UC Irvine

UC Irvine Previously Published Works

Title

P007. Inhibition of monoacylglycerol lipase activity modulates the activation of brain structures relevant for migraine pathogenesis

Permalink

https://escholarship.org/uc/item/3sx949dz

Journal

The Journal of Headache and Pain, 16(Suppl 1)

ISSN

1129-2369

Authors

Greco, Rosaria Bandiera, Tiziano Mangione, Antonina S <u>et al.</u>

Publication Date

2015-12-01

DOI

10.1186/1129-2377-16-s1-a165

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

POSTER PRESENTATION

Open Access

P007. Inhibition of monoacylglycerol lipase activity modulates the activation of brain structures relevant for migraine pathogenesis

Rosaria Greco¹, Tiziano Bandiera², Antonina S Mangione¹, Chiara Demartini¹, Giuseppe Nappi¹, Giorgio Sandrini¹, Daniele Piomelli², Cristina Tassorelli^{1,3*}

From Abstracts from the 1st Joint ANIRCEF-SISC Congress Rome, Italy. 29-31 October 2015

Background

Experimental evidence shows that the anti-nociceptive action of endocannabinoids, related to the modulation of the trigeminovascular system activity, may be helpful for prompting new targets for the treatment of migraine. URB602 is an inhibitor of monoacylglycerol lipase (MAGL), a key enzyme in the hydrolysis of the endocannabinoid 2-arachidonoylglycerol (2-AG). URB602 induces analgesia in animal pain models not related to migraine, but there is no pre-clinical information as regards to its potential effect in migraine pain.

Aim

To evaluate whether URB602 administration interferes with the level of activation of brain structures involved in migraine.

Methods

Nitroglycerin (NTG) induces neuronal activation in a specific subset of brain nuclei that are considered relevant for the development of migraine attacks. In this study we evaluated the changes caused by URB602 in NTG-induced neuronal activation. Male Sprague Dawley rats were treated with NTG (10mg/kg, i.p.) followed by URB602 (2mg/kg, i.p.) or vehicle (DMSO, 1ml/kg, i.p.). Their brains were processed for the detection of c-Fos protein, used as an indicator of brain activation.

* Correspondence: cristina.tassorelli@mondino.it

Full list of author information is available at the end of the article

Results

URB602 alone did not change Fos expression in the brain nuclei under evaluation. When administered 3 hours after NTG, URB602 reduced NTG-induced Fos expression in all the cerebral areas that were examined, with a significant effect in nucleus trigeminalis caudalis and ventrolateral column of periaqueductal grey.

Conclusions

The inhibition of MAGL activity, with the theoretical increase of central content of 2-AG, may modulate the activation of structures involved in pain perception and pain integration in an animal model specific for migraine.

Competing interests

The authors declare to have no competing interests.

Acknowledgements

This study was supported by a grant from the Italian Ministry of Health to "C. Mondino" National Neurological Institute (Ricerca Corrente 2013).

Authors' details

¹Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, "C. Mondino" National Neurological Institute, Pavia, Italy. ²Drug Discovery and Development Department, Fondazione Istituto Italiano di Tecnologia, Genova, Italy. ³Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy.

Published: 28 September 2015

doi:10.1186/1129-2377-16-S1-A165

Cite this article as: Greco *et al.*: P007. Inhibition of monoacylglycerol lipase activity modulates the activation of brain structures relevant for migraine pathogenesis. *The Journal of Headache and Pain* 2015 **16**(Suppl 1):A165.

¹Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, "C. Mondino" National Neurological Institute, Pavia, Italy