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Abstract: The n-body instability is investigated with the soft-sphere discrete element method. The 

divergence of nearby trajectories is quantified by the dynamical memory time. Using the inverse 

proportionality between the dynamical memory time and the largest Lyapunov exponent, the soft-sphere 

discrete element method results are compared to previous hard-sphere molecular dynamics data for the first 

time. Good agreement is observed at low concentrations and the degree of instability is shown to increase 

asymptotically with increasing spring stiffness. At particle concentrations above 30%, the soft-sphere 

Lyapunov exponents increase faster than the corresponding hard-sphere data, hypothesized to be caused by 

relatively rare multi-particle collisions. This paper concludes with a demonstration of how this case study may 

be used in conjunction with regression testing and code verification activities.  

Keywords: Soft-sphere DEM; Chaos; Lyapunov exponent 

1. Introduction

Particulate gas–solid multiphase flows and the computational codes used for their numerical simulation 

are notoriously unstable. There are at least three types of instabilities that may be encountered: i) n-body 

instability of the particles (Alligood, Sauer, & Yorke, 1996); ii) turbulence in the fluid (Manneville, 2010); 

and iii) inherently multiphase instabilities, e.g., bubbling and clustering (Fullmer & Hrenya 2017). In this 

work, we focus on the n-body instability, which is chaotic when three or more discrete entities, or bodies, 

interact with one another (Poincaré, 1890).  

The n-body problem is pervasive in physical modeling, spanning scales from stellar dynamics (Goodman, 

Heggie, & Hut,1993) to molecular dynamics (Norman & Stegailov, 2013). First reported in astrophysical 

simulations (Miller, 1964), the n-body instability exhibits a sensitive dependence on initial conditions which 
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causes infinitesimally close trajectories to diverge from one another exponentially (Goodman, Heggie, & Hut 

2003; Norman & Stegailov, 2013). The divergence of nearby trajectories presents a practical challenge to 

numerical solution (Boekholt & Zwart, 2015) and particularly to code development when seemingly trivial 

changes to the source code, e.g., order of operations, produce non-trivial changes in the solutions of 

benchmark problems. 

Molecular dynamics (MD) or discrete particle simulation techniques can be separated into (at least) three 

categories. Historically, the first numerical methods applied a hard-sphere approach (Alder & Wainwright, 

1957) where particle interactions are assumed to be instantaneous. Efficient computational strategies for hard-

sphere MD stream through time from collision to collision (Pöschel & Schwager, 2005). Conversely, later MD 

simulations employed “long” range forces, e.g., the Lennard-Jones pair-potential (Rahman, 1964), requiring a 

time-marching scheme to resolve the continuous forces between particles. Finally, soft-sphere discrete element 

method (DEM) approaches arose in the granular dynamics community (Cundall & Strack, 1979) to model 

enduring and multi-particle collisions which cannot be resolved by either of the previous MD methods. Due to 

similar requirements in modeling dense fluidized beds, the soft-sphere technique is by far the most common 

method employed in coupled computational fluid dynamics (CFD)-DEM modeling of particle fluidization.  

The chaotic dynamics, specifically the rate of divergence of nearby trajectories, has been studied in both 

hard-sphere MD (Dellago, Posch, & Hoover, 1996; Dellago & Posch, 1997) and long-range potential MD 

(Norman & Stegailov, 2002; 2013), in addition to stellar dynamics (Heggie, 1991). However, to the best of the 

authors’ knowledge, the same problem has not received attention for the soft-sphere DEM method. The 

purpose of this study is to apply techniques previously established for other MD methods (Dellago & Posch, 

1997; Norman & Stegailov, 2002) to quantify the rate of divergence present in the soft-sphere DEM technique. 

The remainder of this work is organized as follows. The soft-sphere DEM model is described in section 

“Model and method”. The specific system being simulated in this work is described in section “Problem 

setup”. The results are provided in section “Results”, where we begin by defining key criteria and end with an 

example of a practical application. We conclude with a summary of the key findings in section “Conclusions”. 

2. Model and method

This work uses MFIX-Exa, a new CFD-DEM code being developed by the National Energy Technology 

Laboratory and Lawrence Berkeley National Laboratory as part of the U.S. Department of Energy’s Exascale 

Computing Project. MFIX-Exa originated by combining the DEM modules of the classic MFIX code 

(mfix.netl.doe.gov) with a modern low Mach number projection method for the continuous fluid phase. The 



new algorithm is implemented using the AMReX (amrex-codes.github.io) software framework for massively 

parallel block-structured applications (Zhang et al., 2021).  

A vast majority of the MFIX-Exa code base is not exercised in this work. Specifically, by focusing on the 

n-body instability, the fluid phase is not solved at all. The remaining particle phase is modeled by solving

Newton’s equations of motion for every particle. Contacts are resolved with a soft-sphere model, specifically 

the linear spring dashpot (LSD) model (Cundall & Strack, 1979; Garg, et al., 2012). The particles are assumed 

to be frictionless, µpp = 0, and elastic, epp = 1. Eliminating all sources of dissipation ensures that granular

instabilities will not develop, which would strongly affect the nonlinear dynamics of the system (McNamara & 

Mareschal, 2001). The frictionless assumption removes particle angular momentum as a dependent variable 

(reducing the degrees of freedom per particle from nine to six) and reduces the contact forces to only normal 

contributions. The latter assumption eliminates the damping term, i.e., the dashpot coefficient ηpp = 0 (Garg et

al., 2012). Consequently, the originally complex model reduces to simply,  

�� � = �� ,   ���� � = 	 
���(��)���
��

���
, (1) 

where mi, xi, and ui are the mass, position, and (linear) velocity vectors of the ith particle of Np total particles, 

kn is the normal spring constant, 

��� = �����
������� , (2) 

is the normal vector pointing from the ith to the jth particle, and 

��(��) = max �0, �
� � � +  �" − ��� − ���$ , (3) 

is the strictly positive overlap between the ith and jth particle when i ≠ j. In this work, the particles are assumed 

to be monodispersed so the diameter, d, and mass, m, are constants, along with kn.   

The governing equations of Eqs. (1)–(3) are solved with a simple first-order Euler time integration 

method, as typically found in general purpose CFD-DEM codes. Given the incredibly small system sizes 

studied here, all of the high-performance computing aspects of the MFIX-Exa code (Musser et al. 2021) 

reduced to a single grid, serial computation.  

3. Problem setup



Ultimately, the results of this work will be compared to the hard-sphere Lyapunov exponents of Dellago 

and Posch (1997), therefore, their original problem setup is replicated here. The particles are ordered in a face-

centered cubic lattice with an edge length of three unit cells, s = 3, totaling Np = 4s3 = 108 particles. The lattice 

length, L, is determined from the particle concentration, φ, given by L* = L/d = (πNp/6φ)1/3. Periodic boundary 

conditions are applied in all directions. Each component of the particle velocity is taken from a random normal 

distribution which is then renormalized to have a zero-mean velocity in each direction and a specified thermal 

speed,  

 % = �
&

�
��

∑ ���
��
���  . (4) 

where T is the (massless) granular temperature which is proportional to the fluctuating kinetic energy. Three 

sample lattices are provided in Fig. 1 with particles colored by their velocity magnitude. MFIX-Exa is a 

dimensional code and values of d = 0.1 m and T = 2/3 m2/s2 are prescribed. The particle density is set to give 

unit mass, m = 1 kg.  

Fig. 1 

The spring constant of the LSD collision model must also be specified. Because the results will be 

compared to hard-sphere MD, the collisions should appear nearly instantaneous. We assume a priori that this 

means the LSD collision time,  

 �()*++ = π- .
�/0

 , (5) 

i.e., the duration of a collision, should be much less than the kinetic collision time,  

 1)*++ = 2
�345(4) -6

7 , (6) 

i.e., the mean time between successive collisions. The Carnahan and Starling (1969) expression for the radial 

distribution function at contact, χ(φ) = (1–φ/2)/(1–φ)3, is applied in Eq. (6).  

The original hard-sphere study was carried out at a very high density. However, there is a discontinuity in 

the dynamical properties of the system at φ ≈ 0.497, corresponding to a critical point where the particles can 

no longer escape the lattice structure. We will avoid this region of limited particle mobility in this work by 

only considering a moderate range of particle concentrations: 0.02 ≤ φ ≤ 0.40. Therefore, the minimum 



(kinetic) collision time is τcoll ≈ 6.1×10–3 s. We set δtcoll = 1×10–4 s, so that τcoll/δtcoll > 60. From Eq. (5), this 

gives a spring constant of kn ≈ 4.9348×108 N/m. It remains to be seen whether or not this is sufficiently stiff.  

4. Results 

4.1. Dynamical memory time 

In this section we study the divergence of a slightly perturbed DEM simulation from a reference DEM 

simulation. The perturbed positions, xiˊ, and velocities, uiˊ, are denoted by a prime, and the square of their 

separation is given by  

 �8 = �
��

∑ (�� − ��9)���
:��  , (7) 

and  

 �; = �
��

∑ (�� − ��9)���
:��  . (8) 

The separation of the perturbed solution from the reference solution grows similarly in space and velocity, and 

both signals are heavily polluted with noise, see Fig. 2, albeit for different reasons. Particles in a collision may 

have very similar spatial coordinates with velocities of opposing sign. Conversely, particles near a periodic 

boundary may have very similar velocities but very different coordinates. Of the two, we find working with 

the separation of the velocity field slightly easier.  

Fig. 2 

To study the divergence of trajectories, a perturbation must be introduced relative to the reference 

solution. Here, we follow Norman and Stegailov (2002) who use an ingenious method of simply choosing a 

smaller time step in the perturbed solution. The smaller (than reference) time step introduces a roundoff level-

error which is converted to (and mixed with) a truncation-level error through the numerical method. Further, 

an initial perturbation amplitude does not need to be explicitly prescribed which allows the reference and 

perturbed states separate naturally from zero. The time step is set to one twentieth of the LSD collision time, dt 

= δtcoll/20 = 5×10–6 s, in all reference simulations. Fig. 2 shows the divergence of four perturbed simulations 

from the reference simulation using increasingly smaller time steps dtˊ. The separation of all trajectories grows 

very similarly from zero and saturates at 2c2 where < = √3% is the thermal speed, i.e., the most probable speed 

from the Maxwellian velocity distribution. Hence, the separation is nondimensionalized by �;∗ = �;/6%. Time 

is nondimensionalized by (∗ = (B3%/2 �. 



The time it takes for the separation to reach saturation is the dynamical memory time, (D∗  (Norman &

Stegailov, 2002). The dynamical memory time identifies the time it takes the DEM system to “forget” the 

initial conditions, i.e., numerical solutions at times ( >  (D∗  no longer represent an exact Newtonian trajectory.

It should be noted that (D∗  is specific to this initial condition, LSD model, spring constant, integration method

and reference time step. Technically, (D∗  is achieved in the limit of  (9/ ( → 0. However, our results indicate

that (D∗  is fairly insensitive to changes in dtˊ/dt from 1/2 to 1/20, and dtˊ/dt = 1/10 is used throughout the

remainder of this study. 

The noise of the signal due to collisions is smoothed (to some degree, compare Fig. 7 to Fig. 2) by 

ensemble averaging over the separations. The same spatial lattice is used in each case, but the random particle 

velocity is redrawn. The dynamical memory time is approximated by the time it takes the separation to reach 

50% of saturation, i.e., the first occurrence of �;∗ ≥ 0.5. Using this definition, the dynamical memory time is

marked with a circle in Fig. 2 for a single trajectory at concentration φ = 0.40. The particle concentration is

varied from φ = 0.40 down to 0.02 by ∆φ = 0.02. The largest Lyapunov exponent, λ1, determines the

divergence rate and is inversely proportional to the dynamical memory time, J�∗ ∝ 1/(D∗ . The maximal

Lyapunov exponent can be approximated from the dynamical memory time by,  

J�∗ ≈ �
NO∗

ln R7
S. , (9) 

where C is a proportionality constant determined by the integration method and the time step size (Norman & 

Stegailov, 2002). By comparing our results to the hard-sphere MD data of Dellago and Posch (1997), we find 

generally good agreement with the approximation J�∗ = 11/(D∗  (C = 4e–11) as shown in Fig. 3. The best

agreement is observed in the dilute regime. Beginning around φ ≈ 0.3 the observed trend diverges from the

reported hard-sphere data, rising at a faster rate with increasing φ. The increasing discrepancy at φ > 0.3 is

investigated further in the following sections.  

Fig. 3 

4.2. Spring stiffness 

The most obvious culprit for differences between a hard-sphere MD and soft-sphere DEM comparison is 

the spring stiffness, kn. In Sec. 3, we set τcoll/δtcoll > 60 for the densest case, φ = 0.40, and had hoped that it

would be sufficient for the collisions to appear instantaneous compared to the mean collision time. However, 

we note that this goes against our physical intuition of the situation: one would expect a softer collision to 

reduce the instability, i.e., to lower λ1, not to increase it.



To check this assumption, we would like to increase kn at φ = 0.40 and observe how it affects J�∗ . 

However, increasing kn would require decreasing dt (and dtˊ) so that the collisions are resolved by a reasonable 

number of time steps (we prefer at least 20). This would change the proportionality constant, C, and the fit 

J�∗ = 11/(D∗  would no longer hold. Therefore, we instead test the spring stiffness by taking the case φ = 0.20, 

which shows good agreement, and softening the stiffness of the LSD collision model while maintaining dt and 

dtˊ. This means that the collisions are resolved by an increasing number of time steps as kn decreases, but, we 

believe, the fit J�∗ = 11/(D∗  should still be consistent. The spring constant is reduced by six orders of 

magnitude, increasing δtcoll three orders of magnitude, up to 0.1 s. For reference, the kinetic collision time for 

φ = 0.20 is τcoll = 0.0257 s, so the lowest two values of kn spend more time in collisions than between 

collisions. The maximal Lyapunov exponent decreases with decreasing kn as shown in Fig. 4. The trend 

observed in Fig. 4 is consistent with our physical picture of the problem: Eq. (1) becomes increasingly stiff in 

a mathematical sense as the LSD spring constant is increased, increasing the degree of the n-body instability 

eventually saturating at a level consistent with hard-sphere MD. It is interesting to note that similar 

observations have been reported for softened gravitational potentials in stellar dynamics, e.g., see Fig. 8 of 

Goodman, Heggie, and Hut (1993). This provides some evidence that the selected kn for this system is 

sufficiently stiff to approximate the hard-sphere limit. Furthermore, because the Lyapunov exponent decreases 

with decreasing kn, the over-prediction of J�∗  at higher φ must not be caused by overly soft particles.  

Fig. 4 

4.3. Multi-particle contacts 

Another consequence of the finite collision time in soft-sphere DEM is the existence of multi-particle 

collisions, i.e., a particle in simultaneous contact with more than one other neighboring particles. In fact, 

multi-particle and enduring contact is the reason why soft-sphere DEM is utilized so extensively in 

fluidization applications, as these interactions become increasingly common in dense beds. At the 

concentration and stiffness of the present condition, multi-particle contacts were assumed not to occur. To 

evaluate this assumption, the reference simulations were re-run, and every particle was checked at every time 

step for the occurrence of more than one colliding neighbor, i.e., a particle for which ��(��) of Eq. (3) is greater 

than zero for at least two j-particles. Any DEM time step in which at least one particle has at least two 

colliding neighbors is flagged as a multi-particle collision step and normalized by the total number of time 

steps for that simulation. The ensemble-averaged likelihood of a multi-particle collision, Lmpc, is collected in 

Fig. 5, which shows a small but increasingly non-trivial occurrence with increasing concentration. The 

likelihood increases proportionally to the (kinetic) collision frequency to a power of approximately two over 

most of the φ range studied here. The dashed trendline in the inset of Fig. 5 shows 2.5 × 10�U 1VWXX�.��. It is easy 

to imagine how three-particle collisions are significantly more unstable than typical binary collisions. 



Although the likelihood of occurrence of a multi-particle collision is at most slightly over 1%, it seems 

plausible that such complex interactions could be the cause for the deviation of the DEM results from the hard-

sphere MD data. 

Fig. 5 

The previous analyses in Fig. 4 and 5 obscure a noteworthy aspect: Lmpc also depends on kn. It is expected 

that Lmpc should vanish as kn → ∞. Therefore, not only are Lmpc and kn related, but they have an opposing 

influence on the stability of the system. To better understand this behavior, the divergence of trajectories is 

studied at the highest concentration, φ = 0.4, with increasing the spring stiffness above the previously selected 

kn = 4.9348×108 N/m. To study this region, the time step must be reduced. Here, we set dt = δtcoll/20 where 

δtcoll depends on kn as in Eq. (5) which is increased several orders of magnitude. The resulting J�∗  can not be 

compared with the same generality as before (e.g., as in Fig. 6 where kn was reduced with dt fixed), however 

one test of φ = 0.2 with an elevated spring constant suggests that the J�∗ = 11/(D∗  may hold reasonably well. 

To denote this minor difference, the results are reported as 11/(D∗  instead of J�∗  in Fig. 6. For each spring 

stiffness, the likelihood of multi-particle collisions is also collected and provided in the inset of Fig. 6. At low 

kn, the results of Fig. 6 are similar to those in Fig. 4: increasing kn increases the mathematical stiffness of the 

problem leading to an increase in J�∗ . For the softest particles studied, Lmpc is nearly one, i.e., multi-particle 

collisions are almost always occurring. As kn increases further, Lmpc starts to decay and multi-particle 

collisions start to become infrequent while J�∗  appears to plateau. Somewhat unexpectedly, however, as kn 

increases further beyond the originally selected value, J�∗  decreases slightly before asymptoting to a value still 

slightly higher than the hard sphere result of Dellago and Posch (1997), which is shown as a dotted blue line in 

Fig. 6 for reference. This local maximum in J�∗  suggests that the influence of kn on J�∗  is a shifting balance. For 

very soft-particle systems, the mathematical stiffness represented by kn is more important (i.e., increasing kn 

increases J�∗) while for nearly-hard-sphere systems, the dependence of Lmpc on kn becomes more important 

(i.e., increasing kn decreases J�∗).  

Fig. 6 

While this investigation has revealed an interesting and complex relationship between kn and J�∗ , it has 

also demonstrated that multi-particle collisions must not be responsible for the discrepancy with the hard-

sphere data at high φ. At the highest kn studied, the system has reached effective zero Lmpc (i.e., is more likely 

that a multi-particle collision will not occur within (D∗  for any given simulation) and yet the approximate J�∗  is 

still noticeably larger than the true hard-sphere result. In an effort to exhaust all options, the effect of the initial 

perturbation method and the influence of the selected numerical code are further studied in Appendix 1 and 2, 

respectively. Both additional investigations show nearly identical results to those presented in Fig. 3. At 



present, the ultimate case of the difference between soft-sphere and hard-sphere Lyapunov exponents for φ > 

0.3 remains unknown.  

4.4. Application 

This study was originally undertaken to benchmark the degree of n-body instability in a developmental 

soft-sphere (CFD-)DEM code, MFIX-Exa. This allows us to evaluate whether the divergence of solutions due 

to changes in the source code, domain decomposition or computation method is within the expected limits of 

the n-body problem (as opposed to indicating a programming error). Having established, at least for φ < 0.30, 

good agreement with hard-sphere MD data (Dellago & Posch, 2002), we can now use this divergence rate as a 

metric to measure perturbations arising from unintended or unexpected sources.  

Three different sources of implicit perturbations are studied: i) changing the architecture and compiler, ii) 

explicitly changing the order of operations in the code, and iii) introducing an error in the numerical method. 

With these three implicit perturbation methods, only the reference inputs are simulated. Specifically, the 

reference time step, dt, is used throughout and divergence from the “true” reference solutions arise purely 

numerically. To investigate the first perturbation above, we compared reference results as run on NETL’s 

Joule 2 supercomputer using the Intel Xeon Gold 6148 processors against the NVIDIA Tesla P100 

accelerators. Both codes are built with the GNU gcc compiler release 9.3 and the GPU accelerated code 

additionally used CUDA nvcc release 11.0 as the AMReX GPU backend (Zhang et al., 2021). It was 

anticipated that a different GNU compiler version and/or a different level of compilation optimization might 

order floating point operations differently and yield a perturbed solution (Dietiker, 2012). However, to our 

surprise, this did not happen (at least for t*< 1) using several different GNU compiler versions nor an 

unoptimized (debug) build. To investigate changes in the order of operations, we explicitly reordered the three 

components of the particle force vector. Specifically, 
���(��)��� in Eq. (1) was replaced by ���
���(��)
. Lastly, 

to test the third type of perturbation listed above, we introduced a deliberate error in the source code by 

omitting collisions of the 1st particle.  

The divergence of the ensemble-averaged velocity field separation for the three perturbations discussed 

above are compared to the explicit perturbation of using a smaller time step, dtˊ = dt/10, in Fig. 7 at 

concentration φ = 0.20. All four perturbations diverge from the reference solution in a similar manner, 

separated in time due to different (unspecified) values of initial perturbation amplitude, C. Recall that the 

dynamical memory time, (D∗ , determines the time it takes the system, model and numerical method to lose 

dependence on initial condition. This test shows it takes longer than the dynamical memory time for 

trajectories due to a different processor and a different order of operations to diverge from the reference 

trajectory (i.e., the red and green lines are to the right of the black reference line in Fig. 7). Therefore, we can 



say that the divergence is beyond what can be expected of this system, contact model and numerical method 

due to the interaction of truncation level error (dtˊ) with the n-body instability. In other words, this divergence 

is expected. Conversely, when an intentional error is introduced to the code, the trajectory diverges from 

reference within the dynamical memory time (i.e., the blue line is to the left of the black reference line). In this 

case we can say that something has caused a larger than truncation level disturbance to this system, model and 

method. Such a test can be a useful accompaniment to standard regression testing, in which small changes are 

the norm for short simulations and little beyond expert judgement can be used to say if the level of divergence 

is expected or not. In this case, the bug may have been easy to spot. Fig. 7 shows that the granular temperature 

of the system begins to exceed the initial value as mechanical energy is erroneously added to the system from 

excessive overlap due to the missed collision bug. Finally, we note that the separation from a smaller time step 

is virtually indistinguishable when both reference and perturbation simulations are carried out on the same 

processor (i.e., in this case either CPU or GPU). Therefore, if a coding error is more nuanced than the heavy-

handed example bug and only occurs for specific processors or on specific architectures, it can still be 

identified by comparison to the expected truncation-level separation (i.e., from dtˊ) for the processor, 

architecture, etc. of interest. 

Fig. 7 

6. Conclusions 

Regression testing and verification activities can be challenging when developing codes to model 

complex multi-physics phenomena due to the intrinsically unstable and dynamic nature of these types of 

problems. In this work, the developmental CFD-DEM code MFIX-Exa is used as a prototype. The fluid phase 

is removed to isolate instability to the many-body or n-body problem by simulating a fully periodic granular 

(no interstitial fluid) system of 108 elastic, frictionless particles. The particles are originally arranged in a face-

centered cubic lattice with a thermal (Maxwellian) velocity distribution. As the system evolves in time, the 

reference trajectory (velocity field) diverges from a nearby trajectory: the same system is solved with a smaller 

time step, dtˊ = dt/10, which naturally introduces a truncation and roundoff level perturbation. The dynamical 

memory time was computed for a range of particle concentrations from 2% to 40% (below the phase transition 

of the lattice) and compared to hard-sphere molecular dynamics (MD) data of the largest Lyapunov exponent 

(Dellago and Posch, 1997). The agreement between the (stiff) soft-sphere DEM and the hard-sphere MD data 

is good below approximately 30% particle concentration.  

The spring constant, kn, is the most obvious cause of the difference between the two methods; as one 

would expect soft-sphere should approach hard-sphere as kn → ∞, perhaps the guideline (τcoll >> δtcoll) to 

select kn a priori was not sufficiently stiff. Yet, it was found that divergence rates increase with kn and begin to 



plateau near the selected value. However, further investigation revealed a more complex relationship between 

kn and the divergence rate, J�∗ . For soft particles, J�∗  increases with kn due to an increase in the mathematical 

stiffness of the system. For hard particles, J�∗  decreases with kn due to a decreased likelihood of multiparticle 

collisions, which are more unstable than binary collisions. However, even when kn is increased to levels where 

multiparticle collisions become effectively eliminated, a discrepancy still exists between soft-sphere DEM at 

the highest simulated particle stiffness and the hard-sphere MD data at the highest concentrations. For very 

soft particles, the mathematical stiffness represented by kn dominates the nonlinear instability (i.e., increasing 

kn increases J�∗) while for very stiff particles, the dependence of Lmpc on kn becomes more important (i.e., 

increasing kn decreases J�∗). In addition to hard- and soft-sphere modeling differences, the impact of how the 

initial perturbation is introduced and the effect of the code itself were also investigated as possible causes for 

this discrepancy. The results, summarized in Appendix 1 and 2, respectively, show that neither the choice of 

perturbation method nor choice of code cause such discrepancies. 

Finally, the original motivation for this work is demonstrated by studying perturbations that are not 

explicit like dtˊ. The system is simulated using different processor architectures (CPU vs. GPU), different 

order of operations (the three components of the normal force are rearranged), and a deliberate error (collision 

forces of the first particle is ignored). By comparing the separation of these solutions (from the reference 

solution) to the separation of the dtˊ perturbation, we observe that the different processor and order of 

operations diverge slower than the dynamical memory time. Hence, these differences are smaller than 

truncation level error (dt vs. dtˊ) and the divergence is a natural and expected consequence of noise being 

amplified by the n-body problem. On the other hand, when a true error is introduced in the form of a bug in the 

code, the trajectory diverges from the reference within the dynamical memory time. This can provide a 

warning that something has caused a larger than truncation error level change. We hope to use this simple test 

to distinguish between expected instabilities and errors during ongoing development of the MFX-Exa and 

other soft-sphere DEM codes.  

 

Appendix 1 

In this work, we used the method of Norman and Stegailov (2002) to calculate the dynamical memory 

time, (D∗ , by solving a perturbed trajectory with a smaller time step than the reference trajectory. For this 

system, we found that dtˊ = dt/10 was sufficient, see Fig. 2. This method has the benefit that the amplitude of 

perturbation does not need to be explicitly prescribed; it arises naturally due to truncation error. However, 

there was a minor concern with this method that the perturbation is not just to the initial condition. In fact, it 

does not perturb the initial condition at all. Rather, the perturbation is introduced continuously with every time 



integration. To verify that the dtˊ perturbation method was not responsible differences with the hard sphere 

data (Dellago and Posch, 1997), the dynamical memory time was computed using a more traditional 

perturbation method. Here, the x-position of the first particle is shifted at time zero by a small amount: x1
’(t = 

0) = x1(t = 0) + (ε, 0, 0). The initial perturbation amplitude is set to ε/d = 1×10–9. The dynamical memory time 

is approximated in the same fashion, i.e., as the first occurrence of 50% saturation of the separation of the 

velocity field. The results are inverted into an approximate Lyapunov exponent and compared to the original 

results (from dtˊ perturbation) and the hard-sphere data Fig. A1. Although the proportionality constant has 

changed (due to a different initial perturbation amplitude) the results are virtually identical aside from some 

expected noise.  

Fig. A1 

Appendix 2 

As a final check, we repeat the study again using a different soft-sphere DEM code. For this purpose, we 

used the GRANULAR package in Sandia National Laboratories’ opensource, general-purpose MD code 

LAMMPS (https://lammps.sandia.gov) (Plimpton, 1995), specifically the 3 March 2020 version (LAMMPS, 

2020). As before, 108 particles are initialized with a kinetic temperature in a lattice of 3×3 face-centered cubic 

unit cells. The same dimensional properties of system are applied: d = 0.1 m, m = 1 kg, T = 2/3 m2/s2 and kn ≈ 

4.9348×108 N/m. The tangential spring constant is set to zero along with no viscous damping between 

contacting particles. The same time step, dt = 5×10–6 s, is also specified, however a second-order velocity-

Verlet method is used for time integration in LAMMPS. The code and associated packages are built with 

GNU compiler version 9.3 and the simulations were run on Joule2’s Intel Xeon Gold 6148 processors. 

Ensembles of 30 reference trajectories are simulated for each concentration ranging from φ = 0.02 to 0.40. 

Perturbed trajectories are computed with dtˊ = dt/10. The dynamical memory time is defined as the time it 

takes the ensemble-averaged separation of the velocity field, Eq. (8), to reach a normalized value of 0.5. The 

largest Lyapunov exponent is approximated by J�∗ = 11/(D∗  and compared to the MFIX-Exa results and the 

reference hard-sphere data in Fig. A2. The two soft-sphere results are very similar—both showing a 

divergence from the hard-sphere data around φ = 0.20. The result verifies that the discrepancy is not due to the 

MFIX-Exa soft-sphere implementation and its associated numerical method. Rather, Fig. A2 helps confirm 

that the difference in the observed Lyapunov exponent (and dynamical memory time) is due to differences 

inherent in the hard-sphere and soft-sphere models themselves. As discussed in Sec.4.3, we believe the key 

difference to be the occurrence of multi-particle collisions in the soft-sphere DEM simulations, which are not 

possible in hard-sphere MD. This hypothesis could warrant further study but is beyond the scope of this work.  

Fig. A2 
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The divergence of nearby trajectories in soft-sphere DEM 
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Figure captions: 

Fig. 1. Representative face-centered cubic lattices used as the initial condition for particle concentrations of (a) 

φ = 0.1, (b) φ = 0.2, and (c) φ = 0.4. Particles colored by normalized velocity magnitude, |ui|/2c, ranging from 

zero (black) to unity (white).  

 

Fig. 2. Divergence of a single reference trajectory from four perturbed trajectories with increasingly smaller 

time steps measured by the separation of the velocity field. The circle indicates the dynamical memory time, 

��
∗
≈ 1, for a particle concentration of φ = 0.40. 

 

Fig. 3. Comparison of the largest Lyapunov exponent between hard-sphere MD reported by Dellago and Posch 

(1997) and the soft-sphere DEM results of the present study, approximated by the inverse dynamical memory 

time. 

 

Fig. 4. Dependence of the maximal Lyapunov exponent on the LSD spring constant, kn. 

 

Fig. 5. The likelihood of finding at least one particle with more than one colliding neighbor in a given time step 

as a function of concentration. Inset gives the same data but as a function of collision frequency. 

 

Fig. 6. Effect of the spring constant on the dynamical memory time (shown as approximate ��
∗) with variable dt 

= δtcoll/20. The dashed blue line gives the corresponding hard-sphere data for reference. Inset shows the 

corresponding likelihood of multiparticle collisions as a function of the spring constant. 

 



Fig. 7. Ensemble average of 30 perturbed trajectories diverging from corresponding reference trajectories for φ 

= 0.20 with perturbations induced by a different time step, a different computation method (GPU), a different 

order of operations and an intentional coding mistake. 

 

Fig. A1. Impact of different perturbation methods (smaller time step vs. initial spatial disturbance) on the 

approximate largest Lyapunov exponent compared to the corresponding hard-sphere MD data (Dellago & Posch, 

1997) for reference. 

 

Fig. A2. Approximate largest Lyapunov exponent computed with LAMMPS compared to the MFIX-Exa results 

and the corresponding hard-sphere MD data (Dellago & Posch, 1997) for reference.  

 




















