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Abstract

Lesion symptom mapping (LSM) tools are used on brain injury data to identify

the neural structures critical for a given behavior or symptom. Univariate

lesion symptom mapping (ULSM) methods provide statistical comparisons of

behavioral test scores in patients with and without a lesion on a voxel by

voxel basis. More recently, multivariate lesion symptom mapping (MLSM)

methods have been developed that consider the effects of all lesioned voxels

in one model simultaneously. In the current study, we provide a much-needed

systematic comparison of several ULSM and MLSM methods, using both syn-

thetic and real data to identify the potential strengths and weaknesses of

both approaches. We tested the spatial precision of each LSM method for

both single and dual (network type) anatomical target simulations across ana-

tomical target location, sample size, noise level, and lesion smoothing. Addi-

tionally, we performed false positive simulations to identify the characteristics

associated with each method's spurious findings. Simulations showed no clear

superiority of either ULSM or MLSM methods overall, but rather highlighted

specific advantages of different methods. No single method produced a

thresholded LSM map that exclusively delineated brain regions associated with

the target behavior. Thus, different LSM methods are indicated, depending on

the particular study design, specific hypotheses, and sample size. Overall, we

recommend the use of both ULSM and MLSM methods in tandem to enhance

confidence in the results: Brain foci identified as significant across both types

of methods are unlikely to be spurious and can be confidently reported as

robust results.
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1 | INTRODUCTION

1.1 | Lesion symptom mapping

Throughout the 19th and much of the 20th century, systematic clini-

cal observations of neurologic patients along with postmortem

autopsy remained the main method for establishing brain correlates of

cognitive functioning (Damasio & Damasio, 1989; Dronkers,

Ivanova, & Baldo, 2017; Luria, 1980). The advent of modern neuroim-

aging methods in the 1970s greatly enhanced the ability to determine

neural foundations of cognition, as the actual lesion site could be

identified in-vivo with unprecedented, continuously improving preci-

sion. In the early 2000s, an increase in computing power along with

new statistical procedures brought lesion symptom mapping (LSM) to

a new, more advanced level. Instead of relying on single-case studies

or viewing regions of lesion overlap in patients with a common syn-

drome, analysis of large group studies with continuous behavioral data

became possible. Specifically, the mass-univariate LSM (ULSM)

method, such as the original voxel-based LSM (VLSM; Bates

et al., 2003), provides statistical comparisons of behavioral test scores

across patients with and without a lesion on a voxel by voxel basis.

Voxels that show significant differences for a particular behavior or

symptom are inferred to be critical for the behavior under examina-

tion. ULSM methods complement functional neuroimaging studies in

healthy participants, by testing the necessity of particular brain areas

for a particular behavior, thereby demonstrating the crucial causal link

in brain–behavior relationships (Bates et al., 2003; Karnath, Sperber, &

Rorden, 2018; Rorden, Karnath, & Bonilha, 2007; Vaidya, Pujara,

Petrides, Murray, & Fellows, 2019). Contemporary ULSM methods

provide a fundamental shift in broadening our understanding of

brain–behavior relationships, both confirming (Baldo, Arevalo,

Patterson, & Dronkers, 2013) and challenging previously held beliefs

about key neural structures for different cognitive functions (Baldo

et al., 2018; Dronkers, Wilkins, Van Valin, Redfern, & Jaeger, 2004;

Ivanova et al., 2018; Mirman, Chen, et al., 2015).

More recently, new multivariate lesion symptom mapping

(MLSM) methods have been developed as an alternative to ULSM.

The principal difference between ULSM and MLSM methods is that

MLSM considers the entirety of all lesion patterns in one model simul-

taneously. This is in contrast to the parallel, independent analysis of

lesion patterns on a voxel by voxel basis performed with ULSM

models. While some papers have argued that MLSM methods should

be superior to ULSM methods (DeMarco & Turkeltaub, 2018; Mah,

Husain, Rees, & Nachev, 2014; Pustina, Avants, Faseyitan, Medaglia, &

Coslett, 2018; Zhang, Kimberg, Coslett, Schwartz, & Wang, 2014),

many of these arguments have been presented theoretically without

rigorously comparing the two approaches (see also Sperber, Wiesen, &

Karnath, 2019).

Below, we focus on two critical properties of LSM analyses that

are foundational to the validity of the method: spatial accuracy and

ability to detect networks. With regard to these two aspects, we first

review issues that impact brain–behavior inferences made with both

ULSM and MLSM methods and then report a comprehensive

empirical evaluation of these two different approaches to lesion-

behavior mapping.

1.2 | Spatial accuracy

1.2.1 | Issues affecting spatial accuracy

The original ULSM method was superior in terms of its spatial accu-

racy to lesion overlays and lesion subtraction analyses as it provided a

quantifiable statistical approach to capturing the continuous nature of

behavioral data in relation to lesion site. However, recently multiple

concerns over the spatial accuracy of the resulting LSM maps have

been raised.

One issue that affects both ULSM and MLSM methods is that

lesion distributions in stroke (the most frequently studied etiology

with LSM techniques) are influenced by the vascular anatomy and are

thus nonrandomly distributed in the brain with certain areas being

more likely to be lesioned than others (Mah et al., 2014; Phan,

Donnan, Wright, & Reutens, 2005; Sperber & Karnath, 2016; Xu,

Jha, & Nachev, 2018). This nonrandom distribution of lesions impacts

LSM analyses in the following ways. First, it limits analysis of certain

brain areas that are rarely affected in stroke (e.g., the temporal pole).

Second, neighboring voxels have a higher probability of being lesioned

together, as strokes never affect just one voxel. The ULSM approach

is potentially susceptible to this spatial autocorrelation, because it

assumes independence of lesioned voxels throughout the brain, as

thousands of independent tests (nonparametric, t tests, or linear

regressions) are carried out serially in the affected voxels. While inde-

pendence of tests is not an assumption of MLSM methods per se

(since only one multivariate model incorporating all the lesion patterns

is tested), lack of sufficient spatial distinction is an issue. In other

words, if two voxels are always either damaged together or always

spared, it is not possible to differentiate their unique contribution to

the observed deficits with any LSM method. A third related concern

that affects both ULSM and MLSM methods is differential statistical

power across voxels/regions of the brain. For example, a voxel in

which 50% of patients have a lesion has more power than a voxel

where only 10% of patients have a lesion (Pustina et al., 2018). In gen-

eral, given both the nonrandom nature of lesions and the inability to

predict their specific pattern in a given study, it is hard to estimate

statistical power in advance for any LSM method. Generally, one can

only perform post hoc power analyses to determine the amount of

power in different brain regions. Even with very large samples, statis-

tical power can be low everywhere in the brain, for example, if lesions

are small and voxels are only affected by a small proportion of all

lesions. Finally, stroke lesions are also typically larger than the func-

tional anatomical targets that LSM analyses attempt to uncover,

thereby limiting the spatial resolution of the analysis.

Cumulative effects of nonrandom lesion distribution, autocorrela-

tion across voxels, and differential power distribution can potentially

lead to distortion in spatial localization of critical regions. Significant

clusters are often “diverted” toward the most frequently damaged
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regions, which are regularly impacted together with the true corre-

lates of a cognitive function (Inoue, Madhyastha, Rudrauf, Mehta, &

Grabowski, 2014; Xu et al., 2018) and potentially along the brain's

vasculature (Mah et al., 2014; Sperber, Wiesen, & Karnath, 2019). The

open question is, to what degree do these lesion-anatomical biases

impact different ULSM and MLSM methods (Sperber, 2020), and how

are they ameliorated by sample size, method choices, additional cor-

rections, and interpretation? Currently, very few studies have investi-

gated these biases systematically and compared them across different

LSM methods.

1.2.2 | Empirical studies investigating spatial
accuracy of LSM methods

One of the original papers to raise awareness about spatial distortion

in LSM by Mah et al. (2014) suggested that ULSM analyses mis-

localized foci by an average of 16 mm. However, their model did not

include lesion volume as a covariate in their analysis. The importance

of using lesion volume as a nuisance covariate in LSM has been a

standard recommendation for several years (Baldo, Wilson, &

Dronkers, 2012; De Haan & Karnath, 2018; DeMarco & Turkeltaub,

2018; Price, Hope, & Seghier, 2017; Sperber & Karnath, 2017). In

addition, Mah et al. used a minimum lesion load per voxel of <1% in

their ULSM analyses, which is far below the standard recommenda-

tion of 5–10% (Baldo et al., 2012). Moreover, the displacement maps

using synthetic data in Mah et al. showed single voxels (i.e., a single

voxel leading to a specific deficit), which is an oversimplified and

exclusively theoretical case that does not occur naturally. Further-

more, when damage to an anatomical region was used as a synthetic

behavioral score in their study, the score was binarized rather than

continuous, likely further reducing spatial resolution. Finally, Mah

et al. did not explore spatial bias for MLSM, so within their study, it

was not possible to directly compare the spatial displacement

between ULSM and MLSM methods.

In another simulation study critiquing accuracy of ULSM (Inoue

et al., 2014), lesion volume was included as a covariate, but the

authors again used binarized synthetic behavioral scores (a deficit was

indicated when 20% of voxels in the target parcel were damaged) and

did not apply a minimal lesion load threshold. Also, the results in this

study were predominantly analyzed with false discovery rate (FDR)-

based thresholding. This method of correction for multiple compari-

sons has been discontinued for some time in the ULSM literature, as it

frequently leads to an increase in false positives (Baldo et al., 2012;

Kimberg, Coslett, & Schwartz, 2007; Mirman et al., 2018). Also, accu-

racy of mapping was not systematically explored across sample sizes.

Finally, the lesion data for this study came from highly heterogenous

etiologies (stroke, traumatic brain injury, encephalitis), contrary to

standard recommendations for any LSM study (De Haan &

Karnath, 2018).

Most prominently, Sperber and Karnath (2017) empirically dem-

onstrated that ensuring a sufficiently large minimal lesion load thresh-

old as well as including lesion volume as a covariate have significant

additive effects on improving spatial precision of results, although not

entirely removing spatial bias. In their study, spatial displacement was

calculated for single voxels, with displacement of larger clusters

expected to be smaller. Furthermore, the lesion volume correction to

enhance accuracy of localization has been strongly recommended for

at least some MLSM approaches (DeMarco & Turkeltaub, 2018), again

highlighting that MLSM methods are not immune to these types of

spatial biases. In another simulation study, Sperber, Wiesen, Gold-

enberg, and Karnath (2019) and Sperber, Wiesen, and Karnath (2019)

showed that a common support vector regression (SVR)-based MLSM

method was also susceptible to mislocalization along the brain's vas-

culature, even after applying a correction for lesion volume, and that

this displacement error was actually higher than that observed for a

ULSM method. However, since displacement was determined for sin-

gle voxels in a single axial slice, these spatial biases require further

exploration to fully understand their impact on LSM results with real

behavioral data.

The most comprehensive simulation study to date by Pustina

et al. (2018) showed that even one of the most advanced MLSM algo-

rithms, sparse canonical correlation analysis for neuroimaging

(SCCAN), exhibited spatial bias in the results. Here, the superiority of

SCCAN using synthetic data was consistently demonstrated, but only

when compared to the univariate analyses with inappropriate FDR-

based thresholding. Modern ULSM methods instead use a conserva-

tive, permutation-based familywise error rate (FWER) correction, a

nonparametric resampling approach to significance testing, which sets

the overall probability rate of false positives across all of the results,

while making almost no assumptions about the underlying data distri-

butions (Hayasaka & Nichols, 2003; Nichols & Holmes, 2001).

Permutation-based FWER provides the most stringent and robust

form of correction for multiple comparisons, providing an optimal bal-

ance between false positives and false negatives (see Kimberg

et al., 2007; Mirman et al., 2018). Accordingly, in the same paper, the

ULSM results obtained with this more appropriate thresholding using

permutation-based and Bonferoni FWER corrections, were compara-

ble to SCCAN results across a number of spatial indices (Pustina

et al., 2018). Moreover, Pustina et al. (2018) did not include lesion size

as a covariate in the ULSM analysis, running counter to standard rec-

ommendations for ULSM and potentially biasing the comparison

(Baldo et al., 2012; Sperber & Karnath, 2017). Furthermore, limited

spatial metrics were used as measures of accurate mapping in compar-

ing LSM methods, and most of these metrics produced similar levels

of performance for all methods tested. For example, while the dice

index (measure of overlap between two regions) was shown to be sig-

nificantly higher for SCCAN compared to a nonparametric Brunner–

Munzel version of ULSM, values were very low in nearly all cases with

every method (predominantly <0.5 and often <0.2) rendering the sta-

tistical advantage uninformative. Also, results of statistical compari-

sons across different sample sizes for other spatial metrics were not

provided (see Figure 4, p. 161, Pustina et al., 2018).

In short, the degree to which spatial bias affects ULSM versus

MLSM methods has not yet been systematically and rigorously tested

across a wide range of LSM methods with a wide range of metrics of
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spatial accuracy, while implementing best practices such as lesion vol-

ume control, minimum lesion load threshold, and proper correction for

multiple comparisons.

1.3 | Detection of networks

Another issue in LSM is the ability to detect complex relationships

and functional dependencies in the data (i.e., networks). Given that

most complex cognitive functions are supported by a number of

regions working together in a coordinated fashion, it is pivotal that

LSM methods are able to uncover multiple regions underpinning the

target behavior.

Some papers have argued that MLSM should be better than

ULSM at detecting multifocal relationships between lesion location

and behavioral deficits (i.e., when damage to multiple areas leads to

a specific behavioral deficit), as MSLM takes into account all the

voxels simultaneously in a single model (DeMarco & Turkeltaub,

2018; Mah et al., 2014; Pustina et al., 2018; Sperber, 2020;

Zhang et al., 2014). However, the empirical evidence favoring the

superior ability of MLSM methods to identify networks remains

inconclusive. This is in part due to the strong regularization

(e.g., sparse vs. dense solutions) and additional assumptions

(e.g., restriction on possible locations of solutions) required in order

to solve a single, massively underdetermined, multivariate system of

equations (typically with 1 patient per 100 or 1,000 voxels). Mah

et al. (2014) claimed that MLSM resulted in higher sensitivity and

specificity compared to ULSM in detecting a two-parcel fragile net-

work (when the synthetic score was based on the maximal lesion

load among a set of anatomical regions). However, as described

above, synthetic behavioral scores were binarized for their analysis,

the statistical threshold used was not specified, and there was no

quantification of the differences in spatial bias between ULSM and

MLSM. Pustina et al. (2018) showed an advantage of MLSM over

ULSM in detecting an extended network (“AND” rule; when the syn-

thetic score was based on the average lesion load among a set of

anatomical regions) consisting of three parcels. However, there was

no significant advantage of the MLSM over ULSM in detecting other

types of two- and three-parcel networks when a proper FWER cor-

rection was included.

Findings with real behavioral data also remain mixed. For

instance, in one study MLSM methods were able to detect a brain

network underlying apraxia of pantomime, while ULSM could not

(Sperber, Wiesen, Goldenberg, & Karnath, 2019). However, a number

of studies have repeatedly shown that ULSM methods are able to

detect spatially distinct regions in a network (Akinina et al., 2019;

Baldo et al., 2018; Gajardo-Vidal et al., 2018; Mirman, Chen,

et al., 2015). With real behavioral data, however, there is no ground

truth with which to compare the results, so it remains possible that

the analyses should have uncovered even more relevant regions.

Thus, further empirical evidence is needed to show what specific mea-

surable advantage MLSM has over ULSM in detecting multifocal

behavioral determinants.

1.4 | Aims of the current study

To summarize, there are a number of theoretical concerns for both

ULSM and MLSM methods. Some of these concerns raised originally

with respect to ULSM (e.g., spatial bias and autocorrelation, differen-

tial statistical power) are actually concerns for both ULSM and MLSM

methods and require further elucidation with respect to both

approaches. Moreover, efficient controls already exist for both ULSM

and MLSM methods that can be implemented to minimize the biasing

effect of lesion physiology (e.g., lesion size correction, minimum lesion

load threshold). The theoretical concerns about ULSM methods being

less able to detect networks of brain regions (as opposed to a single

target region) have not been systematically confirmed. Properties of

new LSM models require further delineation and comparative evalua-

tion in order to assess the mapping power and accuracy under varying

conditions. Further, certain factors that can potentially impact accu-

racy of analysis such as lesion mask smoothing and behavioral noise

levels have not been properly addressed in previous papers comparing

different LSM methods. To date, the comparisons of ULSM and

MLSM in the literature have been limited and when they are contra-

sted, a sub-standard version of ULSM is often implemented without

proper correction, leading to an unfavorable impression of ULSM

(Inoue et al., 2014; Pustina et al., 2018; Zhang et al., 2014). Finally,

neither ULSM nor MLSM methods have been properly explored with

respect to the incidence of false positive results.

The current paper aimed to address these gaps in the LSM litera-

ture and provide a comprehensive appraisal of several versions of

ULSM and MLSM methods with a large stroke lesion dataset, using

both synthetic and real behavioral data, across a range of relevant

parameters. Synthetic data were used to test the spatial accuracy of

different LSM methods: (a) ULSM with five different permutation-

based thresholding approaches; (b) MLSM with voxel-level lesion data

using two different approaches; and (c) MLSM with dimension-

reduced lesion data using three different strategies for feature reduc-

tion. Obtained results were compared across different anatomical tar-

get locations, sample sizes, noise levels, lesion mask smoothing values,

types of networks, and false positive simulations. We used a number

of different distance- and overlap-based spatial metrics as indices of

mapping accuracy. We also compared performance of these LSM

methods using real behavioral data (language scores) with multiple

demographic and sampling covariates, along with subsampling to

check the stability and agreement across methods. Our goal was to

provide the first comprehensive comparison of ULSM and MLSM

methods, in order to afford guidance on selecting the most appropri-

ate LSM method(s) for a particular study with a specific lesion dataset.

2 | METHODS

2.1 | Participants

For the simulation analyses, lesion masks from 340 chronic left hemi-

sphere stroke patients were obtained from two different sources: our

IVANOVA ET AL. 1073



Northern California stroke dataset (n = 209, NorCal) and the Moss

Rehabilitation stroke dataset provided with the open-source

LESYMAP software (n = 131, LESYMAP, Pustina et al., 2018). Syn-

thetic behavioral scores were based on lesion load to different cortical

areas (described further below).

For the analysis of real behavioral data, we analyzed language

data and lesion masks from a subset of patients in the NorCal data-

base (n = 168; 36 female) who completed behavioral testing and met

the following inclusion criteria: History of a single left hemisphere

stroke (including both embolic and hemorrhagic etiologies), pre-

morbidly right-handed (based on the Edinburgh Handedness Inven-

tory), native English speaker (English by age 5), minimum high school

or equivalent education (i.e., 12 years), in the chronic stage of recov-

ery (at least 12 months poststroke) at the time of behavioral testing,

no other neurologic or severe psychiatric history (e.g., Parkinson's,

dementia, schizophrenia), and no substance abuse history. The mean

age of this subset of patients was 61.0 years (range 31–86,

SD = 11.2), mean education was 14.9 (range 12–22, SD = 2.4), and

mean months poststroke was 51.4 (range 12–271, SD = 54.0). All

patients were administered the Western Aphasia Battery (WAB,

Kertesz, 1982, 2007), which classified 47 patients with anomic apha-

sia, 45 with Broca's aphasia, 6 with conduction aphasia, 4 with global

aphasia, 1 with transcortical motor aphasia, 3 with transcortical sen-

sory aphasia, 14 with Wernicke's aphasia, and 48 patients who scored

within normal limits (i.e., overall WAB language score of ≥93.8 points

out of 100). This latter group included patients with very mild aphasic

symptoms, such as mild word-finding difficulty.

2.2 | Behavioral data

Data for the LSM analyses with real behavioral scores were derived

from 168 patients in the NorCal stroke dataset. Patients were tested

on the WAB (Kertesz, 1982, 2007), which consists of several subtests

measuring a wide range of speech and language functions. Here, we

analyzed the most reliable and least-confounded speech-language

scores on the WAB, which index three distinct language domains:

speech fluency, single-word auditory comprehension, and verbal repe-

tition. All patients signed consent forms and were tested in accor-

dance with the Helsinki Declaration.

2.3 | Imaging and lesion reconstructions

Real lesion masks were obtained from two different sources as

detailed previously. All lesion masks were reconstructed from MRI

or CT data acquired during the chronic phase of stroke (at least

2 months poststroke). Detailed information about data acquisition,

lesion reconstruction, and normalization procedures for the NorCal

and LESYMAP datasets can be found in Baldo et al. (2013) and

Pustina et al. (2018), respectively. The lesion masks were converted

to standard MNI space with a 2 mm isovoxel resolution. The over-

lay of patients' lesions from the two different databases is shown in

Figure 1. Mean lesion volume was 119.6 cm3 for the NorCal

dataset (range 0.1–455, SD = 97.9) and 100.0 cm3 for the Moss

Rehab dataset (range 5.2–371.4 SD = 82.2).

F IGURE 1 Lesion overlays for the three datasets. Top—NorCal (n = 209, coverage range 5–117). Middle—LESYMAP (n = 131, coverage range
5–68). Bottom—subset of NorCal used in the analysis of real behavioral data (n = 168, coverage range 5–96)
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2.4 | LSM methods

In the current study, we compared five ULSM and eight MLSM

methods, using both synthetic and real behavioral data. All ULSM and

MLSM methods discussed in this paper were implemented in a down-

loadable MATLAB script (freely available at https://www.nitrc.org/

projects/clsm/) that was based on the original VLSM software devel-

oped by Stephen Wilson (Bates et al., 2003; Wilson et al., 2010).

2.4.1 | ULSM methods

All ULSM variants were conducted using a linear regression with a

voxel lesion value as the dependent variable (lesioned or not), the con-

tinuous behavioral data as the independent variable, and lesion vol-

ume as a covariate (Wilson et al., 2010; Baldo, Ivanova, Herron,

Wilson, & Dronkers, in press). Linear regression was chosen because it

is flexible, popular, and applicable to multiple data types (categorical

or continuous) with multiple covariates. Also, the synthetic behavioral

data contained linear effects, similar to other recent simulation studies

(e.g., Pustina et al., 2018). Both the synthetic and real behavioral

datasets were well controlled with respect to outliers; all the z-scores

were within 3 SD of the mean.

To correct for multiple comparisons, we used permutation-based

thresholding, which is a nonparametric approach to FWER correction

that randomly permutes behavioral scores and which records the rele-

vant t-value or maximal cluster size for each permutation with the

final threshold set at p = .05 (Kimberg et al., 2007; Mirman

et al., 2018). Unlike some previous methodological LSM papers, we

did not evaluate the performance of the ULSM method with

FDR-correction, given that it is a fundamentally inappropriate correc-

tion for lesion data (Baldo et al., 2012; Mirman et al., 2018). Finally,

the use of permutation-based significance testing with all of the

ULSM methods protects against inflated false positives that can

accompany non-Gaussian noise that may appear in the real data

(all synthetic behavioral noise was Gaussian).

ULSM results were generated with five different nonparametric

FWER thresholding approaches that are commonly used in contempo-

rary ULSM studies:

1. Maximum statistical t-value (ULSM T-max). This statistic corre-

sponds to the most standard and conservative version of the

permutation-based FWER-correction.

2. 125th-largest t-value (ULSM T-nu = 125). This statistic corre-

sponds to the 125th largest voxel-wise test statistic (n = 125 cor-

responds to 1 cm3 when working with 2-mm-sided voxels; see

Mirman et al., 2018).

3. Cluster-size thresholding with a fixed voxel-wise threshold of

p < .01 (ULSM T-0.01).

4. Cluster-size thresholding with a fixed voxel-wise threshold of

p < .001 (ULSM T-0.001).

5. Cluster-size thresholding with a fixed voxel-wise threshold of

p < .0001 (ULSM T-0.0001).

2.4.2 | MLSM methods

MLSM methods included multivariate regression methods with voxel-

level lesion data (two approaches) and with dimension-reduced lesion

data (three approaches). For all MLSM methods, lesion volume was

regressed out of both the behavioral and the lesion variables. While

other corrections for lesion volume are possible, such as direct total

lesion volume control (Zhang et al., 2014), we opted for the most con-

servative option here based on recommendations from the only study

to date that systematically tested different lesion volume corrections

(DeMarco & Turkeltaub, 2018). We normalized both lesion and

behavioral data to SD of 1 and centered the behavioral data (to mean

0), as is customary for multivariate methods to optimize regression

estimation. Finally, permutation testing identical to that used with

ULSM methods above (Kimberg et al., 2007; Mirman et al., 2018), was

also applied to the voxel-wise feature weights obtained for the MSLM

methods. The resultant values were used to threshold and identify sig-

nificant voxels in the maps at p < .05, using the maximum voxel-wise

feature weight value obtained (as in the ULSM T-max). From here on,

we use the term LSM statistical values to refer to both the actual

voxel-wise statistics for ULSM methods and voxel-wise feature

weights for MLSM methods that are ascertained following permuta-

tion thresholding and presented in the resulting LSM map output.

MLSM methods with voxel-level lesion data.

SVR differs from ordinary multivariate regression in a number of ways,

as it computes a solution based on many voxels' lesion status given

the relatively small number of patients. First, it incorporates two regu-

larization hyperparameters that help the regression model keep the

model's parameter values small (to avoid overfitting), while at the

same time controlling the model's prediction accuracy by partially

ignoring small fitting errors. Second, SVR incorporates a radial basis

kernel function that implicitly projects the lesion data into a high-

dimensional space in order to help model fitting succeed, in part by

allowing some nonlinear effects to be incorporated into the model.

SVR has been used in several previous LSM studies (Ghaleh

et al., 2017; Griffis, Nenert, Allendorfer, & Szaflarski, 2017; Zhang

et al., 2014). We used the SVR routine encoded as part of the SVR-

LSM package (https://github.com/atdemarco/svrlsmgui; DeMarco &

Turkeltaub, 2018) with fixed hyperparameters (γ = 5, C = 30) previ-

ously tuned to work well in LSM with behavioral data and currently

most commonly used in the field (DeMarco & Turkeltaub, 2018;

Zhang et al., 2014).

The second voxel-level MLSM regression method was partial

least squares (PLS), which jointly extracts dual behavior and lesion fac-

tors that maximize the variance between behavior and lesion locations

in a single step. PLS algorithms (and closely related canonical correla-

tion algorithms) have been developed extensively in bioinformatics

for use in genetics where there is a similar “wide” data structure: there

are far more genes/voxels to be considered in a regression solution

than there are subjects providing such data (Boulesteix &

Strimmer, 2006). PLS has also previously been used in LSM (Phan

et al., 2010). However, we used a basic version of PLS regression
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based on the singular value decomposition (SVD) function

(Abdi, 2010; Krishnan, Williams, Randal, & Abdi, 2011) because it is

known to be both a fast and reliable regression technique over wide

data sets containing highly correlated variables, which is important

given the number of simulations (using permutation testing) that were

run. Although this version of PLS regression is known to produce

“dense” solutions (Mehmood, Liland, Snipen, & Sæbø, 2012), resulting

in (overly) large clusters, another important consideration for including

it here as an exemplar of this class of algorithms is that it is easy to

generalize basic PLS regression to integrate multiple target behaviors

simultaneously (Abdi, 2010); an inviting prospect for investigating

behavioral test batteries used to assess patient populations.

MLSM methods with dimension-reduced lesion data.

Three different types of MLSM data reduction methods were tested

in the current study. These methods reduce the spatial dimensionality

of the lesion data first without considering behavior. Lesion status of

thousands of voxels is reduced to a number of spatial lesion compo-

nents that is fewer than the number of patients in the analysis. This

results in a more tractable system of equations to solve, and the com-

ponents' estimated weights are then transformed back into spatial

maps, relating brain areas to the behavior being investigated. In other

words, lesion status in all voxels for each patient are replaced with

sums of weighted lesion components for that patient.

SVD (“svd”, MatLab v.7) (Ramsey et al., 2017) identifies an

ordered set of orthogonal spatial components, each a weighted mix-

ture of all voxels inside the lesion mask, that explain as much lesion

variance across all voxels with as few of the ordered components as

possible. These components can be linearly combined to reconstruct

each patient's lesion mask. Our preliminary trials found that most indi-

vidual patient lesion masks were well-reconstructed (median dice

>0.98; mean dice >0.85) when 90% of the cumulative variance in the

SVD diagonal matrix was accounted for. Thus, in this data-reduction

version of MLSM, we used the number of components (approximately

equal to half the number of patients) required to explain 90% variance

in order to speed up LSM computations.

The second data reduction method we used was a logistic principal

component analysis (LPCA) (Schein, Saul, & Ungar, 2003), which itera-

tively identifies a set of ordered spatial components whose lesion inci-

dence maps are orthogonal under the logistic function (Siegel

et al., 2016). Given the better fit of method to lesion data type, trials

with lesionmasks showed that approximately the first 40 LPCA compo-

nents were able to reconstruct individual patient lesion masks quite

well (median dice >0.99; mean dice >0.9). Thus, the number of compo-

nents we used for the LPCA data reduction was the number of patients

capped at 40 components in order to speed up LSM estimates.

The third data reduction method was an independent component

analysis (ICA) (FastICA v2.5 as used by Hyvärinen & Oja, 2000) which is a

generalization of PCA. The lattermethod is widely employed in fMRI stud-

ies for clustering brain regions, and although it has not been typically used

in lesion analysis studies, we included it here for exploratory purposes.

ICA in this context estimates independent linear mixtures of lesion inci-

dence voxel data that are the most non-Gaussian sources found within

the data. We used the default cubic function as the fixed-point non-

linearity for finding components under coarse iterations first and then

used a hyperbolic tangent function (default setting) for fine iterations in

order to reflect the bounded nature of lesion data. For ICA, we used the

same number of components as with LPCA (maximum of 40), in order to

see if ICA can outperform LPCA given its usefulness in other spatial

dimension reduction applications in neuroimaging (Calhoun, Liu, &

Adali, 2009).

After application of the three data reduction approaches

described above, an elastic net linear regression (“glmnet” package;

Qian, Hastie, Friedman, Tibshirani, & Simon, 2013; Tibshirani

et al., 2010) was performed with the target behavior (real or simu-

lated) as the dependent variable along with the data reduced spatial

lesion components and the lesion size covariate. While data reduction

is not required for MLSM, it is a necessary step for implementation of

elastic net regression. Elastic net regression is only appropriate for rel-

atively low-dimensional datasets, because for high-dimensional data

(original voxel-level lesion data), it will select too many voxels

unrelated to behavior (Gilhodes et al., 2020).

We used two different elastic net regressions to see if either is

superior in producing accurate or reliable LSM maps: one near to a

pure lasso (which we will call “L1”) case (95% L1 penalty mixed with a

5% L2 penalty) and one with the opposite mixture (95% L2 and 5%

L1), a ridge (“L2”) case. The elastic net regressions use cross-validation

to solve for the penalty hyperparameter that best fits the data. Thus,

in total six variants of MLSM methods with dimension-reduced lesion

data were tested: SVD-L1, SVD-L2, LPCA-L1, LPCA-L2, ICA-L1, and

ICA-L2. For technical details on implementation of the MLSM

methods described above see Appendix B.

2.5 | Simulations with synthetic behavioral data

Three sets of simulations were performed with all ULSM and MLSM

methods using synthetic behavioral scores and real lesion masks: sin-

gle anatomic target, dual anatomic targets, and zero anatomic target

(i.e., false positive simulation). In each simulation, we varied several

factors (described below for each simulation) in a fully crossed manner

in order to systematically compare effect sizes and significance across

the different ULSM and MLSM methods. For each simulation analysis,

the specified number of lesion masks was randomly selected from one

of the two datasets (i.e., not mixing NorCal and LESYMAP masks

together). For all analyses, we only included voxels in which at least

five patients had lesions, and which had statistical power ≥.1 at

p < .01 (Hsieh, Bloch, & Larsen, 1998). We also performed behavioral

value outlier scrubbing at jzj ≥ 3.0, which was particularly important at

higher behavioral noise levels.

Synthetic behavioral scores (also called “artificial” or “fake” in the

literature) for the single and dual anatomical target simulations were

derived from the lesion load to the target anatomical parcels (or ROIs).

For simple single target simulations, the synthetic behavioral score

was calculated as the fraction of the target anatomical parcel that was

spared (see next section for more details), that is the synthetic score
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was directly proportional to the lesion load of that anatomical parcel.

Use of synthetic behavioral scores allows one to determine how well

the different LSM methods are able to localize behavior, since we

know the ground truth as to exactly which region in the brain it should

localize to (i.e., the target anatomical parcel) (Pustina et al., 2018). To

create target anatomical parcels, we used ROI masks of gray matter

areas in the left middle cerebral artery region from FSL's version of

the Harvard-Oxford (H-O) atlas, thresholded at 50% incidence. We

used 16 such parcels that had 5% or greater lesioned area within at

least 25% of the lesion masks. To create a set of smaller parcels, each

of these 16 parcels was divided into two sections along the axis of

maximal spatial extent. Two of the subdivided parcels failed to inter-

sect the lesion mask sufficiently according to the above criteria, ren-

dering a total of 30 smaller parcels (see Figure 2). We specifically

chose larger ROIs (similar to Mirman et al., 2018), because small ROIs

are unlikely to be accurately identified in patients who generally have

much larger lesions than focal fMRI activation areas. Further, even

assuming that fMRI properly delineates the size and location of spe-

cific functional areas, in the chronic stage of stroke recovery, these

functional areas are likely to be altered by neural reorganization

(Kiran, Meier, & Johnson, 2019; Stefaniak, Halai, & Ralph, 2019).

2.5.1 | Single anatomical target simulations

In the single anatomical target simulations, the synthetic behavioral

data for each patient were calculated as one minus the lesion load

(fraction of the target anatomical parcel covered by the patient's

lesion), before noise was added. Accordingly, a score of 1 indicated

“perfect performance”—complete sparing of the target parcel by the

lesion, and a score of 0 indicated “complete impairment”—full cover-

age of the target parcel by the lesion. For the simulations, we varied

the following factors in a fully crossed manner (obtaining all possible

combinations of these factors):

• Number of patients (n = 32, 48, 64, 80, 96, 112, 128). Additional

simulations were run with n = 144–208 patients from the NorCal

dataset for descriptive purposes only. Patients were randomly

selected from one dataset on each run.

• Behavioral noise level (0.00, 0.36, or 0.71 SD of normalized behav-

ioral scores). Behavioral noise level was a fixed additive level of

Gaussian noise at the specified fractional level of the mean across

all target measures' SDs.

• Lesion mask smoothing (0 mm [no smoothing] or 4 mm Gaussian

FWHM). The smoothed mask values fell between 0 and 1, and the

total mask weight was kept constant. All LSM methods could han-

dle continuous values via regression.

• Size of parcels (16 larger or 30 smaller as described above).

• Anatomical target parcel (see Figure 2 for list).

2.5.2 | Dual anatomical target simulations

In the dual anatomical target simulations, two spatially distinct target

parcels were used to simulate a minimal brain “network.” We consid-

ered three different types of dual-target networks:

F IGURE 2 Target anatomical parcels (n = 30) used to generate synthetic behavioral scores
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• Redundant network in which the behavioral score is reduced only if

both target parcels are lesioned (one minus the minimum lesion load

of the two parcels is used to generate the synthetic behavioral score).

• Fragile network in which the behavioral score is reduced if either

target is lesioned (one minus the maximal lesion load of the two

parcels is used to generate the synthetic behavioral score; corre-

sponds to what Pustina et al., 2018 called the “OR” rule for gener-

ating multiregion simulations and approximates the partial injury

problem described in Rorden, Fridriksson, & Karnath, 2009).

• Extended network in which the behavioral score is reduced propor-

tionally to the overall damage to the two regions, which is similar to

the single target simulation except the parcel is divided into two

spatially separate components (one minus the average lesion load of

the two parcels is used to generate the synthetic behavioral score;

corresponds to what Pustina et al., 2018 called the “AND” rule).

For the dual-target simulations, we only analyzed results with the

larger 16 parcels, moderate behavioral noise level (0.36 SD), and lesion

smoothing at 4 mm FWHM. We tested all 120 pairwise combinations

of the target parcels for each type of network. The number of patients

was varied systematically from n = 64 to 208. We did not use n = 32

or n = 48, because preliminary results showed a lack of power with

this sample size. We only used the NorCal dataset for this analysis for

consistency across these simulations.

2.5.3 | False positive simulations

In the false positive simulation, the behavioral variable consisted of

pure Gaussian white noise. Any clusters detected in this simulation

are thus false positives. The number of patients included in the false

positive simulation was systematically varied (from n = 32 to 128),

along with lesion mask smoothing values (0 mm vs. 4 mm Gaussian

FWHM). Given that a proper FWER correction for all methods was

implemented in our study, false positive results for each method were

produced in only 5% of trials in these simulations. Accordingly, given

the parameters studied in order to characterize the false positive

results in a jointly balanced manner we ended up running a very large

number of simulations (�35,000). Subsequently, our evaluation of the

performance of LSM methods is based only on the trials that actually

generated a false positive solution for at least one of the methods,

while all the other simulation runs (where no method produced a false

positive result) were discarded. For trials with false positive results for

a given method, we examined the spatial characteristics of the false

positive clusters, including the size and number of clusters. We also

evaluated which LSM methods produced false positive clusters in an

interrelated fashion, in order to see how much independence the

methods have from each other. This was accomplished by correlating

false positive outcomes between different LSM methods by using an

indicator (dummy) variable for each method. The indicator variable

recorded when the method produced any above threshold result for a

given noise simulation run (1 denoted any false positive result and

0 indicated that a blank map was returned).

2.5.4 | Measures of LSM success in simulation
analyses

As a proxy for statistical power in both single and dual-target simula-

tions, we calculated the percentage of trials that yielded any signifi-

cant (above-threshold) LSM statistical values (referred to here as the

probability of obtaining a positive result).

To gauge the accuracy of an LSM method in our single and dual

anatomical target simulations, we calculated two types of accuracy

measures: distance and overlap. For each measure, the target anatom-

ical parcel, whose lesion load was used to generate the specific syn-

thetic behavioral score, was compared to the LSM output map (LSM

thresholded statistical map). If an LSM method fully identified the

underlying substrate, then the target parcel and the LSM output map

should overlap perfectly. Our measures of accuracy were selected to

provide a comprehensive evaluation of the precision of the different

LSM methods.

Distance-based measures were used to compare a single target

anatomical parcel to the LSM output. Three different indices of the

LSM output map position were used: mean centroid location

(COMLSM), mean centroid location weighted by statistical values

(wCOMLSM), and maximum statistic location (MaxLSM). Likewise, two

different indices of the target anatomical parcel position were

employed: mean centroid location (center of mass; COMtarget), and

nearest location to the LSM output map position (Closesttarget). This

resulted in six possible measures used to evaluate the accuracy of

mapping of single target location (i.e., distance between target parcel

and LSM output). See Figure 3 for an illustration of these different

indices. Distance-based measures were not used for evaluation of

dual-target simulations, because distances between the target parcel

and LSM output could not be calculated unambiguously in this

instance.

Overlap-based measures included overlap and weighted overlap

metrics between target anatomical parcel(s) and LSM output map.

First, we used the dice coefficient, which is a simple measure of over-

lap between two binary maps, with 1 being perfect overlap between

the two maps and with zero voxels falling outside of the overlapping

area, and 0 being no overlap between the two (calculated as propor-

tion of area 2B to the combined areas of the anatomical target and

LSM cluster [A + 2B + C] in Figure 4). In addition, we also looked at

the proportion of false negatives (part of the anatomical target not

covered by statistically significant LSM values—A) and false positives

(statistically significant LSM values falling outside the anatomical

target—C) relative to the combined areas of the anatomical target and

LSM cluster (A + 2B + C) to better understand what is driving specific

dice values (see Figure 4). While the dice coefficient remains a stan-

dard means of measuring mapping accuracy, there are two clear limi-

tations to this measure. First, the dice coefficient is greatly dependent

on the size of the parcels being compared, with larger parcels generat-

ing a larger dice index compared to smaller regions, even when the

relative overlap is smaller (Pustina et al., 2016). Second, the actual sta-

tistical values of the LSM output are not taken into account in the cal-

culation of the dice index. To account for this latter limitation, we also
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computed a one-sided Kuiper (OSK) distribution difference (Rubin, 1969)

between statistically significant LSM values inside the target anatomi-

cal parcel(s) versus outside. This measure compares the LSM statistical

values outside the target (C) to those inside the target (B) and it also

assigns zero values to target areas not reaching threshold in the LSM

output (A) (see Figure 4). The idea is that we want to reward finding

LSM hotspots inside the anatomical target(s) while ignoring lower

values in LSM clusters that are outside the target. OSK values range

from −1 to 1 with 1 representing that the entire target is covered with

LSM statistical values higher than all those outside the target; −1 rep-

resenting that the lowest LSM values (or none at all) are inside the tar-

get, and 0 representing no difference in LSM statistic distributions

inside versus outside the target anatomical parcel.

2.6 | LSM analysis with real behavioral scores

In addition to the simulation analysis with synthetic behavioral

scores, we also compared ULSM and MLSM methods using real

behavioral scores. These data were generated from a subset of

patients in the NorCal dataset (n = 168) who met specific inclusion

criteria (described above in the participants section) and who were

tested on speech fluency, single-word auditory comprehension, and

repetition subtests from the WAB (Kertesz, 1982, 2007). Since the

aim of the current paper was to evaluate performance of different

LSM methods with real behavioral data under typical conditions,

F IGURE 4 One-sided Kuiper (OSK) measure of weighted overlap. Left: The lesion symptom mapping (LSM) statistic values inside the target
(B) are aggregated with 0's from areas inside the target not intersecting the LSM cluster (A) and both are compared with LSM values outside the
target (C). Right: the cumulative distribution function (CDF) from LSM values Inside (A + B) vs. Outside (C) the target are compared and scored by
subtracting the maximal CDF differences (P for C > A + B and N for C < A + B) from each other. To get a sense of how OSK values represent
distributional separation, two 1-dimensional standard Gaussian distributions being separated by d units obey the approximating equation
OSK = 0.3778 • d—0.0092 • d3, for d from [−4 to 4]

F IGURE 3 Visual representation of six possible distance-based
measures used to evaluate the accuracy of mapping in single target
simulations. The lesion symptom mapping (LSM) map is represented
as a contour heat map, and the hypothetical anatomical target parcel
is a pink square on the right. Three different indices of the LSM output
map position are used: mean centroid location (COMLSM), mean
centroid location weighted by statistical values (wCOMLSM) and
maximum statistic location (MaxLSM). The six distances are
represented by distinct lines: solid gray for distances from the center
of mass of the anatomical target (COMtarget) and dashed black for the
nearest location to the LSM output map position (Closesttarget)
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we used a number of standard covariates. So in these analyses, in

addition to lesion volume, we also covaried for age, education, gen-

der, months poststroke (log-transformed), test site (referring to one

of the two locations where behavioral data were collected), image

resolution (referring to the resolution of the original scan: low or

high), and overall aphasia severity (WAB AQ minus the target sub-

score). The last covariate allowed us to account for overall aphasia

severity, while focusing on the specific language function. Lesion

smoothing was done at 4 mm FWHM. The minimum power per

voxel was 0.25 at p < .001 for a d0 of 1.

We also performed 100 repetitions of the same 3 analyses but

with 75% subsampling (n = 126) of the original full cohort in order to

determine the stability of the solutions for each given LSM method.

We considered the original LSM map generated with the full cohort

(n = 168) to be the “target parcel” in this case and correspondingly

analyzed the stability of the results obtained on subsequent runs

(n = 126) with the same metrics we used to analyze the single target

simulation results. We then tested whether there were significant dif-

ferences between the different LSM methods with respect to the sta-

bility of the results produced.

2.7 | Statistical analyses

Simulations with synthetic behavioral data were performed in a fully

crossed manner: 6072 runs for the single target simulation and

10,800 runs for the dual-target simulation, generating 13 LSM maps

for each run. From each run of every LSM map, we collected four data

types: presence of positive results (a binary indicator for the presence

of any above threshold statistical values, no matter the location); over-

lap (dice scores of LSM map with anatomical target(s)); statistic-

weighted overlap (OSK, Figure 4), and, for the single target case, six

distance measures (Figure 3) between the LSM map cluster(s) and the

anatomical target.

Analysis of important differences between each simulation's

factors was established using mixed between/within analysis of var-

iance (ANOVA) applied to each fully crossed dataset type where

we treated anatomical target parcel location as the random factor.

We used high-speed ANOVA software (CLEAVE, nitrc.og.projects/

cleave) to compute partial omega squared) effect sizes (Olejnik &

Algina, 2004) for factors and first-order interactions. Typically,

weak, moderate, and strong partial omega effect sizes are taken to

be 0.2, 0.5, and 0.8, respectively (Keppel, 1991). We used partial

omega squared cutoff of 0.35 to restrict ourselves to reporting

moderate or strong effects (unless otherwise noted). Finally, we

note that the distance, dice, and OSK values often did not conform

to a Gaussian distribution as required by ANOVA. In these

instances, we used a Kumaraswamy distribution (Jones, 2009) to

model and then transform datasets into an approximately symmet-

ric unimodal form (α = β = 2) prior to ANOVA. In the presentation

of results, we focus specifically on the effect of different LSM

methods on the outcomes and their interactions with other factors.

Additionally, we also looked at the different distance-based spatial

accuracy metrics as factors and explored whether they yielded simi-

lar accuracy estimates or not. In the results, we concentrate specifi-

cally on effect sizes rather than significance testing, given that

large-scale simulations produce so much data, that even tiny differ-

ences can be significant (Kirk, 2007; Schmidt & Hunter, 1995;

Stang, Poole, & Kuss, 2010).

The same ANOVA analyses were performed on the subsample

analysis of the real behavioral data by using the full analysis LSM maps

as targets for their respective LSM variant (e.g., SVR target for SVR

LSM analysis). The only addition was that we included the maximum

statistic location of the target ROI as another centroid to anchor three

more distances per LSM map, because these target ROIs (the n = 168

maps) already have statistics.

3 | RESULTS

3.1 | Single anatomical target simulations

3.1.1 | Probability of positive results

For single anatomical target simulations, we first evaluated the proba-

bility of obtaining positive results (significant voxels) for the different

LSM methods (see Table 1 for mean simulation values across all factor

levels). Overall, all LSM methods demonstrated probability of positive

results greater than 80% with a sample size of 48 or larger, but the

probability varied substantially across LSM methods (ω2
p= .71). ULSM

methods demonstrated the greatest probability to detect significant

voxels for smaller sample sizes, while MLSM methods required on

average 10–20 more participants to achieve comparable levels of pos-

itive results up to a sample size of 80, when all methods reached close

to 100% probability of obtaining positive results. See Appendix A for

additional information on this analysis for single target simulations

(Figure A1).

3.1.2 | Spatial accuracy using distance-based
metrics

The spatial accuracy of the different LSM methods using

distance-based metrics was evaluated (see Table 1 for mean dis-

placement error values). There was a main effect of LSM Method

on accuracy (ω2
p = .84). ULSM methods demonstrated numerically

higher mean accuracy across all output map locations and target loca-

tions, with the average displacement error ranging from 6 to 7.5mm.

Average displacement error across MLSM methods (excepting SVR)

ranged from 8 to 13mm. Across sample sizes, the conservative ULSM

methods (T-max and T-nu = 125) and SVR produced the most accu-

rate maps. Figure 5 shows the spatial displacement error based on

mean MaxLSM to Closesttarget (these two metrics in combination pro-

vide the highest accuracy estimates; more on this below) of the differ-

ent LSM methods at different sample sizes. As can be seen in

Figure 5, spatial displacement error varied as a function of sample size

1080 IVANOVA ET AL.
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across all LSM methods, but the interaction between Sample Size and

LSM Method did not reach the preselected effect size. Overall, larger

Sample Size (ω2
p = .63) and Mask Smoothing (ω2

p = .36) had indepen-

dent positive effects on the accuracy of all LSM methods. Addition-

ally, accuracy of LSM methods varied across the different anatomical

parcels: The Rolandic operculum was detected most accurately, and

the post central region was detected least accurately. See Figure 6 for

displacement error across 16 anatomical parcels and LSM methods.

Figure 7 shows LSM output maps for two regions (planum temporale

and pars triangularis) across different LSM methods.

As expected, the average spatial displacement error varied signifi-

cantly depending on which metric was used for determining LSM out-

put map location (ω2
p = .62; COMLSM, wCOMLSM, MaxLSM) or target

location (ω2
p = .82; COMtarget, Closesttarget). Use of MaxLSM as the mea-

sure of LSM output map and Closesttarget as the measure of target

parcel location led to the highest accuracy estimates. Additionally,

measures of LSM output map location strongly interacted with behav-

ioral noise level (ω2
p = .81), sample size (ω2

p = .81), and mask smoothing

(ω2
p = .54). With higher behavioral noise levels, mean centroid location

measurements (both COMLSM and wCOMLSM) improved, while accu-

racy measured via MaxLSM decreased. wCOMLSM was the most stable

across all noise levels. With larger sample size, spatial accuracy

improved, particularly, as indexed by the MaxLSM measure. Lesion

mask smoothing was most beneficial for the MaxLSM measure.

Tables with the mean simulation values for these analyses and further

information on different distance-based metrics can be found in

Appendix A (Tables A1–A3).

An additional post hoc analysis was run with smaller-sized ana-

tomical targets (n = 30) and the highest behavioral noise level (0.71

SD), with and without lesion size as a covariate. Using lesion size as a

covariate resulted in higher spatial accuracy of LSM output maps

across all sample sizes and all LSM methods (ω2
p = .87, mean displace-

ment of 8.6mm vs. 12.1mm without it). The effect of covarying for

lesion size varied as factor of LSM Method (ω2
p = .43) with MLSM

methods showing more improvement in spatial accuracy (3–8mm) rel-

ative to ULSM methods (2–3mm) with the lesion size covariate (see

Appendix A, Table A4).

3.1.3 | Spatial accuracy with overlap-based metrics

Spatial accuracy as measured by dice coefficient values varied signifi-

cantly across LSM Methods (ω2
p = .93). According to this measure

ULSM (T-max and T-nu = 125) and SVR had the highest spatial accu-

racy. However, the mean dice index values were very low across all

LSM methods (ranging from .17 to .02; see Table 1), rendering the

dice coefficient relatively uninformative as a metric for evaluating

overlap between LSM output map and the target anatomical parcel.

Behavioral Noise Level (ω2
p = .86), Sample Size (ω2

p = .79), and Mask

Smoothing (ω2
p = .41) all affected the spatial accuracy as measured by

F IGURE 5 Displacement (in mm) of lesion symptom mapping (LSM) output map position for single target simulations across different LSM
methods at different sample sizes calculated as the average distance between maximum statistic location (MaxLSM) and nearest location on the
target parcel to the LSM output map (Closesttarget). The left side of this figure focuses on small sample sizes as most representative of typical LSM
studies, since minimal improvements in accuracy are observed for samples larger than 128
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F IGURE 6 Average displacement error (mean of all distance-based metrics) of lesion symptom mapping (LSM) output map position for single
target simulations across LSM methods for different anatomical parcels. Anatomical parcels are presented left to right from most accurately
detected to least accurately detected

F IGURE 7 Left side: Lesion symptom mapping (LSM) output maps for single target simulations across all LSM methods for planum temporale
(one of the most accurately detected regions) and pars triangularis (one of the least accurately detected regions) for a sample size of 64 (typical
for single target simulations), medium behavioral noise level with lesion mask smoothing (4 mm). Right side: LSM output maps for dual-target
simulations for these two regions for the three network types (redundant, fragile, extended) for a sample size of 112, medium behavioral noise
level, and lesion mask smoothing (4 mm). On all the LSM maps, the location of the target is denoted by a black circle placed at the center of mass
of the corresponding anatomical parcel(s) generating the synthetic score. The circle is used for visualization purposes only
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dice coefficients. Generally, dice coefficients were larger (more accu-

rate) with increased behavioral noise levels and no mask smoothing

but decreased with larger sample sizes as the significant clusters

became larger and extended beyond the target parcel. First-order

interactions between LSM method× sample size (ω2
p = .49) and LSM

method× behavioral noise level (ω2
p = .46) were significant (Figure 8).

As a post hoc analysis to check whether our low dice index values

may be the result of using thin, small volume ROIs, we correlated the

overall mean dice coefficient values for each ROI with the volume of

the ROI itself (using all the small and large ROIs [n = 46] from the sin-

gle target simulations above). We found a large positive Pearson cor-

relation (r = .88, p < .001), suggesting that indeed our dice coefficient

values would have been higher if larger ROIs were used, such as the

AAL atlas areas used by Sperber, Wiesen, and Karnath (2019).

Also, we looked at the proportion of false negatives and false pos-

itives in the LSM output across LSM methods and sample sizes

(Figure 9). With increase in sample size, we observed a sharp decline

in the proportion of false negatives across all LSM methods, with

sparser methods showing greater changes. However, for false posi-

tives an inverse effect was seen: the proportion of false positives in

LSM output increased across sample sizes, and overall showed more

change than the false negatives effects. ULSM T-max and SVR dem-

onstrated the lowest rates of false positives across sample sizes. Thus,

the observed decline in the dice coefficient values was largely driven

by greater increase in the proportion of false positives in the LSM

output.

In contrast to the dice coefficient values, OSK distribution values

were substantially higher and showed higher variability across factor

levels, rendering it more useful than the dice coefficient for evaluation

of spatial accuracy (see Table 1). The OSK distribution statistic greatly

varied across different LSM methods (ω2
p = .85). Liberal ULSM

methods (ULSM T-0.01 and T-0.001) and SVD showed the highest

OSK values, with the advantage being particularly evident

with smaller sample sizes. Behavioral noise level (ω2
p = .96), sample size

(ω2
p = .95), and Mask Smoothing (ω2

p = .80) all had a strong effect on

the OSK statistic. Larger sample sizes, lower noise levels, and mask

smoothing resulted in higher OSK distribution statistic values. First-

order interactions between these factors also demonstrated moderate

effect sizes (ω2
p ranged from .36 to .50). LSM methods showed varying

degrees of improvement as sample size increased (Figure 10, top

panel). ICA-L1, ICA-L2, SVR, and ULSM T-max performed the worst at

small sample sizes but showed the most improvement with increased

sample sizes, although still performing below the remaining LSM

methods. Higher behavioral noise levels required larger sample sizes

to achieve similar levels of accuracy (Figure 10, middle panel). Further,

different LSM methods demonstrated variable susceptibility to behav-

ioral noise, with sparser solutions showing higher susceptibility to

behavioral noise (more pronounced decrease in OSK values)

(Figure 10, bottom panel).

3.2 | Dual anatomical target simulations

Dual-target simulations were run on three network types: redundant,

fragile, and extended. LSM Method, sample size and type of network

all had a strong effect on the probability of obtaining a positive result

F IGURE 8 Dice index as a function of
lesion symptom mapping (LSM) method
and sample size (top panel) or behavioral
noise level (bottom panel) for single target
simulations
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(ω2
p ranged from .80 to .86; see Table 2 for mean simulation values). A

sample size of 64 or larger was required to achieve a probability of

80% for all three network types. Two-way interactions between these

factors demonstrated medium to large effect size (ω2
p ranged from .36

to .50) (see Appendix A, Tables A5 and A6 for relevant data). The

Redundant network was the hardest to detect for all LSM methods,

requiring a much larger sample size to obtain probability levels similar

to that of the fragile and extended networks.

Spatial accuracy of the detected networks (as determined by

the OSK overlap measure) greatly varied based on the LSM method

(ω2
p = .95). SVD and LPCA (both L1 and L2), as well as ULSM

T-0.01 showed consistently positive values (implying that values

inside the target parcels were higher than outside) for sample

size greater than 80 (Figure 11, top panel). Overall, OSK values

were much lower for the dual-target simulations. All LSM

methods were numerically less accurate in detecting anatomical

networks compared to the single target situation (average OSK

across all LSM methods of 0.01 for networks vs. 0.5 for single

targets; for best performing MLSM method OSK of 0.25

vs. 0.66, respectively). Effect size for sample size (ω2
p = .98), Type

of Network (ω2
p = .84), and first-order interactions of LSM method ×

type of network (ω2
p = .54) and LSM method× sample size (ω2

p = .61)

were also large. The extended network resulted in the highest spatial

accuracy, and the redundant network resulted in the lowest spatial

accuracy across all LSM methods (Figure 11, bottom panel). A similar

pattern was observed for the dice coefficient values, although with

significantly smaller values and smaller variation between LSM

methods (see Appendix A, Table A7). Patterns in the proportion of

false negatives and false negatives across sample sizes were similar to

those observed in single target simulations (see Appendix A,

Table A8). See also Figure 7 for LSM output maps for the three net-

work types for planum temporale and pars triangularis regions across

different LSM methods.

3.3 | False positive simulations

For the false positive simulations, SVR and ULSM T-max performed

best, yielding the smallest number of clusters with the smallest num-

ber of voxels in those 5% of trials when a false positive solution was

produced (see Table 3). Sample size and mask smoothing did not have

a significant impact on the characteristics of false positive solutions. A

Pearson correlation analysis of false positive outcomes (whether a

false positive solution was present or not) between different LSM

methods showed that false positive results were not produced consis-

tently across different LSM methods. The correlation of false positive

outcomes was lowest between ULSM and MLSM methods

(Figure 12). In particular, PLS and SVD had low correlations with the

other methods.

3.4 | LSM analysis of real behavioral data

We next compared results across the different LSM methods, using

real behavioral data collected from 168 patients from the NorCal

dataset. The behavioral data consisted of WAB language subscores

F IGURE 9 Proportion of false
negatives (part of the anatomical target
not covered by statistically significant
lesion symptom mapping [LSM] values)
shown in the top panel and false positives
(statistically significant LSM values falling
outside the anatomical target) shown in
the bottom panel. Proportions are
calculated relative to the combined areas

of the anatomical target and LSM cluster
as a function of LSM method and sample
size for single target simulations
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for speech fluency, single-word auditory comprehension, and verbal

repetition (Kertesz, 1982, 2007).

Results showed distinct areas identified for different behavioral

scores, such as frontal regions for speech fluency and posterior tempo-

ral regions for single word comprehension (see Figure 13 for LSM maps

across methods). However, as can be seen in Figure 13, substantial vari-

ability in the identified regions was observed between different LSM

methods. MLSM methods tended to identify more regions, including

regions not typically associated with the behavior (e.g., frontal regions

for single-word comprehension). In contrast, ULSM maps typically clus-

tered around the maximum statistic location more traditionally associ-

ated with the behavior (e.g., posterior temporal cortex for single-word

comprehension). The methods that provided more sparse solutions

(smaller LSM clusters) showed better differentiation between different

behaviors under examination (e.g., conservative ULSM methods

and ICA).

Since there is no ground truth in the case of real behavioral data,

we evaluated accuracy in terms of the stability of the obtained solu-

tions using a random subsampling approach for n = 126 (using the full

sample as the target map). The LSM maps produced in the subsample

analysis varied between themselves and often clearly differed from the

full sample map (see again Figure 13). Stability varied substantially

across LSM techniques, as shown by spatial metrics averaged

across the 100 subsample analyses and by the average correlation

between the full LSM output and each of the subsample analyses (see

Table 4). The methods that provided more dense solutions (larger LSM

clusters) tended to show higher stability of results (e.g., liberal ULSM

methods and PLS). Moderately conservative ULSM methods showed

higher stability of results compared to MLSM as indicated by lower

average displacement and higher OSK statistic, as well as higher

correlations.

Finally, when evaluating the stability of the subsampling analyses

substantial variability across different distance-based metrics was

observed (see Table 5). The maximum LSM statistic of each subset

LSM map usually landed on or very near the full target LSM map

(0.3 mm), but often not very close to the full map's maximum value

(20.6 mm). Since the location of the maximum statistic is most com-

monly reported in LSM papers, we also compared the stability of the

F IGURE 10 One-sided Kuiper (OSK)
distribution statistic as a function of the
lesion symptom mapping (LSM) method
and sample size (top panel), behavioral
noise level and sample size (middle panel)
or LSM method (bottom panel) for single
target simulations
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different LSM methods using this metric (based on mean MaxLSM to

Closesttarget; see Displacement of MaxLSM in Table 4). Again, moder-

ately conservative ULSM methods showed higher stability (range:

0.6–0.8 mm) relative to MLSM methods (range: 0.8–2.6 mm) with the

exception of PLS.

4 | DISCUSSION

In the current study, we conducted the first comprehensive,

empirical comparison of several univariate and multivariate LSM

methods. The methods were evaluated with respect to several

characteristics, including the probability of obtaining positive

results, spatial accuracy, and robustness. Both synthetic and real

datasets were employed across a range of relevant parameters,

including sample size, lesion smoothing, noise level, and type of

network. A number of different metrics were used to evaluate

spatial accuracy. Cumulatively, our analyses indicated that both

ULSM and MLSM methods can be equally robust in locating brain

behavior relationships, depending on the design of the study, the

research question being asked, and with proper spatial metrics.

The results provide crucial insights into the accuracy of different

LSM methods and their susceptibility to artifact, providing a first

of its kind data-driven navigational guide for users of LSM

analyses.

4.1 | Comparison of ULSM and MLSM methods

For single anatomical target simulations with synthetic behavioral

data and real lesion data, ULSM methods with conservative

FWER thresholds (e.g., T-max and T-nu = 125) and some of the

simpler data reduction (e.g., SVD-based) and voxel-level (particu-

larly SVR) MLSM methods showed comparably good spatial accu-

racy. ULSM methods with conservative FWER thresholds and

SVR also demonstrated the lowest proportion of false positives

in the final solution. The majority of MLSM methods required on

average 10–20 more participants than ULSM methods, in order

F IGURE 11 One-sided Kuiper (OSK)
weighted-overlap statistic as a function of
the lesion symptom mapping (LSM)
method and sample size (top panel) or
type of network (bottom panel) for dual-
target simulations
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to achieve a similar probability of obtaining significant results

and spatial accuracy.

With respect to dual-target simulations (i.e., identifying a net-

work), the highest spatial accuracy was obtained with ULSM methods

that employed more liberal cluster-based FWER thresholds (e.g.,

T-0.01) and some of the MLSM methods with dimension-reduced

lesion data (e.g., LPCA). The dice coefficient values for dual-target

simulations were low across all LSM methods and network locations.

Thus, if a dice coefficient is used as a measure of accuracy (as was

done previously in Pustina et al., 2018), there is no practical difference

between ULSM and MLSM methods in their ability to detect and

localize networks (cf. the dice values in Pustina et al.). However, if

LSM statistical values are taken into account when interpreting locali-

zation of results (e.g., the OSK distribution of inside target vs. outside

target statistics), there are advantages to some of the MLSM methods

(LPCA, SVD) in detecting dual-target networks. Still, the accuracy of

localization of dual-target networks was substantially lower overall

than localization of a single target across all methods. Thus, all LSM

methods, both ULSM and MLSM show a limited ability to accurately

identify dual-target networks. Further, our results unequivocally high-

light the importance of having a sample with ≥100 participants in

order to have sufficient power and accuracy to detect dual-target net-

works, in particular, redundant networks, which were more difficult to

accurately identify across methods.

Additionally, our results clearly demonstrate that not all MLSM

methods are equally good at detecting networks. For instance, SVR was

comparable to the more conservative ULSM methods in the current

study (see Sperber, Wiesen, Goldenberg, & Karnath, 2019; Sperber,

Wiesen, & Karnath, 2019 for more on this). In general, SVR performed

similarly to ULSM methods across all simulations, highlighting the fact

that the version of SVR we used with default settings (DeMarco &

Turkeltaub, 2018) was tuned to work more like a ULSM method.

With respect to false positive simulations, ULSM methods with

conservative FWER thresholds (T-max and T-nu = 125) and SVR per-

formed best. Specifically, ULSM T-max and MLSM SVR had the low-

est number of voxels in their false positive solutions. Most of the

MLSM methods generally separated the false positive solutions into a

large number of spatially disconnected clusters (i.e., false positive net-

works). Thus, these false positives parallel the kinds of solutions that

each method is optimized to detect when there is a valid brain–

behavior relationship. Not surprisingly, there were moderate correla-

tions in false positive clusters between the five ULSM variants and

SVR and also between similar data reduction techniques (primarily L1

and L2 solution types). In contrast, there were low correlations

between false positive clusters in ULSM versus MLSM methods.

Based on these findings, we suggest that both ULSM and MLSM

methods should be used in tandem, given an adequate sample size for

each method, to increase confidence in the results of an LSM analysis.

Real findings will be consistent across different classes of LSM

methods, but spurious findings will be inconsistent.

With respect to LSM performance on the real behavioral data,

moderately conservative ULSM (T-nu = 125 and T-0.001) and specific

MLSM methods (ICA, SVD) identified largely similar regions. This is

again in line with previous empirical studies that employed both

ULSM and MLSM methods to investigate brain–behavior relationships

and yielded highly coherent results between the two approaches

(e.g., Fridriksson et al., 2018; Mirman, Zhang, Wang, Coslett, &

Schwartz, 2015; Thye & Mirman, 2018). However, some MLSM

methods also identified brain regions that are not typically associated

with the behavior under examination. Also, stability (robustness) of

the obtained solutions was generally higher for ULSM, relative to

MLSM methods. On the whole, methods that provided more dense

solutions tended to show higher stability of results (e.g., PLS, ULSM

TABLE 3 Mean values of above-threshold (significant) cluster
characteristics in false positive simulations for the 5% of trials for
each LSM method that yielded false positive results

LSM method Number of clusters Total number of voxels

T-max 1.5 17

T-nu = 125 4.6 312

T-0.0001 1.2 79

T-0.001 1.0 473

T-0.01 1.0 2,429

SVR 1.5 17

PLS 5.5 2,706

ICA-L1 4.7 644

ICA-L2 5.3 712

LPCA-L1 5.4 1,603

LPCA-L2 5.2 1957

SVD-L1 7.1 903

SVD-L2 7.5 982

Abbreviations: ICA, independent component analysis; LPCA, logistic

principal component analysis; LSM, lesion symptom mapping; PLS, partial

least squares; SVD, singular value decomposition; SVR, support vector

regression.

F IGURE 12 Pearson correlations between false positive
outcomes across different lesion symptom mapping (LSM) methods
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F IGURE 13 Results of lesion symptom mapping (LSM) analysis of real behavioral data across all LSM methods. For each LSM method, output
maps are presented for the three language variables under examination (speech fluency, single-word auditory comprehension, verbal repetition):
for the full sample (n = 168) and two random subsamples (n = 126)

TABLE 4 Mean subsampling analyses results: probability of obtaining positive results, as percentage of trials where significant voxels were
detected (positive results [%]), average displacement error across all distance metrics (displacement average [mm]), average distance between

maximum statistic and closest voxel within the target ROI (displacement of MaxLSM [mm]), Dice index, OSK distribution statistic (OSK statistic: −1
worst to +1 best), and average correlation between the full sample and the subsampling LSM maps (correlation)

LSM method

ULSM

T-max

ULSM T-

nu = 125

ULSM
T-

0.0001

ULSM
T-

0.001

ULSM

T-0.01 SVR PLS

ICA-

L1

ICA-

L2

LPCA-

L1

LPCA-

L2

SVD-

L1

SVD-

L2

Positive

results (%)

100 —a 100 100 100 100 100 94.3 99 98.7 100 91.3 76.7

Displacement

average

(mm)

10.7 10.1 10.4 10.1 9.9 11.6 8.1 17.2 15.2 14.1 12.7 12.2 12.1

Displacement

of MaxLSM
(mm)

1 0.6 0.8 0.6 0.5 1.4 0.7 2.5 1.3 1.2 1.9 0.8 2.6

Dice index 0.47 0.69 0.6 0.73 0.83 0.44 0.89 0.2 0.34 0.54 0.67 0.57 0.32

OSK statistic −0.47 −0.16 −0.3 −0.08 0.2 −0.43 0.6 −0.79 −0.69 −0.38 −0.16 −0.27 −0.11

Correlation 0.1 0.31 0.19 0.37 0.57 −0.03 0.86 −0.33 0.02 0.03 0.32 0.29 0.06

Abbreviations: ICA, independent component analysis; LPCA, logistic principal component analysis; LSM, lesion symptom mapping; OSK, one-sided Kuiper;

PLS, partial least squares; SVD, singular value decomposition; SVR, support vector regression; ULSM, univariate lesion symptom mapping.
aProbability of obtaining positive results not calculated due to a technical error.
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T-0.01). However, these methods showed less spatial discrimination

with results obtained for different language functions yielding more

similar LSM output maps relative to the sparse solutions. The opposite

pattern was observed for methods providing sparse solutions

(e.g., ULSM T-max, SVR, SVD-L2, ICA-L1): While they provided clearly

distinguishable solutions for the various language functions, these

solutions were not as robust. Interestingly, although in general SVR

performed similarly to ULSM methods, the stability of LSM maps

obtained with SVR was lower and more akin to MLSM methods.

Overall, moderately conservative ULSM methods (T-nu = 125 and T-

0.001) provided a good balance between a sparse, spatially differenti-

ated solution and robustness of obtained results.

Taken together, these results provide crucial insights into applica-

tion of different LSM methods. As outlined previously (Sperber, 2020;

Sperber, Wiesen, Goldenberg, & Karnath, 2019; Sperber, Wiesen, &

Karnath, 2019), MLSM methods, just like ULSM methods, are suscep-

tible to lesion-anatomical biases resulting in spatial displacement

errors that are at least as pronounced (if not more) than those of

ULSM methods. Since MLSM methods (similarly to ULSM methods)

are based on statistical, but not causal inference, they do not demon-

strate a notable advantage over ULSM methods in overcoming these

limitations (Sperber, 2020). Moreover, in the current study, data

reduction methods in particular often showed pronounced spatial dis-

tortion. It is very likely that these methods can enhance vasculature-

based effects as the brain's vasculature greatly drives lesion structure

similarities and thus determines the dimension-reduced spatial com-

ponents that these methods use. While no single method was able to

fully overcome lesion-anatomical biases and produce a thresholded

LSM map that even approached an exclusive delineation of brain

regions associated with the target behavior, under specific conditions

certain methods performed better than others. ULSM methods dem-

onstrated particularly good performance in terms of accuracy and

robustness for identifying single targets. Here, MLSM methods clearly

lagged in power, accuracy, susceptibility to behavioral noise, and sta-

bility. Although, not all MLSM methods were equally good at identify-

ing networks, in general, they performed better than ULSM in

uncovering various functional dependencies in the lesion data (for a

related argument, see Sperber, 2020). This underscores the notion

that no single LSM method can provide an ultimate solution for esta-

blishing brain correlates of cognitive functioning.

4.2 | Impact of other parameters on LSM accuracy

In addition to the comparison of different LSM methods, we also

investigated the impact of a number of other parameters on mapping

accuracy across methods, including anatomical target location and

size, mask smoothing, behavioral noise level, sample size, and lesion

volume. With respect to target location, we found variable accuracy

across spatial locations, with especially poor performance in cortical

locations on the edge of the lesion masks (areas of lower power). The

size of target parcels (small or large) did not have a substantial impact

on the LSM results for distance-based metrics, with accuracy being

only slightly higher for the smaller parcels in the single anatomical tar-

get simulations. This implies that the current findings with distance-

based metrics are applicable to LSM analyses irrespective of the size

of the hypothetical target parcel(s). The size of the target parcels did

have an impact on dice scores, with larger parcels showing higher dice

coefficient values. These findings reflect a previous interpretation that

the dice index is highly biased by the size of the chosen target parcels

(Pustina et al., 2018) and is not the optimal measure for interpretation

of LSM simulation results.

We also compared the effects of lesion mask smoothing at

0 (no smoothing) versus 4 mm Gaussian FWHM. The 4 mm smoothing

led to improved accuracy of localization across all LSM methods. We

suspect that with real data, smoothing should be even more beneficial

given that in simulations with synthetic behavioral scores there was

effectively no lesion delineation error, anatomical normalization error,

or anatomical size/shape mismatch across patients as there ordinarily

is (typically �5 mm in extent) in stroke patients (Crinion et al., 2007;

Rorden, Bonilha, Fridriksson, Bender, & Karnath, 2012).

Behavioral noise level was also manipulated in the current study,

in order to investigate its impact on accuracy of localization. More

behavioral noise in small sample sizes (n < 100), led to a reduction in

the probability of obtaining positive results, particularly for MLSM

methods. At larger sample sizes (n > 100), behavioral noise did not

considerably diminish this probability. Behavioral noise also negatively

impacted the accuracy of mapping, as evidenced by reduced OSK

values, but had no noticeable impact on distance-based measures of

spatial accuracy.

With respect to sample size, the current findings showed

increased probability of obtaining significant results and accuracy with

increasing numbers of patients, not surprisingly. It is important to

note, however, that the benefit of increased sample sizes on spatial

accuracy plateaued at about 130 participants for all LSM methods in

single target simulations. LSM methods do not appear to be spatially

unbiased statistical methods, and stroke lesions are not entirely ran-

dom (Sperber & Karnath, 2016), so beyond a certain sample size the

increase in coverage and in variability of lesion patterns is minimal

leading to muted effects on accuracy.

Finally, including lesion volume as a covariate significantly

improved spatial accuracy across all LSM methods. The importance of

TABLE 5 Mean accuracy of LSM
subsampling analyses across different
distance-based metrics

Target parcel map position

COM wCOM Max AnyHit

LSM output map position COM 7.9 7.7 20.6 1.7

wCOM 8.2 7.8 20.2 1.6

Max 21.2 20.1 20.6 0.3

Abbreviation: LSM, lesion symptom mapping.
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including lesion volume as a covariate has been shown in previous

studies for ULSM (Sperber & Karnath, 2017) and some MLSM

methods (DeMarco & Turkeltaub, 2018; Zhang et al., 2014). Our cur-

rent findings further reinforce the stipulation that a lesion volume

covariate should be included in all types of LSM analyses.

4.3 | Different metrics of LSM accuracy

Once sufficient power is achieved in LSM analysis, the greatest chal-

lenge lies in accurately differentiating true positives from false posi-

tives. Here, the choice of spatial metrics becomes crucial. Overall, our

simulated results show that the MaxLSM measure (location of the max-

imum statistic of the LSM output map) is the most accurate metric for

identifying the location of the LSM cluster and it continuously and

substantially improves with increasing sample size. Similarly, Pustina

et al. (2018) also demonstrated that peak voxel displacement measure

provided the most accurate mapping for both ULSM and MLSM

methods. The utility of using MaxLSM is reinforced by our results with

real behavioral data, as this metric demonstrated the smallest dis-

placement error relative to other measures in the subsampling analy-

sis. At the same time, the wCOMLSM value (mean centroid location

weighted by statistical values of the LSM output map) was the most

robust metric across varying behavioral noise levels.

In our study, the dice coefficient metric was very low across all

LSM methods and across all spatial locations for both single and dual-

target simulations, similar to other studies that also used small target

parcels (e.g., Pustina et al., 2018). The low dice coefficient was driven

primarily by high rates of false positives that only increased with sam-

ple size as LSM clusters became larger. The target parcels used in the

current study were generally small, and therefore often relatively few

true positives were possible relative to the whole solution, while false

positives quickly accumulated. The OSK distribution comparison sta-

tistic takes into account both statistical values and their localization,

and thus can be considered a type of weighted dice index. Accord-

ingly, when the statistical values were taken into account both inside

and outside the target location, a more nuanced picture emerges,

highlighting advantages for certain methods (e.g., ULSM methods with

liberal cluster-based FWER thresholds, SVD, LPCA) optimized for

more dense solutions. Good OSK performance implies that higher sta-

tistical values end up inside the target ROI. This further reinforces the

idea that statistical values should be taken into account when map-

ping LSM cluster location, rather than treating all above threshold

values equally and uniformly localizing the whole cluster.

4.4 | Recommendations for LSM analysis

In summary, our simulations show that both ULSM and MLSM

methods are similarly effective (and also limited) with respect to the

majority of brain mapping analyses. The choice of a particular LSM

method is largely dependent on the goals of a specific study. When

there is a hypothesis specific to a single anatomical target, ULSM

methods with appropriate corrections (e.g., lesion volume and

permutation-based correction for multiple comparisons) are most

appropriate, as ULSM methods are generally more accurate and

robust at detecting and localizing a single target with a low false pos-

itive rate. When a study is predicting a network of regions, certain

MLSM methods (LPCA-L2 and SVD-L2) and ULSM methods with lib-

eral cluster-based thresholds (ULSM T-0.01) are superior for accu-

rately identifying these multiple anatomical targets in a network. For

studies with small sample sizes (n = 50–80), ULSM methods are pre-

ferred, as the majority of MLSM methods (except SVR) require a

larger number of participants to achieve a comparable level of accu-

racy. Generally, in selection of LSM method(s) particular attention

should be given to the proportion of false positives that each

method produces, as false positives are the primary force behind

observed spatial distortions (the so-called spillover effect). Since the

target region is detected along with surrounding nontarget areas, the

main challenge in interpreting LSM results lies in identification of the

true positives within the resulting LSM map. To counter these spill-

over effects and enhance spatial accuracy of the results a number of

recommendations extend from the current findings which apply to

all LSM techniques.

First, it is imperative to have sufficient statistical power, not just

for the usual reason of minimizing false negatives, but because suffi-

cient power in LSM analyses decreases the spatial error in localization

with proper metrics (more on this below). It is recommended that

power analyses be performed for each analysis and that studies

include a minimum of 50 participants with moderate noise level in the

data (as can be typically expected with behavioral data) to obtain reli-

able results. Also, if one is hypothesizing a network of regions, we rec-

ommend a sample size of n > 100 (for more on sample size required

for different LSM analyses, see Sperber, Wiesen, Goldenberg, &

Karnath, 2019; Sperber, Wiesen, & Karnath, 2019). Studies with small

sample sizes (<50) should utilize alternate types of lesion-based ana-

lyses (e.g., hypotheses-driven or subtraction analyses), as no LSM

method tested here is reliable in such instances. Additionally,

employing hypothesis-driven validation analysis by using an indepen-

dent sample to verify that damage to obtained areas truly leads to

behavioral deficits of interest, will enhance the validity of the results

for all LSM methods (see also Sperber, 2020).

Second, our results also show that lesion mask smoothing at

4 mm improves accuracy of localization across all metrics, even in situ-

ations with no misalignment or lesion mask drawing errors (as in the

case of synthetic data). With real data, lesion mask smoothing might

potentially minimize spatial biases by diffusing lesion delineation and

normalization errors, that areas at the borderline between lesioned

and nonlesioned tissue are always prone to. Smoothing likely down-

plays the critical role of the specific border demarcation, thereby

cumulatively increasing the accuracy of the results. Thus, we recom-

mend mask smoothing to diffuse possible bias in lesion segmentation

and normalization. Lesion volume should always be included as a

covariate for all LSM methods, as it mitigates some of the spatial auto-

correlation effects and results in significant improvement in accuracy

of localization across all sample sizes and LSM methods.
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The final and very critical recommendation arising from our cur-

rent study concerns which metrics should be reported in LSM studies.

As we have empirically shown here, LSM results are always spatially

distorted to a certain degree—no LSM method provided output maps

that were perfectly spatially accurate—so it is important to report

localization using the most robust metrics that take the magnitude of

statistical values into account and tend to highlight the true positives

in the resulting solution. This was evidenced by assessing different

distance-based metrics and comparing dice scores and the OSK distri-

bution statistic. For both distance and overlap-based metrics, taking

statistical value intensity into account enhanced the accuracy of map-

ping. Location of MaxLSM or wCOMLSM provided the most robust

localization across LSM techniques in the current study. Accordingly,

using COMLSM to localize the cluster or alternatively mapping localiza-

tion of the whole cluster that survived correction for multiple compar-

isons (as is often done in LSM studies) is strongly discouraged, as

these metrics are more influenced by stereotypical lesion patterns and

result in mislocalization. This effect is present in both ULSM and

MLSM methods and is not mitigated by an increase in sample size due

to the rising proportion of false positives in the LSM maps. Of all the

metrics, wCOMLSM is least affected by noise, while MaxLSM is typically

closest to the underlying anatomical target and shows a substantial

reduction in spatial displacement with increased sample size. These

metrics should be used when matching spatial position of LSM map

clusters onto standard atlases and anatomically interpreting results.

4.5 | Limitations and directions for future work

Similar to previous simulation studies, we modeled a linear relation-

ship between impairment and lesion location. In reality, brain–

behavior relationships probably follow a more complex pattern and

the presented simulations might not be fully representative of real

behavioral data in the chronic stages of stroke. Furthermore, there

were no location-independent lesion size behavioral effects included

in the simulations with synthetic behavioral data. However, there is

no current consensus about what these more complex patterns would

be and, thus, it is unclear how to model them. Additionally, instead of

linear regression, other statistics could be employed in the ULSM ana-

lyses. In the current study, we used linear regression rather than logis-

tic regression (appropriate when the dependent variable is bounded)

because linear regression is much faster to compute, is more familiar

to users, and is standard in previous studies (Akinina et al., 2019;

Baldo et al., 2013, 2018; Ivanova et al., 2018; Mirman, Chen,

et al., 2015). While linear regression is sufficient to model the per-

fectly linear relationships in synthetic data, real behavioral data might

require a different approach such as the use of nonparametric mea-

sures (Rorden et al., 2007).

Another significant limitation of the current study is the lack of

a sparse version of PLS (Phan et al., 2010) or similar methods, like

SCCAN (Pustina et al., 2018). We did not implement SCCAN in the

current study because it is highly computationally intensive as one

needs to determine several hyperparameters in order to optimize

performance for a given hypothesis/target configuration. Poten-

tially, it might be superior to the MLSM methods evaluated in the

current study and we strongly encourage further exploration of its

capabilities and systematic comparison with the LSM methods that

showed most promise in the current investigation. Still, the results

compiled in Pustina et al. (2018)—low dice scores for outputs (par-

ticularly for dual-target simulations) but good performance for max-

imum distance measures (similar to ULSM methods)—are consistent

with our basic findings here. It is likely that the decision by SCCAN

creators to allow tuning of hyperparameters will give it an advan-

tage over the current implementation of SVR, where the hyper-

parameters were fixed to reproduce ULSM output. In fact, we

predict that if SVR were tested with the same cross validation

hyperparameter tuning that SCCAN uses (i.e., determining hyper-

parameters specifically for each hypothesis/target configuration), it

might match or exceed the performance of MLSM methods tested

above in dual-target simulations (at the cost of extra computational

time and perhaps an increase in sample size). Alternatively, it would

be important to investigate if SCCAN would perform as well with

larger target ROIs, since originally, it has been tuned to detect

sparse solutions, and in Pustina et al. (2018) very small parcels were

used as targets. Also, the robustness of SCCAN's solutions needs to

be determined. All of these outstanding issues require further

investigation along with a more in-depth and systematic explora-

tion of how tuning of features ([hyper]parameters; e.g., cost,

gamma, sparseness) might affect the results different MLSM

methods produce.

For practical reasons, within the current study, we could not com-

prehensively evaluate all factors that could impact outcomes of LSM

analyses. One of these critical factors is the type of lesion volume cor-

rection included in LSM analyses. Overall, in accordance with previous

findings (DeMarco & Turkeltaub, 2018; Sperber & Karnath, 2017;

Sperber, Wiesen, Goldenberg, & Karnath, 2019; Sperber, Wiesen, &

Karnath, 2019; Zhang et al., 2014), the current study once again

underscores the importance of using a lesion volume correction by

empirically demonstrating that it improves spatial accuracy. However,

it was beyond the scope of the study to explore impact of different

types of lesion volume corrections on different LSM methods (as was

done for SVR-LSM by DeMarco and Turkeltaub (2018)). Instead, we

opted for the most conservative approach to lesion volume correction

endorsed by the only publication to date that systematically explored

the impact of different lesion volume corrections on LSM outcomes

(DeMarco & Turkeltaub, 2018). It is possible that alternative correc-

tions, such as direct total lesion volume control promoted by devel-

opers of SVR (Zhang et al., 2014), might yield meaningful results for

other methods as well. This assertion should be comprehensively

explored in future work. Finally, since it is likely that different lesion

volume corrections might lead to selection of different hyper-

parameters (Sperber, Wiesen, Goldenberg, & Karnath, 2019; Sperber,

Wiesen, & Karnath, 2019), this issue should also be addressed in

follow-up investigations.

There are also a number of statistical challenges that are specific to

MLSM that require further exploration. Existing MLSM models require
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(hyper)parameter selection (e.g., cost, gamma, sparseness), but proce-

dures for selecting those parameters are not fully transparent and/or

are likely to be computationally too expensive to be generated auto-

matically (e.g., using nested cross validation; DeMarco &

Turkeltaub, 2018; Pustina et al., 2018). Also, to an average user, it is

not clear how most models arrive at the outcome (i.e., it is not as

straightforward as the general linear model approach in ULSM). This

lack of familiarity will impact the interpretation of results and limit the

ability of the user to know when the method should and should not be

used. Also, on a related note, since models used in MLSM are often

computationally costly, this limits the ability to do post hoc computa-

tions such as random subsampling in order to test the stability of a

given solution. Further, it remains unclear to what extent changing

these parameters alters the obtained pattern of results, and why differ-

ent parameter values are sometimes chosen for analyses within the

same paper (e.g., see Figure 7, p. 164, Pustina et al., 2018). The issue of

transparency in how hyperparameters control solution regularization is

a serious one, as these parameters determine the a priori biases of the

type of solutions that any given MLSM method uses. These concerns

need to be empirically and theoretically addressed in future investiga-

tions. Ideally, computationally efficient and user-friendly interfaces and

guidelines for these advanced algorithms should be provided.

Another avenue for future studies that we are currently pursuing

derives from the prima facie conflicting results of single target simula-

tions and the subsampling analysis of real behavioral data. Specifically,

simulation results demonstrated that with sufficient sample size, the

MaxLSM is almost always inside or next to the target ROI. However,

MaxLSM varied substantially between different LSM maps in the sub-

sample analysis of real data, although it still usually landed on or very

near the full target LSM map. So this in fact may present an opportu-

nity if we can use repeated subsamples to generate an LSM map of

the MaxLSMs from each run: the subsamples might degrade the pres-

ence of modest, variably located, above-threshold LSM values that

are associated with large lesions or spatial autocorrelations in the data

(leading to false positives). Thus, we are now testing the machine

learning techniques of bagging (Kotsiantis, Kanellopoulos, &

Zaharakis, 2006) with LSM in order to more accurately delineate loca-

tions of target regions and counter the pervasive false positive

effects.

5 | CONCLUSIONS

We hope that the current systematic approach to evaluating the prob-

ability of obtaining positive results, accuracy and robustness of LSM

methods across a range of metrics sets a new standard for these types

of comparative studies. Using it as a template for future simulation

analyses and validation of novel methods will help further develop-

ment, understanding, and proper use of LSM.

Our current results demonstrate that given sufficient lesion cov-

erage and statistical power, both ULSM and MLSM methods are able

to reliably identify distinct neural areas associated with a particular

behavior or symptom. Importantly, the stereotypical lesion patterns

characteristic of stroke do not prevent identification of different neu-

ral substrates for different functions under examination when proper

accuracy metrics are used. However, the current study clearly showed

that no LSM method, whether univariate or multivariate, was able to

perfectly delineate brain regions associated with the target behavior.

Simulations revealed no clear superiority of either ULSM or MLSM

methods overall, but rather highlighted specific advantages of differ-

ent methods. Depending on a particular study's sample size and

research questions, different types of LSM methods are more or less

appropriate. Given a sufficiently large sample size, we recommend

implementing both ULSM and MLSM methods with proper correc-

tions and interpretive metrics to enhance confidence in the results. If

the same anatomical foci are identified with both types of methods on

the same dataset, then the results can be considered to be robust and

reliable.

ACKNOWLEDGMENTS

The authors are grateful to Brian Curran and Dr And Turken for ini-

tial assistance with collection of neuroimaging data used in the cur-

rent project. The authors value Dr Robert Knight's contribution to

the anatomical accuracy of lesion reconstructions over the years.

The authors thank Dr Stephen Wilson for developing the original

VLSM software. The authors extend our thanks to the developers

of LESYMAP package (Dr Dorian Pustina and others) for making

their lesion database publicly available. The authors would also like

to thank Dr Christoph Sperber for insightful suggestions on an ear-

lier version of this manuscript. As always, the authors are in debt to

all the individuals with aphasia who have participated in multiple

studies over the years and make this kind of work possible. This

work was supported by NIH/NIDCD grant R01 DC016345 to M. V.

I. and N. F. D. The work of T. H. and J. V. B. was also supported by

VA Clinical Science R&D grant (I01CX001290-01A1). The content

is solely the responsibility of the authors and does not necessarily

represent the official views of the U.S. Department of Veterans

Affairs, the National Institutes of Health, or the United States

Government.

CONFLICT OF INTERESTS

The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT

Research data are not shared per Department of Veteran Affairs pri-

vacy regulations.

ORCID

Maria V. Ivanova https://orcid.org/0000-0001-6598-3501

REFERENCES

Abdi, H. (2010). Partial least squares regression and projection on latent

structure regression (PLS regression). Wiley Interdisciplinary Reviews:

Computational Statistics, 2, 97–106. https://doi.org/10.1002/wics.051

Akinina, Y., Dragoy, O., Ivanova, M. V., Iskra, E. V., Soloukhina, O. A.,

Fedina, O. N., … Dronkers, N. F. (2019). Grey and white matter

1094 IVANOVA ET AL.

https://orcid.org/0000-0001-6598-3501
https://orcid.org/0000-0001-6598-3501
https://doi.org/10.1002/wics.051


substrates of action naming. Neuropsychologia, 131, 249–265. https://
doi.org/10.1016/j.neuropsychologia.2019.05.015.Grey

Baldo, J. V., Arevalo, A., Patterson, J. P., & Dronkers, N. F. (2013). Grey

and white matter correlates of picture naming: Evidence from a voxel-

based lesion analysis of the Boston naming test. Cortex, 49(3),

658–667. https://doi.org/10.1016/j.cortex.2012.03.001
Baldo, J. V., Ivanova, M. V., Herron, T. J., Wilson, S. M., & Dronkers, N. F.

(in press). Voxel-based lesion symptom mapping. In D. Mirman & D.

Pustina (Eds.), Lesion to symptom mapping: Principles and tools.

Baldo, J. V., Kacinik, N., Ludy, C., Paulraj, S., Moncrief, A., Curran, B., …
Dronkers, N. F. (2018). Voxel-based lesion analysis of brain regions

underlying reading and writing. Neuropsychologia, 115, 51–59. https://
doi.org/10.1016/j.neuropsychologia.2018.03.021.Voxel-based

Baldo, J. V., Wilson, S. M., & Dronkers, N. F. (2012). Uncovering the neural

substrates of language: A voxel-based lesion symptom mapping

approach. In M. Faust (Ed.), Advances in the neural substrates of lan-

guage: Toward a synthesis of basic science and clinical research

(pp. 240–250). Oxford: Wiley-Blackwell.

Bates, E., Wilson, S. M., Saygin, A. P., Dick, F., Sereno, M. I., Knight, R. T., &

Dronkers, N. F. (2003). Voxel-based lesion-symptom mapping. Nature

Neuroscience, 6(5), 448–450. https://doi.org/10.1038/nn1050
Boulesteix, A., & Strimmer, K. (2006). Partial least squares: A versatile tool

for the analysis of high-dimensional genomic data. Briefings in Bioinfor-

matics, 8(1), 32–44. https://doi.org/10.1093/bib/bbl016
Calhoun, V. D., Liu, J., & Adali, T. (2009). A review of group ICA for fMRI

data and ICA for joint inference of imaging, genetic, and ERP data.

NeuroImage, 45, S163–S172. https://doi.org/10.1016/j.neuroimage.

2008.10.057

Crinion, J., Ashburner, J., Leff, A., Brett, M., Price, C., & Friston, K. (2007).

Spatial normalization of lesioned brains: Performance evaluation and

impact on fMRI analyses. NeuroImage, 37, 866–875. https://doi.org/
10.1016/j.neuroimage.2007.04.065

Damasio, H., & Damasio, A. R. (1989). Lesion analysis in neuropsychology.

New York, NY: Oxford University Press.

de Haan, B., & Karnath, H.-O. (2018). A hitchhiker's guide to lesion-

behaviour mapping. Neuropsychologia, 115(October), 5–16. https://

doi.org/10.1016/j.neuropsychologia.2017.10.021

DeMarco, A. T., & Turkeltaub, P. E. (2018). A multivariate lesion symptom

mapping toolbox and examination of lesion-volume biases and correc-

tion methods in lesion-symptom mapping. Human Brain Mapping, 39

(11), 4169–4182. https://doi.org/10.1002/hbm.24289

Dronkers, N. F., Ivanova, M. V., & Baldo, J. V. (2017). What do language

disorders reveal about brain–language relationships? From classic

models to network approaches. Journal of the International Neuropsy-

chological Society, 23(9–10), 741–754. https://doi.org/10.1017/

S1355617717001126

Dronkers, N. F., Wilkins, D. P., Van Valin, R. D., Redfern, B. B., &

Jaeger, J. J. (2004). Lesion analysis of the brain areas involved in lan-

guage comprehension. Cognition, 92, 145–177. https://doi.org/10.

1016/j.cognition.2003.11.002

Fridriksson, J., den Ouden, D.-B., Hillis, A. E., Hickok, G., Rorden, C.,

Basilakos, A., … Bonilha, L. (2018). Anatomy of aphasia revisited. Brain,

141(3), 848–862. https://doi.org/10.1093/brain/awx363

Gajardo-Vidal, A., Lorca-Puls, D. L., Crinion, J. T., White, J., Seghier, M. L.,

Leff, A. P., … Price, C. J. (2018). How distributed processing produces

false negatives in voxel-based lesion-deficit analyses.

Neuropsychologia, 115, 124–133. https://doi.org/10.1016/j.

neuropsychologia.2018.02.025

Ghaleh, M., Skipper-Kallal, L. M., Xing, S., Lacey, E., Dewitt, I.,

Demarco, A., & Turkeltaub, P. (2017). Phonotactic processing deficit

following left-hemisphere stroke. Cortex, 99, 346–357. https://doi.

org/10.1016/j.cortex.2017.12.010

Gilhodes, J., Dalenc, F., Gal, J., Zemmour, C., Leconte, E., Boher, J., &

Filleron, T. (2020). Comparison of variable selection methods for time-

to-event data in high-dimensional settings. Computational and Mathe-

matical Methods in Medicine, 2020, 1–13.
Griffis, J. C., Nenert, R., Allendorfer, J. B., & Szaflarski, J. P. (2017). Damage

to white matter bottlenecks contributes to chronic language impair-

ments after stroke. NeuroImage: Clinical, 14, 552–565.
Hayasaka, S., & Nichols, T. E. (2003). Validating cluster size inference: Ran-

dom field and permutation methods. NeuroImage, 20(4), 2343–2356.
https://doi.org/10.1016/j.neuroimage.2003.08.003

Hsieh, F. Y., Bloch, D. A., & Larsen, M. D. (1998). A simple method of sam-

ple size calculation for linear and logistic regression. Statistics in Medi-

cine, 17, 1623–1634.
Hyvärinen, A., & Oja, E. (2000). Independent component analysis: Algo-

rithms and applications. Neural Networks, 13, 411–430.
Inoue, K., Madhyastha, T., Rudrauf, D., Mehta, S., & Grabowski, T. (2014).

What affects detectability of lesion-deficit relationships in lesion stud-

ies? NeuroImage: Clinical, 6, 388–397. https://doi.org/10.1016/j.nicl.
2014.10.002

Ivanova, M. V., Dragoy, O. V., Kuptsova, S. V., Yu Akinina, S.,

Petrushevskii, A. G., Fedina, O. N., … Dronkers, N. F. (2018). Neural

mechanisms of two different verbal working memory tasks: A VLSM

study. Neuropsychologia, 115(February), 25–41. https://doi.org/10.

1016/j.neuropsychologia.2018.03.003

Jones, M. C. (2009). Kumaraswamy's distribution: A beta-type distribution

with some tractability advantages. Statistical Methodology, 6(1), 70–81.
https://doi.org/10.1016/j.stamet.2008.04.001

Karnath, H.-O., Sperber, C., & Rorden, C. (2018). Mapping human brain

lesions and their functional consequences. NeuroImage, 165, 180–189.
https://doi.org/10.1016/j.neuroimage.2017.10.028

Keppel, G. (1991). Design and analysis: A researcher's handbook. Englewood

Cliffs, NJ: Prentice-Hall.

Kertesz, A. (1982). Western aphasia battery. New York, NY: Grune &

Stratton.

Kertesz, A. (2007). Western aphasia battery—Revised. San Antonio, TX:

PsychCorp.

Kimberg, D. Y., Coslett, H. B., & Schwartz, M. F. (2007). Power in voxel-

based lesion—Symptom mapping. Journal of Cognitive Neuroscience, 19,

1067–1080. https://doi.org/10.1162/jocn.2007.19.7.1067
Kiran, S., Meier, E. L., & Johnson, J. P. (2019). Neuroplasticity in aphasia: A

proposed framework of language recovery. Journal of Speech Language

and Hearing Research, 62(November), 3973–3985.
Kirk, R. E. (2007). Effect magnitude: A different focus. Journal of Statistical

Planning and Inference, 137, 1634–1646. https://doi.org/10.1016/j.

jspi.2006.09.011

Kotsiantis, S. B., Kanellopoulos, D., & Zaharakis, I. D. (2006). Bagged aver-

aging of regression models. In I. Maglogiannis, K. Karpouzis, & M.

Bramer (Eds.), Artificial intelligence applications and innovations

(pp. 53–60). Boston, MA: Springer US.

Krishnan, A., Williams, L. J., Randal, A., & Abdi, H. (2011). NeuroImage par-

tial least squares (PLS) methods for neuroimaging: A tutorial and

review. NeuroImage, 56(2), 455–475. https://doi.org/10.1016/j.

neuroimage.2010.07.034

Luria, A. R. (1980). Higher cortical functions in man (2nd ed.). New York,

NY: Basic Books.

Mah, Y. H., Husain, M., Rees, G., & Nachev, P. (2014). Human brain lesion-

deficit inference remapped. Brain, 137(9), 2522–2531. https://doi.org/
10.1093/brain/awu164

Mehmood, T., Liland, K. H., Snipen, L., & Sæbø, S. (2012). A review of vari-

able selection methods in partial least squares regression.

Chemometrics and Intelligent Laboratory Systems, 118, 62–69. https://
doi.org/10.1016/j.chemolab.2012.07.010

Mirman, D., Chen, Q., Zhang, Y., Wang, Z., Faseyitan, O. K.,

Coslett, H. B., & Schwartz, M. F. (2015). Neural organization of spoken

language revealed by lesion-symptom mapping. Nature Communica-

tions, 6, 1–9. https://doi.org/10.1038/ncomms7762

IVANOVA ET AL. 1095

https://doi.org/10.1016/j.neuropsychologia.2019.05.015.Grey
https://doi.org/10.1016/j.neuropsychologia.2019.05.015.Grey
https://doi.org/10.1016/j.cortex.2012.03.001
https://doi.org/10.1016/j.neuropsychologia.2018.03.021.Voxel-based
https://doi.org/10.1016/j.neuropsychologia.2018.03.021.Voxel-based
https://doi.org/10.1038/nn1050
https://doi.org/10.1093/bib/bbl016
https://doi.org/10.1016/j.neuroimage.2008.10.057
https://doi.org/10.1016/j.neuroimage.2008.10.057
https://doi.org/10.1016/j.neuroimage.2007.04.065
https://doi.org/10.1016/j.neuroimage.2007.04.065
https://doi.org/10.1016/j.neuropsychologia.2017.10.021
https://doi.org/10.1016/j.neuropsychologia.2017.10.021
https://doi.org/10.1002/hbm.24289
https://doi.org/10.1017/S1355617717001126
https://doi.org/10.1017/S1355617717001126
https://doi.org/10.1016/j.cognition.2003.11.002
https://doi.org/10.1016/j.cognition.2003.11.002
https://doi.org/10.1093/brain/awx363
https://doi.org/10.1016/j.neuropsychologia.2018.02.025
https://doi.org/10.1016/j.neuropsychologia.2018.02.025
https://doi.org/10.1016/j.cortex.2017.12.010
https://doi.org/10.1016/j.cortex.2017.12.010
https://doi.org/10.1016/j.neuroimage.2003.08.003
https://doi.org/10.1016/j.nicl.2014.10.002
https://doi.org/10.1016/j.nicl.2014.10.002
https://doi.org/10.1016/j.neuropsychologia.2018.03.003
https://doi.org/10.1016/j.neuropsychologia.2018.03.003
https://doi.org/10.1016/j.stamet.2008.04.001
https://doi.org/10.1016/j.neuroimage.2017.10.028
https://doi.org/10.1162/jocn.2007.19.7.1067
https://doi.org/10.1016/j.jspi.2006.09.011
https://doi.org/10.1016/j.jspi.2006.09.011
https://doi.org/10.1016/j.neuroimage.2010.07.034
https://doi.org/10.1016/j.neuroimage.2010.07.034
https://doi.org/10.1093/brain/awu164
https://doi.org/10.1093/brain/awu164
https://doi.org/10.1016/j.chemolab.2012.07.010
https://doi.org/10.1016/j.chemolab.2012.07.010
https://doi.org/10.1038/ncomms7762


Mirman, D., Landrigan, J., Kokolis, S., Verillo, S., Ferrara, C., & Pustina, D.

(2018). Corrections for multiple comparisons in voxel-based lesion-

symptom mapping. Neuropsychologia, 115, 112–123. https://doi.org/
10.1016/j.neuropsychologia.2017.08.025

Mirman, D., Zhang, Y., Wang, Z., Coslett, H. B., & Schwartz, M. F. (2015).

The ins and outs of meaning: Behavioral and neuroanatomical dissoci-

ation of semantically-driven word retrieval and multimodal semantic

recognition in aphasia. Neuropsychologia, 76, 208–219. https://doi.

org/10.1016/j.neuropsychologia.2015.02.014.The

Nichols, T. E., & Holmes, A. P. (2001). Nonparametric permutation tests

for functional neuroimaging experiments: A primer with examples.

Human Brain Mapping, 15(1), 1–25. https://doi.org/10.1002/hbm.

1058

Olejnik, S., & Algina, J. (2004). Generalized eta and omega squared statis-

tics: Measures of effect size for some common research designs. Psy-

chological Methods, 8(4), 434–447. https://doi.org/10.1037/1082-

989X.8.4.434

Phan, T. G., Chen, J., Donnan, G., Srikanth, V., Wood, A., & Reutens, D. A.

(2010). Development of a new tool to correlate stroke outcome with

infarct topography: A proof-of-concept study. NeuroImage, 49,

127–133. https://doi.org/10.1016/j.neuroimage.2009.07.067

Phan, T. G., Donnan, G. A., Wright, P. M., & Reutens, D. C. (2005). A digital

map of middle cerebral artery infarcts branch occlusion. Stroke, 36,

986–991. https://doi.org/10.1161/01.STR.0000163087.66828.e9
Price, C. J., Hope, T. M., & Seghier, M. L. (2017). Ten problems and solu-

tions when predicting individual outcome from lesion site after stroke.

NeuroImage, 145, 200–208. https://doi.org/10.1016/j.neuroimage.

2016.08.006

Pustina, D., Avants, B., Faseyitan, O. K., Medaglia, J. D., & Coslett, H. B.

(2018). Improved accuracy of lesion to symptom mapping with multi-

variate sparse canonical correlations. Neuropsychologia, 115, 154–166.
https://doi.org/10.1016/j.neuropsychologia.2017.08.027

Pustina, D., Coslett, H. B., Turkeltaub, P. E., Tustison, N.,

Schwartz, M. F., & Avants, B. (2016). Automated segmentation of

chronic stroke lesions using LINDA: Lesion identification with neigh-

borhood data analysis. Human Brain Mapping, 37(4), 1405–1421.
https://doi.org/10.1002/hbm.23110

Qian, J., Hastie, T., Friedman, J., Tibshirani, R., & Simon, N. (2013). Glmnet

for Matlab. Retrieved from http://www.stanford.edu/�hastie/glmnet_

matlab/

Ramsey, L. E., Siegel, J. S., Lang, C. E., Strube, M., Shulman, G. L., &

Corbetta, M. (2017). Behavioural clusters and predictors of perfor-

mance during recovery from stroke. Nature Human Behaviour, 1(3),

1–10. https://doi.org/10.1038/s41562-016-0038.
Rorden, C., Bonilha, L., Fridriksson, J., Bender, B., & Karnath, H.-O. (2012).

Age-specific CT and MRI templates for spatial normalization.

NeuroImage, 61, 957–965. https://doi.org/10.1016/j.neuroimage.

2012.03.020

Rorden, C., Fridriksson, J., & Karnath, H. O. (2009). An evaluation of tradi-

tional and novel tools for lesion behavior mapping. NeuroImage, 44(4),

1355–1362. https://doi.org/10.1016/j.neuroimage.2008.09.031

Rorden, C., Karnath, H.-O., & Bonilha, L. (2007). Improving lesion-symptom

mapping. Journal of Cognitive Neuroscience, 19(7), 1081–1088. https://
doi.org/10.1162/jocn.2007.19.7.1081

Rubin, H. (1969). Decision-theoretic evaluation of some non-parametric

methods. Purdue University, Department of Statistics, Mimeograph

Series #193.

Schein, A. I., Saul, L. K., & Ungar, L. H. (2003). A generalized linear model

for principal component analysis of binary data. Proceedings of the 9th

International Workshop on Artificial Intelligence and Statistics.

Schmidt, F., & Hunter, J. E. (1995). The impact of data-analysis methods

on cumulative research knowledge: Statistical significance testing,

confidence intervals, and meta-analysis. Evaluation & the Health Profes-

sions, 18, 408–427.

Siegel, J. S., Ramsey, L. E., Snyder, A. Z., Metcalf, N. V., Chacko, R. V.,

Weinberger, K.,… Corbetta, M. (2016). Disruptions of network connectiv-

ity predict impairment inmultiple behavioral domains after stroke.Proceed-

ings of the National Academy of Sciences of the United States of America, 113

(30), E4367–E4376. https://doi.org/10.1073/pnas.1521083113
Sperber, C. (2020). Rethinking causality and data complexity in brain

lesion-behaviour inference and its implications for lesion-behaviour

modelling. Cortex, 126, 49–62. https://doi.org/10.1016/j.cortex.2020.
01.004

Sperber, C., & Karnath, H. O. (2016). Topography of acute stroke in a sam-

ple of 439 right brain damaged patients. NeuroImage: Clinical, 10,

124–128. https://doi.org/10.1016/j.nicl.2015.11.012
Sperber, C., & Karnath, H. O. (2017). Impact of correction factors in human

brain lesion-behavior inference. Human Brain Mapping, 38(3),

1692–1701. https://doi.org/10.1002/hbm.23490

Sperber, C., Wiesen, D., Goldenberg, G., & Karnath, H. (2019). A network

underlying human higher-order motor control: Insights from machine

learning-based lesion-behaviour mapping in apraxia of pantomime.

Cortex, 121, 308–321. https://doi.org/10.1016/j.cortex.2019.08.023
Sperber, C., Wiesen, D., & Karnath, D. W. H. (2019). An empirical evalua-

tion of multivariate lesion behaviour mapping using support vector

regression. Human Brain Mapping, 40, 1381–1390. https://doi.org/10.
1002/hbm.24476

Stang, A., Poole, C., & Kuss, O. (2010). The ongoing tyranny of statistical

significance testing in biomedical research. European Journal of

Epiemiology, 25, 225–230. https://doi.org/10.1007/s10654-010-

9440-x

Stefaniak, J. D., Halai, A. D., & Ralph, M. A. L. (2019). The neural and neu-

rocomputational bases of recovery from post-stroke aphasia. Nature

Reviews Neurology., 16, 43–55. https://doi.org/10.1038/s41582-019-
0282-1

Thye, M., & Mirman, D. (2018). Relative contributions of lesion location

and lesion size to predictions of varied language deficits in post-stroke

aphasia. NeuroImage: Clinical, 20, 1129–1138. https://doi.org/10.

1016/J.NICL.2018.10.017

Tibshirani, R., Bien, J., Friedman, J., Hastie, T., Simon, N., Tay-, J., &

Tibshirani, R. J. (2010). Strong rules for discarding predictors in lasso-

type problems. Journal of the Royal Statistical Society, 74(2),

245–266.
Vaidya, A. R., Pujara, M. S., Petrides, M., Murray, E. A., & Fellows, L. K.

(2019). Lesion studies in contemporary neuroscience. Trends in Cog-

nitive Sciences, 23, 1–19. https://doi.org/10.1016/j.tics.2019.

05.009

Wilson, S. M., Henry, M. L., Besbris, M., Ogar, J. M., Dronkers, N. F.,

Jarrold, W., … Gorno-Tempini, M. L. (2010). Connected speech pro-

duction in three variants of primary progressive aphasia. Brain, 133(7),

2069–2088. https://doi.org/10.1093/brain/awq129

Xu, T., Jha, A., & Nachev, P. (2018). The dimensionalities of lesion-deficit

mapping. Neuropsychologia, 115(September 2017), 134–141. https://
doi.org/10.1016/j.neuropsychologia.2017.09.007

Zhang, Y., Kimberg, D. Y., Coslett, H. B., Schwartz, M. F., & Wang, Z.

(2014). Multivariate lesion-symptom mapping using support vector

regression. Human Brain Mapping, 35(12), 5861–5876. https://doi.org/
10.1002/hbm.22590

How to cite this article: Ivanova MV, Herron TJ, Dronkers NF,

Baldo JV. An empirical comparison of univariate versus

multivariate methods for the analysis of brain–behavior

mapping. Hum Brain Mapp. 2021;42:1070–1101. https://doi.

org/10.1002/hbm.25278

1096 IVANOVA ET AL.

https://doi.org/10.1016/j.neuropsychologia.2017.08.025
https://doi.org/10.1016/j.neuropsychologia.2017.08.025
https://doi.org/10.1016/j.neuropsychologia.2015.02.014.The
https://doi.org/10.1016/j.neuropsychologia.2015.02.014.The
https://doi.org/10.1002/hbm.1058
https://doi.org/10.1002/hbm.1058
https://doi.org/10.1037/1082-989X.8.4.434
https://doi.org/10.1037/1082-989X.8.4.434
https://doi.org/10.1016/j.neuroimage.2009.07.067
https://doi.org/10.1161/01.STR.0000163087.66828.e9
https://doi.org/10.1016/j.neuroimage.2016.08.006
https://doi.org/10.1016/j.neuroimage.2016.08.006
https://doi.org/10.1016/j.neuropsychologia.2017.08.027
https://doi.org/10.1002/hbm.23110
http://www.stanford.edu/%7Ehastie/glmnet_matlab/
http://www.stanford.edu/%7Ehastie/glmnet_matlab/
http://www.stanford.edu/%7Ehastie/glmnet_matlab/
https://doi.org/10.1038/s41562-016-0038
https://doi.org/10.1016/j.neuroimage.2012.03.020
https://doi.org/10.1016/j.neuroimage.2012.03.020
https://doi.org/10.1016/j.neuroimage.2008.09.031
https://doi.org/10.1162/jocn.2007.19.7.1081
https://doi.org/10.1162/jocn.2007.19.7.1081
https://doi.org/10.1073/pnas.1521083113
https://doi.org/10.1016/j.cortex.2020.01.004
https://doi.org/10.1016/j.cortex.2020.01.004
https://doi.org/10.1016/j.nicl.2015.11.012
https://doi.org/10.1002/hbm.23490
https://doi.org/10.1016/j.cortex.2019.08.023
https://doi.org/10.1002/hbm.24476
https://doi.org/10.1002/hbm.24476
https://doi.org/10.1007/s10654-010-9440-x
https://doi.org/10.1007/s10654-010-9440-x
https://doi.org/10.1038/s41582-019-0282-1
https://doi.org/10.1038/s41582-019-0282-1
https://doi.org/10.1016/J.NICL.2018.10.017
https://doi.org/10.1016/J.NICL.2018.10.017
https://doi.org/10.1016/j.tics.2019.05.009
https://doi.org/10.1016/j.tics.2019.05.009
https://doi.org/10.1093/brain/awq129
https://doi.org/10.1016/j.neuropsychologia.2017.09.007
https://doi.org/10.1016/j.neuropsychologia.2017.09.007
https://doi.org/10.1002/hbm.22590
https://doi.org/10.1002/hbm.22590
https://doi.org/10.1002/hbm.25278
https://doi.org/10.1002/hbm.25278


APPENDIX A

Supplementary results

Probability of positive results in single target simulations

ULSM methods demonstrated the greatest probability to detect sig-

nificant voxels. MLSM methods required more participants to

achieve comparable probability levels (Figure A1, top panel). Sample

size (ω2
p = .79) and behavioral noise level (ω2

p = .74) strongly impacted

the probability of obtaining positive results across all LSM methods:

larger sample size and less behavioral noise led to a higher probability

of detecting significant voxels. Also, first-order interactions between

these factors demonstrated a large effect size (ω2
p ranged from .61 to

.73). At higher behavioral noise levels, a larger sample size was

required to achieve similar probability levels (Figure A1, middle panel).

Probability of obtaining positive results was disproportionately

reduced for MLSM methods relative to ULSM at higher levels of

behavioral noise, with the exception of SVR (Figure A1, bottom

panel).

Impact of different distance-based metrics

Different LSM methods demonstrated varying levels of

accuracy, depending on the chosen measure of LSM output map loca-

tion (ω2
p = .56) and target location (ω2

p = .36). In general, MLSM

methods showed greater disparity between COMLSM and wCOMLSM

measures, while ULSM methods demonstrated a greater difference

between wCOMLSM and MaxLSM measures, with the COMLSM and

wCOMLSM measures yielding more similar findings (Table A3). More

dense LSM solutions showed greater disparity between COMtarget

and Closesttarget measures.

F IGURE A1 Probability of
obtaining positive results (average
proportion of trials detecting
significant voxels) as a function of the
lesion symptom mapping (LSM)
method and sample size (top panel),
behavioral noise level and sample size
(middle panel), behavioral noise level,
and LSM method (bottom panel)
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TABLE A1 LSM output map location measures across different levels of behavioral noise and sample size

Behavioral noise level Sample size

LSM output map position 0 0.38 0.77 32 48 64 80 96 112 128

COMLSM 11.4 11.0 10.2 10.2 10.2 10.4 10.9 11.2 11.4 11.8

MaxLSM 6.2 6.9 8.2 10.6 8.6 7.4 6.7 6.0 5.7 5.2

wCOMLSM 9.2 9.3 9.2 9.7 9.3 9.1 9.2 9.2 9.0 9.1

Note: COMtarget—mean centroid location (center of mass) of the target ROI; AnyHit—nearest location of the target ROI to the LSM output map; COMLSM—
mean centroid location of the LSM output; Max—maximum statistic location; wCOMLSM—mean centroid location of the LSM output weighted by statistical

values.

Abbreviation: LSM, lesion symptom mapping.

TABLE A2 Distance-based accuracy
measures with and without mask
smoothingMask smoothness (mm)

LSM output map position Target parcel map position

COMLSM MaxLSM wCOMLSM COMtarget AnyHit

0 11 7.3 9.3 11.8 6.6

4 10.9 6.8 9.2 11.5 6.4

Abbreviation: LSM, lesion symptom mapping.

TABLE A3 Distance-based accuracy
measures across different LSM methods

LSM methods

LSM output map position Target parcel map position

COMLSM MaxLSM wCOMLSM COMtarget AnyHit

T-max 8.83 4.33 7.96 8.27 3.83

T-nu = 125 9.88 4.37 8.75 9.09 4.37

T-0.0001 9.42 4.31 8.39 8.72 4.11

T-0.001 10.22 4.34 8.97 9.31 4.52

T-0.01 11.22 4.35 9.63 10.06 5.05

SVR 8.11 4.55 7.73 8.27 3.75

PLS 16.85 12.1 15.6 15.98 9.92

ICA-L1 15.78 11.98 11.83 15.16 9.45

ICA-L2 17.53 12.65 13.02 16.01 10.31

LPCA-L1 17.06 8.66 12.16 15.08 9.46

LPCA-L2 16.63 8.06 11.59 14.63 9.05

SVD-L1 11.4 5.33 9.24 10.89 5.68

SVD-L2 11.54 4.87 9 10.58 5.43

Abbreviations: ICA, independent component analysis; LPCA, logistic principal component analysis; LSM,

lesion symptom mapping; PLS, partial least squares; SVD, singular value decomposition; SVR, support

vector regression.
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Impact of covarying for lesion size

Probability of positive results in dual-target simulations

Dice coefficient for dual-target simulations

TABLE A4 Average displacement error (mm) across all LSM
methods when using and not using lesion size as a covariate

LSM method Lesion size covariate No lesion size covariate

T-max 5.2 7.3

T-nu = 125 6.1 8.4

T-0.0001 5.7 7.9

T-0.001 6.3 8.9

T-0.01 7.2 10.5

SVR 5.3 8.0

PLS 12.0 20.2

ICA-L1 12.4 14.7

ICA-L2 13.8 15.7

LPCA-L1 12.4 16.1

LPCA-L2 11.6 19.2

SVD-L1 8.2 11.9

SVD-L2 7.2 10.8

Abbreviations: ICA, independent component analysis; LPCA, logistic

principal component analysis; LSM, lesion symptom mapping; PLS, partial

least squares; SVD, singular value decomposition; SVR, support vector

regression.

TABLE A5 Probability of obtaining positive results (percentage of
trials where significant voxels were detected) for dual target
simulations with three networks across LSM methods

LSM method Fragile (%) Extended (%) Redundant (%)

T-max 100 100 96

T-nu = 125 —a —a —a

T-0.0001 100 100 96

T-0.001 100 100 97

T-0.01 100 100 97

SVR 98 99 98

PLS 100 99 91

ICA-L1 100 100 93

ICA-L2 100 100 96

LPCA-L1 100 100 95

LPCA-L2 100 100 96

SVD-L1 100 100 88

SVD-L2 100 100 88

Abbreviations: ICA, independent component analysis; LPCA, logistic

principal component analysis; LSM, lesion symptom mapping; PLS, partial

least squares; SVD, singular value decomposition; SVR, support vector

regression.
aProbability of obtaining a positive result not calculated due to a technical

error.

TABLE A6 Probability of obtaining positive results (percentage of
trials where significant voxels were detected) for dual target
simulations with three networks across sample sizes

Sample size Fragile (%) Extended (%) Redundant (%)

64 98 98 82

80 99 100 88

96 100 100 93

112 100 100 95

128 100 100 97

144 100 100 97

160 100 100 98

176 100 100 99

192 100 100 99

208 100 100 99

TABLE A7 Dice coefficient values for dual-target simulations
with three networks across LSM methods

LSM method Fragile Extended Redundant

T-max 0.13 0.13 0.13

T-nu = 125 0.11 0.11 0.11

T-0.0001 0.12 0.12 0.12

T-0.001 0.1 0.11 0.11

T-0.01 0.08 0.08 0.09

SVR 0.14 0.15 0.13

PLS 0.05 0.05 0.05

ICA-L1 0.07 0.07 0.07

ICA-L2 0.06 0.06 0.06

LPCA-L1 0.06 0.07 0.06

LPCA-L2 0.06 0.07 0.07

SVD-L1 0.07 0.06 0.07

SVD-L2 0.07 0.07 0.08

Abbreviations: ICA, independent component analysis; LPCA, logistic

principal component analysis; LSM, lesion symptom mapping; PLS, partial

least squares; SVD, singular value decomposition; SVR, support vector

regression.
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APPENDIX B

Technical description of the MLSM methods

MLSM methods with dimension-reduced lesion data

The following describes the specific computational steps used in MLSM

methods with dimension-reduced data as implemented in the open soft-

ware at https://www.nitrc.org/projects/clsm used in the current study.

1. Preprocessing: The following operations are performed

sequentially

a. Subjects with outlying behavioral or lesion size data elements

(>3 s.d.) are removed from further processing.

b. A random subject subsample of a fixed sample size is selected if

indicated.

c. Lesion masks are Gaussian smoothed if indicated to a fixed

FWHM radius.

d. Lesion voxels not meeting minimum subject count and power

thresholds (t-test based) are removed from further processing

for all subjects.

2. Covariate elimination: A linear regression over all covariates

(including lesion size) is performed at every voxel with lesion status

as the dependent variable, and computed beta values are used to

remove all covariates effects from the lesion data at every mask

voxel for each subject. Similarly, all linear regression covariate

effects are removed from the target behavior.

3. Data reduction: one of three methods is chosen to reduce the

voxel lesions to a relatively small number of spatial patterns to be

used in a regression against the target behavior. The result reduces

a large (number of subjects × number of voxels) matrix of lesion

TABLE A8 Proportion of false
negatives and false positives as a
function of LSM method and sample size
for dual-target simulations.

Proportion of false negatives

Sample size 64 80 96 112 128 144 160 176 192 208

T-max 0.26 0.20 0.17 0.14 0.12 0.10 0.08 0.08 0.07 0.06

T-nu = 125 0.15 0.11 0.09 0.07 0.06 0.05 0.04 0.03 0.03 0.03

T-0.0001 0.18 0.14 0.11 0.09 0.07 0.06 0.05 0.04 0.04 0.04

T-0.001 0.10 0.07 0.06 0.04 0.04 0.03 0.03 0.03 0.02 0.02

T-0.01 0.04 0.03 0.03 0.02 0.02 0.02 0.02 0.01 0.01 0.01

SVR 0.36 0.29 0.24 0.20 0.16 0.14 0.11 0.10 0.09 0.07

PLS 0.05 0.03 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.01

ICA-L1 0.16 0.13 0.11 0.09 0.08 0.05 0.05 0.05 0.04 0.03

ICA-L2 0.13 0.10 0.07 0.05 0.03 0.03 0.02 0.02 0.02 0.01

LPCA-L1 0.05 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01

LPCA-L2 0.05 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01

SVD-L1 0.07 0.04 0.03 0.03 0.02 0.02 0.02 0.01 0.01 0.01

SVD-L2 0.09 0.05 0.04 0.04 0.03 0.02 0.02 0.02 0.02 0.01

Proportion of false positives

Sample size 64 80 96 112 128 144 160 176 192 208

T-max 0.60 0.66 0.69 0.72 0.75 0.77 0.79 0.80 0.81 0.82

T-nu = 125 0.73 0.77 0.79 0.81 0.83 0.84 0.85 0.86 0.87 0.87

T-0.0001 0.68 0.73 0.76 0.78 0.81 0.82 0.84 0.84 0.85 0.86

T-0.001 0.77 0.81 0.82 0.84 0.85 0.86 0.87 0.88 0.88 0.89

T-0.01 0.86 0.88 0.88 0.89 0.90 0.90 0.90 0.91 0.91 0.91

SVR 0.50 0.57 0.62 0.65 0.69 0.72 0.75 0.77 0.78 0.80

PLS 0.88 0.91 0.92 0.93 0.93 0.94 0.94 0.94 0.95 0.95

ICA-L1 0.76 0.79 0.81 0.84 0.85 0.88 0.88 0.88 0.89 0.89

ICA-L2 0.81 0.84 0.87 0.89 0.91 0.92 0.92 0.92 0.93 0.93

LPCA-L1 0.87 0.89 0.91 0.91 0.92 0.92 0.93 0.93 0.93 0.94

LPCA-L2 0.88 0.90 0.91 0.92 0.92 0.93 0.93 0.93 0.94 0.94

SVD-L1 0.84 0.88 0.90 0.91 0.91 0.92 0.92 0.93 0.93 0.93

SVD-L2 0.82 0.87 0.88 0.89 0.90 0.91 0.91 0.92 0.92 0.93

Abbreviations: ICA, independent component analysis; LPCA, logistic principal component analysis; LSM,

lesion symptom mapping; PLS, partial least squares; SVD, singular value decomposition; SVR, support

vector regression.
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data into a smaller (number of subjects × umber of patterns) that

records how well each subject's lesion matches each spatial pat-

tern component common to the group of subjects extracted by the

data reduction procedure.

a. An SVD is performed on the matrix of lesion data (number of

subjects × number of voxels). A number of least significant

(according to the SVD eigenvalues) components/patterns are

eliminated according to a specified formula based on the sample

size and variance remaining. This additional data reduction

speeds up processing, eliminating spatial patterns where few

subjects have lesions overlapping.

b. An LPCA (Schein et al., 2003) is an iterative method that simi-

larly reduces bounded data into components/patterns, and

again only the LPCA components/patterns capturing the most

variance are kept for the next step.

c. ICA (Hyvärinen & Oja, 2000) is computed is similarly com-

puted and the highest variance spatial patterns, and sub-

ject lesion overlap with each pattern are kept for the

next step.

4. Elastic net regression: An underdetermined linear regression (the

number of subjects is generally only two to three times the number

of spatial patterns being produced by the data reduction step) is

implemented using the elastic net method.

a. First, the subject overlap coefficient matrix (number of

subjects × number of patterns) is normalized to N (0,1) in each

subject. Similarly, the target behavioral vector is normalized to

N (0,1).

b. An elastic net regression (Tibshirani et al., 2010) is performed

using 10-fold cross validation to compute the optimal coeffi-

cient for the penalty term to control data noise from overly

influencing the solution. The elastic net type can be chosen to

be either a near-ridge type (L2) or a near LASSO type (L1) that

can affect the pattern-sparsity of the results. The solution

obtained is a vector of values representing how well each data

reduction-produced voxel pattern correlates with the target

behavioral variable. The cross-validation also produces an esti-

mate of the variance of the target behavior explained by the

subject voxel/pattern data.

c. The regression solution is then converted, using the saved spa-

tial voxel patterns computed in the data reduction step, into

(arbitrary scale) feature weights for all voxels.

5. Permutation test thresholding: The procedure above produces a

feature weight at each voxel that was included in the analysis after

preprocessing Step 1.d. Further thresholding of these data reduc-

tion MLSM maps is obtained by performing permutation testing as

indicted in the main text by randomly permuting the behavioral

data (but not lesion size) and repeating Steps 2–4 and computing

maps to produce a maximum feature weight across each such per-

muted data map that can be used to threshold the true feature

weight map at a familywise p < .05.

MLSM methods with voxel-level lesion data

The following describes the specific computational steps used in PLS

method as implemented in the open software at https://www.nitrc.

org/projects/clsm used in the current study.

1. Preprocessing: Same as in the Data Reduction method

section above.

2. Covariate elimination: Same as in the Data Reduction method

section above.

3. PLS regression: An SVD-based PLS regression (Abdi, 2010) is used

to jointly produce a voxel lesion solution pattern that explains (lin-

early) the highest amount of target behavioral variance. This is dis-

tinct from the data reduction methods above that produce the

most common spatial lesion pattern of the subject population. PLS

regression was designed to handle highly correlated variables such

as voxel lesion data; however, it often produces dense solutions.

The amount of variance explained by PLS is computed using

predicted residual errors within a 10-fold cross validation.

4. Permutation test thresholding: Similar to the Data Reduction

method permutation section above, except redoing PLS Steps

2 and 3 above on permuted behavioral data to compute the maxi-

mal PLS voxel solution value distribution that provides the

familywise p < .05 thresholding.
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