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Summary:

The human microbiome plays an important role in our health and identifying factors associated 

with microbiome composition provides insights into inherent disease mechanisms. By amplifying 

and sequencing the marker genes in high-throughput sequencing, with highly similar sequences 

binned together, we obtain Operational Taxonomic Units (OTU) profiles for each subject. Due 
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to the high-dimensionality and non-normality features of the OTUs, the measure of diversity is 

introduced as a summarization at the microbial community level, including the distance-based 

Beta-diversity between individuals. Analyses of such between-subject attributes are not amenable 

to the predominant within-subject based statistical paradigm, such as t-tests and linear regression. 

In this paper, we propose a new approach to model Beta-diversity as a response within a regression 

setting by utilizing the functional response models (FRM), a class of semiparametric models for 

between- as well as within-subject attributes. The new approach not only addresses limitations 

of current methods for Beta-diversity with cross-sectional data, but also provides a premise for 

extending the approach to longitudinal and other clustered data in the future. The proposed 

approach is illustrated with both real and simulated data.

Keywords

Copula; Functional Response Model; High-throughput Sequencing; Permutational Multivariate 
Analysis of Variance Using Distance Matrices (PERMANOVA); Semiparametric Regression; U-
statistics based Generalized Estimating Equation (UGEE)

1. Introduction

This methodological development is motivated by the problem to test associations between 

the microbiome diversity and clinical variables. The human microbiome refers to all 

microorganisms on or in the human body, their genes, and surrounding environmental 

conditions (National Academies of Sciences and Medicine, 2018). In recent years, a 

preponderance of microbiome studies have implicated the role of the human microbiome 

in the pathogenesis of complex diseases, including diabetes, alcoholic liver disease, and even 

cancers (Lang et al., 2020b; Holmes et al., 2011). Therefore, identifying potential biological 

or clinical variables associated with the microbiome and defining their relationships not 

only enlighten the inherent disease mechanisms but also enhance modulating microbiome 

compositions for therapeutic purposes.

Fueled by the technological advancement of next-generation sequencing, the human 

microbiome can be interrogated using high-throughput sequencing. For example, one 

strategy amplifies and sequences the bacterial 16S ribosomal RNA gene (16S rRNA) 

for species identification. These sequences are further clustered into nearly identical 

Operational Taxonomic Units (OTUs) and compared with reference databases to produce 

OTU counts profiles based on taxonomic assignments. The OTU counts are often sparse 

and high-dimensional. Direct analysis of such data with limited samples raises several 

statistical challenges, including modeling the skewed and over-dispersed count data with 

a preponderance of zeros. Since the sequencing depth varies, OTU counts are usually 

normalized into proportions within each subject to form the OTU relative abundance. 

They can be further summarized at the microbial community level using diversity metrics, 

including the “within-subject” Alpha-diversity and “between-subject” Beta-diversity. Unlike 

Alpha-diversity that consists of individual outcomes, or within-subject attributes, Beta-

diversity considers the number of shared taxa between subjects, thus representing their 

differences in OTU abundance profiles. Each Beta-diversity outcome is a pairwise distance 
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between two subjects, or between-subject attribute. The two major categories of statistical 

analyses for the microbiome, i.e., the “individual” level effect of a single OTU and the 

“community” level effect of microbiome composition with summary statistics of diversity, 

complement each other.

Notably, a variety of disorders are shown to be associated with the loss of gut microbial 

diversity (Durack and Lynch, 2019). One common approach to evaluate such associations 

using Beta-diversity is the Permutational Multivariate Analysis of Variance Using Distance 

Matrices (PERMANOVA) (McArdle and Anderson, 2001). This approach partitions the 

Beta-diversity into within- and between-group variations and implements a permutation test 

based on pseudo-F statistics for inference. A major limitation is the difficulty to discern 

the sources of variation when the null hypothesis is rejected. Also, it is unsuitable for 

between-subject covariates in some applications, such as a dissimilarity measure describing 

the difference between subjects’ metabolites abundance profile. Additionally, it requires a 

large number of permutations to ensure stable results (Dubitzky et al., 2013). All these 

limitations severely circumscribe its applications in practice.

We propose a new approach to address the aforementioned limitations of PERMANOVA 

by utilizing the functional response models (FRM) (Kowalski and Tu, 2008), which are 

uniquely positioned to address between-subject attributes defining the Beta-diversity in 

the current context. In Section 2, we provide a brief overview of the Beta-diversity and 

PERMANOVA. In Section 3, we develop the proposed approach for Beta-diversity within 

a regression setting. In Section 4, we first develop a new approach to simulate life-like 

OTU counts and Beta-diversity, and then evaluate performance of the proposed and existing 

approaches. We conclude this section with an application to a study on alcoholic liver 

disease. In Section 5, we give our concluding remarks.

2. Beta-diversity and PERMANOVA

2.1 Beta-diversity Measures

Beta-diversity captures within- and between-group differences by comparing individuals’ 

distributions of taxonomic units. For example, the Bray-Curtis distance (Sørensen, 1948) 

is a quantitative measure based on OTU relative abundance. For a pair of subjects i and j, 

the Bray-Curtis distance is defined by BCij = 1 −
2Cij

Si + Sj
, where Cij indicates the sum of the 

OTU relative abundance that the pair has in common and Si (Sj) denotes the total number of 

OTU relative abundance for the ith (jth) subject. This measure ranges from 0 to 1, with 0 (1) 

indicating exactly the same (completely different) taxonomic abundances. As Beta-diversity 

incorporates taxa information into distances, its size is determined by the number of subjects 

rather than that of taxonomic units for the high-dimensional OTUs.

Unlike the Euclidean distance, most Beta-diversity measures calculate weighted relative 

differences, where each species’ contribution is weighted by the sum of the species’ 

abundance in the two subjects being compared (Roberts, 2017). Some forms such as the 

Unifrac can additionally account for the phylogenetic distances (Lozupone and Knight, 

2005). Hence, non-Euclidean Beta-diversity measures are widely adopted as the basis 
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of statistical analyses to detect a wider range of biologically relevant changes in the 

microbiome (Legendre and Gallagher, 2001).

2.2 PERMANOVA

Consider a sample of n subjects with microbiome profiles (counts) defined by m OTUs. 

Let yi denote an m × 1 column vector of OTU relative abundance (after normalization) and 

xi a vector of explanatory variables such as the status of a disease for the ith subject. Let 

di = d(yi1, yi2) denote a Beta-diversity outcome for a pair of subjects i = i1, i2 ∈ C2
n, where 

Cq
n denotes the set of q-combinations (i1, …, iq) from the integer set {1, …, n}.We are 

interested in testing the association between the Beta-diversity di and some clinical variables 

such as the status of a disease or, more generally, a continuous explanatory variable such as 

bilirubin, an indication of liver disease progression.

If xi is a categorical variable for groups, PERMANOVA can be used to compare Beta-

diversity across different groups, which adopts a pseudo-F statistic for inference (McArdle 

and Anderson, 2001). We provide details and formulas in the Supporting Information.

PERMANOVA has several limitations. First, it does not provide coefficient estimators 

for explanatory variables, which hinders generating interpretable results on both the 

direction and size of the effects, or discerning sources of differences. Second, it describes 

relationships of Beta-diversity (a between-subject attribute) with within-subject attributes 

only, not between-subject attributes such as metabolites abundance profile. Also, it requires 

a large number of permutations for stable results and thus carries more overheads in terms 

of the computational burden. Additionally, it is quite difficult to extend PERMANOVA to 

longitudinal studies (with missing data) that are potentially valuable given the dynamic and 

highly personalized nature of the microbiome.

3. Functional Response Models for Beta-diversity

The aforementioned limitations of PERMANOVA result from a lack of ability to model 

between-subject attributes under the predominant statistical paradigm. With a few exceptions 

such as the Mann-Whitney-Wilcoxon rank-sum test (Wu et al., 2014; Lin et al., 2021), 

all popular statistical models focus on relationships between variables from the same 

subject, or within-subject attributes. As Beta-diversity measures the difference between a 

pair of subjects’ OTUs, conventional statistical models are not amenable to modeling such 

between-subject attributes. In this section, we develop a regression framework to model 

Beta-diversity by utilizing a class of functional response models (FRM).

3.1 Functional Response Models for Between-subject Attributes

Consider a class of semiparametric functional response models (FRM):

E{f(yi1, …, yiq) |xi1, …, xiq} = h xi1, …, xiq; θ ,
i1, …, iq ∈ Cq

n, 1 ⩽ q, 1 ⩽ i ⩽ n,
(1)
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where yi = yi1, …, yim
⊤ ∈ ℝm denotes the response vector from the ith subject, f (·) is some 

vector-valued function, h(·) is some vector-valued smooth function (e.g., with continuous 

derivatives up to the second order), θ is a vector of parameters, q is some positive integer. 

The FRM in (1) extends the semiparametric generalized linear models (GLM) from within-

to between-subject attributes (Kowalski and Tu, 2008). For example, when q = 1 and f (yi) = 

yi, (1) immediately reduces to the restricted moment GLM. When q = 2 and set

fi = d yi1, yi2 , ℎi θ = E d yi1, yi2 = θ, i1, i2 ∈ C2
n, (2)

the FRM in (1) models the Beta-diversity distance d(yi1, yi2) and provides inference about the 

mean distance θ.

3.2 Functional Response Models for Beta-diversity with Covariates

3.2.1 Group Comparison.—We start by comparing Beta-diversity across multiple 

groups. Consider K groups with nk denoting the sample size of the kth group 1 ⩽ k ⩽ K , 

n = ∑k = 1
K nk denoting the total sample size of all K groups combined. Let xi denote a 

categorical variable indicating group membership for subject i 1 ⩽ xi ⩽ K, 1 ⩽ i ⩽ n .

For each pair, we observe their OTU relative abundance outcomes yi = yi1, yi2

i = i1, i2 ∈ C2
n  along with the pairwise group indicators xi = xi1, xi2 1 ⩽ xi1, xi2 ⩽ K . 

Denote all combinations of xi with a vector δ xi ∈ ℝK + C2
K

 through a one-hot encoding 

function δ: 1, …, K × 1, …, K 0, 1 K + C2
K

 such that for its kth (k = {k1, k2}) entry:

δk xi =
1 if xi = xi1, xi2 = k1, k2 = k
0 otherwise

, i = i1, i2 ∈ C2
n,

δ xi = δ11 xi , …, δ K − 1 K xi , δKK xi
⊤, 1 ⩽ k1 ⩽ k2 ⩽ K .

(3)

Let f yi = d yi1, yi2  and define an FRM:

E f yi δ xi = exp ∑
1 ⩽ k1 ⩽ k2 ⩽ K

τk1k2δk1k2 xi = exp θ⊤δ xi , (4)

where exp (·) ensures that the right side of the equation is positive as f yi ⩾ 0. The FRM 

above is determined by the parameter vector θ = τ11, …, τ K − 1 K, τKK
⊤.

Unlike conventional analysis for within-subject attributes, models for between-subject 

attributes involve more complex parameters and interpretations. For the FRM in (4), exp τkk
is the mean of f (yi) when both subjects of the ith pair are from group k, and exp(τk1k2) is 

the mean of f (yi) when one (the other) is from group k1 (k2). Thus, in addition to group 

means as in conventional within-subject analysis, we now have (1) within-group means 
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exp(τkk) and (2) between-group means exp(τk1k2) For two groups k1 and k2 with the same 

or similar OTU distributions, their within- and between-group means are usually similar. 

However, if they have different OTU distributions, they may still have similar within-group 

means (this can occur, for example, if OTUs’ have similar variability within each group), but 

the between-group means exp(τk1k2) can be different from within-group means exp(τk1k1) or 

exp(τk2k2).

Thus, under the FRM in (4), we are interested in three types of null hypotheses to describe 

group differences in Beta-diversity:

1 Within‐group
:
H01:τkk = τk′k′ for any k, k′ , 1 ⩽ k < k′ ⩽ K
Ha1:τkk ≠ τk′k′ for some k, k′ ,

2 Between‐group:
H02:τkl = τk′l′ for any k, l, k′, l′ , 1 ⩽ k, k′ < l, l′ ⩽ K
Ha2:τkl ≠ τk′l′ for some k, l, k′, l′

3 Within‐ vs. Between‐group
:
H03:τkk = τk′l′ for any k, k′, l′ , 1 ⩽ k ⩽ K, 1 ⩽ k′ < l′ ⩽ K
Ha3:τkk ≠ τk′l′ for some k, k′, l′

.

(5)

Hypotheses (2) and (3) are unique to between-subject attributes, each revealing different 

aspects. For example, if the patterns of OTU distribution are “flipped” across two groups, the 

difference of Beta-diversity could be detected by the “within- vs. between-” instead of the 

“within-” type of hypothesis.

For PERMANOVA, if we obtain an insignificant pseudo-F statistic, we conclude with not 

enough evidence to reject the null. But, if this test is significant, it is unclear if the difference 

occurs in within-group or between-group means or both. By partitioning sources of variation 

and building formal hypotheses to depict the underlying differences of microbiome diversity 

across groups, a formal regression model for between-subject attributes in (4) allows for 

discerning sources of differences, potentially leading to more in-depth scientific findings.

All three types of hypotheses in (5) are readily tested using linear contrasts: H0 : Cθ = 0 
vs. Ha : Cθ ≠ 0, where C is a matrix of known constants. For example, when comparing 

Beta-diversity for three groups, we may use the following C matrices to test the hypotheses 

in (5):

K = 3, θ = τ11, τ22, τ33, τ12, τ13, τ23
⊤, a :C1 = 12, −1 ⋅ I2, 02 × 3 ;

b :C2 = 02 × 3, 12, −1 ⋅ I2 ; c :C3 = 15, −1 ⋅ I5 ,
(6)

where 1n denotes a n × 1 column vector of 1’s, and In denotes the n × n identity matrix.

3.2.2 Covariates for Confounders.—As most human population studies of 

microbiome are observational due to cost, logistic, and difficulties in experimental control, 

it is crucial to control for potential confounders that may impact group differences, such 

as demographics (ethnicity, genetic background), biometrics (medications, diet), molecular 

Liu et al. Page 6

Biometrics. Author manuscript; available in PMC 2022 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



measures (microbial metabolites, gene expression), and environmental exposures (National 

Academies of Sciences and Medicine, 2018). A more substantial improvement over 

PERMANOVA is FRM’s ease to control for a broader range of confounders, including 

between-subject attributes such as metabolites abundance profiles. This is achieved by 

leveraging the regression feature of FRM to include either within- or between-subject 

covariates.

As a motivating example for including a within-subject covariate, consider a linear 

regression relating a continuous variable zi to a continuous response yi: yi = η0 + η1zi + 

ϵi, ϵi ∼ (0, σ2), 1 ⩽ i ⩽ n, where (0, σ2) denotes some continuous distribution with mean 

zero and variance σ2. Now consider the squared difference,f yi = yi1 − yi2
2. It follows that

E f yi zi1, zi2 = E ϵi1 − ϵi2
2 + η1

2 zi1 − zi2
2 = 2σ2 + η1

2 zi1 − zi2
2 . (7)

Although Beta-diversity is more complex, we use the same rationale to control for covariates 

by adding zi1 − zi2
2, or a more general non-negative transformation g zi  of zi = zi1, zi2  to 

the FRM in (4):

E f yi δ xi , zi = exp ∑
1 ⩽ k1 ⩽ k2 ⩽ K

τk1k2δk1k2 xi + ξ1g zi , i = i1, i2

∈ C2
n .

(8)

For a categorical covariate, we can define a series of indicators akin to (3), i.e. for the 

ith pair, we observe the pairwise indicators xli = xli1, xli2  1 ⩽ xli1, xli2 ⩽ Kl  for the lth 

1 ⩽ l ⩽ p  categorical covariate with Kl levels. We one-hot encode those p categorical 

covariates into δ xi ∈ ℝ1 + ∑l = 1
p Kl + C2

Kl − 1 , with the encoding function defined similarly 

as in (3), but designating a referent to obtain a similar form as in conventional regression.

Specifically, for the lth categorical covariate, we define 

δl: 1, …, Kl × 1, …, Kl 0, 1 Kl + C2
Kl − 1 (excluding the case where kl1 = kl2 = 1)such 

that for the kl
tℎ kl = kl1, kl2  entry of δl xli :

δlk xli =
1 if xli = xli1, xli2 = kl1, kl2 = kl

0 otherwise
,

δl xli = δl12 xli , …, δl K − 1 K xli , δlKK xli
⊤, 1 ⩽ l ⩽ p,

δ xi = 1, δ1 x1i
⊤, …, δl xli

⊤, …, δp xpi
⊤ ⊤,

i = i1, i2 ∈ C2
n, 1 ⩽ kl1 ⩽ kl2 ⩽ Kl, 1 = kl1 ≠ kl2 .

(9)
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Thus, with p categorical covariates (including the one for diagnostic groups), xli 1 ⩽ l ⩽ p , 

and q continuous covariates, zmi 1 ⩽ m ⩽ q  for subject i, we can, after designating the first 

group as the referent by including an intercept β0, express the FRM as:

E f yi xi, zi = exp β0 + ∑
l = 1

p
∑

1 ⩽ kl1 ⩽ kl2 ⩽ Kl

1 = kl1 ≠ kl2
βlk1k2δlk1k2 xli

+ ∑
m = 1

q
ξmgm zmi ,

= exp β⊤δ xi + ξ⊤g zi ,

(10)

where xli = xli1, xli2 , zmi = zmi1, zmi2 , g zi = g1 z1i , …, gq zqi
⊤ and Kl denotes the levels 

of category of the lth categorical variable xli(1 ⩽ l ⩽ p). The FRM above is parameterized 

by a vector θ ∈ ℝ1 + Σl = 1
p Kl + C2

Kl − 1 + q:

βl = βl12…, βl Kl − 1 Kl, βlKlKl
⊤, β = β0, β1

⊤, …, βp
⊤ ⊤,

ξ = ξ1, …, ξq
⊤, θ = β⊤, ξ⊤ ⊤ .

(11)

Akin to (4), the parameters for the covariates possess more complex interpretations. For a 

continuous covariate zmi, ξm represents change in the mean of log {f (yi)} per unit change 

in gm (zmi). For a categorical one, say gender, we now have male-male, female-female, or 

male-female pairs. If we set male-male as the referent, coefficients for female-female and 

male-female pairs represent differences in the log of mean Beta-diversity when comparing 

the respective gender pair to the referent.

We illustrate this model with a relatively simple log-linear form in (10), yet the applicability 

of FRM is far beyond the assumed simple relationship. Like any regression model such as 

the GLM, more complex relationships such as higher-order terms and interactions can be 

specified as deemed appropriate. The FRM in (10) looks like a conventional (log-linear) 

regression model, except that i indexes pairs of, rather than, individual, subjects. This critical 

difference precludes applications of standard inference methods for regression models as we 

discuss next.

3.2.3 Inference.—As the response function fi = f (yi) of the FRM-based regression 

for Beta-diversity in (10) involves pairs of subjects, inferences about θ must address the 

interlocking dependence of fi’s. Since this type of dependence structure is not addressed 

by standard methods such as the Generalized Estimating Equations (GEE), we develop 

inferences using a class of U-statistics based Generalized Estimating Equations (UGEE).

U-statistics based Generalized Estimating Equations.: Let
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Si = fi − ℎi, Di = ∂
∂θ ℎi, V i = V ar fi xi, zi , i = i1, i2 ∈ C2

n, (12)

in practice, Vi is generally unknown and substituted by a working variance such as Vi (hi) 

= hi, as the form of FRM is similar to log-linear models for within-subject attributes. Thus, 

define the UGEE:

Un θ = ∑
i ∈ C2

n
Un, i = ∑

i ∈ C2
n

DiV i
−1Si = 0,

(13)

where the estimates θ are obtained through the Newton-Raphson method (see the Supporting 

Information for details).

Although similar in appearance, the UGEE above is not a sum of independent variables as 

in GEE (Tang, He, and Tu, 2012). Standard asymptotic methods such as the central limit 

theorem cannot be applied directly, but the theory of U-statistics is useful for addressing 

such interlocking dependence. For ease of reference, we summarize the asymptotic 

properties in the theorem below and provide a sketch of proof in the Supporting Information.

Theorem 1. Let

vi1 = E Un, i yi1, xi1, zi1 , B = E DiV i
−1Di

⊤ ,
ΣU = 4V ar vi1 , Σθ = B−1ΣUB−1, i = i1, i2 ∈ C2

n .
(14)

Then under mild regularity conditions,

a. θ is consistent and asymptotically normal:

n θ − θ d N 0, Σθ (15)

where →d denotes convergence in distribution.

b. A consistent estimate of Σθ is obtained by substituting consistent estimates of θ 
and moments of the respective quantities in Σθ.

Theorem 1 above is readily applied to test any linear hypotheses concerning θ, such as the 

linear contrasts in (6). Under the null, the Wald statistic has an asymptotic χ2 distribution:

W n = n Cθ ⊤ CΣθC⊤ −1 Cθ d χs2, (16)

where s is the rank of C and χs2 denotes a (central) χ2 distribution with s degrees of freedom. 

For example, in testing the within-group difference H01 in (6), W n d χ2
2 under H01.

The Score Test.: As Wald-type tests are typically anti-conservative, score statistics may 

be used as an alternative to reduce such bias, especially for small to moderate samples 
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(Kennedy, 2008). To develop a score statistic based on the UGEE in (13), let θ = θ 1
⊤ , θ 2

⊤ ⊤
, 

where θ(2) is the parameter of interest, θ 1 ∈ ℝp,θ 2 ∈ ℝq. Consider testing the null H0 : θ(2) 

= θ(20), with θ(20) a vector of known constants. We have the partition:

Di = ∂ℎ θ
∂θ 1

, ∂ℎ θ
∂θ 2

⊤
= Di 1 , Di 2

⊤, Un θ = Un 1 θ , Un 2 θ ⊤, (17)

let θ 1  denote the estimate of θ(1) from solving the following reduced estimating equation 

given θ(2) = θ(20)

Un 1 θ 1 , θ 20 = n
2

−1 ∑
i ∈ C2

n
Di 1 V i

−1Si = 0 . (18)

To define the score statistic, let

θ = θ 1 , θ 20
⊤, B = E DiV i

−1Di
⊤ =

B11 B12

B12
⊤ B22

,

G = −B21B11
−1, Iq , Σ 2 = GΣUG⊤,

(19)

where Iq denotes the q × q identity matrix, B11 ∈ ℝp × p, B12 ∈ ℝp × q, and B22 ∈ ℝq × q

denote the respective submatrices from partitioning the matrix B ∈ ℝ p + q × p + q , and ΣU is 

defined in (14). Let

Un 2 = Un 2 θ 1 , θ 20 , Σ 2
−1 = Σ 2

−1 θ 1 , θ 20 , (20)

i.e., the quantities of Un(2) and Σ(2) with θ substituted by θ. The theorem below summarizes 

the asymptotic properties of the score statistic.

Theorem 2. Under mild regularity conditions and H0 : θ(2) = θ(20), the score test statistic 

Sn θ 1 , θ 20  has an asymptotic χq2 distribution with q degrees of freedom, i.e.,

Sn θ 1 , θ 20 = nUn 2
⊤ Σ 2

−1 Un 2 d χq2 . (21)

A sketch of proof is provided in the Supporting Information.

4. Applications

We first investigated the performance of this FRM approach and compared it with the 

PERMANOVA, then applied it to a study on alcoholic liver disease (ALD). For Monte Carlo 

(MC) simulations, we set M = 1, 000 for MC iterations, two-sided type I error rate α = 

0.05, and sample size (per group) nk = 50, 100, 500 (k = 1, 2) for two groups. All analyses 

were performed within the R software platform (Team, 2017), with code optimized using 
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Rcpp (Eddelbuettel et al., 2011) for run-time improvement, which is available as Supporting 

Information.

4.1 Simulation Study

Beta-diversity is a feature summarization for the high-dimensional and zero-inflated 

counts of taxonomic units extracted from sequence data. Hence, our approach is to first 

generate those taxonomic abundances, and then compute Beta-diversity distances from the 

normalized taxonomic abundances. Also, as microbial abundances for each taxonomic unit 

are usually not independent, common approaches to generate taxonomic abundances from 

parametric distributions fail to produce life-like microbiome data (Zhang et al., 2017). We 

thus develop an approach to generate data that resemble real taxonomic abundances based 

on their empirical cumulative distribution function (eCDF) and copula (See the Supporting 

Information for details). As this procedure does not involve analytical distributional models, 

population-level characteristics such as the mean are estimated by Monte Carlo simulation 

with a large MC size of 5,000.

4.1.1 Simulation Settings.—We generated Beta-diversity outcomes from eCDFs 

of OTU counts in a study on alcoholic liver disease (Lang et al., 2020b). Chronic 

alcohol consumption increases intestinal permeability and changes the intestinal microbiota 

composition, which contributes to the progression of alcohol-related liver disease (ALD). 

In this study, n = 85 subjects including 59 alcoholic hepatitis (AH) patients, 15 alcohol 

user disorder (AUD) patients, and 11 healthy controls (HC) were enrolled. Fungal ITS 

sequencing and analysis were conducted using the Illumina MiSeq V3 platform specific 

for the fungal ITS1 region, resulting in p = 81 detected genera. Beta-diversity were 

computed from the OTU relative abundance vector Y85×81 = [y1, y2, …, y85]⊤. For space 

consideration, we reported results using the Bray-Curtis distance.

Shown in the left-most panel of Figure 1 are eCDFs of Beta-diversity in the three diagnostic 

groups. The eCDFs are considerably different between the AH and HC as well as AUD 

and HC group, but less so between the AUD and AH. To illustrate, we combined the AH 

and AUD patients and simulated OTUs from this combined disease (D) and HC group. 

Shown in the center of Figure 1 are the eCDFs of observed Beta-diversity for the D and 

HC group, and in the right-most panel are those of the simulated Beta-diversity for a sample 

size of nk = 500, which are nearly identical to their original counterparts. The Supporting 

Figure 1 provides Principal Coordinates Analysis (PCoA) plot, a popular visualizing tool for 

Beta-diversity (Kruskal and Wish, 1978), which also reveals similar patterns.

To assess whether the data generating procedure retains the important feature of zero-

inflated OTUs, we evaluated the average percentage of zero counts in real (93.93%) and 

simulated OTUs, which are 93.34% (sd = .004) for nk = 50; 93.55% (sd = .003) for nk = 

100; and 94.10% (sd = .001) for nk = 500, indicating that the simulated OTUs do reflect the 

zero-inflated nature of the real OTUs.

4.1.2 Group Comparison.—We first considered group comparisons without any 

covariate, where the FRM parameterized with an intercept is given by:

Liu et al. Page 11

Biometrics. Author manuscript; available in PMC 2022 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



E f yi xi = ℎ xi, θ = exp β0 + β22δ22 xi + β12δ12 xi ,
i = i1, i2 ∈ C2

n, θ = β0, β22, β12
⊤, (22)

where n = n1 + n2 with nk denoting the sample size of group k and f yi = di1, i2 denoting the 

Beta-diversity outcome for pair i = i1, i2 ∈ C2
n. The three types of hypotheses are:

Within‐group: H01:β22 = 0, vs. Ha1:β22 ≠ 0,
Between‐group: H02:β12 = 0, vs. Ha2:β12 ≠ 0,

Within‐ vs. between‐group: H03:β22 = β12, vs. Ha3:β22 ≠ β12 .
(23)

To assess the performance of the proposed approach for varying sample sizes, we simulated 

OTUs from a single group based on the eCDF of group D using the copula approach. In this 

case, all three null hypotheses in (23) hold.

Let θ m
 denote the estimator of θ and Σθ

m
 the asymptotic variance from the mth MC 

iteration, θ and Σθ
asymp

 denote the sample mean of θ m
 and Σθ

m
, respectively, and let 

Σθ
emp

 denote the sample variance of θ m
. Let W n

m  denote the Wald statistic in (16) for 

testing a hypothesis at the mth MC iteration. The type I error rate based on the asymptotic 

variance is given by αW = 1/M ∑m = 1
M I W n

m ⩾ qs, 0.95 , where qs,0.95 denotes the 95th 

percentile of a central χ2 distribution with s degrees of freedom. The score type I error 

rate αs was computed similarly by replacing W n
m  with the score statistic in (21) at the mth 

iteration.

We assess the asymptotic performance by comparing asymptotic and empirical standard 

errors from Σθ
asymp

 and Σθ
emp

 and by comparing αW (αs) and α = 0.05.

Shown in Table 1 are estimates (Est.) of θ, asymptotic and empirical standard errors. β22
and β12 were quite close to 0 (true value). The true β0 = −0.4595 was obtained by the 

sample mean of Beta-diversity for a large MC sample size of 5, 000. The estimated β0’s 

were close to the truth for all three sample sizes. The asymptotic standard errors were close 

to their empirical counterparts. As expected, discrepancies became smaller as the sample 

size increased. But estimates and asymptotic standard errors of θ were still good for nk = 50.

Shown in Table 2 are type I errors of FRM for the three nulls in (23) and PERMANOVA for 

the overall group difference. For the FRM, although exhibiting a small upward bias for nk = 

50, the Wald type I errors were close to α = 0.05 in all three cases. The score tests worked 

well to reduce bias for nk = 50 and 100 with nearly identical type I errors as the Wald for 

large sample sizes. PERMANOVA also performed well, albeit with a small downward bias 

for nk = 50 and 100, which often occurs for small sample sizes (Hemerik et al., 2018).
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4.1.3 Group Comparison Accounting for Covariates.—We illustrate with one 

continuous and one binary covariate, with the same two diagnostic groups as in (22), the 

FRM becomes:

E f yi xi, zi = ℎ xi, zi; θ = exp ui
⊤θ ,

ui
⊤θ = β0 + β22

d δ22
d xi

d + β12
d δ12

d xi
d + β22

g δ22
g xi

g + β12
g δ12

g xi
g

+ ξaga zi
a ,

θ = β0, β22
d , β12

d , β22
g , β12

g , ξa ⊤, i = i1, i2 ∈ C2
n,

(24)

where xi
d, xi

g and zi
a denote the diagnostic group, binary and continuous covariates for each 

pair i ∈ C2
n. In addition to the three null hypotheses comparing diagnostic groups, two new 

hypotheses can be tested with H04a : ξa = 0 for the continuous and H04b:β22
g = β12

g = 0 for the 

binary covariate. Simulation details are provided in the Supporting Information.

Shown in Table 3 are estimates and results for testing the nulls. Again, all estimates were 

close to their respective true values, and asymptotic standard errors were close to their 

empirical counterparts. Wald and score type I errors were also close to the nominal value, 

albeit a bit inflated for the Wald with nk = 50. The gaps between Wald and score type I 

errors became negligible with large sample sizes.

4.1.4 Power Comparison with the Existing Approach.—We then compared the 

power and computational time of the proposed FRM with PERMANOVA to highlight its 

advantages. Specifically, we compared hypotheses (1) “Between-group” difference with 

PERMANOVA and (2) “Within-group” difference with ‘betadisper’ function in ‘vegan’ 
(Oksanen et al., 2013) as a proxy, since PERMANOVA does not directly test this hypothesis. 

Since it is not straightforward for PERMANOVA to test (3) “Within- vs. Between-group” 

difference, we did not include this comparison. The simulation details are provided in 

the Supporting Information. Both permutation-based PERMANOVA and ‘betadisper’ were 

conducted with the number of permutations set to 99, 299, 499, and 999, respectively.

Shown in Table 4 are group size, effect size, power, and elapsed time (of one iteration) 

for comparison. In detecting between-group differences (i.e., location), FRM outperformed 

PERMANOVA in both power and scalability. Not only did FRM attain much higher power, 

but it also required far less computing time. For within-group differences (i.e., dispersion), 

FRM still surpassed ‘betadisper’ in scalability and achieved slightly higher power. For both 

PERMANOVA and ‘betadisper’, the computational time increased dramatically with the 

increased number of permutations.

4.2 Real Data Analyses

We also applied the proposed FRM to the alcoholic liver disease study (Lang et al., 2020a) 

to compare Beta-diversity among the original three diagnostic groups. Our goal was to 

identify the association between the microbiome diversity and diagnostic groups, controlling 

for demographics. The FRM for diagnostic groups and two covariates of gender and age is:
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E f yi xi, zi = ℎ xi, zi; θ = exp ui
⊤θ ,

ui

= 1, δ22
d xi

d , δ33
d xi

d , δ12
d xi

d , δ13
d xi

d , δ23
d xi

d , δ22
g xi

g , δ12
g xi

g , ga zi
a ⊤,

i = i1, i2 ∈ C2
n, θ = β0, β22

d , β33
d , β12

d , β13
d , β23

d , β22
g , β12

g , ξa ⊤,

(25)

where β0 represents the log of mean within-group Beta-diversity for the reference AH group, 

βkk
d  represent the log of mean within-group Beta-diversity differences for AUD (k = 2) and 

HC (k = 3) with the AH (k = 1), and βkl
d  represent the log of mean differences of the 

respective between-group Beta-diversity of AH and AUD β12
d , AH and HC β13

d , AUD 

and HC β23
d  compared with the AH, β22

g β12
g  represents the log of mean difference of 

Beta-diversity comparing female-female (male-female) and the reference male-male pairs, 

and ξa represents the change in the log of mean Beta-diversity per unit increase in age 

difference (measured by Euclidean distance). Given the relatively small sample sizes for 

AUD and HC, we report both Wald and score results, as well as Bootstrap results (based on 

5, 000 Bootstrap samples) to assess the accuracy of asymptotic results.

The top of Table 5 shows estimates, standard errors (asymptotic under “A. SE” and 

Bootstrap under “B. SE”), test statistics and p-values (Wald under “W. p”, score under 

“S. p”, Bootstrap Wald under “B.W. p” and Bootstrap score under “B.S. p”) for the nulls. All 

Bootstrap standard errors were close to their asymptotic counterparts. For each hypothesis, 

the test results were consistent, except for a noticeable discrepancy of the score test for β33
d

due to the small sample size of HC group (n3 = 11).

AUD had no significant within-group difference in mean diversity compared with the AH 

(β22
d = .226, p-values range [.419, .662]), but HC had a significantly higher within-group 

diversity than the AH from Wald test (β33
d = .572, W. p = .002), which is consistent with 

Figure 1. While the score test for β33
d  revealed that more evidence needed to be collected 

to reject the null (S. p = .130), this discrepancy may be due to the small sample size of 

HC. However, after Bootstrapping, both Wald and score were consistently significant for 

β33
d  (B.W. p = .007, B.S. p < .0001). All the above results reveal the scientific finding 

that alcoholic liver disease is associated with reduced microbial diversity. For covariates, 

age had a positive effect with ξ a = .006, both female-female β22
g = .125  and male-female 

β12
g = 0.72  pairs had higher mean diversity than male-male pairs. None of the covariates 

were significant.

The bottom of Table 5 includes statistics and p-values. The null of no within-group 

difference H01:β22
d = β33

d = 0  was rejected consistently by Wald (W. p = .007) and two 

bootstrap tests (B.W. p = .017, B.S. p < .0001), while the score test was close to being 

significant with S. p = .071, suggesting a larger sample size may be needed to confirm 
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significance. The null of no between-group difference H02:β12
d = β13

d = β23
d  across the three 

groups was rejected by all tests with the p-values ranging in (.0001, .001].

The between- vs. within-group differences were significant for between-group variability 

of D-HC and within-group variability of AH-AH pairs: with p-values ranging in (.0001, 

.006] for H03
2 :β13

d = 0 (AH-HC vs. AH-AH) and (.0001, .020] for H03
3 :β23

d = 0 (AUD-HC 

vs. AH-AH). However, there was no evidence to reject H03
1 :β12

d = 0 concerning the between-

group variability of AUD-AH vs. within-group variability of AH-AH pairs. There was no 

significant difference across the three gender pair groups (p-values range in [.732, 1]).

The results above were not corrected for multiple comparisons. We also provide FDR 

corrected results in the Supporting Information by applying the Benjamini-Hochberg 

procedure (Benjamini and Hochberg, 1995) to control the family-wise FDR at 5%, where 

major conclusions remained unchanged except for H03
3 :β23

d = 0 (AUD-HC vs. AH-AH), the 

score test p-value (S. p) was .020 before and .060 after correction.

In summary, both within- and between-group hypotheses detected group differences, driven 

by the fact that the HC group was rather distinct from the two disease groups. While 

the within- vs. between-group hypotheses enabled a more comprehensive comparison, the 

difference between AH-AH and AUD-AUD pairs was not as pronounced, yet any pair 

involving one subject from HC was significantly different from AH-AH pairs. These specific 

conclusions underscore the advantages of partitioning the sources of variation under the 

FRM.

5. Discussion

We developed a new approach to model Beta-diversity utilizing the functional response 

models (FRM). Unlike conventional approaches such as the PERMANOVA, the proposed 

FRM can disentangle information carried by Beta-diversity flexibly with the unique 

interpretations of “mean within-group diversity” for each group and the “mean between-

group diversity” between any two groups. This regression approach also provides coefficient 

estimators for explanatory variables, generating interpretable results on both the direction 

and size of the effects and leading to more in-depth scientific findings.

In addition, the proposed approach carries far fewer overheads than PERMANOVA in 

terms of the computational burden. Also, the semiparametric nature of the model enables 

valid inferences without any parametric assumption on the correlated and non-negative 

Beta-diversity. Lastly, the approach to simulate life-like OTUs and Beta-diversity allows 

one to relate simulation study results directly to the performance of the proposed and other 

statistical models for such data in real studies.

Comparing with other methods for multivariate responses to improve inference of the mean 

response such as the covariance regression model (Hoff and Niu, 2012), the proposed 

approach aims to directly model the relationships between Beta-diversity, a complex yet 

biologically meaningful between-subject attribute, and a set of explanatory variables, which 
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can be within-, between-subject or both, as deemed appropriate by content experts. Also, 

FRM’s ability to control for between-subject confounders, such as a dissimilarity measure 

comparing subjects’ metabolites abundance profile, makes it particularly useful in certain 

circumstances involving such confounders. Given some recent discussions (Morton et 

al., 2019) regarding the confounding of sequencing depth, one potential issue in most 

compositional data analysis is the stochastic nature of sampling reads due to technical 

variation, yielding a potential confounding effect. If this is the case in some applications, we 

can alleviate it by modeling Beta-diversity from the absolute abundance (instead of relative 

abundance) and including the sampling depth as an offset term in the proposed model.

In practice, we suggest conducting both score and Wald tests in applying the proposed 

model. If the sample size for some groups is relatively small (for example, nk < 50), an 

additional Bootstrap procedure is recommended. One major limitation of the approach is 

that it only applies to cross-sectional data. Currently, leveraging semiparametric regression 

models for longitudinal data, we are working on extending the approach to facilitate 

analyses of such data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Empirical cumulative distribution functions (eCDF) of OTU relative abundances for (1) 

real data of alcoholic hepatitis (AH) patients, alcohol user disorder (AUD) patients, and non-

alcoholic controls (HC) (left) (2) real data of combined diseased (AH and AUD patients) 

group and non-alcoholic controls (HC) (middle), and (3) simulated data of combined 

diseased (AH and AUD patients) group and non-alcoholic controls (HC) (right).
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Table 1.

MC estimates, standard errors (asymptotic and empirical) for FRM under the null hypotheses, averaged over 
MC M = 1, 000 iterations.

Under Null Hypotheses

Parameter Est. Std. err

Asymptotic Empirical

nk = 50

β 0 −.438 .091 .093

β 22 .003 .128 .133

β 12 .004 .066 .068

nk = 100

β 0 −.452 .066 .065

β 22 .0003 .093 .096

β 12 .002 .048 .049

nk = 500

β 0 −.458 .030 .031

β 22 .0007 .043 .043

β 12 .0006 .021 .021
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Table 2.

Comparison of type I error rates between FRM (based on Wald and Score tests) and PERMANOVA (based on 

permutation).

FRM: Type of Hypothesis PERMANOVA

Sample size
nk

Within-:
H01 : β22 = 0

Between-
H02 : β12 = 0

Within- vs. Between-
H03 : β22 = β12

Type I Error Rates (Wald)

50 .045 .081 .087

100 .046 .063 .071

500 .047 .053 .057

Type I Error Rates (Score) Type I Error Rates

50 .038 .048 .054 .043

100 .044 .047 .054 .048

500 .047 .051 .053 .051
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Table 3.

MC estimates, standard errors (asymptotic and empirical), and type I error rates (Wald and Score) of FRM 
controlling for covariates under the null hypotheses, averaged over MC M = 1,000 iterations.

Categorical Covariate: Gender (βg), Continuous Covariate: Age (ξa)

Parameter Est. Std. err Type I Error

Asymptotic Empirical Wald Score

nk = 50

β 0 −.442 .127 .135 .087 .048

β22
d .003 .130 .139 .059 .055

β12
d .004 .068 .072 .074 .045

β22
g .497 .129 .133 .047 .039

β12
g .501 .066 .069 .084 .056

ξ a .500 .098 .097 .050 .037

nk = 100

β 0 −.456 .085 .083 .057 .046

β22
d .0005 .094 .097 .060 .055

β12
d .002 .048 .049 .076 .059

β22
g .502 .094 .094 .046 .044

β12
g .502 .048 .048 .064 .046

ξ a .500 .056 .055 .048 .044

nk = 500

β 0 −.456 .039 .041 .057 .056

β22
d .0003 .043 .044 .050 .050

β12
d .0004 .022 .022 .049 .046

β22
g .498 .043 .045 .055 .056

β12
g .499 .021 .022 .061 .057

ξ a .500 .029 .029 .049 .050

Biometrics. Author manuscript; available in PMC 2022 October 02.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liu et al. Page 22

Table 4.

Comparisons of power and computational time between FRM and PERMANOVA as well as ‘betadisper’, with 

the number of permutations set to 99, 299, 499, and 999 for both permutation-based approaches.

“Between-group” difference (location): FRM vs. PERMANOVA

n k Effect Size Power Time for one iteration (s)

FRM PERMANOVA (#) FRM PERMANOVA (#)

99 299 499 999 99 299 499 999

50 .322 .637 .152 .168 .172 .176 .009 .017 .051 .079 .180

100 .346 .905 .383 .423 .431 .441 .024 .078 .238 .408 .878

200 .346 .994 .892 .927 .922 .921 .108 .332 1.051 1.929 3.642

“Within-group” difference (dispersion): FRM vs. ‘betadisper’

n k Effect Size Power Time for one iteration (s)

FRM Betadisper (#) FRM Betadisper (#)

99 299 499 999 99 299 499 999

50 .352 .698 .662 .698 .697 .691 .009 .015 .040 .062 .121

100 .366 .956 .914 .922 .928 .925 .024 .015 .041 .064 .126

200 .362 1.000 .996 1.000 .999 .998 .108 .020 .049 .075 .153
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Table 5.

Estimates, asymptotic standard errors (A. SE), Bootstrap standard errors (B. SE) based on B = 5,000 Bootstrap 
samples, Wald statistics, Score statistics, Wald p-valules (W. p), Score p-values (S. p), Bootstrap Wald 
p-valules (B.W. p) and Bootstrap Score p-valules (B.S. p) for the real study data using FRM, including 
covariates.

Categorical Covariate: Gender (βg), Continuous Covariate: Age (ξa)

Parameter Est. Std. err Statistic p-value

A. SE B. SE Wald Score W. p S. p B.W. p B.S. p

β 0 −1.042 .215 .226 23.485 13.630 <.0001 .0002 <.0001 <.0001

β22
d .226 .302 .290 .560 .442 .454 .506 .419 .662

β33
d .572 .186 .201 .416 2.294 .002 .130 .007 <.0001

β12
d .114 .193 .174 .350 .331 .554 .565 .519 .674

β13
d .634 .173 .183 13.409 7.456 <.0001 .006 .002 <.0001

β23
d .672 .180 .190 14.002 5.408 <.0001 .020 .0004 <.0001

β22
g

.125 .189 .175 .436 .399 .509 .528 .477 .613

β12
g

.072 .121 .111 .357 .356 .550 .551 .511 .583

ξ a .006 .005 .005 1.723 1.479 .189 .224 .184 .348

Hypothesis Statistic p-value

Wald Score W. p S. p B.W. p B.S. p

Within- H01:β22
d = β33

d = 0 9.865 5.295 .007 .071 .017 <.0001

Between- H02:β12
d = β13

d = β23
d 19.009 28.477 <.0001 <.0001 .001 <.0001

Within- vs. Between-

H03
1 :β12

d = 0 .350 .331 .554 .565 .519 .674

H03
2 :β13

d = 0 13.409 7.456 <.0001 .006 .002 <.0001

H03
(3):β23

d = 0 14.002 5.408 <.0001 .020 .0004 <.0001

Covariates

H04a:ξa = 0 1.723 1.479 .189 .224 .184 .613

H04b
1 :β22

g = 0 .436 .399 .509 .528 .477 .583

H04b
2 :β12

g = 0 .357 .356 .550 .551 .511 .348

H04b:β22
g = β12

g = 0 .621 .241 .733 .886 .732 1.000
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