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Abstract

Purpose: With the initiation of human hyperpolarized 13C (HP-13C) trials at multiple sites and 

the development of improved acquisition methods, there is an imminent need to maximally extract 

diagnostic information to facilitate clinical interpretation. This study aims to improve human 

HP-13C MR spectroscopic imaging through means of Tensor Rank truncation-Image enhancement 

(TRI) and optimal receiver combination (ORC).

Methods: A data-driven processing framework for dynamic HP 13C MR spectroscopic imaging 

(MRSI) was developed. Using patient data sets acquired with both multichannel arrays and single-

element receivers from the brain, abdomen, and pelvis, we examined the theory and application of 

TRI, as well as 2 ORC techniques: whitened singular value decomposition (WSVD) and first-point 

phasing. Optimal conditions for TRI were derived based on bias-variance trade-off.

Results: TRI and ORC techniques together provided a 63-fold mean apparent signal-to-noise 

ratio (aSNR) gain for receiver arrays and a 31-fold gain for single-element configurations, which 

particularly improved quantification of the lower-SNR-[13C] bicarbonate and [1-13C]alanine 

signals that were otherwise not detectable in many cases. Substantial SNR enhancements were 

observed for data sets that were acquired even with suboptimal experimental conditions, including 

delayed (114 s) injection (8× aSNR gain solely by TRI), or from challenging anatomy or 

geometry, as in the case of a pediatric patient with brainstem tumor (597× using combined TRI 
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and WSVD). Improved correlation between elevated pyruvate-to-lactate conversion, biopsy-

confirmed cancer, and mp-MRI lesions demonstrated that TRI recovered quantitative diagnostic 

information.

Conclusion: Overall, this combined approach was effective across imaging targets and receiver 

configurations and could greatly benefit ongoing and future HP 13C MRI research through major 

aSNR improvements.

Keywords

cancer imaging; hyperpolarized C-13 pyruvate; tensor rank truncation image enhancement

1 | INTRODUCTION

The development of hyperpolarized 13C magnetic resonance imaging (HP 13C MRI) has 

enabled an unprecedented means of accessing metabolic information noninvasively for 

cancer risk stratification and treatment monitoring.1,2 Dynamic nuclear polarization of 13C 

nuclei provides an approximately 50 000-fold increase in magnetic resonance signal, which 

provides 3-dimensional, real-time detection of cellular metabolic conversion.3 As a 5-minute 

addition to a routine clinical MR exam, HP 13C MRI has the potential to significantly 

advance clinical cancer research and individual patient management in the era of precision 

medicine.1

It has been known for nearly a century that the oncogenic upregulation of lactate 

dehydrogenase-driven pyruvate-to-lactate conversion, known as Warburg effect, is a 

hallmark of cancer.4,5 Current HP 13C MRI patient research monitors the kinetics of 

[1-13C]pyruvate-to-[1-13C]lactate conversion as a marker of cancer aggressiveness and a 

reporter of early response or resistance to targeted therapies.1,6 Recent patient studies 

observed highly elevated pyruvate-to-lactate conversion in high-grade primary7,8 and 

metastatic9 prostate cancer, renal cell carcinoma,10 breast cancer,11 pancreatic 

adenocarcinoma,12 and liver metastases.13 A 4-fold decline of pyruvate-to-lactate conversion 

in a patient with castration-sensitive prostate cancer reflected androgen receptor signaling 

inhibition and early responses to treatment.2

Integrated into a standard-of-care, diagnostic-quality MRI exam, HP 13C MR studies utilize 

specialized pharmaceutical manufacturing processes, a next generation human research 

polarizer, general purpose and target-specific coil designs, and efficient pulse sequences with 

the requisite spatiotemporal coverage and resolution.1,6,8 As multisite HP 13C studies 

expand, development of new coils and acquisition methods are still in progress, and there is 

a key unmet need to maximally extract the metabolic information from the acquired data 

sets. HP 13C MRSI represents a family of acquisition strategies that provide good spatial 

coverage of the anatomy of interest and temporal sampling of kinetic profiles to capture 

metabolic information that reflect the in vivo biochemistry of 13C-enriched probes.7,8,14

Enhancing HP data may benefit clinical interpretation and improve accuracy of kinetic 

model fits. Mathematically, the family of problems concerning compressed sensing, low-

rank matrix completion, signal enhancement/denoising, and data compression have similar 
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basic ideas. All of these techniques are predicated on either the knowledge or assumption 

that the amount of information carried by a given data set is less than the theoretical 

“capacity” for its size and that the relevant information can be restructured into a simpler 

representation. Sometimes this concept is regarded as the “complexity” or “compressibility” 

of the data set, and in the context of HP-13C MRSI is characterized by a finite and known 

numbers of resonances as well as a high degree of conformity over time (low rank in the 

dynamic and spectral dimensions). Deviations from this pattern usually correspond to noise 

and can be removed by techniques that deconstruct the image into simpler representations 

such as truncated singular value decomposition (SVD) and its higher dimensional analogs. 

Earlier work has shown appreciable performance from SVD based denoising,15–21 the 

improvement of which was sufficient that glucose-to-lactate metabolism can be imaged 

using injected 13C glucose with only thermal polarization.22

This project builds upon this prior preclinical work to develop a specialized HP 13C dynamic 

MRSI processing framework for improving signal and noise characteristics in human studies 

to facilitate analysis. Specifically, it examines the theoretical foundations of the tensor Rank 

truncation––Image enhancement (TRI) technique on hyperpolarized human data, 

investigates rank relations and compressibility, and proposes an optimality condition to 

maximize the extraction of pathophysiological information (in the sense of information 

theory) in patient studies. As part of the effort, it also investigates the combination of data 

from 13C receiver arrays using either whitened SVD (WSVD) or free induction decay first-

point phasing (FPphasing). Optimization was evaluated on dynamic MRSI data sets from 

brain, abdomen, and pelvis using multichannel coil arrays and single-element receiver 

configurations. This new processing framework could benefit the data analysis for current 

and future clinical HP 13C trials.

2 | METHODS

2.1 | Data processing framework in HP 13C MR spectroscopic imaging

A renovated processing framework for HP 13C MRSI is proposed in Supporting Information 

Figure S1. The new framework aims to provide refinements tailored to current and future 

multicenter clinical studies. Briefly, this entails noise decorrelation (prewhitening) of the 

MR array data, echo-planar spectroscopic imaging reconstruction with even-odd lobe 

phasing, B0 correction, WSVD channel combination,23 TRI by high-order singular value 

decomposition (HOSVD), and finally phase-sensitive peak estimation. Metabolites are 

quantified by area under phased peak. Built upon the fundamentals of processing and 

visualization from previous publications,24,25 this work specifically focuses on 

implementing and evaluating the receiver channel combination and TRI techniques of the 

processing framework.

2.2 | Phase-sensitivity receiver array combination

HP experiments pose special challenges for MR receiver arrays. Contrary to radar and 

ultrasound arrays where the phase between elements carries indispensable information,26 the 

phase differences between array receiver elements in MRI is a complicating factor that 

requires equalization. The premises of equalized receiver combination and some possible 
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techniques have been previously described in literature in the context of both proton23 and 

nonproton nuclei.27 Two array combination methods––WSVD and FPphasing––were 

compared in our study to find the best synergy with the proposed TRI techniques for optimal 

HP-13C MRSI data processing, whose theory and application have previously been 

discussed for 1H MRSI studies of brain tumors.23

2.3 | Tensor image enhancement of HP 13C MRSI data

2.3.1 | Representation of HP 13C MR data as tensors—In multilinear algebra, 

tensor is simply defined as a matrix of high dimensionality. Indeed, HP 13C MRSI data, 

consisting of spectral, spatial, and dynamic dimensions, can be formulated into tensor 

representation. The formulation of HP 13C MRSI tensors is described in Supporting 

Information Methods A (Illustrated in Supporting Information Figure S2).

2.3.2 | Compressibility in 13C pyruvate-lactate dynamics, spectrum, and 
space—In a HP tensor, the metabolic conversion dynamics, chemical shift spectrum, and 

geometric space are inherently low rank. The validation and reasoning of low-rank 

properties in respectively.

2.3.3 | Formation of image space from rank-1 tensors—As a multidimensional 

tensor is hard to visualize, it is helpful to first consider a simplified data set with only 1 

spatial dimension x (Supporting Information Figure S3).

M = [G; F, X, D] = ∑
p = 1

P
∑

q = 1

Q
∑

r = 1

R
gpqr ⋅ fp ∘ xq ∘ dr (1)

where M is the image tensor, G is the core tensor, and F, X, D and f, x, d stand for factor 

matrices and fibers in the spectral, spatial, and dynamic dimensions, respectively.

Elementwise, mijk = ∑
p = 1

P
∑

q = 1

Q
∑

r = 1

R
gpqrfipxjqdkr .

Suppose there were a hypothetical HOSVD that only breaks down frequency and dynamic 

dimensions into principal component fibers but leaves the spatial dimension intact. In this 

case, the spatial factor matrix X becomes identity (each fiber x = eq), namely M = [G; F, I, D]. 
This gives

mijk = ∑
p = 1

P
∑

r = 1

R
gpjrfipdkr (2)

Equation (2) suggests at spatial location j, the dynamic spectra of the voxel Mj = m(f, x = j, 

d) consists of the outer product of each fp and dr, weighted by core tensor element gpjr, and 

summed over p and r. For instance (Supporting Information Figure S3B), f1 ∘ d1 means that 

the dynamic spectra follow the spectral lineshape of the main pyruvate peak f1 and a single 
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dynamic profile d1. Recall d1 is the most dominant dynamic component extracted by 

HOSVD, which probably resembles pyruvate dynamics. In another word, voxel Mj is 

synthesized by the weighted sum of a collection of dynamic spectra fp∘ dr (Supporting 

Information Figure S3C), where the weighting is stored in a slab Gj of the 3D core tensor G. 

Mathematically, fibers fp and dr are analogous to the eigenvectors, and gpjr is a 

generalization of singular value (Supporting Information Table).

Consequently, the low-rankness in spectral and dynamic dimensions means that any 

metabolite dynamics can be represented by a linear combination of [d1, d2, d3, …, dρD] and 

any spectral peak by [f1, f2, f3, …, fρF], where ρD and ρF are the dynamic and spectral ranks, 

respectively. This leads to a key property that voxel Mj can be fully synthesized with factor 

matrices F and D truncated to length ρF and ρD, and slab Gj truncated to size ρF × ρD, 

respectively. As this holds true for any spatial index j, the entire image M (Supporting 

Information Figure S3D) can be fully represented by truncated F, D and G.

This example illustrated a barebones version of the multilinear SVD analysis, followed by 

image synthesis from rank-1 tensors. In the actual HP-MRI tensor decomposition, HOSVD 

extracts principal components in space into factor matrices X, Y, rather than leaving them 

identity. Nevertheless, the idea remains much the same despite decomposition in space and 

augmented dimensionality.

2.3.4 | Optimality condition for tensor low-rank thresholding—In order to 

maximally extract diagnostic information, Supporting Information Methods E derives the 

optimal conditions for tensor rank truncation based on bias-variance trade-off. Briefly, the 

optimization problem can be formulated as

argmin
ρ1, ρ2, …ρi, …ρD

1
K ∑

k
Smet,orig (k) − Smet,TRI (k) 2 + σnoise, TRI

2
(3)

where ρi is the rank in the i-th dimension, Ŝmet(k) is the noisy estimate of metabolite signal 

from the k-th highest signal-to-noise ratio (SNR) voxel, and σnoise, TRI 
2  is the noise variance 

calculated from the free induction decay tail post rank truncation. The rank selection was 

based on the aforementioned criteria, calculated individually for each data set, and did not 

rely on a priori pathophysiological or other knowledge.

2.4 | MR experiments

The patient data (N = 38) examined in this study (Figures 1–8) were acquired using a 2D 

dynamic MRSI sequence,8 following injection of 250 mM HP-[1-13C]pyruvate, which was 

polarized using a 5T SPINlab (GE Healthcare, Chicago, IL). The sequence consisted of a 

multiband spectral-spatial excitation of a single slice, followed by symmetric echo-planar 

spectroscopic imaging readout (pulse repetition time/echo time [TR/TE] = 130/3.5 ms, 

resolution temporal = 2–5 s, 20–24 time points, spatial = 1.2–2 cm in-plane, 1.5–4 cm 

thick). Figure 1 summarized the 13C receivers in this study. The brain studies utilized a 

clamshell transmitter together with custom-built 8-channel (UCSF) bilateral receivers or a 

birdcage transmitter in combination with a 32-channel array (UCSF-MGH).28 The 
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abdominal scans utilized either a clamshell transmit/16-channel array receiver configuration 

(Rapid Biomedical, Rimpar, Germany), or an in-house figure-eight surface TR coil. The 

prostate setup consisted of a clamshell transmitter and a 1H-13C dual-element endorectal 

receiver.7,8 All patient recruitment and human studies followed protocols approved by the 

internal review board at UCSF.

2.5 | Data analysis

Apparent SNR (aSNR) was calculated as maximum pyruvate peak divided by a spectrally 

resonance-free region on the edge of image outside subject. The pyruvate-to-lactate 

conversion rate (kPL) was evaluated using an inputless 2-site exchange model.29

Algorithm implementations, data processing, visualizations, and simulations were performed 

on Matlab (The MathWorks, Natick, MA) and open-source SIVIC software.24 The Matlab 

and Python programming codes used in this study can be found in Hyperpolarized MRI 

Toolbox, https://github.com/LarsonLab/hyperpolarizedmri-toolbox.

The programs are licensed under CC BY-NC-SA 4.0.

3 | RESULTS

3.1 | HP 13C data tensor is low-rank in dynamic dimension

A data-driven simulation, with methodologies described in Supporting Information Methods 

B and outcomes in Supporting Information Results A, illustrates that the dynamics of 

pyruvate, lactate, and other downstream metabolites can be described by a low-rank basis D
(Supporting Information Figure S5).

3.2 | Phase-sensitive channel combination allows more accurate detection of 
downstream metabolites

The FPphasing and WSVD techniques were compared to the naive sum-of-squares (SOS). 

WSVD and FPphasing resulted in Gaussian zero-mean noise (Figure 2), whereas simple 

SOS yielded Rician noise with nonzero mean. Both channel combination techniques 

provided qualitatively and quantitatively comparable performance, substantially reducing 

noise baseline over SOS and highlighting lactate/alanine in kidneys/muscle relative to 

background (Figures 2 and 3). The data also implied they are relatively robust to breathing 

motion. The following results utilized WSVD by default unless otherwise specified.

3.3 | WSVD and TRI improves aSNR by an order of magnitude or more and recovers 
otherwise undetectable metabolites

Mean aSNR gain (Figure 1) for the combined use of TRI and WSVD was 63-fold for arrays 

and 31-fold for single-element receivers in different imaging targets and coil set ups, where 

at least a minimum 10-fold improvement can be expected for arrays.

The results were consistent across multiple imaging targets and reveal in many cases 

previously undetected details. In Figures 4–6, TRI was independently evaluated using single 

coil (liver, prostate) or channel combined (brain) data. Figure 4A depicts data from a patient 
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diagnosed with rectosigmoid cancer liver metastasis. A hypoenhancing liver lesion was 

identified on the contrast MR in segment 7 (red arrow), measuring 3.8 × 2.4 cm. The 

information optimality selected rank (ρF, ρX, ρY, ρD) = (12, 9, 10, 11) out of a data matrix 

size of (59, 16, 18, 18), offering a 13-fold aSNR gain. Although the effect of the aSNR gain 

was not immediately obvious in the high SNR pyruvate images, the liver parenchyma and 

lesion became more conspicuous in the lactate TRI image, and the distinctive portal venous 

phase (indicated by the green arrow) was preserved by TRI. Figure 4B shows a data set from 

a brain tumor case (oligoastrocytoma) with relatively low raw SNR due to a long injection 

delay (114 s). Employing TRI with the optimum rank of (13, 7, 11, 8) from a data matrix 

size (59, 10, 18, 24) resulted in an 8-fold aSNR gain, sufficient to recover the bicarbonate 

signal, which was at noise level in the absence of TRI.

Figures 5 and 6 depicts a patient diagnosed with biopsy-confirmed bilateral prostate cancer 

in left, right midg-land, and right apex. Figure 5 highlights a T2 hypointensity and 

corresponding 13C voxel in green. The post-TRI image shows gain of apparent SNR in 

pyruvate, lactate, and even recovery of otherwise undetectable alanine and pyruvate-hydrate. 

Overall apparent SNR gain was 67-fold in this data set. Dynamic series of pyruvate and 

lactate in Figure 6A illustrated improved spatiotemporal characteristics, especially for 

lactate signal. This resulted in dynamic profiles consistent with what is typically observed in 

human prostate,8 and, therefore, more reliable pyruvate-to-lactate conversion rate kPL fits 

over the prostate, as shown in Figure 6B. The fitting error metric30 also indicated that the 

error decreased and the accuracy increased after TRI. Diffusion images were unavailable for 

this study. Spatiotemporal “imprinting” of high SNR signals onto lower SNR signals, a 

common concern for low-rank denoising methods, was not observed in any of these 

examples.

Figure 7 illustrated the synergy between TRI and WSVD channel combination in a pediatric 

HP-13C exam targeting the brainstem. For patient safety, the [1-13C] pyruvate dose and 

injection rate had to be reduced from the standard values per study protocol. Intrinsic SNR 

was poor using simple SOS combination, imposing challenges for lactate analysis. 

Comparison of the optimized data processing versus the original revealed a 597-fold aSNR 

gain. Upon closer examination, the aSNR gain from WSVD array combination was ~7-fold, 

whereas ~88-fold of the improvement was attributed to TRI. In this example, a snapshot at 

time point 5 (Figure 7B) showed substantially improved spectral characteristics and even the 

recovery of some spatial Gibbs ringing artifact that was buried in the noise.

In addition to the human data, a simulated validation of TRI was described in Supporting 

Information Results B and Supporting Information Figure S7.

3.4 | Optimal rank selection is essential to TRI

Figure 8 (detailed in Supporting Information Figure S4) use TRI with different ranks to 

illustrate the compromise between bias and variance in a sample brain data set. Insufficient 

spectral rank led to poor representation of the 13C metabolite peak profiles, thereby biasing 

peak quantification (Supporting Information Figure S4B). Too low dynamic rank resulted in 

departure of dynamic curves from truth, again creating bias. These undesirable 

characteristics can be mitigated by selecting rank based on the bias/variance optimum 
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described in Equation (3) (Figure 8A). The diagram in Figure 8A illustrates the cost function 

for different degrees of TRI: weak TRI leads to higher variance, whereas strong TRI leads to 

higher bias. The optimality condition minimizes the cost function, defined as the sum of bias 

and variance.

4 | DISCUSSION

4.1 | Tensor image enhancement and optimal receiver arrays

The TRI technique is data driven and makes little assumption about chemical shifts, line 

profiles, spatial features, or dynamic characteristics of HP 13C MRSI data. Instead, the 

HOSVD implicitly extracts these attributes from the observation, and the rank truncation 

compresses the image into a simpler representation that strengthens the pathophysiological 

interpretation of the information content. This contrasts with many current signal 

enhancement techniques that require prior information in the form of a predefined dictionary 

of images16 or predetermined functional form. Indeed, this feature is particularly important 

for HP 13C MRSI as clinical studies are currently still in early phase and an extensive human 

database is not yet available. No assumptions are made in HOSVD about smoothness in any 

dimension,31 allowing the accurate reconstruction of high-resolution features. This data-

driven approach greatly increases TRI’s versatility, as demonstrated in its effectiveness in a 

broad range of cancer applications in the brain, prostate, and liver utilizing different 

transmit/receive hardware configurations.

Although many signal enhancement and denoising methods are beset by either the 

“imprinting” of high SNR signals onto those with low SNR or the complete loss of low SNR 

signals,32 this was not observed with TRI. From the patient examples evaluated in this work, 

pyruvate and lactate were accordingly found to have distinct spatial distributions and 

dynamic profiles (Figures 4–7). It is also important to understand whether application of TRI 

generated excessive artifacts in exchange for desirable aSNR gain. This question was 

addressed by the case in Figures 5 and 6, which demonstrated that post-TRI kPL modeling 

yielded better accuracy to characterize biopsy-confirmed cancer. This strongly suggested 

that quantitative pathological information can be recovered without being dominated by 

artifacts.

The synergy between TRI and optimal MR array signal combination is best exemplified by 

detecting low abundance metabolites. The optimal channel combination using either WSVD 

or FPphasing provided zero-mean Gaussian noise statistics. In the simple SOS combination, 

the low-SNR peaks reside on a noise floor with a positive mean, which creates a significant 

positive bias in kPB estimation and in the associated metabolite ratios. It highlights a key 

utility to quantifying relatively low-SNR metabolites such as bicarbonate and alanine and to 

some extent lactate. Low SNR metabolites such as bicarbonate may inform on disease state 

and progression in glioblastoma14 and is a pivotal biomarker for probing mitochondrial 

oxidative phosphorylation. Improving aSNR and noise statistics helps overcome this hurdle. 

The proposed framework is particularly advantageous for analyzing human data sets with 

low SNR owing to delayed injection (Figure 4B) or anatomy that is challenging to image 

(Figure 7), situations that are often encountered during the technology development phase of 

HP 13C MRI. Recovery of low SNR resonances without a priori knowledge of the chemical 
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shifts of reaction products suggests that this framework may also facilitate HP probe 

discovery in proof-of-concept studies, where low polarization, slow conversion, or short T1 

of the initial lead compound may prove obstacles to further development.

4.2 | Why TRI is more appropriate than conventional SVD in dynamic HP 13C MRSI?

In the limiting case of 2 dimensions, De Lathauwer et al showed that HOSVD degenerates to 

a conventional SVD (Theorem 1 and 2 in Ref. 33). The factor matrices U(1) and U(2) become 

left and right singular matrices U and V that contain left and right singular vectors, 

respectively, and the core tensor G degenerates to the diagonal singular value matrix ∑. In 

this scenario, the number of 13C resonances equals the number of distinct dynamics; 

equivalently, the spectral rank ρF equals dynamic rank ρD. Rank truncation in SVD can 

easily be accomplished by simply dropping singular values, because ∑ is diagonal. The 

conventional SVD technique is a natural representation for nonimaging time-resolved 

spectroscopy experiments and, therefore, holds importance for applications in HP 

bioreactor34,35 and in vivo spectrometer studies.36

The dynamic spectroscopy case further illustrated why tensor decomposition is an 

appropriate structure to represent HP 13C MRSI data that has spectral, spatial, and dynamic 

dimensions. Rather than being diagonal as in 2D SVD, the high-dimensional core tensor 

G G ∈ ℂP × Q × S × R  is a full tensor, meaning that each of its elements can take on a 

nonzero value. Unlike the conventional SVD case, where the row and column ranks are 

automatically equal, the core tensor can be truncated to a different degree in each dimension. 

The core tensor G, in conjunction with factor matrices F, X, Y, and D, provides the 

necessary degrees of freedom to fully describe the spatiotemporal complexity of the HP data 

set.

4.3 | How to apply optimality condition in practice?

In the conventional SVD context, the best rank-r approximation of the data matrix is simply 

formed using the truncated version of the singular value matrix ∑ and singular vector 

matrices U, V to rank r. This is known as the Eckart-Young-Mirsky theorem.37 Although 

many theorems and properties in 2D SVD find their high-order analogy in HOSVD, Chen et 

al pointed out that Eckart-Young-Mirsky relations cannot be directly generalized to high-

order tensor decomposition.38 Fortunately, De Lathauwer et al and Kolda et al39,40 

established that quasi-optimal solutions exist for low-rank approximation for HOSVD. Many 

HOSVD algorithms and approximations,41 including the ST-MLSVD42 used in this study, 

are readily available to obtain a quasi-optimal solution that is satisfactory for practical 

scientific and engineering applications.

This approximation of optimum may explain why the estimated value of cost function (3) is 

not strictly convex in the region near global minimum. However, the results from human 

data suggested that the enhanced HP 13C MRSI data are quantitatively and qualitatively 

insensitive to small deviations from global minimum, in terms of metabolite distribution and 

kPL estimates. Examination of the estimated cost function also revealed that it exhibits a 

plateau near optimality, indicating its convergence and that a desirable approximation can be 

achieved.
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Admittedly, brute-force mapping of the cost function for each n-rank combination is 

computationally expensive, having complexity O (P × Q × R × …). For the MRSI human 

data presented in this study, calculation of the cost function takes ~20 minutes. However, 

this time can increase considerably when dealing with higher dimensional data. Most convex 

optimization algorithms do require strict convexity to search for the global minimum. One 

idea is to optimize (3) using cutting-edge machine learning techniques.43,44 Another option 

is to implement HOSVD on graphic processors to calculate the possible rank combinations 

for (3) in parallel.

4.4 | Clinical imaging targets

The “compressibility” in n-th dimension, reflected by the n-rank, of the data tensor is 

automatically determined based on bias-variance trade-off. Typically, the spectral and 

dynamic dimensions are more compressible than the spatial dimensions. Some observation 

can be made regarding the rank selection for different imaging targets. As was described in 

the Methods section, the spatial rank could depend on the anatomical structure of the target, 

and the 1H reference scans may provide a general idea what the complexity and, therefore, 

compressibility is. However, it is still noteworthy that a functional scan like 13C does not 

necessarily have the same underlying complexity as proton images. For brain imaging, the 

spatial support is usually the head size, whereas that for abdomen and prostate is normally 

the receiver sensitivity profile of surface and endorectal receivers, respectively. A curious 

observation is that if the 2 hemispheres were perfectly symmetric, y-rank ρY ≤ S/2; but they 

never are in practice.

The f-rank is largely determined by the number of independent metabolites and their line 

profiles. In [1-13C]pyruvate studies, pyruvate, pyruvate-hydrate, lactate, bicarbonate, and 

alanine are commonly observed. Generally speaking, larger imaging targets such as the 

abdomen or whole pelvis tend to have less ideal shims.

Compressibility in dynamics is a function of hemodynamical heterogeneity in the target 

region. Accordingly, the more distinct pyruvate dynamic characteristics necessitate a larger 

basis set. The higher d-rank would also apply to account for the 2 hepatic phases. 

Pathologically, hepatocellular carcinoma and many liver metastases receive a majority of 

their blood supply from the hepatic artery, whereas parenchyma is primarily perfused by the 

portal vein.45–47 Sensibly, more fibers dr are required to sufficiently describe arterial and 

portal venous phases.

4.5 | Can this technique be generalized to HP 13C MRI acquisition and reconstruction 
strategies?

Functionally, this TRI and denoising should be applicable to many different clinical 

acquisition schemes. Although the resonance-specific imaging sequences, such as echo-

planar imaging, lack the highly compressible spectral dimension, they have compressibility 

in the spatial and dynamic dimensions similar to the MRSI sequence. Therefore, TRI is 

expected to offer moderate SNR enhancement for these imaging-based sequences. One 

potential approach for echo-planar imaging is to bundle lactate and other products together 

and perform a joint rank truncation. For instance, first reformulate the lactate image L(x, y, 
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d) and bicarbonate image B(x, y, d) into P(2, x, y, d), and then, compress in dynamics. This 

follows Observation III (Supporting Information Methods B) where pyruvate products share 

the same dynamic fibers. An example is presented in Supporting Information Figure S6.

With regard to acquisition strategies, it is worth noting that––although each dimension has 

some degree of compressibility, some dimensions are inherently more compressible. For 

TRI, it may be beneficial to acquire the highly compressible spectral and dynamic 

dimensions. Consequently, a 2D/3D dynamic MRSI data set may have higher TRI power 

than 2D conventionally encoded chemical shift imaging or 3D metabolite-specific imaging 

schemes. However, coverage of each dimension, in terms of extent and resolution, comes at 

the cost of acquisition time, which entails depletion of valuable HP magnetization. Although 

TRI may improve this trade-off, it is important to tailor a sequence to acquire the most 

relevant information for achieving a specific diagnostic goal, whether fine spatial details and 

features, pyruvate-lactate kinetics, or spectral characteristics.

An interesting application in this respect is perhaps pseudo-randomly undersampled 

acquisition sequences, such as 3D compressed sensing-echo-planar spectroscopic imaging48 

or SAKE echo-planar imaging49 sequences. First, the sampling density could be redesigned 

to reflect compressibility in each dimension. Concurrently, TRI could be implemented either 

as a reconstruction algorithm or serve as a penalty term to k-space interpolation.

4.6 | Data-driven vs model-based denoising approaches

Model-based denoising approaches such as linear combination model or generalized linear 

model analyze spectra and temporal dynamics using predefined regressors.50 This type of 

technique can be advantageous when the patient 13C database is sufficiently large to derive 

spectral and dynamic regressors based on, for instance, population mean. The data-driven 

TRI reported in our work may be beneficial when limited numbers of patient data sets are 

available, because the principal components are directly derived from each data set itself 

without reliance on predefined components. The comparison of model-based vs model-free 

methodologies will be of future interest.

4.7 | Potential limitations

Optimal rank selection would ideally provide a rank estimate that maximizes usable 

information content. It is still conceptually important to realize that compression and rank 

truncation promote overall commonality across the data set, and oversimplification of the 

data set could weaken the distinction between normal and disease metabolism. Additionally, 

rank reduction in D could modulate pyruvate dynamics (Supporting Information Figure 

S5C), and thereby alter perfusion characteristics, despite its negligible impact on the 

metabolic rate constant kPL (Supporting Information Figure S5D).

Another constraint is the lack of a gold standard to investigate and further optimize TRI. 

Because of the transient nature of HP 13C magnetization and finite encoding speeds, it is 

challenging to acquire a high-SNR “gold standard” data set for carbon as in proton MRI. 

Existing physical and numerical phantoms do not adequately reflect the spatiotemporal 

complexity and coherence of carbon pharmacokinetics and molecular interactions in 
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humans. As our understanding of human metabolic pathophysiology improves through 

clinical trials, such knowledge will help benchmark relevant techniques under development.

5 | CONCLUSIONS

This data-driven processing framework for dynamic HP 13C MRSI utilized optimal receiver-

array combination and tensor image enhancement to substantially improve extraction of 

diagnostic information in a variety of human cancer applications. This could significantly 

benefit ongoing and future HP 13C-pyruvate MRI studies, as well as new HP probe 

discovery and translation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
A, The improved framework was evaluated on human hyperpolarized (HP) 13C exams of 

brain, abdomen, and pelvis using a varietsy of coil configurations including multichannel 

array and single-element receivers. Mean apparent signal-to-noise ratio (aSNR) gain was 49-

fold. B, Breakdown of aSNR gains from whitened singular value decomposition (WSVD) 

and Tensor Rank truncation-Image enhancement (TRI) per data set for each array imaging 

setup
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FIGURE 2. 
Abdominal study on a healthy volunteer using the 16-channel flex array. The channels were 

combined using simple sumof-squares (SOS), or the 2 optimal channel combination 

methods – whitened singular value decomposition (WSVD) and first point phasing 

(FPphasing). No Tensor Rank truncation-Image enhancement (TRI) was applied. Both 

methods preserved phase characteristics and gave Gaussian zero-mean noise, whereas sos 

yielded Rician noise with nonzero mean. Improved signal-to-noise (SNR) and noise 

statistics are essential to probing human cancer metabolism, as they benefit kPL estimation 

by improving quantification of relatively low-SNR lactate and alanine. The performance of 

WSVD vs FPphasing was comparable
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FIGURE 3. 
This is a continuation of Figure 2. The optimal combinations provided substantially reduced 

noise baseline over sum-of-squares (SOS), highlighting lactate/alanine in kidneys/muscle 

versus background. The findings implied they are relatively robust to breathing motion
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FIGURE 4. 
Validation of Tensor Rank truncation-Image enhancement (TRI) on various imaging targets 

illustrating different human hyperpolarized (HP) 13C image targets of different structure and 

complexity, and how the optimality condition provides adaptive rank estimation. A, This 

case of rectosigmoid cancer was identified with a liver metastasis in segment 7 (red arrow). 

Information optimality resulted in 13× apparent signal-to-noise (aSNR) gain. Note portal 

venous phase on dynamics (green arrow). A slight contamination of urea phantom was likely 

due to spectral baseline. B, In this brain tumor case, TRI provided 8× aSNR gain with 

recovery of [13C]bicarbonate
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FIGURE 5. 
This patient was diagnosed with bilateral biopsy-confirmed prostate cancer in left, right 

midgland and right apex. T2-FSE (fast spin echo) images identified suspected lesions both in 

left and right midgland as low signal intensity (dark regions). The dynamic spectroscopy 

(green voxel) illustrated apparent signal-to-noise (aSNR) gains in pyruvate, lactate, and even 

recovery of the otherwise undetectable alanine and pyruvate hydrate
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FIGURE 6. 
Continuation of Figure 5. A, Dynamic series of pyruvate and lactate illustrated improved 

spatiotemporal characteristics, especially in lactate. Overall apparent signal-to-noise (aSNR) 

gain was 67-fold in this data set. B, Tensor Rank truncation-Image enhancement (TRI) 

provided better dynamic characteristic particularly for low-SNR lactate. This resulted in 

more reliable fits of pyruvate-to-lactate conversion kPL. The error metrics were calculated as 

previously described.30The pathophysiological information, such as the prostate biopsy 

results, are provided post hoc to correlate with the TRI-processed data and played no role in 

rank selection
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FIGURE 7. 
Synergy of whitened singular value decomposition (WSVD) channel sum and Tensor Rank 

truncation-Image enhancement (TRI) in the improved processing workflow. A, This 

pediatric patient presented with diffuse intrinsic pontine glioma. The pediatric human 

hyperpolarized (HP)-13C exams are notoriously challenging to perform due to their common 

localization near brainstem, limited injection dose, and rate. The original data (sum-of-

squares) had relatively poor signal-to-noise ratio (SNR). Comparison between optimized 

data versus original found 597-fold apparent SNR gain. Upon closer examination, 7-fold 

SNR improvement was attributed to WSVD array combination, whereas 88-fold was due to 

TRI. B, Snapshot at time point 5 showed substantially improved spectral characteristics. 

Interestingly, even some spatial Gibbs ringing was “recovered”
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FIGURE 8. 
A, Cost function with different degree of Tensor Rank truncation-Image enhancement (TRI). 

Weak TRI leads to higher variance, whereas strong TRI leads to higher bias. The optimality 

condition minimized cost function, defined as the sum of bias and variance. B, An 

illustration of bias-variance compromise using different ranks can be found in Supporting 

Information Figure 4. This shows TRI using rank determined by optimality criteria
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