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A B S T R A C T

Introduction: Deficits in visual perception are well-established in schizophrenia and are linked to abnormal
activity in the lateral occipital complex (LOC). Related deficits may exist in bipolar disorder. LOC contains
neurons tuned to object features. It is unknown whether neural tuning in LOC or other visual areas is abnormal in
patients, contributing to abnormal perception during visual tasks. This study used multivariate pattern analysis
(MVPA) to investigate perceptual tuning for objects in schizophrenia and bipolar disorder.
Methods: Fifty schizophrenia participants, 51 bipolar disorder participants, and 47 matched healthy controls
completed five functional magnetic resonance imaging (fMRI) runs of a perceptual task in which they viewed
pictures of four different objects and an outdoor scene. We performed classification analyses designed to assess
the distinctiveness of activity corresponding to perception of each stimulus in LOC (a functionally localized
region of interest). We also performed similar classification analyses throughout the brain using a searchlight
technique. We compared classification accuracy and patterns of classification errors across groups.
Results: Stimulus classification accuracy was significantly above chance in all groups in LOC and throughout
visual cortex. Classification errors were mostly within-category confusions (e.g., misclassifying one chair as
another chair). There were no group differences in classification accuracy or patterns of confusion.
Conclusions: The results show for the first time MVPA can be used successfully to classify individual perceptual
stimuli in schizophrenia and bipolar disorder. However, the results do not provide evidence of abnormal neural
tuning in schizophrenia and bipolar disorder.

1. Introduction

There is strong evidence that visual perception is abnormal in
schizophrenia. People with the disorder exhibit poor performance on
tasks involving visual masking, contour integration, motion dis-
crimination, and other tests of perception (Butler et al., 2008; Green
et al., 2009a, 2012; Javitt, 2009; Javitt and Freedman, 2015). Perfor-
mance on such tests predicts functional outcomes in schizophrenia,
suggesting that visual dysfunction might have important cascading ef-
fects (Green et al., 2012). There is also emerging evidence that similar,
related perceptual deficits may exist in bipolar disorder, an illness that
shares some phenotypic characteristics and genetic risk factors with
schizophrenia (Chen et al., 2005; Chkonia et al., 2012; Jahshan et al.,
2014).

Converging evidence suggests that abnormalities in the structure of
visual cortex exist in schizophrenia and related disorders. Postmortem
histological studies have shown reductions in the thickness or volume
of visual cortex in schizophrenia (Dorph-Petersen et al., 2007; Selemon
et al., 1995). Similarly, a recent in vivo structural MRI study found
thinner visual cortex in schizophrenia than in controls, with inter-
mediate cortical thickness in bipolar disorder (Reavis et al., 2017).

The function of visual cortex also appears to be abnormal in schi-
zophrenia. Evidence from fMRI suggests that the receptive fields of
neurons in early- and mid-level visual areas (V1, V2, and V4) have
weaker inhibitory surrounds in schizophrenia than in controls
(Anderson et al., 2017). There is also evidence of dysfunction in higher
visual areas during perceptual tasks on which patients show deficits. In
particular, the lateral occipital complex (LOC), an object-selective
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region, shows abnormal activity during visual masking and contour
integration tasks (Green et al., 2009b; Silverstein et al., 2015).

A ubiquitous property of perceptually driven neurons is preferential
tuning. Throughout the visual system, individual neurons respond more
or less vigorously to stimuli in their receptive fields depending on the
degree to which the features of the stimulus match the preference of the
neuron. Neurons in early visual cortex are preferentially tuned to basic
perceptual features such as orientation. Thus, a V1 neuron might re-
spond most vigorously to stimuli containing image features at a parti-
cular orientation, and gradually less vigorously as the difference be-
tween the orientation content of the stimulus and the preferred
orientation increases (Hubel and Wiesel, 1959). Similar tuning pre-
ferences exist in higher visual areas for more complex stimulus features.
For example, converging evidence from human and animal studies
suggests that neurons in LOC are tuned to visual objects, responding
preferentially to specific object features (DiCarlo et al., 2012). Animal
studies show that this type of neural tuning depends on gamma-ami-
nobutyric acid-dependent (GABAergic) inhibitory mechanisms
(Isaacson and Scanziani, 2011).

Various seemingly disparate perceptual deficits found in schizo-
phrenia and bipolar disorder could be parsimoniously explained by
abnormalities in neural tuning. For example, deficits in contour in-
tegration and motion perception could each be related to aberrant
neural tuning (in orientation- and motion-tuned cells, respectively). To
our knowledge, only one published study has investigated neural tuning
in schizophrenia. That study measured orientation tuning psychophy-
sically and found evidence consistent with broadened orientation
tuning in early visual cortex, which was linked to reduced GABA in that
region (Rokem et al., 2011).

We hypothesized that broadened neural tuning for more complex
visual features might also exist in schizophrenia or bipolar disorder.
LOC contains object-tuned neurons and activity there is aberrant during
various perceptual tasks in schizophrenia. Therefore, we decided to
investigate tuning for object stimuli with LOC as a primary region of
interest (ROI).

Evidence of perceptual tuning abnormalities in schizophrenia or
bipolar disorder could provide new insights into the pathophysiology of
the illnesses. The neural mechanisms and properties of tuning are si-
milar across sensory modalities, so identification of tuning deficits in
the visual system would suggest the possible presence of tuning deficits
in other neural systems. Evidence of abnormal visual tuning would
suggest a specific pathophysiological mechanism that might underlie
various known visual deficits, which predict functional outcomes in
schizophrenia. Thus, improved understanding of visual tuning could
lead to innovative treatments in the future, either to ameliorate visual
perception deficits specifically or to improve neural tuning more
broadly across various neural systems.

In the current study, we used multivariate pattern analysis (MVPA)
of fMRI data to investigate tuning for objects in schizophrenia and bi-
polar disorder. Unlike traditional univariate fMRI analyses, which as-
sess the response of individual voxels in different experimental condi-
tions, MVPA compares patterns of activity, spanning many voxels,
across experimental conditions (Haxby et al., 2001). In our study, we
used machine learning techniques to classify patterns of fMRI activity
corresponding to specific visual stimuli: a classification algorithm was
trained to distinguish experimental conditions based on patterns of
activity among voxels in a selected area of the brain, then tested with
unlabeled data held out of the training.

With this approach, classification accuracy depends upon the extent
to which particular stimuli reliably evoke a unique pattern of activity in
a given region, making it an indirect measure of tuning. Broadly tuned
neurons would be expected to respond more similarly to different object
images than narrowly tuned neurons would. In turn, these more similar
neural responses would produce less distinctive patterns of fMRI ac-
tivity, which are harder to classify accurately.

We performed two types of classification analyses: an ROI-based

analysis of data from LOC, and a whole-brain searchlight analysis,
which performs MVPA throughout the brain in a comprehensive set of
small, overlapping, spherical regions (Kriegeskorte et al., 2006). While
LOC is specifically an object-selective area, and thus the main focus of
our analyses, we expected that stimulus classification would also be
possible in other visual areas. That is because stimuli containing dif-
ferent object-level features must also contain different low-level fea-
tures (e.g., orientation and spatial frequency content). These low-level
differences are expected to evoke different patterns of activity in visual
areas tuned to those features (e.g., early visual cortex). Thus, we ex-
pected that classification of the stimuli would be possible not only in
LOC but throughout visual cortex, and that classification accuracy in
each region would be commensurate to the specificity of neural tuning
in that area.

Based on the hypothesis that participants with schizophrenia and
bipolar disorder have broader visual tuning than healthy controls, we
predicted that multivariate classification of object stimuli in LOC and
other areas of visual cortex would be less accurate in patients than
controls. We expected that this difference would manifest as a sig-
nificant effect of group in omnibus tests of significance (ANOVAs).
However, because we expected to find impairment in both patient
groups, for the main analyses we also performed pairwise tests (t-tests)
to separately compare each patient group to the control group with
maximal statistical power.

2. Methods and materials

2.1. Participants

Participants came from an NIMH-sponsored study of visual proces-
sing in major mental illness. In total, 53 schizophrenia patients, 56
bipolar disorder patients, and 53 healthy controls participated in an
MRI scan. However, data from a handful of participants in each group
were unusable for a variety of reasons (e.g., missing data, excessive
motion, or other factors causing data processing to fail). Those subjects
were excluded from the analyses, leaving usable samples of 50 schi-
zophrenia patients, 51 bipolar disorder patients, and 47 healthy con-
trols.

All patient participants were clinically stable outpatients with a
DSM-IV diagnosis of either schizophrenia or bipolar disorder. Patient
participants were on clinically-determined doses of medication and
were tested outside of mood episodes. Patients were recruited from
outpatient treatment facilities in the Los Angeles area, University of
California, Los Angeles (UCLA) outpatient clinics, and mental health
clinics at the Veterans Affairs Greater Los Angeles Healthcare System
(GLA). Healthy participants were a matched community sample re-
cruited with internet ads. All recruitment methods and experimental
procedures were approved by the Institutional Review Boards of GLA
and UCLA. All participants provided written informed consent prior to
participation.

Selection criteria for all subjects included: a) age 18–65, b) under-
standing of spoken English sufficient to comprehend testing procedures,
c) no evidence of IQ < 70 or developmental disability based on chart
review, d) no medical history of clinically significant neurological dis-
ease (e.g., epilepsy), e) no history of serious head injury (i.e., loss of
consciousness> 1 h, neuropsychological sequelae, cognitive re-
habilitation post-head-injury), f) no sedatives or benzodiazepines
within 12 h of testing, g) normal or corrected vision, h) no positive
urine toxicology screening on day of assessment, i) no known contra-
indications for MRI scanning, j) no evidence of substance or alcohol
dependence in the past three months or of substance or alcohol abuse in
the past month, and k) no history of a mood episode in the past two
months.

Selection criteria for patient participants included: a) diagnosis of
schizophrenia or bipolar disorder based on the Structured Clinical
Interview for DSM-IV Axis I Disorders (SCID-I) (First et al., 1997), and
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b) clinical stability (i.e., no inpatient hospitalizations for 3 months prior
to enrollment, no changes in psychoactive medication in the 4 weeks
prior to enrollment). Additional selection criteria for healthy controls
included: a) no history of psychotic disorder, bipolar spectrum disorder,
or other major mood disorder based on SCID-I interview (First et al.,
1997) or of avoidant, paranoid, schizotypal, schizoid, or borderline
personality disorders based on the Structured Clinical Interview for
DSM-IV Axis II Disorders (SCID-II) (First et al., 1996), and b) no family
history of a psychotic disorder or bipolar disorder in first-degree re-
latives, based on participant report.

All SCID interviewers were trained through the Treatment Unit of
the Department of Veterans Affairs VISN 22 Mental Illness Research,
Education, and Clinical Center to a minimum κ of 0.75 for key psychotic
and mood items (Ventura et al., 1998). When available, medical records
and reports from treating clinicians were used to corroborate retro-
spective self-reported information. Patients' clinical symptoms were
characterized with the Brief Psychiatric Rating Scale (BPRS), Young
Mania Rating Scale (YMRS), and Hamilton Depression rating scale
(HAMD) (Hamilton, 1960; Ventura et al., 1993; Young et al., 1978).

2.2. MRI data collection

All MRI data were collected at the UCLA Staglin Center for
Cognitive Neuroscience on a 3-Tesla Siemens Tim Trio scanner with a
12-channel head coil (Siemens Medical Solutions; Erlangen, Germany).
T1-weighted structural scans were collected using a Magnetization-
Prepared Rapid Gradient Echo (MPRAGE) sequence (1.9 s TR, 3.4 ms
TE, 9° flip-angle, 1 mm isotropic voxels, 256 × 256 × 160 voxel field
of view). Functional scans used a standard Echo-Planar Imaging (EPI)
sequence (2.5 s TR, 35 ms TE, 75° flip-angle, 3 × 3mm voxels with a
3.3 mm center-to-center inter-slice distance, 64 × 64 voxel field of
view with 38 slices). Task stimuli were presented using MR-compatible
VisuaStim goggles (Resonance Technology, Inc.; Los Angeles, Calif.),
and participant responses were recorded using an MR-compatible re-
sponse-box.

A functional localizer for LOC was collected for each participant.
During the localizer run (2.5 min), participants viewed images of ab-
stract sculptures and scrambled images of those sculptures in alter-
nating 12.5 s blocks (Malach et al., 1995). They were instructed to press
a button each time the block-type changed.

After the functional localizer, participants completed five runs of an
object-perception task. Each run lasted 3:20. During the task, partici-
pants viewed five images: two different chairs, two different cups, and
one outdoor scene. In a shuffled order, two 14-second blocks of each
image were presented in each run, plus two 14-second blocks con-
taining only a fixation cross. In each object-stimulus block, the image
flashed on for 1 s and off for 0.4 s ten times, appearing in slightly dif-
ferent locations each time (~1° visual angle jitter). Occasionally, the
image presented was missing a part (e.g., a cup missing a handle).
Subjects were asked to press a button each time they detected a missing
part.

2.3. MRI data analysis

Three software packages were used for MRI data analysis. Structural
data were processed in FreeSurfer 5.3.0, which parcellated the cortex
into anatomical regions used to constrain ROI definitions (Dale et al.,
1999; Fischl et al., 1999). Functional data registration, motion correc-
tion, and deconvolution, as well as ROI creation, was performed in FSL
(Jenkinson et al., 2012; Smith et al., 2004). MVPA analyses were per-
formed using the CoSMoMVPA toolbox (Oosterhof et al., 2016) in
MATLAB (MathWorks; Natick, Mass.).

Skull-stripping and cortical reconstruction of the high-resolution
anatomical scans, which includes parcellation of the cortex into ana-
tomical regions based on sulcal topology, was performed using the
FreeSurfer recon-all process (Dale et al., 1999; Fischl et al., 1999).

Results were inspected visually to verify accuracy.
Functional data was processed with FSL FEAT (Woolrich et al.,

2009). At that stage of processing, each run was motion-corrected and
registered to the subject's skull-stripped anatomical scan using FLIRT
(Jenkinson et al., 2002; Jenkinson and Smith, 2001). This procedure
calculated the absolute displacement of the functional images at each
TR.

We excluded from further analyses any run where the mean abso-
lute displacement across all TRs was> 1.5 mm. Furthermore, subjects
for whom more than two runs were unusable according to this criterion
were excluded (this criterion resulted in the exclusion of one subject
from each group). Deconvolution of the functional data was performed
in FEAT by modeling the response of each voxel to the 5 different sti-
mulus conditions (i.e., image types) in that run block-wise, and calcu-
lating parameter estimates for each condition. Nuisance regressors for
linear motion (identified with FLIRT) and outlier motion (identified
with fsl_motion_outliers) were also included in the deconvolution
model. No spatial smoothing was applied in the FEAT processing, as it is
typically detrimental for MVPA (Misaki et al., 2013).

Functional localizer data were processed using the same FSL pipe-
line, modeling the intact and scrambled object conditions. LOC ROIs
were defined by selecting a proportion of the voxels within the anato-
mically-parcellated lateral occipital lobe in each hemisphere.
Specifically, the lateral occipital label from the Desikan-Killiany atlas
was projected into the native functional space of the localizer scan and
used as a mask for voxel selection (Desikan et al., 2006).

Primary and exploratory LOC ROIs were created for use with MVPA.
Both were made using the functional localizer data, but different
thresholds were applied, yielding ROIs of different sizes. The ROIs were
defined based on the difference in response between the intact- and
scrambled-object localizer conditions. Using fslmaths, voxels within the
lateral occipital mask were ranked according to the amount of differ-
ence in activity between the two conditions. Then, ROIs were created
by selecting different percentages of the ranked voxels, at ten-percent
intervals of the robust range (i.e., the top 10%, top 20%, and so on, up
to 100%). The 60%-threshold ROI was used for the primary analyses.
Exploratory analyses were also run in the ROIs with higher and lower
thresholds, to determine whether MVPA results differed for smaller or
larger ROIs.

In CoSMoMVPA, we performed classification analyses separately for
each subject on the voxel-wise beta-weights (i.e., FSL parameter esti-
mates) from the object-perception task (Mumford et al., 2012). First,
the beta-weights were demeaned to ensure classification could not be
driven by a difference in the amount of activity by condition across all
voxels (i.e., a simple univariate difference). Second, a linear support
vector machine (SVM) was trained on labeled data from all but one run
of the task. Third, the trained classifier was presented with unlabeled
data from the held-out run. Accuracy and details of classification errors
were recorded for the attempted classification of the held-out data. This
process was repeated five times, using a different run as the holdout
sample each time (leave-one-run-out cross-validation). These cross-va-
lidated analyses were performed separately for each parametrically
thresholded LOC ROI. The resulting measures were compared across
groups and conditions using standard statistics. Effect size confidence
intervals were computed for each comparison according to the methods
of Smithson (2001). For t-tests (Cohen's d), effect sizes were calculated
at the 95% level, but for F-tests (partial η2), 90% confidence intervals
were calculated, as recommended by Steiger (2004).

We also performed a whole-brain searchlight analysis in
CoSMoMVPA (Kriegeskorte et al., 2006). This analysis was performed
in the same way as the ROI-based analysis, except that the entire brain
was tiled with overlapping 3-voxel-radius spherical ROIs, and MVPA
was performed within each of them. This yields a whole-brain map for
each subject in which the center voxel of each ROI is labeled according
to classification accuracy. Nonparametric, permutation-based statistical
analyses of these maps to identify effects within and between groups
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were performed in FSL Randomise with 5000 permutations (Winkler
et al., 2014). For within-group effects, we tested for voxels where
classification accuracies were significantly above chance within each
group (i.e., a nonparametric test similar to a one-sample t-test). For
between-group effects, we tested for voxels where there were sig-
nificant differences in classification accuracy across groups, using om-
nibus and pairwise comparisons (i.e., nonparametric tests analogous to
ANOVAs and t-tests, respectively). For all tests, we used a threshold of
p < 0.05, familywise-error-rate-corrected, with threshold-free cluster
enhancement. Two bipolar patients were excluded from the searchlight
analyses for technical reasons.

3. Results

Table 1 contains demographic and clinical information about the
study participants. Age, gender, handedness, and parental education
did not differ significantly across the three groups. Expectedly, schi-
zophrenia patients had fewer years of personal education. The two
patient groups were well-matched for illness duration and did not differ
in terms of BPRS, HAM-D, or YMRS symptom ratings.

Stimulus classification using MVPA worked well in all groups. In the
primary LOC ROI, classification accuracies were distributed normally
and were above chance in all three groups. In controls, the mean ac-
curacy was 43.0% (standard deviation = 14.7%), which was sig-
nificantly greater than the 20% classification performance that would
be expected by chance: t(46) = 10.71, p < 0.001, Cohen's d = 1.56
[95% effect size confidence interval = 1.13, 1.99]. Similarly, in schi-
zophrenia patients, accuracy was 41.3% (15.1%), and in bipolar pa-
tients it was 41.2% (12.3%). Accuracies in both these groups were also
significantly better than chance: schizophrenia t(49) = 9.98,
p < 0.001, d = 1.41 [1.01, 1.80], bipolar disorder t(50) = 12.32,
p < 0.001, d = 1.73 [1.29, 2.16]. There was no significant difference
in classification accuracy across the three groups, F(2145) = 0.27,
p = 0.77, partial η2 = 0.004 [90% effect size confidence in-
terval = 0.00, 0.02], and there were no pairwise differences in classi-
fication accuracy between either patient group and controls (schizo-
phrenia vs. controls, t(95) = −0.58, p = 0.56, d =−0.12 [−0.52,
0.28]; bipolar vs. controls, t(96) = −0.68, p= 0.50, d = 0.14
[−0.53, 0.26]).

An ANOVA comparing within-category and between-category clas-
sification errors for the four types of object stimuli across groups
showed an interpretable pattern that did not differ by diagnosis. Fig. 1
shows a confusion matrix indicating the types of classification errors in
each group for the primary (60% threshold) LOC ROI. Within-category
confusions (e.g., cup vs. cup) were more frequent than between-cate-
gory confusions (e.g., cup vs. chair) (F(1145) = 7.46, p = 0.007, par-
tial η2 = 0.05 [0.01, 0.12]). However, there was neither a main effect
of group (F(2145) = 1.07, p = 0.35, partial η2 = 0.01 [0.00, 0.05]) nor
a group-by-error-type interaction (F(2145) = 0.85, p= 0.43, partial

η2 = 0.01 [0.00, 0.05]). Pairwise comparisons of the two patient
groups and controls showed a similar absence of group main effects
(schizophrenia vs. controls, F(1,95) = 0.29, p= 0.59, partial
η2 = 0.003 [0.00, 0.05]; bipolar vs. controls, F(1,96) = 0.81, p = 0.37,
partial η2 = 0.01 [0.00, 0.06]) or group-by-error-type interaction ef-
fects (schizophrenia vs. controls, F(1,95) = 0.94, p = 0.33, partial
η2 = 0.01 [0.00, 0.07]; bipolar vs. controls, F(1,96) = 0.04, p = 0.84,
partial η2 = 0.0004 [0.00, 0.02]).

To evaluate the possible influence of ROI size on the classification
accuracy, we varied the size of ROIs parametrically and conducted a
repeated measures ANOVA. While there was a main effect of ROI size
on classification accuracy (F(9,1296) = 49.95, p < 0.001, partial
η2 = 0.26 [0.22, 0.28]) there was neither a main effect of group (F
(2144) = 0.39, p = 0.68, partial η2 = 0.01 [0.00, 0.03]) nor a group-
by-ROI size interaction (F(18,144) = 0.69, p = 0.82, partial η2 = 0.01
[0.00, 0.04]). Even for the largest ROI (i.e., 100%), where classification
accuracies were maximal, there were no differences in classification
accuracy across groups (F(2145) = 1.12, p = 0.33, partial η2 = 0.02
[0.00, 0.06]) or between either patient group and controls (schizo-
phrenia vs. controls, t(95) =−1.32, p= 0.19, d = −0.27 [−0.67,
0.13]; bipolar vs. controls, t(96) = −1.30, p= 0.20, d = −0.26
[−0.66, 0.14]). Fig. 2 shows the relationship between ROI size and
classification accuracy for each group.

The whole-brain searchlight analysis showed that above-chance
classification was possible throughout the occipital lobe and posterior
areas of the temporal and parietal lobes, in all three groups. Fig. 3
shows a map of mean classification accuracies for each group, thre-
sholded at p < 0.05, familywise-error-rate-corrected, with threshold-
free cluster enhancement. The map shows above-chance classification
throughout visual cortex in each group, with classification accuracies
ranging from slightly above 20% to> 40%. Between-group compar-
isons of classification accuracy in the searchlight analysis (both om-
nibus and pairwise) revealed no significant group differences anywhere
in the brain, therefore no statistical maps are shown.

To further investigate possible group differences we might have
missed, we also performed another type of searchlight analysis as a
follow-up. In that analysis, we classified group membership (patient vs.
control) based on the data in each searchlight region. We first calcu-
lated a condition dissimilarity matrix for each searchlight region, then
used the vectorized dissimilarity matrices from a smaller searchlight
neighborhood as features in a leave-one-subject-out crossvalidated
classification analysis of group membership. This yielded two maps of
group membership classification accuracies, one for schizophrenia vs.
controls, and one for bipolar vs. controls. To test whether any group
classifications were significantly above chance, we performed two
Monte Carlo procedures, randomly shuffling the group labels and re-
peating each subject-classification searchlight analysis 500 times. This
generated two null distributions of classification accuracies at each
voxel (one for each pair of groups). We then statistically compared the

Table 1
Characterization of participants included in the MVPA analyses.

SZ patients BD patients Controls Group comparison

(N = 50) (N = 51) (N = 47)

Mean (SD) Mean (SD) Mean (SD) Statistic p

Age 46.26 (11.52) 44.78 (12.41) 46.79 (8.14) F(2145) = 0.45 p= 0.64
Illness duration (years) 23.76 (12.52) 23.09 (12.96) t(93) = 0.26 p= 0.80
Personal education 12.90 (2.23) 14.16 (2.45) 14.49 (1.78) F(2144) = 7.27 p= 0.001
Parental education 12.89 (2.81) 13.97 (3.01) 13.69 (3.11) F(2136) = 1.66 p= 0.19
Gender (M/F) 32/18 27/24 22/25 χ2(2) = 2.99 p= 0.22
Handedness (R/L) 43/7 46/4 40/7 χ2(2) = 1.29 p= 0.53
BPRS (Total) 40.42 (10.73) 33.98 (6.65) t(98) = 3.60 p > 0.001
HAM-D (Total) 6.46 (5.05) 6.67 (4.68) t(99) = −0.21 p= 0.83
YMRS (Total) 4.94 (4.10) 3.61 (4.63) t(99) = 1.53 p= 0.13
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real results at each voxel to the corresponding null distribution using
the cosmo_montecarlo_cluster_stat function, which corrects for multiple
comparisons and performs threshold-free cluster enhancement. No
searchlight regions anywhere in the brain showed above-chance clas-
sification of group membership with this approach. Therefore, no sta-
tistical maps for this analysis are included among the figures.

4. Discussion

We hypothesized that broader tuning for object features in schizo-
phrenia and bipolar disorder would lead to less distinctive patterns of
fMRI activity during object perception in patients with those disorders.
In turn, we predicted that classification of object stimuli based on
multivariate patterns of fMRI activity in LOC and other visual areas
would be less accurate in patients than controls. What we found was
rather different. Across groups and across multiple analytical ap-
proaches, classification of object stimuli was reliably accurate, but we
did not detect the group differences we had predicted. The small effect
sizes we obtained with relatively large sample sizes suggest that any
existing differences between groups are likely to be quite small, and so
may be of limited clinical relevance.

MVPA successfully classified patterns of fMRI activity corre-
sponding to perception of specific objects and scenes in schizophrenia,
bipolar disorder, and healthy control groups. Classification accuracies

were significantly above chance in LOC and throughout visual cortex, in
all three groups. Thus, the MVPA approach worked well in patients and
controls, but the results of these analyses provide no evidence of im-
precise neural tuning in schizophrenia or bipolar disorder.

In LOC, mean classification accuracies were> 40% for all three
groups. While this level of classification accuracy might not appear
extremely high, it was well above chance performance (20%), and
comparable to accuracy levels found in many other fMRI MVPA papers
(Mumford et al., 2012). The fact that classification accuracies were
above chance shows that the stimuli reliably evoked unique patterns of
activity in LOC, and the classification analysis successfully differ-
entiated those patterns.

Beyond the overall classification accuracies, the nature of the clas-
sification errors provides further evidence that the method worked well
and successfully targeted a correlate of neural tuning for object fea-
tures. In each group, classification errors in LOC were predominantly
within-category (e.g., confusing one chair for another or one cup for
another). This suggests that patterns of activity were more similar for
similar objects than they were for dissimilar objects.

The LOC results were robust across different thresholds for ROI
definition. Parametric analyses of LOC ROIs of different sizes, ranging
from inclusion of the entire anatomical area of the lateral occipital lobe
to a very conservative functional definition, showed essentially the
same result: classification accuracies were significantly above chance in
all groups, with no differences in accuracy across groups.

Similarly, a whole-brain searchlight analysis showed that classifi-
cation accuracy was significantly above chance throughout the occipital
lobe, extending slightly into the posterior parietal and temporal lobes,
in all three groups. Again, no group differences were found in the
searchlight analysis. Thus, each type of stimulus reliably evoked a un-
ique pattern of activity throughout the posterior part of the brain in all
three groups. Successful classification throughout visual cortex in the
searchlight analysis should not be taken to mean that neurons
throughout visual cortex are tuned to objects per se. The stimuli in this
study also differed in terms of other visual features (e.g., orientation,
spatial frequency), making classification possible in other parts of visual
cortex.

Although MVPA techniques have been applied previously in schi-
zophrenia and bipolar disorder, they have been used almost exclusively
to classify group membership from brain data (i.e., to try to classify
patients vs. controls based on functional or structural neuroimaging
data) (Cabral et al., 2016; Koutsouleris et al., 2015; Modinos et al.,
2012). This is a very different application of MVPA than our own use of
the method to investigate perceptual representations. While our ap-
proach is commonplace in cognitive neuroscience, it has seldom been

Fig. 1. Confusion matrices for each group from the primary LOC
ROI. On the y-axis of the table is the type of stimulus presented.
On the x-axis is the selection of the trained classifier.
Frequencies (in percent) are indicated with the color axis. The
figure shows that when classification errors occurred, they were
more often within-category than between-category. This effect
did not differ by group.
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Fig. 2. Mean classification accuracy as a function of LOC ROI size, by group. While
classification accuracies were higher for larger ROIs, this relationship did not differ sig-
nificantly across groups.
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attempted in these psychiatric populations. We are aware of only one
other study that used a conceptually similar approach in schizophrenia
(Yoon et al., 2008). However, that study used MVPA to classify broad
categories of visual stimuli (e.g., faces vs. objects); it did not classify
individual stimuli. Thus, to our knowledge this study is the first to
perform classification of individual percepts in these clinical popula-
tions using MVPA.

Based on our negative finding for group differences in classification,
it is possible that neural tuning for visual features is normal in schi-
zophrenia and bipolar disorder. However, there are several reasons that
the methods of this study could have missed group differences in neural
tuning for visual features. The stimulus set included an extremely small
set of common objects (chairs and cups). If tuning deficits exist, it is
possible that they are more pronounced for some categories of objects
than others. A much larger stimulus set would be required to evaluate
this possibility. Thus, the very limited set of stimuli tested in this study
is a significant limitation. Also, MVPA might not be the most powerful
or direct technique for the assessment of neural tuning; other techni-
ques might be able to target tuning differences more precisely. For
example, MR-adaptation techniques use perceptual adaptation to target
specific neural populations tuned to objects (or other categories) and
measure changes in fMRI activity associated with the adaptation.

Nevertheless, the present results show the utility and strength of the
MVPA method in schizophrenia and bipolar disorder. The results show,
for the first time, that MVPA can be used to classify patterns of fMRI
activity evoked by specific visual stimuli in these patient groups.
Indeed, such classification works quite well, not only in LOC, but
throughout visual cortex. Our demonstration that MVPA can be used
successfully in schizophrenia and bipolar disorder opens the door to
broader application of this technique to the study of perception in these
disorders. For example, MVPA could be used to analyze fMRI data from
tasks in which patients show consistent impairment (e.g., visual

masking, contour integration, and biological motion perception). This
analytical approach could yield new insights into abnormal brain ac-
tivity during patients' performance of such tasks. Thus, while the pre-
sent results are consistent with normal neural activity in schizophrenia
and bipolar disorder during a simple object-perception task, they pave
the way to sophisticated future investigations of perceptual deficits in
these disorders.
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