hand is a thousand times 

larger than a neuron. Pushing a button takes hundreds of 

times longer than sending an electrical impulse down an 

axon. Nevertheless, we describe here an account which 

ascends these spatial and temporal scales, one rung at a 

time, by drawing on emerging perspectives at various levels 

of computational and empirical neuroscience, as well as 

modern behavioral research. We review some literature 

related to each of these levels of analysis and discuss our 

own computational simulations of relevant phenomena.  

While this conceptual ladder may be a generally useful 

framing for a broad array of cognitive processes, we focus 

on a category of behavioral experimental paradigms which 

target value-based decision making. A simple example is a 

two-armed bandit task, in which a participant selects one of 

two actions on each trial, guided by the predicted reward for 

each action. These kinds of choices can be made reflexively 

and can be learned by non-human primates and rodents. 

They arguably offer a clear and simple model of the broader 

problem of action selection. There is also extensive research 

on the contributions of brain waves, brain regions, cell 

types, neurotransmitters, and various other biological factors 

to these types decision tasks. This large body of research 

provides multi-scale perspectives on the neural basis of 

value-based decision making and provides constraints on 

any proposed account of choice. 

Our conceptual ladder starts with spiking neural networks. 

We explain how synchronization in spiking neural networks 

offers a general mechanism to understand the emergence of 

oscillations. We discuss how oscillations modulate regional 

processing in the brain. We argue that the interaction of 

oscillations provides a useful active substrate for neural 

communication. Lastly, we describe how these properties 

can give rise to characteristic patterns of brain activity and 

behavior observed in decision making. 

Spiking Neural Networks Synchronize 

One of the first lessons learned by every scientist who 

attempts to build a spiking neural network model is that 

spiking networks synchronize (Brunel, 2000). Synchronous 

spiking is the generation of a large fraction of spikes during 

narrow, semi-regular temporal bands, separated by relative 

silence. This fact often goes unmentioned in the literature, 

perhaps because it is so basic and pervasive to the approach, 

but it is virtually assured that every successful spiking 

neural network model has undergone a period of tuning to 

avoid excessive synchrony (c.f. Hahn, et al., 2014). 

Excessive synchrony is undesirable, as it reduces the 

representational capacity of a spiking network and impairs 

spike timing dependent plasticity (STDP). It also leads to 

visibly artificial spike raster plots that fail to capture 

observed biological spiking patterns. 

A common cause of synchronous spiking is recurrent 

synaptic connectivity associated with a “reservoir” (Maass, 

Natschläger, & Markram, 2002) or cortical layers (Tiesinga 

& Sejnowski, 2009). In these cases, feedback loops from 

recurrent connectivity drive excitatory spiking interspersed 

with inhibitory silencing. Without careful tuning, this 

feedback-induced synchrony can overpower activity related 

to meaningful stimuli in the network. Nevertheless, 

recurrent connections in biological neuronal networks are 

ubiquitous. 

One of the longest running debates in computational 

neuroscience involves the role of spike timing in neuronal 
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information processing. Although it is widely agreed that 

information is conveyed by neural spikes in aggregate, there 

is disagreement over whether that information is encoded in 

the precise timing of spikes or only in the rate at which 

spikes are generated. In some specific cases, highly 

temporally precise sensory information that can be decoded 

from spike times (e.g. in binaural spatial cues, Chase & 

Young, 2006) beyond that which can be extracted from 

firing rates. We suggest that emerging theories that 

emphasize the role of spike synchrony in robust neuronal 

communication offer a potential route to resolving these 

tensions. 

Spike Synchrony Links Spikes to Oscillations 

The excitability of neurons in a brain region is correlated 

with the phase of ongoing neural oscillations in that region 

(Fries, 2005). Local field potentials (LFP) are generated by 

fluctuations in membrane potential across many thousands 

of neurons in a region (Gold et al., 2006). These fluctuations 

are the result of various processes that occur at different 

timescales. While spike generation is a distinct feature of 

individual neurons, LFPs deemphasize high-frequency 

fluctuations, at the timescale of spikes, so that only very 

dense concentrations of spikes affect the LFP amplitude. 

For this reason, synchronous spiking across a neural 

population will give rise to an ongoing LFP oscillation, 

while irregular spiking activity will not. Alternative 

oscillatory mechanisms are certainly plausible (e.g. 

endogenously generated oscillatory currents, Brunel, 

Hakim, & Richardson, 2003), but synchronous spiking 

offers a parsimonious account for the emergence of 

oscillations while simultaneously explaining why LFP 

oscillation phase is correlated with neuronal excitability. 

The patterns of connectivity which give rise to synchrony 

result in periods of inhibition (low excitability) and 

disinhibition (high excitability) and these periods will 

necessarily be phase-locked to resulting oscillations. Thus, 

spike synchrony provides a functional link from the activity 

of individual neurons to neural oscillations. 

An important consideration in the emergence of 

oscillations from synchronous spiking is the role of neuronal 

and network parameters in shaping the oscillations which 

emerge. Properties such as neuron leak conductance and 

excitatory-inhibitory ratio of the network directly affect the 

gain in recurrent synaptic pathways. Both the mean and 

variance in spike transmission delays alter the length of 

feedback loops. These and other structural properties 

determine the frequency, phase, and amplitude of intrinsic 

neural oscillations (Figure 1). 

 
 

Figure 1: This spike raster plot demonstrates synchrony in a 

simulated spiking neural network as a result of inhibitory 

recurrence. Each row represents a neuron and each dot 

represents a spike at a given time. The blue line indicates 

the average firing rate of the population in time. 

Neural Oscillations Provide an Active 

Substrate for Communication 

As described previously, the phase of neural oscillations is 

correlated with neuronal excitability. These findings have 

led to an emerging consensus concerning the functional role 

of neural oscillations. This consensus holds that the 

effectiveness of communication between brain regions is 

modulated by the coherence of oscillations in the regions. 

This hypothesis is called communication-through-coherence 

(CTC) (Fries, 2005).  

The CTC hypothesis makes clear predictions concerning 

neuronal communication in the context of a single dominant 

frequency of oscillation (Figure 2). However, biological 

neural oscillations typically exhibit power in many distinct 

frequency bands. In this case, it is unclear which frequency 

might have a dominant effect on neuronal excitability. One 

potential solution to this problem involves a mechanism 

through which multiple oscillations are entrained, such that 

the phase relations between regions are consistent across 

multiple frequency bands. Indeed, just such entrainment has 

been observed. Cross-frequency-coupling (CFC) describes 

the phenomena where ongoing neural oscillations in one 

frequency are coupled to oscillations in a different 

frequency. CFC is particularly strong between alpha-band 

(8-12 Hz) phase and gamma-band (>30 Hz) amplitude 

(phase-amplitude coupling). This means that the strength of 

the high frequency component of neural oscillations in a 

region is modulated by the phase of the low frequency 

component. The degree of phase-amplitude coupling in a 

region has been linked to the strength of intra-regional 

communication versus inter-regional communication. Other 

forms of CFC include phase-phase coupling and amplitude-

amplitude coupling (Canolty & Knight, 2010). 
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Figure 2: Communication-through-coherence between two 

regions with the same dominant frequency. In this scenario, 

the effectiveness of communication (likelihood of a 

transmitted spike to induce a spike at the receiving neuron) 

is predominantly affected by the relative phase and spike 

transmission delays. The sending population (blue) exhibits 

a strong influence on neurons in the receiving population 

(orange) with a compatible phase and has minimal impact 

on neurons in the inhibitory period of an oscillation. 

Receiving neurons are shown with staggered phase to 

illustrate the effect of CTC. 

 

Another important clue in deciphering the functional role 

of oscillations comes from the spatial scales over which 

neural communication occurs. Over long neurophysiological 

distances, spike transmission delays and variability both 

increase. These increases correspond to a wider temporal 

window in which postsynaptic potentials might arrive. To 

accommodate this, the frequency of neural oscillation must 

be lower, producing increased durations of the periods of 

neuronal excitability. In contrast, oscillations at a high 

frequency (e.g. gamma-band), with more brief periods of 

neuronal excitability, provide a substrate for communication 

over short neurophysiological distances. These predictions 

are consistent with the behavioral correlates of neural 

oscillations (Table 1). 

 

Table 1: Behavioral correlates of neural oscillations 

(Canolty & Knight, 2010). 

 

 Frequency Correlates 

Gamma > 30 Hz Local network processing 

Beta 20 - 25 Hz Motor planning, rhythm 

Alpha 8 - 12 Hz Visual attention 

Theta 4 - 8 Hz Conflict detection 

Delta < 4 Hz Multisensory integration 

 

Together, CTC and CFC suggest a framework in which 

communication across neuronal networks is modulated by a 

broad range of interacting oscillations at various spatial 

scales. These interacting oscillations provide an active 

substrate for communication: a constantly shifting network 

of channels vying for the available bandwidth. Rather than a 

central coordinator allocating influence to streams of neural 

processing, the streams dynamically entrain and diverge 

from one another according to learned task demands and 

new inputs. As the relative power of oscillation components 

fluctuate, and as they shift in and out of relative phase, the 

effectiveness of particular channels of communication 

increase and decrease. Because the oscillations emerge from 

spiking activity, neural spikes drive these shifts in phase and 

power. The detailed relationship between spikes and waves 

is highly complex, however, making oscillation coherence a 

useful intermediate level of analysis.  

This framework of activity-driven modulation of neural 

communication offers a plausible mechanism for variation 

in functional connectivity between larger neural regions 

(Akam & Kullman, 2012; Salinas & Sejnowski, 2001). A 

vast literature based on fMRI, EEG, and other imaging 

methodologies has demonstrated that functional changes in 

coupling between regions can occur rapidly in response to 

task and context cues (Bullmore & Sporns, 2009). While 

functional connectivity between regions can reflect common 

inputs, it is often taken to imply selective communication. 

These observations have been made without knowledge of 

the mechanism by which neural activity might be selectively 

processed or ignored. Given that the coherence of 

oscillations among regions is rapidly altered by interacting 

neuronal activity, CTC and CFC could underlie task- and 

context-dependent changes in functional connectivity 

throughout the brain. 

Dynamics of Choice Arise from Properties of 

the Communication Substrate 

Perhaps counterintuitively, coherent oscillations supporting 

communication between regions do not necessarily improve 

information processing between those regions and produce 

associated facility in behavior. It is natural to expect greater 

amplitudes in task-linked oscillations to be associated with 

better communication and, thus, better task performance. 

Almost paradoxically, though, high amplitude oscillations 

are regularly associated with a lack of strong information 

processing. For example, alpha amplitude increases in 

visual areas when the eyes are closed and there is 

(apparently) no visual attention. Also, conflict-related high 

amplitude theta waves in medial frontal and subcortical 

regions is linked to slow responses and poor performance 

(Zavala, Zaghloul, & Brown, 2015).  

In a computational model of the role of thalamocortical 

loops in signal selection (Shea, Rodny, Warlaumont, & 

Noelle, 2017), we found that this inverse relationship can 

emerge from a trade-off between cognitive stability and 

sensory signal integration. During periods of low conflict, 

such as when a sensory stimulus is clearly distinguished 

from its background, the strong stimulus input suppressed 

background noise, leading to a stable selection of the signal. 

During periods of high conflict, such as when the stimulus 

was not clearly distinct from background noise, competition 

caused increased oscillations, promoting greater 
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communication. However, if the increased oscillations led 

to conflict being quickly resolved, the oscillations then 

rapidly faded. If conflict persisted, the oscillations remained 

strong as the network failed to pull the signal from the 

noise. Thus, in our model, the strength of oscillations is 

inversely related to the neuronal network’s performance. 

 

 
Figure 3: Architecture of a spiking neural network model of 

thalamocortical signal selection. The network is based on 

recurrent synaptic circuits which connect the thalamus, 

cortex, and basal ganglia. Arrow-heads denote excitatory 

pathways, circles denote inhibitory pathways. STIM = 

stimulus, THL = thalamus, CTX = cortex, DA1 = Striatum 

(Da1-Receptors), DA2 = Striatum (Da2-Receptors), STN = 

Subthalamic Nucleus, GPI = Globus Pallidus Internal, GPE 

= Globus Pallidus External (Shea, Rodny, Warlaumont, & 

Noelle, 2017). 

The model contained seven populations of leaky 

integrate-and-fire spiking neurons and eleven synaptic 

pathways comprising a recurrent thalamo-cortico-basal 

ganglia circuit (Figure 3). Shaped input currents were 

injected at the model thalamus to simulate a stimulus, and 

these signal inputs were overlaid with random background 

noise. Thalamic activity propagated forward through the 

cortex and basal ganglia, where an off-center on-surround 

inhibitory dynamic gave rise to neuronal competition. For 

weak stimuli, the resulting competition was unstable, and 

the excitatory-inhibitory recurrence of the network caused 

neurons in every region to synchronize. For stronger stimuli, 

suppression of background noise kept recurrent feedback 

under control, allowing a stable representation of the signal 

to emerge in the cortex (Figure 4). 

The task performed by our model is simple: a signal, 

represented as increased thalamic activity in a region of an 

abstract neural map, is obscured by noise. The network 

attempts to amplify the signal by suppressing the noise. This 

reflects a single choice task: a Go task as opposed to a 

Go/No-Go task. Although this task seems simpler than 

many animal behaviors, very complex decisions can be 

mapped onto such a signal selection mechanism through a 

combination of affordance competition and serial 

evaluation. 

Many neural network models of two-alternative forced 

choice tasks represent relevant features of the alternatives 

simultaneously in two different populations of neurons, with 

Figure 4: During each trial, the model is presented with a noisy bump-attractor stimulus for 2s. In trials with high 

stimulus signal-to-noise ratio (SnR) (4 - 10 s above), the network selects the stimulus and inhibits background noise, 

yielding a high evoked SnR. In trials with low stimulus SnR (0 - 4 s above), competition between signal and noise leads 

to the emergence of oscillations. The local field potential (LFP) is modeled as the leak, excitatory, and inhibitory currents 

of all neurons in a population inversely scaled by the distance to a fixed point in the population. 
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choices also represented separately and in parallel. The 

neurons representing the alternatives then compete through 

recurrent projections, producing some form of a “winner 

take all” dynamic (Usher & McClelland, 2001). This 

approach is problematic when considering how it might 

scale up to situations in which there are many more than 

two options. It is unlikely that the brain is equipped with 

parallel neural pathways for each possible choice in a large 

and novel set, with inhibition appropriately configured to 

cause the alternatives to compete when a choice is 

presented. 

A different account of choice involves serial evaluation. 

Alternatives are represented and entertained one at a time, 

with relative value information represented, and there is a 

process of shifting from one alternative to the next, with 

potentially many repeated considerations of a given choice. 

Rather than making a parallel forced-choice, there is only an 

“accept-reject” decision for the currently represented choice, 

with acceptance resulting in the selection of that alternative 

and rejection entailing continued serial consideration. This 

account scales to multiple alternatives and is consistent with 

the proposal that decision making capabilities of this kind 

initially evolved in the context of foraging, where potential 

choices (e.g. bushes that might contain good berries) are 

considered serially, resulting in repeated “accept-reject” 

decisions (Hayden, 2018).  

There is increasing evidence that serial evaluation is used 

in the brain. For example, Rich & Wallis (2016) recorded 

ensemble spiking activity and local field potentials from the 

orbitofrontal cortex, finding neurons representing the value 

of options in a 2-alternative forced choice task, alternatively 

encoding the value of one choice and then the other.  

If input signals in our computational model are seen as 

encoding value, perhaps with noise capturing a background 

value standard arising from previously considered options, 

then successful signal selection can be an “accept” choice, 

while continued strong oscillations could drive a “reject”, 

prompting input of another potential choice.  

Our computational model of choice is incomplete. Any 

form of attentional switching -- triggered by oscillations or 

other factors -- is exogenous to the network. The model 

illustrates how recurrent communication between cortical 

and midbrain decision structures can support both signal 

selection, and can promote oscillations necessary for 

neuronal communication. Thus, prolonged “deliberation” in 

such a circuit will give rise to more effective spike 

propagation across a broader region of neural tissue. 

Discussion 

The problem of grounding cognitive processes in the 

activity of the brain is at the core of cognitive science, yet 

the mechanisms of brain function which are well understood 

operate at a finer scale than what is relevant to behavior. In 

investigating the neural mechanisms of serial decision-

making, we have identified important abstractions, at 

different scales, with which we can climb from spikes to 

choices. We have proposed that synchrony is a fundamental 

property of neuronal networks and argued that synchrony is 

the primary mechanism of neural oscillation. There are 

counter-arguments to this proposal, yet there is no 

alternative which enjoys as much empirical support or as 

robustly explains the bidirectional interactions of spikes and 

brain waves. We also reviewed evidence that neural 

oscillations which emerge from spike synchrony provide a 

flexible, dynamic mechanism for selective communication 

across spatial and temporal scales: an active substrate. We 

then explored how this communication across recurrently 

connected brain regions may underlie some of the cognitive 

processes of choice. 

Mental and behavioral phenomena occurring at the level 

of human experience find their causes not only in brain 

states, but in the interactions of brains, bodies, and 

environments. Specific mental states, it might be argued, 

emerge from these interactions. Much of the modern 

understanding of neuronal activity has been developed at the 

scale of individual cells, whereas it is likely that 

qualitatively different properties emerge from brain-scale 

collections of neurons. These possibilities invite criticism of 

a pure reductionist account of cognition. Nevertheless, we 

propose that our conceptual ladder, providing a multi-scale 

perspective on neural phenomena, can help bridge the gulf 

of understanding between brain and behavior. In our model 

of signal selection, we have demonstrated that such a 

reductive approach can provide insight. 

Finally, we recognize that the precise mechanisms of any 

decision task will certainly involve processes beyond those 

discussed here. Nevertheless, much cognitive neuroscience 

research operates solely at one scale, and we hope that this 

limited exploration of choice highlights the benefits of work 

at multiple scales. By tying the mechanisms of neuronal 

activity to those of oscillatory interactions to those of large-

scale functional activity, we can begin to offer neural 

accounts of behavior which extend beyond a single level of 

abstraction. In ongoing work, we plan to explore these 

possibilities. 
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