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Abstract

Sensitivity Analysis for Causal Inference with Unobserved Confounding

by

Jiajing Zheng

Many questions in social and biomedical sciences are causal in nature. For exam-

ple, sociologists and policy-makers often want to know the effects of social programs

on poverty and upward mobility; medical professionals are interested in how drugs

impact the progression of disease. Unfortunately, estimating causal effects from non-

experimental data is very difficult due to unobserved confounders, which can lead to

spurious causal conclusions about the treatment’s effect on the outcome. Sensitivity

analysis, which explores how sensitive our causal conclusions are to potential unobserved

confounding, can help us understand the potential impacts of confoundedness. How-

ever, existing sensitivity analyses are often at odds with modern machine learning (ML)

tools for causal inference, which emphasize flexible models over interpretability. Be-

sides, modern problems require new methods which account for the existence of multiple

concurrent treatment variables and/or high dimensional outcomes. In this dissertation,

we provide new tools that help improve communication and transparency about the ro-

bustness of analysis results to unmeasured confoundedness for important applications

of observational causal inference, especially in high-dimensional settings. In chapter 1,

we introduce the two most prevalent frameworks for causal inference studies, define the

relevant quantities and notations, and discuss the importance of sensitivity analysis.

In Chapters 2, we propose a sensitivity analysis method by reparametering latent con-

founder models, and in Chapter 3, we extend a sensitivity analysis method based on

the Tukey’s factorization to cases where treatments are ordinal variable with multiple
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levels, where both methods clearly separate the identifiable part from the unidentifiable

part. In Chapter 4 and 5, we focus on high-dimensional settings, respectively consid-

ering the multi-treatment and multi-outcome cases, where the multivariate correlation

structure could provide additional information about unobserved confounders, but the

causal effects are still not point identifiable in general and the high-dimensional variables

would largely complicate the analysis. To address the issue, we present novel sensitivity

analysis methods based on copula factorization, which can show how much is gained by

leveraging latent structure in a given application while leave the observed data modeling

untouched.
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Chapter 1

Introduction

Causal inference problems arises almost everywhere. For instance, in social science, soci-

ologists and policy-makers often want to know the effects of social programs on poverty

and upward mobility; in biomedical studies, medical professionals are interested in how

drugs impact the progression of disease. Unfortunately, estimating causal effects from

non-experimental data is especially difficult. The fundamental challenge is that un-

observed confounders can bias our understanding of causal effects. A confounder is a

variable that influences both the treatment and the outcome, which can lead to spurious

causal conclusions about the treatment’s effect on the outcome. For example, in studies

on the effect of tobacco smoking on human health, alcohol consumption and unhealthy

diet are potential confounders [1]. The detrimenntal effects of smoking might be overesti-

mated if we did not control for these confounders. Sensitivity analysis, which explores the

range of causal effects that are consistent with the observed data in the context of a given

problem can help us understand the potential impacts of unmeasured confounders. In

principle, a sensitivity analysis quantifies how results change under different assumptions

about unobserved confounders without affecting the observed data model. Unfortunately,

existing sensitivity analysis approaches perturb the observable predictions of the model
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Introduction Chapter 1

and degrade the quality of observed data predictions [2].

The remainder of this chapter proceeds as follows. In Section 1.1 and 1.2, we start

by introducing of the two most common frameworks for causal inference: the potential

outcome framework [3], developed by Donald B. Rubin, and the do-calculus framework

[4], proposed by Judea Pearl. In Section 1.3, we introduce the formal setup for sensitivity

analysis and highlight key problems about identifiability of sensitivity parameters. In

Section 1.4, we describe one of the most common approaches to sensitivity analysis,

called latent confounder models, and illustrate some difficulties with this approach by a

simple example.

1.1 Causal inference in Potential Outcome Frame-

work

Conventionally, in the potential outcome framework [5, 6], we use T to denote a

binary treatment, with T = 1 indicating assignment to treatment and T = 0 indicating

assignment to control, X to denote observed pretreatment variables, Yi(0) and Yi(1) to

denote the outcomes that would be observed under T = 0 and T = 1 respectively. With

the Stable Unit Treatment Value Assumption (SUTVA) (Assumption 1.1.1), we can write

the observed outcome as Y obs
i = Yi(1)Ti + Yi(0)(1− Ti).

Assumption 1.1.1 (SUTVA) There are no hidden versions of the treatments and there

is no interference between units (see [7]).

Note that, in practice, we can only observe at most one of Yi(1) and Yi(0) for any individ-

ual. Therefore, it is impossible to measure causal effects at the individual level without

additional strong assumptions. For this reason, researchers generally focus on estimating

average treatment effects defined over the population. We define the Population Average

2
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Treatment Effect (PATE) as

PATE: E(Y (1)− Y (0)), (1.1)

and relatively quantities, the Population Average Treatment Effect on the Treated/Control

as

PATT: E(Y (1)− Y (0) | T = 1), (1.2)

PATC: E(Y (1)− Y (0) | T = 0), (1.3)

which correspond to the average difference in the pair of potential outcomes averaged

over the treated and control respectively. Analogously, we define treatment effects in sub-

populations stratified by observed covariates X, the Conditional Average Treatment Ef-

fect (CATE), the so-called Conditional Average Treatment Effect for the Treated (CATT)

and Conditional Average Treatment Effect for the Control (CATT) respectively as

CATE:
n∑
i=1

E(Yi(1)− Yi(0)|Xi), (1.4)

CATT:
∑
i:Ti=1

E(Yi(1)− Yi(0)|Xi), (1.5)

CATT:
∑
i:Ti=0

E(Yi(1)− Yi(0)|Xi). (1.6)

For binary outcomes, researchers are usually more interested in the causal risk ratio (RR)

between the the pair of potential outcomes,

RR: E(Y (1))/E(Y (0)). (1.7)

All estimands above are so-called “marginal contrast” estimands, meaning that they can

3



Introduction Chapter 1

all be written as functions of the marginal complete-data outcome distributions of Y (1)

and Y (0) [2]. We use f(·) and F (·) to respectively denote the probability density function

and cumulative distribution function of random variables. For t ∈ {0, 1}, the complete-

data density can be written as a mixture of the distribution of observed and missing

outcomes:

f(Y (t) | X) =f(T = t | X)f obs(Y (t) | T = t,X)+

f(T = 1− t | X)fmis(Y (t) | T = 1− t),
(1.8)

where f obs(Y (t) | T = t,X) is the observed outcome density, and fmis(Y (t) | T = 1− t)

is the missing outcome density, the only unidentifiable term. To identify the unobserved

outcome densities, researchers assume strong ignorability of treatment assignment [8],

which consists of the following two assumptions:

Assumption 1.1.2 (Ignorability in potential outcome framework)

[Y (0), Y (1)] ⊥⊥ T | X (1.9)

Assumption 1.1.3 (Positivity in potential outcome framework)

0 ≤ P (T = 1 | X) ≤ 1 (1.10)

Under the strong ignorability assumption of treatment assignment (Assumption 1.1.2

and 1.1.3), the estimands of interest can be identified by the observed data alone, since

f obs(Y (t) | T = t,X) = fmis(Y (t) | T = 1 − t,X). However, the strong ignorability

assumption is untestable and unlikely to hold exactly in observational studies. We will

come up with solutions that overcome this challenge in the later sections. Before that,

in the next section, we would like to first introduce the other framework, the do-calculus
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framework [4], that is also commonly used for causal inference problems.

1.2 Causal Inference in do-calculus framework

An Alternative to the potential outcome framework is the do-calculus framework, or

the so-called causal graphical models, where probabilistic graphical models are used to

encode assumptions about the data-generating process so that complex interrelationships

between variables can be described concisely and implied properties can be read directly.

Here, we let T denote the treatment variables, Y denote the outcome variables of interest,

and t and y be realizations of the respective random variables, where both T and Y could

be scalars or vectors, depending on the scenario we are considering. We let X denote any

observed pre-treatment variables. In the do-calculus framework, f(y | do(t)) denotes the

density of y in the population in which we have intervened to assign treatment level t to

all units. In general, this is distinct from the observed outcome density, f(y | t), which

represents the density of the outcome in the subpopulation that received treatment t.

These two densities are the same if and only if there are no confounders [9].

The goal of observational inference is to quantity the effects of different treatments

by comparing the intervention distribution at different levels of treatment T [10, 11].

As before, we focus on marginal contrast estimands [2] here under arbitrary outcome

and treatment distributions. We formalize the idea here again under the do-calculus

framework. An estimand is a “marginal contrast” if it can be expressed as a function of

the marginal distributions of the intervention outcomes, τ(E[v(y)|do(t1)], E[v(y)|do(t2)])

for some functions v and τ . This includes the vast majority of commonly used estimands.

For continuous outcomes, our primary estimand is the difference in the population average

outcome for treatment T = t1 and the population average outcome given treatment

5
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T = t2:

PATEt1,t2 := E(Y | do(t1))− E(Y | do(t2)). (1.11)

Here, v(y) = y is the identity function and τ(a, b) = a − b. When treatment is binary,

the PATT and PATC can be expressed as following using the do-calculus framework:

PATT: E(Y | do(t1 = 1), T = 1)− E(Y | do(t2 = 0), T = 1), (1.12)

PATC: E(Y | do(t1 = 1), T = 0)− E(Y | do(t2 = 0), T = 0). (1.13)

We also consider the difference in the population average outcome receiving treatment t

and the entire observed population average outcome, which we denote

PATEt,• := E(Y | do(t))− E(Y ), (1.14)

where E(Y ) =
∫
E(Y | t)f(t)dt and PATEt1,t2 = PATEt1,• − PATEt2,•. The conditional

average treatment effects are defined analogously as CATEt1,t2|x := E(Y | do(t1), x) −

E(Y | do(t2), x) and CATEt,•|x := E(Y | do(t), x)− E(Y | x).

For binary outcomes, our primary estimand is the causal risk ratio between treatments

t1 and t2

RRt1,t2 := P (Y = 1|do(t1))/P (Y = 1|do(t2)). (1.15)

where RRt,• is defined analogously to (1.14), as P (Y = 1 | do(t))/P (Y = 1), so that we

can express RRt1,t2 = RRt1,•/RRt2,•. Here v(y) = I[y = 1] is the indicator function and

τ(a, b) = a/b.

As mentioned in the previous section, in general, it is difficult to infer PATEs or RRs

from observational data since the potential presence of unmeasured confounders, which

affect both treatment and outcome, can bias naive estimates. With Assumption 1.1.1,

6
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UX

T Y

Figure 1.1: Diagrams for latent confounder models. The latent confounder model
introduce a latent variable U and parameterize the effect of this latent variable on
both the treatment assignment T and outcomes Y.

the following assumptions would be sufficient to identify the intervention distribution,

and hence the treatment effect:

Assumption 1.2.1 (Ignorability in do-calculus framework) X block all backdoor

paths between T and Y [4].

Assumption 1.2.2 (Positivity in do-calculus framework) f(T = t | x) > 0 for all

x.

Assumption 1.2.1 means that X blocks every path between T and Y that contains an

arrow into Y , implying that T and Y are independent given X, which is equivalent to

Assumption 1.1.2 despite that they are stated under different frameworks. Likewise,

Assumption 1.2.2 is the same as Assumption 1.1.3. As we mentioned previously, the

strong ignorability assumption is untestable and unlikely to hold in observational studies.

Therefore, sensitivity analyses, which characterize the degree to which violations of causal

assumptions affect the target quantify of interest, become especially important when

there exists potential unobserved confounders. We introduce U to denote the unobserved

confounders that affect both the treatment and outcome (Figure 1.1).

1.3 Sensitivity Analysis

There is an extensive literature on assessing sensitivity to violations of unconfounded-

ness in single treatment and outcome models, dating back at least to the work of Cornfield
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et al. (1959) [1] on the link between smoking and lung cancer. Since then, a wide range

of strategies have been proposed for assessing sensitivity to unobserved confounding (e.g.

see [12, 13, 14, 3, 15, 16, 17, 2, 18, 19]). A common strategy for sensitivity analysis is

to assert that strong unconfoundedess would hold if only an additional latent variable U

were observed [8]:

Assumption 1.3.1 (Latent ignorability in do-calculus framework) X and U block

all backdoor paths between T and Y [4].

Assumption 1.3.2 (Latent positivity in do-calculus framework) f(T = t | U =

u, x) > 0 for all u and x.

With assumptions 1.3.1 and 1.3.2, latent confounder models simultaneously specify the

full conditional distributions of treatment and outcomes given both observed confounders,

x, and unobserved confounders, U . The dependence of Y and T on U is indexed by a

vector of sensitivity parameters ψ = (ψY , ψT ). Practitioners can then reason about how

assumptions about these parameters translate to different causal conclusions. Often, this

is done through calibration, by determining reasonable ranges for ψ using analogies about

observable associations and through a robustness assessment, by examining how strong

associations with unobserved confounders must be for conclusions to change.

Concretely, in a typical latent confounder analysis, we posit densities f(u | x), the

marginal density of the latent confounders, fψT (t | x, u), the conditional density (or PMF)

for treatment assignment given all confounders and fψY (y | x, u, t), the outcome density

in treatment arm t. The sensitivity parameters encode the relationship between both the

treatment and unobserved confounders and the outcome and unobserved confounders

(e.g. see [3, 20]). Latent confounder models are usually parameterized so that some

specific values of the sensitivity parameters ψ indicate the “no unobserved confounding”

case. For example, we can take ψT = 0 to imply that fψT (t | x, u) = fψT (t | x) and

8
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ψY = 0 to imply that fψY (y | x, u, t) = fψY (y | x, t). Then, when either ψT = 0 or

ψY = 0, U is not a confounder [9]. Without loss of generality, we suppress conditioning

on x throughout the remainder of the manuscript, and comment on the role of observed

covariates where appropriate.

A key principle of sensitivity analysis is that the observed data densities should be

invariant to the sensitivity parameters [21]. Unfortunately, this principle can easily be

violated in a latent confounder analysis [2]. The crux of the problem is that, in general,

none of f(u | x), fψT (t | x, u) or fψY (y | x, u, t) are nonparametrically identifiable

themselves, but the observed outcome density, which is a function of these densities, is

identifiable. The observed outcome density, has the following form:

f(y | T = t) =

∫
U
fψY (y | t, u)fψT (u | t)du, for all t and ψ (1.16)

where fψT (u | t) is the conditional density of the latent confounders given treatment level

t. This contrasts with the density of the intervention distribution, which is:

fψ(y | do(t)) =

∫
U
fψY (y | t, u)f(u)du (1.17)

=

∫
U
fψY (y | t, u)

[∫
fψT (u | t̃)f(t̃)dt̃

]
du (1.18)

The intervention distribution is obtained by integrating over the marginal distribution

of the unobserved confounder, fψT (u) =
∫
fψT (u | t̃)f(t̃)dt, whereas the observed data

distribution in 1.16 is obtained by integrating with respect to the conditional confounder

distribution, fψT (u | t). A fundamental challenge of sensitivity analysis is to specify

a class of densities fψY (y | t, u) and fψT (u | t), with interpretable parameters ψ =

(ψY , ψT ), for which the intervention distribution necessarily varies with ψ but for which

the observed data distribution does not.

9
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In fact, several authors have proposed latent variable sensitivity models with uniden-

tified sensitivity parameters in simple settings with a single treatment and binary or

categorical outcomes [8, 22, 14, 23]. A more general solution was proposed by Zhang and

Tchetgen (2019) [24] who propose a semi-parametric sensitivity model in which the distri-

bution of U is left unrestricted. Franks et al. (2019) [2] propose an alternative framework

for sensitivity analysis without directly introducing latent variables by directly param-

eterizing the effect of the outcome on the treatment assignment. Cinelli and Hazlett

(2019) [18] and Cinelli et al. (2019) [25] use moment arguments to derive confounding

bias in the linear regression setting and introduce an approach for sensitivity parameter

calibration based on the proportion of variance explained by the latent confounder. In

the multiple treatment and/or outcome setting, additional observable implications can

complicate sensitivity analysis, and thus new strategies are needed.

Unfortunately, many existing sensitivity analysis approaches perturb the observable

predictions of the model and degrade the quality of observed data predictions. In the

following section, we introduce the latent confounder model and discuss this difficulty in

more details.

1.4 Latent Confounder Models

Latent confounder models are one of prevailing approaches for sensitivity analysis

in causal inference [8]. In this section, we introduce the latent confounder model using

the potential outcome framework. First of all, we restate the latent strong ignorability

assumption under the potential outcome framework.

Assumption 1.4.1 (Latent ignorability in potential outcome framework)

[Y (0), Y (1)] ⊥⊥ T | X,U. (1.19)

10
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Assumption 1.4.2 (Latent positivity in potential outcome framework)

0 ≤ P (T = 1 | X,U) ≤ 1 (1.20)

With Assumptions 1.4.1 and 1.4.2, the latent confounder model simultaneously specifies

the conditional distributions of the treatment and the potential outcomes given X and U

(see Figure 1.1). For example, for a binary treatment, the model can be specified as:

U | X ∼ f(U | X) (1.21)

T | U,X ∼ fψT (T | X,U) (1.22)

fψT (T | X,U) = Bern(eψT (X,U)) (1.23)

Y (t) | U,X ∼ fψYt (Y (t) | X,U) (1.24)

where f(U | X) is the density of the latent confounder; fψYt (Y (t) | X,U) is the potential

outcome density for treatment t given the observed and latent variables; and eψT (X,U)

is the probability of receiving treatment given both X and U , written with e(·) to invoke

a parallel to the propensity score. The sensitivity parameters ψ = (ψT , ψYt) encode how

the treatment and potential outcomes depend on the unobserved confounder. Despite

their intuitive appeal, latent confounder models often imply observed distributions that

depend on sensitivity parameters:

f obs
ψ,t (Y (t) | X,T = t) =

∫
U
fψYt (Y (t) | X,U)fψT (U | X,T = t) dU. (1.25)

The above equation shows that the distribution of observed outcomes is a mixture over

the mixing measure fψT (U | X,T = t), and it depends on the sensitivity parameter

ψT and ψYt via the mixture weights and mixture components respectively. Therefore,
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when tuning the sensitivity parameters, the observed data distribution would also change

correspondingly. This problem can be seen clearly in the following simple example:

Example 1.4.1 (Gaussian outcome, binary confounder and treatment) Consider

the case where outcome is continuous and there is no covariates. Assume that treatment

was randomly assigned according to a Bernoulli design, but it is plausible that there exists

a latent class that confounds the study. To test the robustness of our causal conclusions

to the presence of such a latent class, we propose a sensitivity analysis by introducing a

binary latent confounder. The model is parameterized as follows:

U ∼ Bern(ξu),

T | U ∼ Bern(g(α + ψTU)),

Y (t) | U ∼ N(µt + ψYtU, σ
2).

We let hψT := P (U = 1 | T ). According to Equation 1.25, the distribution of observed

outcomes is a two-component mixture of normals for t ∈ {0, 1}:

Y (t) | T = t ∼ hψTN(µt + ψYt , σ
2) + (1− hψT )N(µt, σ

2), (1.26)

where the mixture weights depend on the sensitivity parameters ψT , and one of the

mixture components depends on the sensitivity parameter ψYt . The existence of such

sensitivity parameters, which intervenes the observed data distribution, blurs the line

between sensitivity analysis and model checking, ending up inadvertently perturbing the

fit of the model and thus degrade the quality of observed data predictions.

To overcome this difficulty, we propose new methods to sensitivity analysis in the

rest of this dissertation. In Chapter 2, we reparameterize the latent confounder models

and decompose the effect of latent confounder, U , into confounding variations and non-

12



Introduction Chapter 1

confounding variations. In Chapter 3, we utilize the Tukey’s factorization and extend the

Tukey’s sensitivity analysis method [2] to cases where treatments are ordinal variables

with more than two levels. Moreover, in order to handle modern problems, which are

often of multiple concurrent treatment variables and/or high dimensional outcomes, we

develop copula-based sensitivity analysis for cases with multiple treatments and outcomes

in Chapter 4 and 5 respectively.

13



Chapter 2

Sensitivity Analysis with

Reparameterized Latent Confounder

Models

In this chapter, we describe a sensitivity analysis approach that leaves the observed

data distribution untouched by reparameterizing latent confounder models, where the

residual variance of the outcome is explicitly partitioned into the confounding and non-

confounding parts. For this method, we focus on the use of potential outcome framework.

2.1 Reparameterization

The goal of our sensitivity analysis is to find sets of model specification for Y | T, U,X

and U | T,X for which the observed data distribution, f obs
ψ,t (Y (t) | T = t,X), remains

unchanged. To achieve this, we decompose the the effect of U in the latent confounder

model (Figure 1.1) into a confounding variation, denoted by W , and non-confounding

variation due to mediators and/or measurement error, denoted by E, which leads to a

14
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WX

T Y
E

Figure 2.1: Diagram for reparameterized latent confounder model. Decomposing
the effect of U into confounding variation, represented by W , and non-confounding
variation due to mediators and/or measurement error, represented by E.

clean separation between the identified components and unidentified components in the

specified model (Figure 2.1).

We use the following example to demonstrate our method, where both conditional

confounder and outcomes are Gaussian.

Example 2.1.1 (Reparameterized Latent Confounder Model) Suppose we are in-

terested in a study with a continuous outcome and a binary treatment. We introduce

a Gaussian variable W , which represents the shared variation due to unobserved con-

founders given the treatment, and a Gaussian variable E, which denotes the unshared

variation due to mediators (i.e., indirect treatment effect) and/or measurement error of

the outcomes. Without loss of generality, the conditional variance of W is assumed to

be one, which can be easily achieved by standardization. We assume that the potential

outcome Y (t) is linear in µXt, W and E, where µXt denotes the overall mean of potential

outcome Y (t) for t ∈ {0, 1}. The model is specific as follows:

Y (t) = µXt + γW + E, (2.1)

W | T = 0 ∼ N(0, 1), (2.2)

W | T = 1 ∼ N(φ, 1), (2.3)

E ∼ N(0, σ2) (2.4)
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where γ and φ are sensitivity parameters.

In Example 2.1.1, by integrating out theW and E, we can derive the missing and observed

potential outcome distributions as

Y (0)obs | T = 0, X ∼ N(µX0 , γ
2 + σ2), (2.5)

Y (1)obs | T = 1, X ∼ N(µX1 + γφ, γ2 + σ2), (2.6)

Y (0)mis | T = 1, X ∼ N(µX0 + γφ, γ2 + σ2), (2.7)

Y (1)mis | T = 0, X ∼ N(µX1 , γ
2 + σ2). (2.8)

Importantly, note that E(Y (0)obs | T = 0, X) = µX0 , E(Y (1)obs | T = 1, X) = µX1 + γφ,

and the variance of potential outcome distributions, γ2 + σ2, are all identifiable from the

observed data. Let µ̃X00 := E(Y (0)obs | T = 0, X) and µ̃X11 := E(Y (1)obs | T = 1, X).

With µ̃X00 and µ̃X11 , the missing potential outcome distributions can be alternatively

written as:

Y (0)mis | T = 1, X ∼ N(µ̃X00 + γφ, γ2 + σ2), (2.9)

Y (1)mis | T = 0, X ∼ N(µ̃X11 − γφ, γ2 + σ2). (2.10)

Given γφ, the marginal contrast estimands of our interest are all identifiable as they can

be written as functions of potential outcome distributions. Remarkably, we can achieve

the same fixed level of confounding with any sets of sensitivity parameters (γ1, φ1) and

(γ2, φ2) satisfying γ1φ1 = γ2φ2 by either having 1) very large imbalance φ1 but very small

regression coefficient γ1 or 2) very small imbalance φ2 but very large regression coefficient

γ2.

To generalize our idea, we can consider classes of generalized linear mixed model for

the observed potential outcomes [26], which allow extra error components in the linear
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predictors of generalized linear model. The distribution of these random components is

not restricted to be normal and can come from an arbitrary distribution. To take ad-

vantage of the exponential family [27], we can specify the distribution of those random

effects to be the conjugate of the outcome distributions. For instance, when conditional

outcomes follow Poisson distribution and conditional confounders follow Gamma distribu-

tion, by integrating out the random effects, the marginal distribution of outcomes would

follow Negative Binomial distribution. As another example, we can alternatively specify

the distribution of conditional outcomes to be Beta and conditional confounder to be

Binomial so that the marginal distribution of outcomes would follow the Beta Binomial

distribution. Like we’ve seen in Example 2.1.1, there are two main advantages to specify

models this way: first, the distribution of treatment given unobserved confounder will be

logistic in the sufficient statistic for the conditional distribution of the confounder, which

makes the calibration of sensitivity parameters more intuitive and interpretable; second,

the observed outcome distribution f obs
ψ,t (Y (t) | T = t,X) will be compound distributions

that have been well studied in the literature.

2.2 Calibration

2.2.1 Calibrating the Sensitivity Parameter γ

We can calibrate the magnitude of γ by considering the partial R2 of W in the

observed potential outcome model, specifically

R2
Y (t)∼W |X,T =

SSRY (t)∼X,T − SSRY (t)∼W,X,T

SSRY (t)∼X,T
=

γ2

γ2 + σ2
, (2.11)

where SSRY (t)∼X,T and SSRY (t)∼W,X,T denote the residual sum of square of the models

by regressing Y (t) on X,T and W,X, T respectively. R2
Y (t)∼W |X,T represents the fraction
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of variation unexplained by X and T in Y (t) that can be explained by adding W into

the previous model.

Based on expert knowledge, we may setR2
Y (t)∼W |X,T to some reasonableR2

Y (t)∼Xj |X−j ,T ,

which stands for the fraction of additional variation in Y (t) explained by adding Xj into

the model with all other covariates X−j and treatment T . This is motivated by the idea

that the information gained by adding W to X and T as predictors of the potential

outcome model is comparable to the information gained by adding Xj to X−j and T .

2.2.2 Calibrating the Sensitivity Parameter φ

From Equation 2.2 and 2.3, we can deduce that

P (T = 1 | W )

P (T = 0 | W )
∝ πT

1− πT
exp (−φW ) (2.12)

where πT := P (T = 1). From Equation 2.12, we can see that the conditional treatment

variable is logistic in W . We therefore posit the treatment assignment model:

T | X,W ∼ Bern(logit−1(α(X)− φW )), (2.13)

where the log-odds of receiving treatment are linear in W , with α(X) being a function of

X and logit−1(x) = (1 + exp(−x))−1. One of the advantages gained from the treatment

assignment specification 2.13 is that the sensitivity parameter φ has a very natural and

intuitive interpretation, which describes how treatment assignment depends marginally

on the confounding part, W .

To calibrate the sensitivity parameter φ, we adopt the idea of “implicit R2” from

Imbens (2003) [3], denoted by ρ2 in the following. Similar to the calibration of γ, we

consider the implicit R2, ρ2
T∼W |X , which stands for the fraction of residual variance of T
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after conditioning on X that can be explained by W . We may set ρ2
T∼W |X to ρ2

T∼Xj |X−j

with belief that the variation in T explained by adding W into the model with X already

included is comparable to the variation explained by adding Xj to the model with X−j

already included.

2.3 Application: Analysis of NHANES data

We illustrate our reparameterized method using the data from the Third National

Health and Nutrition Examination Survey (NHANES III) (Center for Disease Control

and Prevention (CDC), 1997), we aim to estimate the effect of “taking two or more

anti-hypertensives” on average diastolic blood pressure. We follow the settings of Dorie

et al. (2016) [20] and Frankset al. (2018) [28], and utilize pre-treatment covariates like

race, gender, age, income, body mass index (BMI), and etc. Therefore, in our case, Y (t)

corresponds to the average diastolic blood pressure for a subject in treatment arm t,

where t = 1 indicates the subject was taking two or more anti-hypertensive medications

and t = 0 indicates the subject was not.

We assume that the underlying data generating process follows Example 2.1.1. Fol-

lowing Dorie et al. (2016) [20], we first fit the observed response surface, f obst (Y (t) | T =

t,X) ∼ N(µ̃Xtt , σ
2
t ), using a flexible nonparametric method, called Bayesian Additive Re-

gression Tree (BART), with R package BART [29]. By Esquation 2.5-2.8, the treatment

effects can be expressed in terms of µX00 and µX11 as

PATT: µ̃X11 − (µ̃X00 + γφ), (2.14)

PATC: (µ̃X11 − γφ)− µ̃X00 , (2.15)

PATE:
N1

N
∗ PATT +

N0

N
∗ PATC, (2.16)
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(a) γ vs R2
Y (t)∼W |X,T (b) φ vs ρ2

T∼W |X

Figure 2.2: Calibration of the analysis for the NHANES data. (a) The magnitude of
the sensitivity parameter γ increases with the residual coefficient of determination,
R2
Y (t)∼W |X,T . For comparison, we also mark the partial coefficients of variation for

some important predictors by dashed lines and calibrate the magnitude of γ based on
the most important covariate, the “Age”. (b) The magnitude of the sensitivity param-
eter φ increases with the implicit residual coefficient of determination, ρ2

T∼W |X . For
comparison, we mark the implicit partial coefficients of variation for some important
predictors by dahsed lines and also calibrate the magnitude of φ based on covariate
“Age”.

where N is the total number of observations in the dataset, N0 and N1 denote the number

of observations in the control and treatment groups respectively. Thus, treatment effects

2.14-2.16 can be identified if the product of sensitivity parameters γφ is known.

Next, we calibrate the magnitude of the sensitivity parameters using the approach

outlined in Section 2.2. According to figure 2.2a, “Age” has largest partial R2 in the

outcome model, which is around 0.095, we limit the magnitude of sensitivity parameter

γ accordingly so that | γ |≤ 3.5. Similarly, we calibrate φ using the implicit R2 in the

treatment assignment model, and limit |φ| up to 1 according to the largest ρ2
T∼Xj |X−j ,

which is ρ2
T∼Age|−Age ≈ 0.18.

We visualize our ATE estimates for a grid of sensitivity parameters in Figure 2.3.

“NS” denotes “not significant”, by which we mean that 95% posterior credible interval

of the ATE contains 0. Under unconfoundedness (γ = φ = 0), the posterior for the ATE
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Figure 2.3: Average treatment effect for different settings of γ and φ in the analysis
of NHANES data. NS denotes ”not significant”. Under unconfoundedness, the ATE
is negative and significant. The conclusion can vary a lot by the setting of sensitivity
parameters.

is approximately -1.88 mmHg, there is enough posterior uncertainty that the effect is

significant different from 0 (light blue box). When sensitivity parameters γ and φ have

the same sign, located along the bottom left to upper right in figure 2.3, the treatment

effect will be amplified (dark blue box), which means the average diastolic blood pressure

can be decreased to a larger degree by “taking two or more anti-hypertensives”. In

contrast, when sensitivity parameters γ and φ have opposite signs, located along the

upper left to bottom right in figure 2.3, the treatment effect will be reduced and even

reversed in extreme cases (orange box) where “taking two or more anti-hypertensive”

will be harmful and surprisingly increase the average diastolic blood pressure.
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Chapter 3

Sensitivity Analysis via Tukey’s

Factorization with Ordinal

Treatments

In this chapter, we introduce our second method that can separate sensitivity analysis

from model checking following the framework proposed by Franks et al. (2019) [28]. This

approach directly models the dependence of the treatment assignment mechanism on the

potential outcomes instead of explicitly introducing a latent variable and parameterizing

the effect of this latent variable on both the treatment assignment and outcomes.

3.1 Tukey’s Factorization

The foundation of the approach of Franks et al. (2019) [28] is based on a unique

factorization introduced in the missing data literature, known as Tukey’s factorization

[30] or the extrapolation approach [31]. This approach can be applied to observational

causal inference by writing the complete data in terms of the observed data densities,
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the treatment assignment mechanism, and a term capturing the conditional dependence

between potential outcomes. From Franks et al. (2019) [28], the complete data density

can be written as

f(T, [Y (0), Y (1)] | X) =
1∏
t=0

[
f obs(Y (t) | T = t,X)f(T = t.X)

fasgn(T | Y (t), X)

fasgn(T = t | Y (t), X

]
·

1

f(T | X)
· c(F (Y (0) | T ), F (Y (1) | T ) | T,X),

(3.1)

where the conditional copula, c(F (Y (0) | T ), F (Y (1) | T ) | T,X), is defined as

f(Y (0),Y (1)|T,X)
f(Y (0)|T,X)f(Y (1)|T,X)

.

A major advantage of this approach is that the observed outcome distribution f obs(Y (t) |

T = t,X) can be identified using non-parametric or flexible machine learning method and

the treatment assignment fasgn(T | Y (t), X), which is not identifiable but interpretable.

Additionally, as Franks et al. (2019) [28] point out, although c(F (Y (0) | T ), F (Y (1) |

T ) | T,X) is not identifiable from the observed data, it is not necessary for estimating

many common causal estimands. It is clear to see that, in Equation 3.1, the observed out-

come distribution is distinctly separated from the unidentifiable terms, fasgn(T | Y (t), X)

and c(F (Y (0) | T ), F (Y (1) | T ) | T,X). Therefore, there is a clean separation between

sensitivity analysis and model checking.

In Franks et al. (2019), they only consider the scenario where all variables are uni-

variate, however, the causal inference problems with multivariate treatments are quite

common in practice. For example, a medical researcher may wish to find out what the

treatment effects of a new drug with low, median and high dosage are respectively. Here,

instead of binary treatment, we consider categorical treatment with ordinal levels. How-

ever, the factorization 3.1 only applies to the standard setting where T is binary and

Y (t) ∈ R for t ∈ {0, 1}. This motivates us to extend the extrapolation framework to
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cases with ordinal treatment of multiple levels. In the next section, we show our exten-

sion of the Tukey’s factorization of the complete data density in the ordinal treatment

case.

3.2 Generalizing Tukey’s Factorization

Following the notations introduced in Section 1.1, let T denote a categorical treatment

variable with ordinal levels 1, · · · ,M (M > 2), and Y (t) denote the potential outcomes

of the treatment level t, t ∈ {1, · · · ,M}.

First and foremost, we clarify the definition of the estimands of our interest in the

multivariate treatment cases with potential outcome notations. Following the detailed

discussion of the causal estimands with multiple treatments by Lechner (2001) [32], we

focus on pair-wise comparisons of the treatment effect between the treatment t and s:

γt,s = E(Y (t)− Y (s)) = E(Y (t))− E(Y (s)), (3.2)

αt,s = E(Y (t)− Y (s) | T = s, t) = E(Y (t) | T = s, t)− E(Y (s) | T = s, t), (3.3)

θt,st = E(Y (t)− Y (s) | T = t) = E(Y (t) | T = t)− E(Y (s) | T = t). (3.4)

γt,s denotes the expected effect of treatment t relative to treatment s for a participant

drawn randomly from the population. Similarly, αt,s and θt,st respectively denotes the

same effect for a participant randomly selected from the group of participants partici-

pating in either s or t, and t only. Note that γt,s and αt,s are weighted combination of

estimands θt,s, we therefore focus on the estimation of θt,s in the following. To estimate

θt,st , we need to know both the observed potential outcomes distribution f(Y (t) | T = t)

and the unobserved potential outcomes distribution f(Y (s) | T = t). The estimation of

the observed outcome density is trivial, while it is challenging to estimate the missing
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outcome distributions, which is the focus of our following discussion.

We extend Tukey’s factorization of the complete data density 3.1 to the multi-level

treatment case as

f(T, [Y (1), · · · , Y (M)] | X) =
M∏
t=1

[
f obs(Y (t) | T = t,X)f(T = t | X)

fasgn(T | Y (t), X)

fasgn(T = t | Y (t), X

]
·(

1

f(T | X)

)M−1

· c(F (Y (1) | T ), · · · , F (Y (M) | T ) | T,X),

(3.5)

where the conditional copula is defined similarly to the binary case,

c(F (Y (1) | T ), · · · , F (Y (M) | T ) | T,X) :=
f(Y (1), · · · , Y (M) | T,X)

f(Y (1) | T,X) · · · f(Y (M) | T,X)
. (3.6)

In above equation, the joint density is decomposed into the observed data densities

f obs(Y (t) | T = t,X), the treatment assignment mechanisms fasgn(T | Y (t), X) and the

conditional copula, c(F (Y (1) | T ), · · · , F (Y (M) | T ) | T,X), capturing the conditional

dependence between potential outcomes. Same as the binary case, the Tukey’s factor-

ization of the complete data in the multi-level treatment case also leaves the observed

outcome distribution f obs(Y (s) | T = s,X) free of the sensitivity parameter γs, which

leads to a clean separation between model checking and sensitivity analysis.

Notably, Equation 3.5 implies that the missing outcome distribution fmis(Y (s) | T =

t,X) is a tilt of the observed outcome distribution f obs(Y (s) | T = s,X),

fmis(Y (s) | T = t,X) ∝ f obs(Y (s) | T = s,X)
fasgnγs (T = t | Y (s), X)

fasgnγs (T = s | Y (s), X)
. (3.7)

Equation 3.7 shows that the missing outcome distribution depends on the observed out-

come distribution and the treatment assignment. While the observed outcomes distri-

bution can be identified using non-parametric or flexible machine learning methods such
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as Bayesian Regression Tree Model (BART) [33], the treatment assignment mechanism,

parameterized by the sensitivity parameter γs, is not identifiable but can be easily rea-

soned out (discussed in Section 3.3). Hence, given the sensitivity parameter γs, we would

be able to identify the marginal contrast estimand θt,st , which is a function of observed

and missing outcome distributions.

3.3 Logistic Selection with Exponential Family Mod-

els

In this section, we discuss practical implementation of the Tukey’s method in the

two most interested cases where outcome variables are binary or Gaussian. For the

specification of the treatment assignment model, in order to facilitate the calibration and

interpretation of the sensitivity parameters, we assume that the adjacent-categories logits

are linear in some sufficient statistics of the potential outcomes, and, thus, the sensitivity

parameters describe how treatment assignment depends marginally on each potential

outcome. One of the difficulties for sensitivity analyses in multivariate treatment settings

is that the number of sensitivity parameters increases substantially with the dimension

of the treatment variable. We address this issue by considering proportional odds with

ordinal treatments, which largely cut down the number of sensitivity parameters to one

in each treatment arm.

Let’s first consider the case where outcomes are binary.

Example 3.3.1 (Binary Outcomes) Assuming that the observed potential outcomes

in the treatment arm s follow the Bernoulli distribution,

f obs(Y (s) | T = s) ∼ Bern(logit−1(µs(x))), s = 1, · · · ,M. (3.8)
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and specifying the treatment assignment model using adjacent-categories logits model in

which the adjacent-categories logits are linear in the sufficient statistics of Bernoulli dis-

tribution for the outcomes in the treatment arm s, i.e., Y (s), as

log
p(T = j | Y (s), X)

p(T = j + 1 | Y (s), X)
= αjs + βs(x) + γsY (s), j = 1, · · · ,M − 1. (3.9)

In the above Example 3.3.1, we can derive the missing potential outcome distribution of

potential outcome Y (s) in the treatment arm t based on Equation 3.7, which equals

fmis(Y (s) | T = t,X) ∼ Bern(logit−1(µs(x) + (s− t)γs)), t 6= s, t = 1, · · · ,M.

(3.10)

Equation 3.10 shows that the log-odds of the missing potential outcomes is an additive

shift to the observed potential outcomes. Therefore, we are able to calculate any marginal

contrast causal estimands given the sensitivity parameter γs.

Beside the binary outcome, our Tukey’s method also applies well to cases with Gaus-

sian outcomes.

Example 3.3.2 (Gaussian Outcomes) Assume that the observed potential outcomes

in the treatment arm s follow the normal distribution:

f obs(Y (s) | T = s,X) ∼ N(µs(x), σ2
s), s = 1, · · · ,M. (3.11)

In the treatment assignment model, let adjacent-categories logits be linear in the sufficient

statistics of normal distribution for the outcomes in the treatment arm s, i.e., Y (s) and
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Y 2(s):

log
p(T = j | X, Y (s))

p(T = j + 1 | X, Y (s))
= αjs + βs(x) + γsY (s) + ψsY

2(s), j = 1, · · · ,M − 1.

(3.12)

Under the specification of Example 3.3.2, the missing potential outcome distribution for

outcome Y (s) in the treatment t can be derived according to Equation 3.7 as

fmis(Y (s) | T = t,X) ∼ N(
µs(x) + (s− t)γsσ2

s

1− 2(s− t)ψsσ2
s

,
σ2
s

1− 2(s− t)ψsσ2
s

), t 6= s, t = 1, · · · ,M,

(3.13)

which implies that the distribution of missing potential outcomes is within the same

exponential family as of the observed outcomes. Similar to the binary outcome case,

given the sensitivity parameters γs and ψs, we are able to identify the causal estimands

of our interest.

3.4 Calibration

As of now, we decently specify a set of causal models indexed by sensitivity parameters

that are decoupled from the observed data model. Given values of sensitivity parameters,

we are able to deduce the causal effects accordingly. The next natural question we would

ask is how to find plausible regions for these sensitivity parameters exploiting the expert

knowledge? So, in this section, we propose a strategy to solve this problem. Our key idea

is that calibrating the magnitude of sensitivity parameters to the amount of variation in

the treatment assignment T that is explained by Y (t) with respect to what is counted

for X.

Considering the generalized propensity score model, which models the probability

of treatment assignment T over the observed covariates X by adjacent-categories logits
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model,

log
p(T = j | X)

p(T = j + 1 | X)
= cjs +ms(x), j = 1, · · · ,M − 1. (3.14)

Note that this generalized propensity score model is identifiable by the observed data.

Under model 3.14, we can measure the proportion of variation in T explained by X using

the implicit R2 proposed by McKelvey and Zavoina (1975) [34] as

ρ2
X :=

V ar(ms(x))

V ar(ms(x)) + π2/3
. (3.15)

Accordingly, we define the fraction of previously unexplained variation in T that can be

explained by adding one of the observed predictors Xj to other predictors X−j in parallel

with ordinary partial R2 as

ρ2
Xj |X−j =

ρ2
X − ρ2

X−j

1− ρ2
X−j

. (3.16)

To calibrate the sensitivity parameters in the binary outcome case (Example 3.3.1),

we comparatively consider the variation in T explained by the treatment assignment

model 3.9, which can be measured as

ρ2
X,Y (s) =

V ar(βs(x) + γsY (s))

V ar(βs(x) + γsY (s)) + π2/3
(3.17)

Similar to ρ2
Xj |X−j , the fraction of previously unexplained variation in T that can be

explained by adding the potential outcome Y (t) to the observed predictors X can be

measured as

ρ2
Y (s)|X =

ρ2
Y (s),X − ρ2

X

1− ρ2
X

, (3.18)

which is a function of the sensitivity parameter γs. Therefore, we can calibrate ρ2
Y (s)|X

with respect to the identifiable quantity ρ2
Xj |X−j in order to find the plausible region for

the sensitivity parameter γs.
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3.5 Simulation

In this section, we demonstrate our Tukey’s sensitivity analysis approach by simula-

tion following the design in Gu et al. (2019) [35].

We consider categorical treatment T with three ordinal levels 1, 2, 3, binary potential

outcomes, and ten predictors, three unobserved confounders U1, U2, U3 and seven observed

covariates X1, · · · , X7, which are independent and identically distributed by the standard

normal distribution N(0, 1). Our goal is to estimate the treatment effect θ2,1
2 = E(Y (2)−

Y (1) | T = 2).

The treatment T is generated from the model,

log
P (T = 1 | X,U)

P (T = 2 | X,U)
= α1 + η(X,U),

log
P (T = 2 | X,U)

P (T = 3 | X,U)
= α2 + η(X,U),

where η(X,U) = 0.5U1 + 0.7U2 + 0.5U3 + 0.8X4 + 0.2X5 + 0.8X6. We let α1 = 0.6 and

α2 = 1.7 so that the ratio of units in three treatment groups, N1 : N2 : N3, equals 4 : 2 : 1.

In addition, the response surface is assumed as

E(Y (1) | X,U) = P (Y (1) = 1 | X,U) = logit−1{ξ(X,U)}/2.5,

E(Y (2) | X,U) = P (Y (2) = 1 | X,U) = logit−1{ξ(X,U)}/2.5 + τ,

E(Y (3) | X,U) = P (Y (3) = 1 | X,U) = logit−1{ξ(X,U)}/2.5 + 2τ,

where τ = 0.08 and ξ(X,U) = 0.8U1 + 0.6U2 + 0.8U2
3 + 0.5X4 + 0.7X5 + 0.9X2

6 + 0.6U1X4.

Based on the model specification of our simulation, the true value of the estimand of our

interest, θ1,2
2 , is equal to τ .

We calculate θ1,2
2 and calibrate the sensitivity parameter γ1 based on our previous
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(a) ρ2
Y (1)|X vs γ1 (b) estimated θ2,1

2

Figure 3.1: (a) ρ2
Y (1)|X vs γ1. | γ1 | increases with the implicit partial variance ex-

plained by Y (1), ρ2
Y (1)|X . For comparison, we mark the partial variance explained

by observed covariates with non-zero effect by horizontal dashed lines, and calibrate
the magnitude of γ1 based on X6. (b) Estimated θ2,1

2 , the expected effect of T = 2
relative to T = 1 for units drawn randomly from the the treatment arm 2 with dif-
ferent assumptions about the sensitivity parameter γ1. Under the unconfoundedness
(γ1 = 0), the estimated causal effect is around 0.04. After accounting for an amount
of confoundedness corresponding to γ1 = 0.2, the estimated causal effect would be
closer to the truth of θ1,2

2 , 0.08.

discussion of this chapter. In Figure 3.1a, we show how ρ2
Y (1)|X changes with γ1, where

ρ2
Y (1)|X denotes the proportion of additional variation explained by adding Y (1) to the

treatment assignment model with covariates X already included as predictors. To com-

pare ρ2
Y (1)|X with observed quantities ρ2

Xj |X−j , we also include the partial coefficient of

variation ρ2
Xj |X−j for non-zero effect covariates, X4, X5 and X6 in the plot by horizontal

dashed lines.

Following the discussion in Section 3.4, we bound the magnitude of sensitivity param-

eters γ1 with respect to the partial variance explained by covariate X6, with ρ2
X6|X−6

≈

0.004. More specifically, to find the corresponding value of γ1, we set ρ2
Y (1)|X = 0.04 and

solve Equation 3.18 for γ1, which turns out to be about 0.2.

We display the sensitivity analysis results in Figure 3.1b, where it shows that how

θ2,1
2 changes to unmeasured confounders within the range of [−0.5, 0.5] for γ1. The black
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solid line denotes the estimated average treatment effect of θ2,1
2 , and the red dashed lines

represent the upper and lower bounds of the 95% posterior credible interval at different

settings of the sensitivity parameter. In this plot, we can see that the estimated treatment

effect would increase from 0.04 (γ1 = 0) to 0.1, getting closer to its true value 0.08, after

adjusting for a level of confoundedness corresponding to γ1 = 0.2.

3.6 Discussion

The two methods proposed in Chapter 2 and 3 both clearly separate the identified and

the unidentified portion of the data-generating process, which allows us to evaluate the

sensitivity of our causal conclusions under a range of hypothetical assumptions without

re-fitting potential outcome models, and largely reduces the computational cost. The two

methods have their own advantages. For the Tukey’s method, it can be easily applied to a

class of models, the logistic selection with mixtures of exponential families (logistic-mEF

models), in contrast, there is no universal way to reparameterize the latent confounder

models. On the other hand, the latent class model implies a bounded ignorance region

for the treatment effect, while it is not the case with the Tukey’s method.

This motivates us to develop sensitivity analysis methods that have both advan-

tages of the two methods above, i.e., being versatile to different data types and can

imply bounded ignorance regions under appropriate assumptions. Moreover, although

we have successfully extend Tukey’s extrapolation method to cases with ordinal treat-

ments, modern problems often involve diverse data types of high-dimensional treatments

or even outcomes. Sensitivity analysis methods for causal inference problems with high-

dimensional treatments and/or outcomes are underdeveloped in the literature. Thus, in

the final chapters of this dissertation, we provide sensitivity analysis methods that are

applicable to high-dimensional settings of different types of treatments and outcomes by
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making use of a copula factorization.
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Chapter 4

Copula-based Sensitivity Analysis

with Multiple Treatments

Recent work has focused on the potential and pitfalls of causal identification in observa-

tional studies with multiple simultaneous treatments. On the one hand, a latent variable

model fit to the observed treatments can identify essential aspects of the distribution

of unobserved confounders. On the other hand, it has been shown that even when the

latent confounder distribution is known exactly, causal effects are still not point identifi-

able. Thus, the practical benefits of latent variable modeling in multi-treatment settings

remain unclear. We clarify these issues with a sensitivity analysis method that can be

used to characterize the range of causal effects that are compatible with the observed

data. Our method is based on a copula factorization of the joint distribution of out-

comes, treatments, and confounders, and can be layered on top of arbitrary observed

data models. We propose a practical implementation of this approach making use of the

Gaussian copula, and establish conditions under which causal effects can be bounded.

We also describe approaches for reasoning about effects, including calibrating sensitivity

parameters, quantifying robustness of effect estimates, and selecting models which are
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most consistent with prior hypotheses.

4.1 Introduction

Although it is well-established that, in the conventional causal inference setting where

both the treatment and outcome are single, treatment effects are not generally identifi-

able in the presence of unobserved confounding, recent work has focused on whether this

challenge can be mitigated when there are multiple simultaneous treatments. Intuitively,

dependence among multivariate treatments could provide information about latent con-

founders, which could in turn be leveraged to facilitate causal inference and identification.

This intuition has motivated latent variable approaches such as “the deconfounder”, a

much discussed approach for estimating causal effects for multiple treatments [36].

Unfortunately, it was shown that this strategy has limited practical applicability for

point identification and estimation of causal effects. For example, D’Amour (2019a) [37]

and D’Amour (2019b)[38] note the lack of general nonparametric identification in the de-

confounder approach, and show that the special cases in which the approach does provide

identification correspond to situations where all confounding is already observed. Ogburn

et al. (2019) [39] and Ogburn et al. (2020) [40] provide several additional counterex-

amples and detailed rebuttals to previous theoretical results. Even in the special cases

where causal effects are identifiable, Grim- mer et al. (2020) [41] demonstrate through

a suite of simulations and real-data analyses that the deconfounder cannot consistently

outperform naive regression. They conclude by further arguing that the deconfounder

assumptions are too strong to be applicable in practice.

These challenges are particularly relevant because similar strategies are used in ge-

nomics [42], computational neuroscience, social science and medicine [43], and time series

applications [44]. Given the practical importance of causal inference with multiple treat-
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ments, recent work has focused on stronger identifying assumptions for causal effects in

the multi-treatment setting. Miao et al. (2020) [45] propose identifying assumptions

involving instrumental variables and in settings when over half of the treatments are

assumed to have a null effect while Kong et al. (2019) [46] consider identification in a

parametric model with binary outcomes.

This literature has revolved around a binary question about point identification: can

be causal effects be identified or not? Negative answers to this question often run counter

to practitioners’ intuitions in specific data analyses. In particular, it is intuitive that a

latent variable model should provide some helpful information, even if this information

is not enough to fully identify causal effects.

To address this issue, we propose that sensitivity analysis—which explores the range

of causal effects that are consistent with the observed data in the context of a given

problem—can resolve this tension. Specifically, sensitivity analysis can show how much

is gained by leveraging latent structure in a given application, even if this (usually)

falls short of fully identifying the causal effect of interest. To this end, we propose a

sensitivity analysis approach to help practitioners better understand confounding in the

multi-treatment setting, focusing on the special case where the conditional distribution of

unobserved confounders given treatments is identifiable. To extend sensitivity analysis to

the multi-treatment setting, we propose a general copula-based decomposition of standard

latent variable–based sensitivity analysis models. This factorization allows us to precisely

separate the parts of the model that are, and are not, identified in the multi-treatment

setting.

For practical analyses, we propose a specialization of the general decomposition, which

specifies a sensitivity model based on invariant Gaussian copulas. While this Gaussian

copula specification only covers a sub-family of sensitivity models expressible in our

general formulation, we show that it captures several essential qualitative aspects of
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confounding in the multi-treatment setting. In this context, we establish that there

are important advantages to multi-treatment inference over single-treatment inference

for characterizing sensitivity to unobserved confounding. Specifically, under appropriate

assumptions, we establish that the number of effective sensitivity parameters is halved

in multi-treatment inference and that this implies that the magnitude of causal effects

can be bounded.

The chapter proceeds as follows. In Section 4.2 we describe our basic framework for

latent variable sensitivity analysis via a copula factorization. In Section 4.3 we introduce

a special case of the more general approach in which we assume confounder-outcome

relationships can be characterized by a Gaussian copula. In Section 4.4 we provide some

theoretical insights into bias and confounding with the Gaussian copula. We discuss

sensitivity parameter interpretation, calibration, and measures of robustness in Section

4.5 and, finally, in Section 4.6 and Section 4.7 we demonstrate our approach in simulation

and with the movie example analyzed by Wang and Blei (2018) [36] and later reanalyzed

by Grimmer et al. (2020) [41].

4.2 Sensitivity Analysis via Copula Parameterizations

with Multi-Treatment

The multiple treatment setting presents unique challenges for sensitivity analysis. In

particular, the additional structure imposed in studies with multiple treatments intro-

duces new observable implications, muddling issues of identifiability. We focus on the

specific case in which the conditional confounder distribution fψT (u | t) may be partially

identifiable from the multiple treatments. To adapt sensitivity analysis to this setting,

sensitivity parameters must not only be decoupled from the observed data distribution;
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Figure 4.1: Treatment T, outcome Y, unobserved variables U. εu, εt|u and εy|t,u are
respectively the random noises of U , T and Y .

parameters describing the treatment-confounder relationships must also be decoupled

from parameters describing the outcome-confounder relationships. We tackle this chal-

lenge by factorizing the joint distribution f(y, u, t) using a copula, which decompose joint

distributions of variables into their marginal distributions and joint dependence.

In this section, we introduce our copula-based factorization, discuss how it applies to

the multiple treatment setting, and then discuss the Gaussian copula parameterization,

a special case that we will use in theoretical analysis and methods development in the

remainder of this chapter.

4.2.1 General Copula-Based Formulation

Our approach is based on the following factorization. The model for Y conditional

on treatments and unobserved confounders can be decomposed into the observed data

density and a conditional copula as

fψ(y | u, t) = f(y | t)cψY (FY |t(y), FψT
U |t (u) | t) (4.1)

where FY |t is the CDF of f(y | t) and FU |t is the CDF of fψT (u | t). cψY is the con-

ditional copula density, defined on the unit hypercube and parameterized by ψY , which

characterizes the joint density of Y and U conditional of T = t after transforming the
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marginals to uniform random variables [47]. By explicitly factoring the observed outcome

density, f(y | t), out of the complete data distribution, we ensure that the left hand side

of Equation 1.16 is invariant to ψ, establishing that there are no observable implications

of varying the copula parameters. Moreover, this factorization holds for all densities (or

PMFs) f(y | t) and fψT (u | t) and any number of treatments, and thus can be used to

characterize the outcome-confounder dependence for any model of the observables.

With Equation 4.1, we can express the intervention distribution, fψ(y | do(t)), as:

fψ(y | do(t)) = f(y | t)
∫
cψY (FY |t(y), FψT

U |t (u) | t)f(u)du, (4.2)

= f(y | t)
∫
cψY (FY |t(y), FψT

U |t (u) | t)
[∫

fψT (u | t̃)f(t̃)dt̃

]
du (4.3)

The observed outcome distribution f(y | t) and the marginal distribution of treatment

f(t) are clearly invariant to the sensitivity parameters by construction. The intervention

distribution f(y | do(t)) is parameterized by ψY , the parameter governing the condi-

tional dependence between Y and U given T and by ψT , the parameters governing the

conditional distribution of U given T .

Given f(y | t), fψT (u | t) and cψY we can compute the expected value of any function of

the outcome under the intervention distribution, E[v(Y ) | do(t)] =
∫
v(y)f(y | do(t))dy.

This can be in turn used to compute any marginal contrast estimand. By applying

Equation 4.2, we write this intervention expectation as

E[v(Y ) | do(t)] =

∫
v(y)wψ(y, t)f(y | t)dy, (4.4)

where wψ(y, t) =
∫
cψY (FY |t(y), FψT

U |t (u) | t)fψT (u)du is the importance weight associated

with sampling from the observed data distribution instead of the intervention distri-

bution. In practice, we can approximate the marginal distribution of the unobserved
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confounder with the mixture density fψT (u) ≈ 1
n

∑
i f

ψT (u | ti) where ti ∈ T is the

ith observed treatment and T is the set of all observed treatment vectors. Thus, the

importance weight can be approximated as

wψ(y, t) ≈ 1

|T |
∑
ti∈T

[∫
cψY (FY |t(y), FψT

U |t (u) | t)fψT (u | ti)du
]
. (4.5)

We use this approximation to derive importance sampling algorithm for computing the

the expected value in Equation 4.4 for any copula and conditional confounder distribu-

tions f(u | t) (Appendix A, Algorithm 3). This can in turn be used to compute any

marginal contrast estimand, τ(E[v(y)|do(t1)], E[v(y)|do(t2)]).

4.2.2 Multiple Treatments and Causal Equivalence Classes

Algorithm 3 is fully general and thus can be used to compute marginal contrast

estimands in a single treatment setting, multiple treatment setting, or even multiple

outcome settings. However, the primary motivation in this chapter is to study this

factorization in multiple treatments setting when there additional observable implications

from latent variable models. The copula factorization elucidates the role of confounding

even when aspects of the treatment-confounder relationship are identifiable from multiple

treatments. Specifically, with multiple treatments, the conditional distribution of latent

confounders given treatments, parameterized by ψT , is often identifiable up to a particular

equivalence class (e.g. up to rotation and scale).

In this chapter, we focus on inference with latent variable methods where ψT is

identified up to an equivalence class where the set of possible causal effects compatible

with any particular value of ψT does not change within this class. We formalize this

notion through the following definition and assumption.
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Definition 4.2.1 (Causal equivalence class in multi-treatment setting) [ψT ] is a

causal equivalence class of ψT if and only if for any ψ̃T in [ψT ], then, for every ψY there

exists a ψ̃Y such that fψY ,ψT (y | do(T = t)) = fψ̃Y ,ψ̃T (y | do(T = t)) for all y, t.

For the purposes of sensitivity analysis, when ψT is identified up to a causal equivalence

class, we can assume that ψT is point-identified at a particular value within the class [ψT ]

without loss of generality. Identification up to a causal equivalence class is not generally

possible in single treatment studies but will often hold in a multi-treatment study when

certain identifying conditions for the latent variable model are met.

Crucially, the copula-based formulation enables valid sensitivity analysis without ob-

servable implications, even in these cases where ψT is restricted by the observed data. In

this case, the outcome-confounder copula cψY remains the lone degree of freedom in the

sensitivity model. As we will show, this restriction can induce qualitatively different sen-

sitivity regions in the multi-treatment setting as opposed to the single-treatment setting.

For example, sensitivity regions can be bounded, even without additional restrictions on

ψY .

4.3 Practical Sensitivity Analysis with the Gaussian

Copula

In practice, it is infeasible to characterize and interpret the implied causal effects

for all possible copula specifications. In this section, we propose a practical sensitivity

analysis method based on the special case in which cψY is a Gaussian copula. This

model characterizes the sensitivity of causal effects to monotone dependencies between

the outcome and unobserved confounders. As we will discuss in the following sections,

the Gaussian copula facilitates interpretation and sensitivity parameter calibration, and,
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as before, is compatible with arbitrary marginal distributions f(y | t) and f(t). For

our method and throughout the remainder of the dissertation we make the following

additional assumptions:

Assumption 4.3.1 (Copula invariance) The conditional copula does not depend on

the value of t, that is, the conditional dependence between Y and U is invariant to the

level of T .

Assumption 4.3.2 (Gaussian copula) The conditional copula between the outcome

and m-dimensional latent confounders given treatments, cψ(FY |t(y), FU |t(u) | t), is a

Gaussian copula.

These assumptions do not impose constraints on the observed data distributions, only

the relationship between the observed and latent variables. Given Assumption 4.3.1

and 4.3.2, the conditional confounder density can be expressed as a multivariate normal

density, f(u | t) ∼ N(µu|t,Σu|t), where Σu|t invariant to the level of t. Together, these

assumptions imply the following generative model:

T ∼ FT (4.6)

f(u | t) ∼ N(µu|t,Σu|t) (4.7)

Ỹ = γ′(U − µu|t) + εỹ|t,u, εỹ|t,u ∼ N(0, σ2
ỹ|t,u), γTΣu|tγ + σ2

ỹ|t,u = 1 (4.8)

Y = F−1
Y |t(Φ(Ỹ )) (4.9)

where FT is the distribution of the treatments and F−1
Y |t is the inverse-CDF of the con-

ditional distribution of Y given T = t. The Gaussian copula is parameterized by the
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correlation matrix implied by

Cov([Ỹ , U ] | T = t) =

 1 γTΣu|t

Σu|tγ Σu|t

 . (4.10)

with parameters are ψT = {µu|t,Σu|t} and ψY = {γ}. In general, µu|t and Σu|t will not be

point identified, although under many latent variable models they can be identified up to

invertible linear transformation of U . Importantly, the following theorem establishes that

the class of ψT defined by all invertible linear transformations of U is a causal equivalance

class.

Theorem 4.3.1 Assume model 4.7-4.9. Let [ψT ] = {ψ̃T = {Aµu|t, AΣu|tA} : A ∈ S+}

where S+ is the space of symmetric positive definite matrices. Then [ψT ] is a causal

equivalence class.

The gist of the proof is that for any invertible linear transformation, A, of U , the cop-

ula parameterized by γ̃ = A−1γ yields equivalent causal effects in the reparameterized

coordinates of U as γ does in the original confounder coordinates.

Throughout this chapter, we will assume that ψT is identified up to invertible linear

transformations of U , and explore the range of possible causal effects for different γ

satisfying γTΣu|tγ ≤ 1. In Algorithm 1, we provide a procedure for estimating any

marginal contrast estimand, given a sensitivity vector γ and treatments levels t1 and t2.

At a high level, we compute a Monte Carlo estimate of f(y | do(t)) via the following three

step procedure: 1) draw a sample from f(u), 2) compute the conditional density of the

Gaussianized outcome f(Ỹ | u, t) via the Gaussian copula and 3) transform Ỹ back to

original space via the conditional quantile function F−1
Y |t (see Figure 4.3). In the following

Sections, we introduce some theoretical insights about our approach and also provide a

method for calibrating the magnitude of γ and reasoning about it’s direction.
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Algorithm 1: Marginal Contrast Estimation with Multiple Treatments.

1 Function ComputeMean(t, γ):
2 for i = 1, 2, . . . , n do
3 µi ← γT (µu|ti − µu|t) ;
4 for j = 1, 2, . . . , nSim do
5 Sample ỹij from N(µi, 1) ;
6 yij ← F−1

Y |t(Φ(ỹij)) ;

7 return 1
n

∑
ij v(yij)

8 return τ(ComputeMean(t1, γ),ComputeMean(t2, γ))

4.4 The Geometry of Sensitivity in the Gaussian Cop-

ula Model

As described in the previous Section, our method for practical sensitivity analysis with

multiple treatments is based on a Gaussian copula parameterization of the confounder-

outcome relationship. Here, we start by providing some theoretical insights about how

the Gaussian covariance structure relates to confounding bias in the linear-Gaussian

model. Specifically, we describe how the causal effects vary as a function of γ and how

bounds on these effects depend on both the treatment contrast and inferred conditional

confounder density. In 4.4.2, we generalize some of these results to arbitrary models for

f(y | t) and f(t).

4.4.1 Confounding Bias in the Linear-Gaussian Model

We start by illustrating our approach in a simple Linear-Gaussian model when (Y, T, U)

are jointly multivariate Gaussian and establish the following results:

• For causal inference with a single treatment, the confounding bias for PATEt1,t2 is

unbounded.
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• When there are multiple treatments which can be used to identify (up to a causal

equivalance class) the conditional confounder distribution, the magnitude of the

confounding bias for PATEt1,t2 is bounded. We characterize how the magnitude of

this bound depends on the parameters of the latent confounder model.

• In the multi-cause setting there are many possible treatment contrasts. The con-

founding bias depends on the contrast. We characterize which treatment contrasts

lead to the largest bounds and which treatment contrasts imply identifiable effects.

We demonstrate these results in the following model:

U = εu, εu ∼ Nm(0,Σu), (4.11)

T = BU + εt|u, εt|u ∼ Nk(0,Λt|u), (4.12)

Y = τ ′T + γ′U + εy|t,u, εy|t,u ∼ N(0, σ2
y|t,u), (4.13)

with τ ∈ Rk, γ ∈ Rm, and Λt|u an arbitrary diagonal matrix. When either B = 0 or

γ = 0, there is no confounding. We also note that Equations 4.11 and 4.12 imply that the

conditional distribution of the confounder can be expressed as f(u | t) ∼ N(µu|t,Σu|t),

as in Equation 4.7, where both µu|t and Σu|t are known functions of B and σ2
t|u. Under

model 4.11-4.13, the intervention distribution has density

f(y | do(T = t)) ∼ N(τ ′t, σ2
y|t,u + γ′Σuγ). (4.14)

For any t1, t2, PATEt1,t2 is characterized entirely by the regression coefficients τ . The

observed outcome distribution can be expressed as

f(y | T = t) ∼ N(τ ′naivet, σ
2
y|t), (4.15)
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where

τnaive = τ + (BΣuB
′ + Λt|u)

−1BΣuγ (4.16)

σ2
y|t = σ2

y|t,u + γ′(Σu − ΣuB
′(BΣuB

′ + Λt|u)
−1BΣu)γ (4.17)

= σ2
y|t,u + γ′Σu|tγ (4.18)

which are both fully identified from observed data. We refer to τnaive as the naive estimate

since it naively neglects the effect of unobserved confounders. Equation 4.18 shows that

the observed residual outcome variance can be decomposed into nonconfounding variation

σ2
y|t,u and confounding variation, γ′Σu|tγ. We take σ2

y|t and τnaive as fixed and known, and

characterize the range of confounding biases by considering different assumptions about

the strength of confounding.

We note that the bias of the naive estimator depends only on the difference between

the treatment vectors, ∆t = t1− t2, since the population average treatment effect can be

expressed as

PATE∆t = τ ′(t1 − t2) := τ ′∆t, (4.19)

The confounding bias, denoted Bias∆t = τ ′naive∆t− PATE∆t, can then be expressed as

Bias∆t = γ′ΣuB
′(BΣuB

′ + Λt|u)
−1∆t (4.20)

= γ′(E(U | T = t1)− E(U | T = t2)) (4.21)

:= γ′µu|∆t, (4.22)

where we use µu|∆t to denote the difference in confounder means for the treatment con-

trast, ∆t. We can then succinctly express the PATE in terms of the naive estimate minus

the bias as PATE∆t = τnaive
′∆t− γ′µu|∆t.
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In the single treatment setting, neither ψY = {γ} nor ψT = {µu|∆t,Σu|t} are identi-

fiable, which implies that the confounding bias is unbounded. However, with multiple

treatments ψT is identifiable up to a causal equivalence class defined by invertible linear

transformations of U . We make this concrete in the following theorems.

Theorem 4.4.1 Suppose that the observed data is generated by model 4.11-4.13. When

there k treatments with 1 < m < k, then ψT is identified up to the causal equivalence

class [ψT ] = {ψ̃T = {Aµu|t, AΣu|tA} : A ∈ S+}. When there is a single treatment (k = 1)

or at least m = k confounders, then ψT is not identifiable up to causal equivalence class.

Proof. See appendix.

One consequence of Theorem 4.4.1 is that the distribution of U is only causally relevant

up to linear transforms, and as such, without loss of generality, we make the simplifying

assumption that U ∼ N(0, Im) for the remainder of this Section.

First, we review the implications of this theorem when there is only a single treatment,

i.e. k = 1. As shown in Cinelli and Hazlett (2019) [18], for single treatment inference,

the squared confounding bias of the PATE can be expressed as

Bias2
∆t =

R2
T∼U

1−R2
T∼U

R2
Y∼U |T

σ2
y|t

σ2
T

(4.23)

where σ2
T := BB′ + σ2

t|uIk is the marginal variance of the treatment,

0 ≤ R2
T∼U =

σ2
T (µu|∆t)

′µu|∆t
(∆t)2

≤ 1 (4.24)

is the unidentifed fraction of treatment variance explained by confounders and

0 ≤ R2
Y∼U |T =

γTΣu|tγ

σ2
y|t

≤ 1 (4.25)
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is the fraction of the residual outcome variance explained by confounders. By Theorem

4.4.1, neither R2
T∼U nor R2

Y∼U |T are identifiable. Since
R2
T∼U

1−R2
T∼U

can be arbitrarily large,

the confounding bias is unbounded in the single treatment setting.

In contrast, Theorem 4.4.1 states that with multiple treatments, we can identify an el-

ement of the causal equivalence class for parameters governing the conditional confounder

distribution. The relationship between Y and U , as parameterized by m-vector γ, remains

an unidentified sensitivity vector. This sensitivity vector can be viewed as parameteriz-

ing the Gaussian conditional copula between Y and U given T , cγ(FY |t(y), FU |t(u) | t)

(Equation 4.10).

Identification up to causal equivalence class implies that the confounding bias is

bounded. From Equation 4.20, we can see that the sign and magnitude of the bias

depends on both ∆t as well as γ. Although γ is not identified, its values are constrained

since unobserved confounding cannot explain more than 100% of the residual outcome

variance (Equation 4.25). This constraint on the magnitude of γ implies the following

result about the bias of the naive estimator.

Theorem 4.4.2 Suppose that the observed data is generated by model 4.11-4.13 with

σ2
t|u > 0. Then, ∀γ satisfying Assumptions 1 and 2,

γTΣu|tγ ≤ σ2
y|t (4.26)

For any given ∆t, we have

Bias2
∆t ≤ σ2

y|tR
2
Y∼U |T‖Σ

−1/2
u|t µu|∆t‖2

2. (4.27)

The bound is achieved when γ is colinear with Σ−1
u|tµu|∆t.

Proof. See appendix.
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This theorem states that the true causal effect lies in the interval τ ′naive∆t±
√
σ2
y|tR

2
Y∼U |T‖Σ

−1/2
u|t µu|∆t‖2.

When additional assumptions are applied to identify a particular value of γ (e.g. see [45]),

the corresponding causal effect estimate will correspond to a single point inside this ig-

norance region when the Gaussian copula assumption holds. We refer to the right-hand

side of 4.27 as the “worst-case bias” of the naive estimator. In particular, since τnaive

is the midpoint of the ignorance region, it has the minimum worst-case bias over all

alternative causal effect estimators. This is consistent with Grimmer et al. (2020) [41]

who emphasize that the deconfounder proposed by Wang and Blei (2018) [36] cannot

outperform the naive estimator in general.

The worst-case bias of τnaive is proportional to the norm of the scaled difference

in confounder means in each treatment arm, Σ
−1/2
u|t µu|∆t. This result provides a useful

generalization of existing work which demonstrates that overlap is violated when u can be

pinpointed by a deterministic function of t [38]. In contrast to the original work by Blei

(2018) [36], our result suggests that the more precisely we can pinpoint u given t, the less

precisely we can pinpoint PATE∆t . In the following corollary, we assume Λt|u = σ2
t|uIk

for gaining intuitions about the worst-case bias over all possible treatment contrasts:

Corollary 4.4.1 Let d1 be the largest singular value of B. For all ∆t with ‖ ∆t ‖2= 1,

the squared bias is bounded by

Bias2
∆t ≤

d2
1

(d2
1 + σ2

t|u)

σ2
y|t

σ2
t|u
R2
Y∼U |T , (4.28)

with equality when ∆t = uB1 , the first left singular vector of B. When ∆t ∈ Null(B′),

the naive estimate is unbiased, that is, PATE∆t = τ ′naive∆t.

Proof: See Appendix.

The first term in (4.28),
d2

1

(d2
1+σ2

t|u)
, is the fraction of variance in the first principal compo-

nent of the causes that can be explained by confounding. The first principal component
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Figure 4.2: Illustration of Corollary 4.4.1. (a) We parameterize ∆t with θ, the angle
between nB0 , a vector in the null space of B, and uB1 , the first left singular vector of
B. (b) The confounding bias of naive estimates of PATE∆t changes with θ and de-
pends on R2

Y∼U |T . (c) Confounder densities in different populations. The blue, green,
red densities denote distributions of U1 in the observed population, the subpopula-
tion receiving t1 and the subpopulation receiving treatment t2 respectively. Observed
data estimates of PATE∆t are unbiased when ∆t = nB0 , since the confounder distri-
butions are the same in two treatment arms. However, observed data estimates of
PATEt1,• and PATEt2,• are biased since in general the superpopulation distribution of
the confounder is different.

corresponds to the projection of treatments which is most correlated with confounders,

and thus is the causal contrast with the largest ignorance region. We also note that

the squared biases depends on R2
Y∼U |T , the partial variance explained by confounders

given treatments. While the magnitude of the confounding bias is always largest when

R2
Y∼U |T = 1, we often have reason to believe that the variance explained by confounders

is likely smaller. We describe how to leverage this idea to calibrate more plausible bounds

and measures of robustness in Section 4.5.

We illustrate some key insights from these theorems in Figure 4.2, where we display

the worst-case bias as a function of the treatment contrasts, ∆t. In this illustration,

we assume that ∆t lies on a plane spanned by uB1 and nB0 , an arbitrary vector in the

null space of B. We let θ = arccos(∆t′uB1 ) be the angle of ∆t relative to uB1 , Figure

4.2a. Figure 4.2b depicts the bias as function of θ for different values of R2
Y∼U |T . When

∆t is in the null space of B, PATE∆t is identified because the confounder distributions

are identical in the two treatment arms, i.e. there is no confounding for this particular
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contrast. When ∆t is colinear with uB1 the scaled difference in means of u is largest,

which implies the largest worst-case bias for the treatment effect, Figure 4.2c (left). Even

when PATE∆t is identified, we emphasize that PATEt1,• and PATEt2,• are both biased,

since the distribution of confounders in the treatment arm differs from the distribution of

confounder in the superpopulation, Figure 4.2c (right). As noted by others, identification

of PATE∆t for ∆t in the null space of B arises due to bias cancellation in intervention

means of the two treatment arms [41].

Our theory is invariant to rotations of the treatments vector, which means that under

model 4.11-4.13, we can always make a change of treatment variables so that each con-

founder affects a distinct single rotated treatment (called “single cause” confounders in

Wang and Blei (2018) [36]). Specifically, let T̃ = RT be a rotation of the original treat-

ment variables, so that T̃ ∼ N(0,∆ +σ2
t|uIk) where ∆ is a diagonal positive semi-definite

matrix. Then, as before, ∆i

∆i+σ2
t|u

is the fraction of variance in the ith rotated treatment

due to confounding and provides a bound on the omitted confounder bias of estimates of

PATE for ∆T̃ = ei. For the k −m contrasts corresponding to the zeros in the diagonal

of ∆, there is no confounding for these particular treatment contrasts and thus there is

no confounding bias; these correspond to the contrasts in the original space which fall in

the null space of B.

4.4.2 Generalizing the Linear-Gaussian Model

Next, we generalize beyond the setting in which (Y, T, U) is jointly multivariate Gaus-

sian. First, when Y is Gaussian with mean µy|t and variance σ2
y|t, even when T has an

arbitrary functional relationship with Y we have that

PATEt,• = (µy|t − µy)− σy|tγ′(µu|t − µu), (4.29)

51



Copula-based Sensitivity Analysis with Multiple Treatments Chapter 4

−4

−2

0

2

4

−4 −2 0 2 4 6
U|t

Y|
t

𝑓(𝑈)𝑓(𝑈|𝑡)

𝑓(𝑌|𝑡)

𝑓(𝑌|𝑑𝑜 𝑡 )

−4

−2

0

2

4

−4 −2 0 2 4 6
U|t

Y|
t

𝑓(𝑈)𝑓(𝑈|𝑡)

𝑓(𝑌|𝑡)

𝑓(𝑌|𝑑𝑜 𝑡 )

−4

−2

0

2

4

−4 −2 0 2 4 6
U|t

Y|
t

𝑓(𝑈)𝑓(𝑈|𝑡)

𝑓(𝑌|𝑡)

𝑓(𝑌|𝑑𝑜 𝑡 )

(a)
√
R2
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Figure 4.3: Differences between observed and intervention densities as a
function of the fraction of outcome variance explained by a single con-
founder. The black contours depict the conditional Gaussian copula,
cγ(FY |t(y), FU |t(u) | t) whereas red points represent samples from the joint distri-
bution, f(y, u | do(t)) ∝ f(y | t)cγ(FY |t(y), FU |t(u) | t)f(u). We visualize the shift
in the outcome density for different conditional correlations and note that smaller
values of R2

Y∼U |T imply smaller biases in the outcome despite large imbalance in the
distribution of U.

where µu = E[U ] is the population mean of U . Thus,

PATEt1,t2 = (µy|t1 − µy|t2)− σy|tγ′(µu|t1 − µu|t2). (4.30)

This leads to the following generalization of Theorem 4.4.2.

Theorem 4.4.3 Assume the model 4.7-4.9 with Gaussian outcomes. If Σu|t is non-

invertible, then Biast1,t2 is bounded if and only if µu|t1 − µu|t2 is in the row space of Σu|t.

When bounded,

Bias2
t1,t2
≤ σ2

y|tR
2
Y∼U |T‖(Σ

†
u|t)

1/2(µu|t1 − µu|t2)‖2
2, where Σ†u|t is the pseudo-inverse of Σu|t.

Proof: See Appendix.

As before, when bounded, the bias is proportional to the norm of the scaled difference

in confounder means in the two treatment arms.

When there exists an m-vector, q, such that Var(q′U | t) = 0, then Σu|t is non-

invertible because there exists a projection of the confounders which is point identified.
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Theorem 4.4.3 says that in this case, the ignorance region for the PATE is bounded if and

only if q′(µu|t1 −µu|t2) = 0. In words, if a projection of the confounders can be identified,

then the confounding bias is bounded if the identifiable projection of the confounders

has the same value in both treatment arms. This result can be viewed in the context

of Theorem 7 in Wang and Blei (2018) [36], which assumes consistency and overlap of

estimators for the relevant latent confounders for identification.

When the observed outcome distribution is non-Gaussian, we cannot necessarily ex-

press PATEt1,t2 analytically. In particular, for non-Gaussian Y , when f(u | t1) ∼ f(u | t2)

the average treatment effect among the t1 and t2 treated units is unconfounded, but the

bias of PATEt1,t2 may be nonzero since f(u | t) � f(u). The causal effects, however,

can still be calculated using Algorithm 1. Another particularly important non-Gaussian

setting we highlight here is when the outcome is binary. Interestingly, unlike the linear

case, RRt,• and RRt1,t2 are non-monotone in the magnitude of γ. We discuss this in more

detail in Appendix A.2.3 and provide simulation results with binary outcomes in Section

4.6.

4.5 Calibration and Robustness

Sensitivity analyses consist of two parts: first, the sensitivity model itself, which spec-

ifies a set of causal models, indexed by sensitivity parameters; and secondly, exploratory

tools for mapping external assumptions to particular causal models in this set. We now

turn to discussing the latter in the context of our proposed model.

In the sensitivity analysis literature so far, two exploratory techniques have been

particularly popular in single treatment studies: calibration, which maps sensitivity pa-

rameter values to interpretable observable or hypothetical quantities; and robustness

analysis, which characterizes the “strength” of confounding necessary to change the con-
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clusion of a study. Here, we show how to adapt these techniques to our sensitivity model

in the multi-treatment setting. In addition, we introduce a third class of tools that are

particularly well-suited to the multi-treatment setting, which we call multiple contrast

criteria (MCCs). MCCs specify aggregate properties of the treatment effects for multiple

treatment contrasts that are implied by a single causal model, e.g., the L2 norm of PATEs

corresponding to contrasts in each individual treatment variable in T . In many multi-

treatment settings, assumptions are often expressed in terms of the aggregates—e.g., in

genomics, the idea that the effect of most single nucleotide polymorphisms is small—

and we show here how these can be used in conjunction with our sensitivity model to

characterize candidate causal models that may be of interest in an application.

4.5.1 Calibration for a Single Contrast

We begin by describing calibration for γ in our sensitivity model when the focus

is on a single treatment contrast, between levels T = t1 and T = t2. The goal is to

develop heuristics for specifying “reasonable” values or ranges for γ, e.g., to derive bounds

on treatment effects by specifying bounds on the strength or direction of confounding.

Following previous work in the single treatment setting, we outline how to calibrate our

sensitivity parameter vector γ in terms of a fraction of outcome variance explained by

the unobserved confounder. Recall that γ is a vector that parameterizes the residual

correlation between the m-dimensional unobserved confounder U and the outcome Y

after conditioning on the treatment vector T .

First, we briefly review calibration in single-treatment settings. In latent variable

approaches for single treatment sensitivity analysis, the causal effect is identified given

two sensitivity parameters: the fraction of outcome variance explained by unobserved

confounders, R2
Y∼U |T , and the fraction of treatment variance explained by unobserved
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confounders, R2
T∼U [18]. In a linear model, these two scalar quantities identify the con-

founding bias (Equation 4.23). Neither R-squared value is identifiable and thus many

authors have proposed strategies for drawing analogies between these values and other

observable or hypothetical quantities [48, 19, 2].

We borrow this strategy for calibration in our setting, with some modifications. First,

in our setting there is no need to calibrate R2
T∼U , because we have restricted ourselves

to the case where f(u | t) is identified up to a causal equivalence class. This leaves

calibration of the outcome-confounder relationship, which in our setting is more complex

because it is parameterized by a vector γ1. However, we can reparameterize γ in terms

of a direction d and an R-squared for interpretable calibration:

γ =
√
R2
Y∼U |TΣ

−1/2
u|t d, (4.31)

where d ∈ Sm−1 is an m-dimensional unit vector. We discuss strategies for calibrating

both the magnitude and direction separately.

Calibrating the magnitude of γ. For Gaussian outcomes, the magnitude of γ is

characterized entirely by R2
Y∼U |T , the partial fraction of outcome variance explained by

U given T . When R2
Y∼U |T = 0 there is no unobserved confounding and when R2

Y∼U |T = 1,

all of the observed residual variance in Y is due to confounding factors. In order to

calibrate this magnitude, we adopt an idea proposed by Cinelli and Hazlett (2019) [18]

for inference with single treatments. In their work, they calibrate R2
Y∼U |T by comparing

it to the partial fraction of variance explained by different observed covariates. We use

a closely related strategy that makes use of the presence of multiple treatments rather

than observed covariates. Specifically, we compute the fraction of variation in Y that

can be explained by a specific treatment (or set of treatments), Tj, after controlling for

1Unlike the single treatment setting, the confounder-outcome relationship cannot be sufficiently sum-
marized in terms of a scalar R2

Y∼U |T . Each confounder can impact each treatment in different ways.
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all other treatments T−j as

R2
Y∼Tj |T−j :=

R2
Y∼T −R2

Y∼T−j

1−R2
Y∼T−j

. (4.32)

When observed covariates are available, we can still analogously compute the partial

fraction of variance explained by an observed covariate, R2
Y∼Xj |T,X−j , as done in Cinelli

and Hazlett (2019) [18]. Veitch and Zaveri (2020) [19] and Cinelli et al. (2020) [48]

propose useful graphical summaries for calibration based on these metrics in the single

treatment setting.

When the observed outcome is non-Gaussian, we calibrate the “implicit R2”, by

considering the explained variance of the latent Gaussian outcome, Ỹ in Equation 4.8.

The implicit R2 of T for model 4.7-4.9 is defined as

R2
Ỹ∼T =

Var(E[Ỹ |T ])

Var(E[Ỹ |T ]) + 1
. (4.33)

and the implicit partial R-squared of treatment Tj, R
2
Ỹ∼Tj |T−j

, is defined analogously to

Equation 4.32. As before, these estimable partial R-squared values can be used to pro-

vide a useful comparison for the partial R-squared of potential unobserved confounders,

R2
Ỹ∼U |T . For more detail, see Imbens (2003) [3] and Franks et al. (2019) [2] who discuss

calibration with implicit R-squared values in logistic regression models.

Choosing the direction of γ. Given a magnitude, we now propose a default method

for identifying the direction of γ for a single contrast. The dot product d′Σ
−1/2
u|t (µu|t1 −

µu|t2) corresponds to the projection of the scaled difference in confounder means onto

the outcome space. By default, we suggest using the direction which maximizes the

squared bias. As shown in Theorem 4.4.3, when d is colinear with Σ
−1/2
u|t (µu|t1 − µu|t2),
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the confounding bias of the naive estimator for Gaussian outcomes is maximized at

|Biast1,t2| =
√
R2
Y∼U |Tσy|t‖Σ

−1/2
u|t (µu|t1 − µu|t2)‖2, (4.34)

Choosing the direction of the sensitivity vector in this way provides conservative bounds

for each contrast of interest. For non-Gaussian outcomes or alternative estimands, there

may not be an analytic solution to the direction which maximizes the bias, but we can

still compute the direction via numerical optimization.

4.5.2 Robustness for Single Contrasts

We now turn to assessing the robustness of conclusions using our sensitivity model,

extending work by Cinelli and Hazlett (2019) [18] and VanderWeele and Ding (2017)

[49] in the single treatment setting. Specifically, we propose an extension of the robust-

ness value (RV), which characterizes the minimum strength of confounding needed to

change the sign of the treatment effect. As in the previous section, the extension is most

straightforward when considering the effect of a single treatment contrast, between levels

T = t1 and T = t2.

To review briefly, in single treatment settings, Cinelli and Hazlett define the RV

as the minimum R-squared needed to reduce the treatment effect to zero, assuming

R2
Y∼U,T = R2

T∼U . (we return to this assumption below.) A robustness value close to one

means the treatment effect maintains the same sign even if nearly all of the observed

residual variance in the outcome is due to confounding. On the other hand, a robustness

value close to zero means that even weak confounding would change the sign of the point

estimate.

In the multi-treatment setting, we can more precisely characterize the robustness of

causal effects when R2
T∼U is identifiable. In particular, we can compute an analogue to the
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RV without assuming R2
Y∼U,T = R2

T∼U , an assumption that, in single treatment settings,

can be consequential2. With R2
T∼U known, we define multi-treatment RV can then simply

as the minimum value of R2
Y∼U |T needed to explain away the treatment effect of interest,

assuming the direction of the sensitivity vector is chosen to maximize the bias. When the

observed outcomes are Gaussian, the robustness value can be computed in closed form:

RVt1,t2 =
(µy|t1 − µy|t2)2

σ2
y|t‖Σ

−1/2
u|t (µu|t1 − µu|t2)‖2

, (4.35)

RV metrics for alternative estimands and/or non-Gaussian data can still be computed

using the same principle. For example, when the observed outcome is binary, the RV

can be computed numerically by solving RRt1,t2 = 1, which corresponds to the minimum

strength of confounding needed for the observed risk ratio (RR) to equal to one. This

robustness value is analogous to the “E-value” proposed by VanderWeele and Ding (2017)

[49].

In our setting, we can also make stronger statements about robustness than in the

single treatment setting: under the latent variable model, it is possible to declare an

effect robust to any level of confounding. In particular, when the latent variable model

implies R2
T∼U < 1 (i.e., we have confounder overlap), then even when R2

Y∼U |T = 1, the

ignorance region is bounded (Theorem 4.4.3). When this ignorance region excludes zero,

we declare the effect “robust”. This operation is consistent with the result in Miao et al.

(2018) [50], showing that hypotheses of zero effect can be tested in this setting, even if

the treatment effect cannot be identified.

2In single treatment settings, when R2
Y∼U |T > R2

T∼U , the single-treatment RV will be too conserva-

tive. Conversely, when R2
Y∼U |T < R2

T∼U the single-treatment RV will overestimate the robustness of
the effect.
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4.5.3 Calibration for a Single Contrast with Null Controls

We also find it interesting to include additional constraints into our sensitivity anal-

ysis, especially null control treatments, which are powerful tools to detect and adjust

for bias in many application, such as Genome Wide Association Study (GWAS) and

epidemiological research [51]. A set of null control treatments would be subset of treat-

ments that were known a priori to have zero (or bounded) causal effect on the outcome,

for example genes in a GWAS which were known to be causally unrelated to a particular

phenotype.

Much of the progress that has been made in removing unobserved confounding, focus-

ing on inference about identification, with null controls under relatively strong assump-

tions. [52, 53, 54, 55, 56, 57, 58] use paternal exposure as the null control treatment to

study the intrauterine effect of maternal exposure on offspring outcome. [59, 60, 61, 62]

utilize future air pollution as the null control treatment to detect and reduce the con-

founding bias of the estimated effect of air pollution on diseases. Here, we illustrate that,

with relaxed assumptions when a set of null controls is insufficient to identify causal

effects, they still reduce the ignorance regions by imposing additional constraints on

confoundedness. We demonstrate the idea especially in the Gaussian outcome cases.

Let C be a set indexing c null control treatments contrasts, tj1 and tj2, such that for

any j ∈ C, we have PATEtj1,tj2 = 0. For these null controls, the observed mean difference

in outcomes, defined as a row vector µy|∆tc := [(µy|t11 − µy|t12), · · · , (µy|tc1 − µy|tc2)], must

equal the omitted confounder bias. Since the bias is a function of the sensitivity vector,

γ, we can establish a constraint on γ via the equation

σy|tγ
′Σ

1/2
u|tMu|∆tC = µy|∆tc (4.36)

where Mu|∆tC = (Σ†u|t)
1/2[(µu|t11 − µu|t12), · · · , (µu|tc1 − µu|tc2)] is a m × c matrix with
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columns corresponding to the scaled difference in confounder means for each null control.

Equation 4.36 has two important implications. First, we have a testable constraint that

µy|∆tc must be in the row space of Mu|∆tC in order for the null control assumption to

be valid. Second, in order to make up the difference between the observed effect and

the true null effect of the control treatments, the magnitude of γ must be large enough.

That is, constraint 4.36 implies a lower bound on the fraction of variance explained by

confounders. We formalize these ideas in the following theorem.

Proposition 4.5.1 Suppose there are c known null control treatment contrasts, tj1 ver-

sus tj2 for j ∈ C. Then, the null control compatibility condition µy|∆tcPMu|∆tc
= µy|∆tc

must hold where PMu|∆tc
denotes the projection matrix into the row space of Mu|∆tc. Ad-

ditionally, the partial fraction of variance explained due to confounders given treatments

is lower bounded by

R2
Y∼U |T ≥ R2

min =
1

σ2
y|t
‖ µy|∆tcM

†
u|∆tC ‖

2
2 .

where M †
u|∆tC denotes a generalized inverse of Mu|∆tC .

Proof: See Appendix.

Although the null controls assumption implies a lower bound on the magnitude of

confounding, null controls actually reduce the width of the partial identification region,

which is no longer centered at the naive estimate of the treatment effect. We character-

ize the partial identification region under the null controls assumption in the following

Theorem.

Theorem 4.5.1 For any value of R2
Y∼U |T > R2

min which satisfies null control compat-

ibility condition, the confounding bias for the treatment effect of contrast ∆t is in the
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interval

µy|∆tcM
†
u|∆tC(Σ

†
u|t)

1/2(µu|t1 − µu|t2)± (4.37)

σy|t

√
R2
Y∼U |T −R2

min

∥∥∥Q⊥Mu|∆tc
(Σ†u|t)

1/2(µu|t1 − µu|t2)
∥∥∥

2
(4.38)

where Q⊥Mu|∆tc
is the m ×m projection matrix into the complement of the column space

of Mu|∆tc.

From Theorem 4.5.1 the following corollary follows immediately.

Corollary 4.5.1 Under the assumptions established in Theorem 1, null controls reduce

the width of the partial identification ignorance region by a multiplicative factor of

√
1−R2

min/R
2
Y∼U |T

‖ Q⊥Mu|∆tc
(Σ†u|t)

1/2(µu|t1 − µu|t2) ‖2

‖ (Σ†u|t)
1/2(µu|t1 − µu|t2) ‖2

≤ 1 (4.39)

This corollary highlights that there are two ways in which null control reduce the width of

the worst-case ignorance region: the first term under the radical shows that null controls

constrain the magnitude of the confounding bias (Proposition 4.5.1) which proportionally

reduces the width of the ignorance region for all contrasts by an equal amount. The

second term is contrast dependent and indicates that null controls reduce the ignorance

the most for treatment contrasts that have the most similar confounder mean differences.

For a treatment contrast ∆t, when (µu|t1−µu|t2) is in the span of the row space of Mu|∆tc ,

then the treatment effect is identified; when (µu|t1 −µu|t2) is orthogonal to the row space

of Mu|∆tc then there is no further reduction in the ignorance region for PATE, beyond

the constraint on the magnitude. In summary, the best null controls are those which

have large confounding bias and also have confounder distributions similar to those in

the treatment contrasts of interest. A direct consequence of Theorem 4.5.1 is that when

Mu|∆tC is full rank, all treatments are identifiable.
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4.5.4 Multiple Contrast Criteria

In addition to exploratory tools used with single-treatment sensitivity analysis, the

multi-treatment setting presents opportunities for exploring sensitivity models in new

ways. Here, we propose one such approach using multiple contrast criteria, or MCCs. As

opposed to the approaches we have discussed so far, which consider treatment contrasts in

isolation, MCCs characterize a choice of sensitivity vector γ by concurrently considering

its implications for multiple treatment contrasts in aggregate. Thus, while the sensitivity

vector γ that gives the worst-case bias may differ across individual contrasts, an MCC

can be used to select a single γ that has implications for many simultaneous treatment

effects.

Formally, for a set of treatment contrasts T 2 = {(t1, t2)k}Kk=1, and a candidate sen-

sitivity vector γ, let PATET 2(γ) be the vector of PATEs implied by the causal model

indexed by γ. An MCC is a scalar summary of this treatment effect vector, which we write

as ω(PATET 2(γ)). An MCC is specified by the set of constrasts T 2 and the summary

function ω, both of which can be chosen to meet the needs of a given analysis.

MCCs can be used in many ways, but here we consider how they can be used to search

for the causal model that yields the minimum norm treatment effect vector, subject to

assumptions 1.2.1-4.3.2 and a confounding limit R2. Specifically, we take ω to be an Lp

norm for some p, and consider sensitivity vectors γ∗ that satisfy:

γ∗ = argmin
γ̃

ω(PATET 2(γ̃)) subject to R2
Y∼U |T (γ̃) ≤ R2 (4.40)

where R2
Y∼U |T,X(γ̃) =

γ̃′Σu|tγ̃

σ2
y|t

is the partial fraction of outcome variance explained by

confounding for sensitivity vector γ̃. Causal models selected in this way are often highly

interpretable, in terms of either “worst case” effect sizes or established prior knowledge.

For example, we can chose ω to be the L∞ norm, so that γ∗ is the sensitivity vector
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that minimizes the maximum absolute effect across contrasts. Alternatively, we could

choose ω to be the L1 or L2 norm of the treatment effects to find models that imply small

“typical” effect sizes. We demonstrate how this minimization approach can be used to

express prior knowledge about small effects in simulated data in Section 4.6.2, and how

it can be used to evaluate robustness on a real data set in Section 4.7.

4.6 Simulation Studies

In this Section, we demonstrate our sensitivity analysis workflow in several numerical

simulations. The goal of these simulations is twofold: first, to demonstrate some of the

operating characteristics of the approach in settings that are more realistic than the linear

Gaussian settings we characterized analytically; and secondly, to show how exploratory

tools like calibration, robustness analysis, and MCCs can be used to draw conclusions

and choose interesting candidate models.

We consider two broad simulation settings. In the first setting, we construct simula-

tions with non-linear responses to treatment to show how the ignorance regions returned

by our method can vary in different scenarios. In the second setting, we construct a

simulation that mimics the structure of a Genome Wide Association Study (GWAS).

Here, we examine the behavior of our method when a popular approximate latent vari-

able method—the Variational Auto Encoder (VAE)—is used to estimate the effects of

latent confounders, and demonstrate how MCCs can be useful tools for using prior infor-

mation to choose potentially useful causal models from the set that is compatible with

the observed data. In both subsections, we simulate data from the following generating
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process:

U := εu, εu ∼ Nm(0, Im), (4.41)

T̃ := BU + εt|u, εt|u ∼ Nk(0, σ
2
t|uIk), (4.42)

T := hT (T̃ ), (4.43)

Ỹ := g(T ) + γ′U + εy|t,u, εy|t,u ∼ N(0, σ2
y|t,u), (4.44)

Y := hY |T (Ỹ ), (4.45)

The functions hY and hT are chosen according to be either the identity for Gaussian

data, or an indicator function for binary data.

4.6.1 Example with Non-Linear Response Functions

We start by exploring variation in the size of ignorance regions for different contrasts

in a simple simulated example with four treatments where the outcome is a nonlinear

function of these treatments. We consider two cases: first, a case where Y is Gaussian

with hY (Ỹ ) = Ỹ ; and secondly, a case where Y is binary with hY (Ỹ ) = IỸ >0. We aim

to estimate the PATEei,0 for Gaussian outcome and RRei,0 for binary outcome, where ei

denotes the ith canonical vector, i.e. the vector with a 1 in the i-th coordinate and 0’s

elsewhere.

In both examples, we generate the data with a 1-dimensional latent confounder (m =

1), k = 4 treatments, B = [2, 0.5,−0.4, 0.2], σ2
t|u = 1, γ = 2.8, σ2

y|t,u = 1, hT (T̃ ) = T̃ and

g(T ) = 3T1 − T2 + T3IT3>0 + 0.7T3IT3≤0 − 0.06T4 − 4T 2
1 .

Based on the choice of g, contrasts along the jth dimension of T have effects of widely

varying magnitude. Based on our choice for B, the worst-case confounding bias also
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Figure 4.4: Estimated ignorance region for ei in case when Ỹ is nonlinear in T . (a)
R2
Ỹ∼U |T = 0 denotes the treatment effects estimated based on the observed data only,

i.e., under the assumption of no confoundedness. R2
Ỹ∼U |T = 1 and R2

Ỹ∼U |T = 1

correspond to the case when all residual variation in Y is due to the confounding,
respectively denoting the upper and lower bounds of the ignorance region. (b) In
the binary setting, even though the estimand is a non-linear function of the latent
Gaussian outcome, the width of the ignorance region and general robustness pattern
is largely consistent with the implications of Corollary 4.4.1.

varies significantly across contrasts. For example, the effect of confounding is larger when

estimating the treatment of T1, since the first entry of B has the largest magnitude,

meaning T1 is the feature most correlated with U . In order to demonstrate this in

simulation, we first apply probabilistic PCA (PPCA) to estimate the distribution f(u | t),

and then model f(y | t) using Bayesian Additive Regression Tree (BART) with R package

BART [29].

For Gaussian outcomes, the width of the ignorance regions are larger for the treat-

ments most correlated with confounders as characterized Theorem 4.4.3 (see Figure 4.4).

Since B is a vector, the width of the ignorance region of PATEt1,t2 can be examined

by looking at the dot product between B and the treatment contrasts. The larger the

dot product, the wider the ignorance region. As expected, the ignorance region of the

treatment effect is widest when t1 = e1 (RV ≈ 0%) and narrowest when t1 = e4, since

B′e1 has the largest magnitude while B′e4 has the smallest. Despite the fact that t1 = e4
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has the smallest ignorance region, it is not robust to confounding because the naive ef-

fect is already close to zero (RV = 9%) . For the second and third treatment contrasts,

estimates are robust to confounders, as their entire ignorance regions exclude 0.

For the simulation with binary outcomes, we compute ignorance regions for the risk

ratio. Although we do not have a theoretical result about the ignorance regions of the

risk ratio, the general trends in the size of the ignorance region and the robustness of

effects are comparable to the Gaussian. Most notably, the treatments with the largest

ignorance regions are still those which are most correlated with the confounder. On the

other hand, because the outcome is non-linear in U , the naive estimate is not at the center

of the ignorance region (Figure 4.4b). In fact, the ignorance region is also non-monotone

in R2
Ỹ∼U |T because the variance of the intervention distribution also depends on γ. In

this case, one of the endpoints of the ignorance region corresponds to R2
Ỹ∼U |T = 1 but

the other does not. We compute the endpoints of the ignorance region numerically (see

Appendix A.2.3 for more details).

4.6.2 Example with Simulated Genome Wide Association Study

We now explore a slightly more complex setting motivated by applications in biol-

ogy, particularly in genome wide association studies (GWAS). GWAS investigate the

association between hundreds or thousands of genetic features (i.e., single nucleotide

polymorphisms, or SNPs) and observable traits (i.e., phenotypes), such as disease status.

Here, we construct a simulated GWAS to demonstrate two properties of our sensitivity

analysis method. First, we show that flexible latent variable models can be plugged into

our sensitivity model. Secondly, we demonstrate how minimizing multiple contrast cri-

teria (MCC) can be used to select interesting candidate models that conform to broad

hypotheses about the nature of genetic effects.
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Despite having “association” in the name, GWAS is a particularly interesting appli-

cation area for multi-treatment causal inference. In practice, measures of association in

GWAS are often adjusted to afford a causal interpretation in which conclusions speak to

how a phenotype would change if the genome were intervened upon. For example, most

analyses adjust for “population structure”, which correspond to broad genetic patterns

induced by population dynamics that are often confounded with geography, ancestry,

environment, and other lifestyle factors [42, 63]. Wang and Blei (2018) [36] cite this

literature as motivation for their work.

In this simulation, we generate data with high-dimensional binary treatments (SNPs),

and set the true causal effects to be mostly small, with a small fraction of treatments

having effects of larger magnitudes. The simulation is then designed so that unob-

served confounding biases estimates for each of these treatment effects, obscuring the

difference between large and small effects. To generate data, we follow the template in

Equations 4.41–4.45. We generate data with m = 3 latent confounders and k = 500

treatments, T ∈ {0, 1}k, where Tj = 1 if the the jth site shows a deviation from the

baseline sequence (i.e., the presence of at least one minor allele). We set the response

function g(T ) = τ ′T to be linear in the treatments (a common assumption in GWAS),

and set the outcome Y to be Gaussian by setting hY (Ỹ ) = Ỹ . We focus on estimating

1

n

n∑
i=1

PATEtji ,t
−j
i

for all j = 1, · · · , k, (4.46)

where tji and t−ji correspond to the ith observed treatment vector with the jth SNP set

to be 1 and 0 respectively. Note that since g(T ) is linear in T , 1
n

∑n
i=1 PATEtji ,t

−j
i

= τj,

the jth element of τ . We generate τ from a two component mixture with 90% of the

coefficients from a Uniform(−0.1, 0.1) (small effects) and 10% from a Uniform(−2, 2)

(large effects). We assume that there are m = 3 latent confounders.
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Figure 4.5: Causal inference with 500 binary treatments with k = 3 latent confounders.
Naive estimates of the null and non-null effects are overdispersed due to confounding.
(a) Minimum L1-norm treatment effects are shown for fifty randomly chosen small
effects (“null” contrasts) and all large effects (“non-null” contrasts) for three different
limits on the magnitude of confounding, R2 ∈ {0, 0.3, 1.0}. When R2 = 1, there
overall L1 minimizer of the treatment effects is achieved for the sensitivity vector
which explains R2

Y∼U |T = 74% of the residual outcome variance. (b) We construct a

simple non-null classifier from minimum L1 treatment effects with R2 = 1 and naive
effects (R2 = 0). The blue curve represents the ROC curves from the naive estimates
and the green, yellow and red curves represents the L1 minimizer of the treatment
effect estimates for inferred confounder models with dimensions k̂ ∈ {2, 3, 4}. The
area under the curve (AUC) for the naive estimates is 0.54, whereas the AUC for the
L1-minimized estimates are 0.61 (k̂ = 2), 0.73 (k̂ = 3) and 0.64 (k̂ = 4).

68



Copula-based Sensitivity Analysis with Multiple Treatments Chapter 4

We consider a model for the observed data with two components, paying special atten-

tion to the latent confounder model. In particular, we model the conditional distribution

of confounders given treatment f(u | t) using a variational autoencoder (VAE), which is

a popular, flexible neural network–based approximate latent variable model. This model

is particularly appropriate because it yields an approximate Gaussian conditional dis-

tribution f(u | t), even for discrete T as we have here. (We discuss latent confounder

inference with VAEs in more detail in Appendix A.2.2.) We fit the observed outcome

model f(y | t) using a simple linear regression, ignoring confounding, which corresponds

to the setting in which R2
Y∼U |T = 0.

Worst-Case Ignorance Regions. With this simulation setup, we first examine whether

the ignorance regions contain the true causal effects. Importantly, because the VAE is

an approximate latent variable model, and we are currently ignoring estimation uncer-

tainty, it is not immediate that the ignorance regions should be valid. We find that,

even using our plug-in approach, the worst case ignorance regions cover 498 out of 500 of

the true treatment effects. In all cases, the worst case bounds communicate substantial

fundamental uncertainty about the true treatment effects (See Appendix Figure A.2).

Finding Candidate Models with MCCs. Investigators often have strong hypothe-

ses about the aggregate properties of SNP treatment effects. For example, while some

phenotypes can be predominantly explained by only a small number of SNPs, other phe-

notypes may be more plausibly described by the omnigenic hypothesis, which suggests

that some observable effects must be explained by the sum of many small effects across

many SNPs [64]. Here, we show that some of these aggregate hypotheses can be for-

malized in terms of MCCs, and in these cases, the MCC minimization procedure from

Section 4.5.4 can be used to find useful candidate causal models that align with these

69



Copula-based Sensitivity Analysis with Multiple Treatments Chapter 4

hypothesis while being fully consistent with the observed data.

To motivate candidate model selection, we consider the use case of estimating effect

sizes from a single coherent model, under the hypothesis that the median effect size is

small. Specifically, we formalize this hypothesis by defining a MCC ω(PATET 2(γ)) to

be the L1 norm of the effects of each contrast T 2 = {(tji , t
−j
i ) : i ∈ (1, ..., n)} for all

treatments j = 1, · · · , k. We then select the model that minimizes this criterion by

selecting γ subject to different allowed levels of confounding R2
Y∼U |T .

In Figure 4.5a, we plot the the resulting coefficients estimates for three values of R2:

0 (naive effects), 0.3 and 1. Because the true effects are much smaller in magnitude than

the näıve effects, the RMSE of the estimates decreases as we increase R2
Y∼U |T , although

all effects are equally compatible with the observed data. In this simulation, the L1 norm

of naive estimates is approximately 2525 and the norm of the true effects is drastically

smaller at approximately 75.

Models selected using this MCC minimization procedure are also useful for the coarser

goal of separating small and large effects. From the naive regression, the coefficients are

overdispersed to the true causal effects and the true small coefficients are practically

indistinguishable from true large coefficients. Meanwhile, models chosen with the MCC

minimization procedure provide more useful signal. To formalize this, we consider a clas-

sifier that separates large and small effects using the magnitude of the inferred coefficients

as the classification score. In Figure 4.5b we plot the receiver operating characteristic

(ROC) curves for the classifiers based on the naive estimates as well as the overall L1

minimizer of the treatment effects (R2 = 1, i.e. no limit on the value R2
Y∼U |T ).

Importantly, the difference in conditional confounder means, µu|tji
− µu|t−ji

, varies

between non-null and null contrasts. This leads to a larger reduction in the relative

magnitude of the null effects for models chosen through MCC minimization, accentuating

the differences between large and small treatment effects (See Appendix Figure A.3). For
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models selected by MCC minimization, the area under the ROC curve (AUC) increases

from 0.54 (almost no ability to distinguish small and large treatments) to 0.72 (k̂ = 3,

red curve). The selected model achieves nearly 25% true positive rate without accruing

any false positives. Naturally, the classifier performance is the best when we fit a latent

variable model with the correct number of latent factors, although the classifier based on

latent variable models of dimensions k̂ = 2 and k̂ = 4 still outperform classification from

naive effects. In the Discussion, we note how this approach relates to, and complements

recent identification results for a similar setting in Miao et al. (2020) [45].

4.7 A Reanalysis of the Actor Case Study

In this section, we compare our approach to other recent analyses of the TMDB 5000

Movie Dataset [65] which was analyzed extensively by Wang and Blei (2018) [36] and

Grimmer et al. (2020) [41]. The dataset consists of 5000 movies and their corresponding

revenue, budget, genre and the identities of the lead cast members. Following Wang and

Blei, we focus on estimating the causal effect of an actor’s presence on the movie’s log

revenue. We let Y denote the log revenue and Ti = (Ti1, · · · , Tik) encode the movie cast,

where the binary random variable Tij ∈ {0, 1} indicates whether actor j appeared in

the movie i and Ti ∈ T = {T1, ..., Tn}. We also let T j denote the set of all movies Ti

for which Tij = 1. We define the estimand of interest, ηj, as the the total log revenue

contributed by actor j:

ηj :=
∑
ti∈T j

PATEti,t
j
i

(4.47)

where tji corresponds to the observed treatment vector for movie i excluding actor j. This

estimand is a non-parametric generalization of the regression coefficient τj, which was
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targeted in the analysis in Wang and Blei (2018) [36]. Specifically, under the assumption

that log-revenue is linear in the cast indicators, ηj reduces to njτj, the effect of actor j

scaled by the number of movies they appeared in, where τj are the regression coefficients

for actor j. Our estimand is well-defined without this linearity assumption.

We regress the log revenue on cast indicators to estimate actor effects, τnaive
j , under

an assumption of no unobserved confounding. In order to demonstrate the applicability

of our sensitivity analysis, we explicitly induce unobserved confounding by excluding

observed confounders. We validate our analysis, by comparing calibrated effect estimates

when the confounders are excluded to estimates when the confounder is included. Most

importantly we exclude the movie’s budget which we estimate to be the largest known

source of confounding (computed using Equation 4.32, see Appendix Figure A.4a)3.

For simplicity, we model the observed outcome distribution with a linear regression,

although other more flexible outcome models (e.g. BART) can also be used. As in the

previous Section, we use a VAE to infer a Gaussian conditional confounder distribution,

f(u | t) ∼ N(µu|t,Σu|t) (See Appendix, Section A.2.2).

Results. Since our focus is on confounding not estimation, in order to limit the influence

of estimation uncertainty we subset the data to the k = 327 actors who participated in

at least twenty movies. This reduces the total number of movies to 2439. We fit the VAE

to the treatments and use cross-validation to identify the appropriate latent confounder

dimension, which we inferred to be m̂ = 20 (See Appendix Figure A.4b). We then

plot the worst-case ignorance region for the causal effect on log revenue as a function of

R2
Y∼U |T for the 46 actors with significant regression coefficients in the naive regression

(Figure 4.6, top). Eight actors in the observed data regression have significantly negative

coefficients, whereas 38 actors have significant positive coefficients. However, the worst-

3For illustrative purposes, we can assume that the budget is pre-treatment, meaning that the budget
is decided prior to selecting the cast, which may be a dubious assumption in actuality.
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case ignorance regions for each actor are all very wide and include zero, which suggests

that none of the effects are robust to confounding. In Table A.1 of the Appendix we

include robustness values for these actors. Leonardo DiCaprio has the largest robustness

value at 36%, with the majority of the other actors well below 20%. For reference, the

log budget, which was explicitly excluded from our causal analysis, explains about 30%

of the variance in log revenue (Appendix Figure A.4a). In other words, none of the causal

effects are robust at a level which matches the variance explained by the most important

excluded confounder.
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Figure 4.6: Estimated total log revenue contributed by a given actor. Top: worst-case
ignorance region for each actor on a case by case basis. The blue points correspond
to R2

Y∼U |T = 0, i.e. the naive estimates. Robustness values can be found in Appendix
Table A.1. Bottom: Treatment effects for candidate models chosen with the L2 min-
imzing multiple contrast criterion (MCC). The color correspond to R2, the limit on
the fraction of outcome variance explained by confounding.

The worst case ignorance regions depicted in top panel of Figure 4.6 correspond to a
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different choice of γ for each actor. We can also explore the robustness of causal effects

under a single model by applying an appropriate MCC. Specifically, we search for a “worst

case” candidate model by finding the sensitivity vector, γ∗, that implies the smallest L2

norm of the regression coefficients, τ . In this conservative model, the minimum L2 norm

of the treatment coefficients is 4.4, down from 7.6 for the naive coefficients. In addition,

40 out of 46 actors have coefficients that are smaller in magnitude than the magnitudes

of the naive coefficients (Figure 4.6, bottom). For this candidate model, it turns out that

γ′∗E[U |T = t] is significantly correlated, albeit weakly, with budget (Spearman’s rank

correlation = 0.2, p-value < 2e-16). Thus, the conservative model correctly attributes

part of the outcome variation induced by the known excluded confounder to unobserved

confounding.

4.8 Discussion

In this chapter, we introduced a framework for sensitivity analysis with multiple

treatments which provides further context to the growing literature on the challenges of

inference in this setting. Unlike previous work, we emphasize the importance of carefully

defined estimands and show that bounds on the magnitude of confounding bias depend

on the particular estimands of interest. Our work also provides a practical solution to

characterizing and calibrating the robustness of causal effects across multiple treatments

in the presence of unobserved confounding. Code to replicate all analyses is available

[66] and an R package implementing our methodology is also available and in active

development [67].

There are several interesting generalizations of our proposed approach, many of which

center on assumptions about the copula. For example, in many contexts we may be

interested in accounting for potential treatment-confounder interactions, in which case
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the copula, c(FY |t(y), FU |t(u) | T = t), will vary with t. Likewise, as noted, our approach

can be applied with non-Gaussian copulas and and alternative latent variable models (e.g

latent class models), but calibration and model-specification remains a challenge.

Generalizations based on joint inference of the treatment and outcome models should

also be explored. In practice, causal effect estimates may be overdispersed about the true

effects due to a combination of sampling variance and unobserved confounding. Joint

inference might be especially useful for accounting for both estimation uncertainty and

uncertainty due to unobserved confounding. This is particularly important for the multi-

ple contrast criteria which, as described, does not incorporate parameter uncertainty into

the objective function. A simple solution in a Bayesian analysis would be to characterize

posterior uncertainty by applying the criteria to each MCMC sample of the naive causal

effect estimates. A more thorough exploration of the interplay between shrinkage esti-

mation (in the classical sense) and MCC shrinkage to adjust for confounding bias under

the “small effects” hypothesis would be interesting to explore in this context.

Finally, we note that there are many promising directions for incorporating additional

constraints into the calibration criteria, besides the null control treatments. Incorporat-

ing these assumptions would further constrain the ignorance regions for particular causal

contrasts of interest. These strategies are closely related to the multivariate calibration

procedure that we propose. For example, Miao et al. (2020) [45] describe a procedure

for identifying the treatment effects when over half of the treatments are assumed to

have no causal effect on the outcome. In Equation 4.40, this would be analogous to the

case in which m is the L0 norm, the number of non-zero effects. It is also worth further

exploring the relationship between inference with multiple treatments and inference with

multiple outcomes. Additional structure in the correlation between outcomes could fur-

ther constrain the causal ignorance regions, under the right set of assumptions. As with

null control outcomes, which are known to have null treatment effects, could be applied
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to calibrate the sensitivity analysis. We leave this to future work.
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Chapter 5

Copula-Based Sensitivity Analysis

with Multiple Outcomes

Many practical causal inference problems also involve high-dimensional outcomes, for ex-

ample, observational studies examining the effect of a treatment on multiple biomarkers

[68, 69, 70]. Similar to the multi-treatment case, the multivariate correlation structures

can also provide additional implications about the unobserved confounders. Building on

previous results, we develop a copula-based sensitivity analysis for cases with multiple

correlated outcomes in this chapter. Unlike the multi-treatment setting, we show that

we cannot bound the treatment effects, although in practice, the ignorance regions of

treatment effects don’t blow up unless there is extremely large confounding. We also

propose calibration strategies including calibrating the sensitivity parameters, quantify-

ing robustness of effect estimates, and, in particular, incorporating prior knowledge about

outcomes that have null treatment effects to further constrain the ignorance region.
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5.1 Introduction

In classical causal inference studies, the goal is often to find out the impact of a

treatment or intervention on a single outcome. However, causal inference on multiple

non-independent outcomes is increasingly widespread in real-world applications. Espe-

cially, simultaneous effects of a treatment on multiple outcomes may be of particular

interest, such as, in biological studies, the effects of high fish assumption on multiple

biomarkers related to organochlorines [70], or in patient-centered epidemiologic studies,

the prioritization of public health recommendations [71, 72]. Multi-outcomes cases may

also arise when we are interested in the causal effects from multiple aggregate time series

before and after an intervention, for example, when there are state-level policy changes

or the introduction of a new marketing campaign [73].

A strand of causal inference literature has considered causal identification in multi-

outcome settings with intermediate variables, but still focusing on causal effects on a

single response and using other outcome variables as auxiliary variables for inference

[74, 75, 76, 77]. VanderWeele and others [71, 72, 78] suggest that, instead of using

one-outcome-at-a-time approach, more effort should be made on developing multivariate

techniques that account for the dependence structure of outcomes, and exploring effects

of interventions on multiple outcomes simultaneously. In more recent works, researchers

have begun focusing on assessing causal effects on multivariate response variables. Lup-

parelli, M., & Mattei, A. (2017) [78] consider cases of binary outcomes, and decompose

the treatment effects of multivariate outcomes into the joint and marginal causal effects,

which respectively provide information on the marginal and dependent structure of the

outcomes, and propose a log-mean linear regression for modeling the outcome distribu-

tion that can account for the outcome’s correlation structure. Kennedy, E. H., Kangovi,

S., & Mitra, N. (2019) [71] develop a doubly robust method for estimation and hypoth-
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esis testing of scaled treatment effects on multiple outcomes. More studies for causal

inference problems with multivariate outcomes can be found in [79, 80, 81, 82]. A major

difficulty of these aforementioned works is that they are derived under a version of the “no

unobserved confounding” assumption. As mentioned, this is often a dubious assumption

in practice. For example, policy interventions can be motivated by anticipated future

effects: a company may be more likely to adopt a marketing campaign if expected future

sales were to be particularly bad in the absence of such a campaign. Therefore, it would

also be of great value to develop sensitivity analysis methods for multi-outcome models,

especially considering that, to our best knowledge, there is no sensitivity analysis ap-

proach developed particularly for causal inference problems with multivariate outcomes

in the literature.

In this chapter, utilizing the copula-based framework developed in Chapter 4, we

propose a sensitivity analysis method for causal inference problems with multivariate

outcomes As in the multi-treatment case, the copula-based factorization can be used to

clearly separate the unidentifiable part from the identifiable part. As a special case of the

general model, we demonstrate our sensitivity analysis method with Gaussian copulas,

which is able to capture essential qualitative aspects of confounding in the multi-outcome

cases. As we will show, unlike the multi-treatment settings, we cannot globally bound our

ignorance about the treatment effect with multiple outcomes. However, the multivariate

correlation structure of the outcomes still provides important additional information

about confounders that, in practice, the ignorance region of the treatment effects don’t

blow up unless there are extremely large confounders. In addition to the calibration

methods discussed in 4.5, we provide strategies that incorporate prior knowledge about

outcomes with null effects, for further reducing the ignorance regions.

The rest of this chapter is organized as follows. In Section 5.2, we set up the basic

framework for copula-based sensitivity analysis with multivariate outcomes. In Section
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5.3, we provide some theoretical insight into confounding bias under a special case of

our general model, where we assume the relationship between the confounders and the

treatment as well as the outcomes can be characterized by Gaussian distributions. In

Section 5.4, we discuss the interpretation and calibration of sensitivity parameters, in-

cluding strategies that can account for additional prior information about outcomes with

null effects. Finally, in Section 5.5, we demonstrate our approach with an analysis of

metabolomic aging clocks studied in [83].

5.2 Sensitivity Analysis via Copula Parameterizations

with Multi-Outcome

In the multiple outcome settings, unlike the multi-treatment cases, the conditional

confounder distribution fψT (u | t) is not identifiable, but, instead, the conditional out-

come distribution fψY (y | t, u) can be partially identified from the multivariate correlation

structure of the outcomes. We focus on this specific case where the relationship between

confounders and outcomes are partially identifiable under appropriate assumptions.

In this section, we discuss how copula-based factorization can be applied to the mul-

tiple outcome setting, and elaborate its implementation with the Gaussian copula in

particular.

5.2.1 Multiple Outcomes and Causal Equivalence Classes

In the multi-outcome settings, besides the causal estimands defined in Section 1.2,

which are all vectors, another commonly used estimand is

PATEa,t1,t2 := E(a′Y | do(t1))− E(a′Y | do(t2)), (5.1)
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which is a scalar and stands for the treatment effect of treatment on a linear combination

of the outcome, a′Y .

As discussed in Section 4.2.1, the intervention distribution f(y | do(t)) can be gener-

ally factorized in terms of copula as

fψ(y | do(t)) = f(y | t)
∫
cψY (FY |t(y), FψT

U |t (u) | t)f(u)du,

There are no observable implications on sensitivity parameters, and the relationships of

outcome-confounder and treatment-confounder are parameterized separately. With mul-

tiple outcomes and single treatment, the conditional confounder distribution fψT (u | t) is

unidentifiable, however, the relationship between outcomes and confounders conditional

on treatment, parameterized by ψY , is often identifiable up to causal equivalence class.

Definition 5.2.1 (Causal equivalence class in multi-outcome setting) [ψY ] is a

causal equivalence class of ψY if and only if for any ψ̃Y in [ψY ], then, for every ψT there

exists a ψ̃T such that fψY ,ψT (y | do(T = t)) = fψ̃Y ,ψ̃T (y | do(T = t)) for all y, t.

This definition implies that when we say ψY is identifiable up to a causal equivalence

class, it means that the causal conclusions don’t change with value of ψY within the class.

In the following of this chapter, we focus on scenarios where ψY can be identified up to

a causal equivalence class. To conduct sensitivity analysis, we only need to assume that

ψY is point-identified at a particular value within the class [ψY ].
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5.3 Sensitivity Analysis with Multiple Outcomes in

the Gaussian Copula Model

We again assume cψ is a Gaussian copula that it is invariant to the level of T (As-

sumption 4.3.2 and 4.3.1). As mentioned in Section 4.3, Gaussian copula facilitates in-

terpretation and sensitivity parameter calibration without imposing any restrictions on

the observed data distributions, f(y | t) and f(t). Assumption 4.3.1 and 4.3.2 together

imply that the conditional confounder follows a Gaussian distribution with covariance

matrix invariant to the level of treatment. In the multi-outcome model, this implies the

following generative model:

T ∼ FT , E(T ) = µt, Var(T ) = σ2
t (5.2)

f(u | t) ∼ N
(Σuβ

σ2
t

(t− µt), Σu −
Σuββ

′Σu

σ2
t

)
(5.3)

Ỹ = [Ỹ1, · · · , Ỹq]′ = Γ(U − µu|t) + εỹ|t,u, (5.4)

εỹ|t,u ∼ Nq(0,Λỹ|t,u), ΓΣu|tΓ
′ + Λỹ|t,u = Cy|t, (5.5)

Y = [Y1, · · · , Yq]′ = [F−1
Y1|t(Φ(Ỹ1)), · · · , F−1

Yq |t(Φ(Ỹq))]
′, (5.6)

where FT is the CDF of the treatment, F−1
Yi|t is the inverse-CDF of the conditional dis-

tribution of Yi given T = t for i = 1, . . . , q, Λỹ|t,u is an arbitrary diagonal matrix, and

Cy|t denotes the correlation matrix of the observed outcome distribution. The Gaussian

copula, cψY (FY |t(y), FψT
U |t (u) | t), can be parameterized by the correlation matrix implied

by

Cov([Ỹ , U ] | t) =

 Cy|t ΓΣu|t

Σu|tΓ
′ Σu|t

 , (5.7)
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where Σu|t = Σu− Σuββ′Σu
σ2
t

as defined in Equation 5.3, and parameters are ψT = {β} and

ψY = {Γ}. In general, Γ is not point identifiable, but, under many latent confounder

models, it can be identified up to an invertible linear transformation of U . The following

theorem states that the class of ψY defined by all invertible linear transformation of U

is a causal equivalence class.

Theorem 5.3.1 Assume model 5.9-5.6. Let [ψY ] = {ψ̃Y = {ΓA} : A ∈ S+} where S+

is the space of symmetric positive definite matrices. Then [ψY ] is a causal equivalence

class.

Proof. See appendix.

Theorem 5.3.1 guarantees that for any invertible linear transformation of confounder,

A−1U , the sensitivity parameter β̃ = ATβ leads to the same causal conclusions in the

reparameterized coordinates of confounder as β does in coordinates of the original con-

founder U . Throughout this chapter, we will assume that ψY is identified up to invertible

linear transformations of U , and explore the range of possible causal effects for different

β satisfying βTΣuβ ≤ σ2
t .

5.3.1 Prototype: Linear-Gaussian Model

We begin by illustrating our method in a simple Linear-Gaussian model where (Y, T, U)

are jointly multivariate Gaussian. Specifically, the model is specified as following:

U = εu, εu ∼ Nm(0,Σu), (5.8)

T = β′U + εt|u, εt|u ∼ Nk(0, σ
2
t|u), (5.9)

Y = τT + ΓU + εy|t,u, εy|t,u ∼ N(0,Λy|t,u), (5.10)
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with β ∈ Rm, τ ∈ Rq and Γ ∈ Rq×m. Note that model 5.8-5.10 is a special case of

model 5.2-5.6, where the association between outcomes and confounders conditional on

the treatment, parameterized by Γ, can be characterized by Gaussian copula. Under

model 5.8-5.10, the intervention distribution density has

f(y | do(T = t)) ∼ Nq(τt, Λy|t,u + ΓΣuΓ
′). (5.11)

The observed outcome distribution can be expressed as

f(y | T = t) ∼ Nq(τ
naivet, Σy|t), (5.12)

where

σ2
t = β′Σuβ + σ2

t|u, (5.13)

τnaive = τ +
ΓΣuβ

σ2
t

, (5.14)

Σy|t = Λy|t,u + Γ(Σu −
Σuββ

′Σu

σ2
t

)Γ′, (5.15)

= Λy|t,u + ΓΣu|tΓ
′, (5.16)

which are all fully identifiable based on the observed data. As before, τnaive refers to

the estimate of τ that naively neglects potential unobserved confounders. Equation 5.13

shows that the marginal treatment variance can be decomposed into non-confounding

variance σ2
t|u and confounding variance β′Σuβ, where the confounding variance is con-

strained by the overall magnitude of the marginal variance of the treatment (identifiable).

We view σ2
t , τ

naive, Σy|t and therefore Cor(Y | t) := Cy|t as fixed and known, and explore

how the confounding changes as a function of B.

In the linear Gaussian model, PATEa,t1,t2 is linear in the difference between two
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treatments, t1 − t2. Therefore, we can assume that t1 − t2 = 1 without loss of generality

and PATEa,t1,t2 equals

PATEa := a′τ(t1 − t2) = a′τ, (5.17)

which is invariant to the exact level of t1 and t2. The confounding bias of τnaive, Biasa =

a′τnaive − PATEa, can then be expressed as

Biasa =
a′ΓΣuβ

σ2
t

. (5.18)

As show in Chapter 4 previously, in the univariate setting where both the treatment

and outcome are single, neither ψT and ψY are identifiable, while, in the multiple treat-

ment setting, ψT is identifiable up to a causal equivalence class. Analogously, in the

multiple outcome setting, ψY is identifiable up to a causal equivalence class defined by

invertible linear transformation of U in the multiple outcome setting. We formalize the

idea in the following theorem.

Theorem 5.3.2 Suppose that the observed data is generated by model 5.8-5.10. When

there are q outcomes with 1 < m < q, then ψY is identified up to the causal equivalence

class [ψY ] = {ψ̃Y = {ΓA} : A ∈ S+ }. When there is a single outcome (q = 1) or at least

m = q confounders, then ψY is not identifiable up to causal equivalence class.

Proof. See appendix.

Theorem 5.3.1 and 5.3.2 indicate that the distribution of U is only causally relevant

up to linear transforms, and as such, without loss of generality, we make the simplifying

assumption that U ∼ N(0, Im) throughout the remainder of this chapter. Plugging in
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Σu = Im, the confounding bias equals

Biasa =
a′Γβ

σ2
t

(5.19)

=
1

σ2
t

a′Γ̃(Im −
ββ′

σ2
t

)−1/2β, (5.20)

where Γ̃ := ΓΣ
1/2
u|t is identifiable up to a causal equivalence class. The relationship

between treatment and confounder, parameterized by m−vector β, remains unidentified.

Although β is not identified, its magnitude is constrained by the identifiable treatment

variance. It must satisfy the constraint,

0 ≤ R2
T∼U =

β′β

σ2
t

< 1, (5.21)

which is the fraction of variation in the treatment due to confounding. Importantly, the

upper bound of R2
T∼U indicates that the confounding variation in T needs to be strictly

less than the total variation of treatment, which ensures the positivity condition (As-

sumption 1.3.2). The constraint on β implies the following result about the confounding

bias of the naive estimate.

Theorem 5.3.3 Suppose that the observed data is generated by model 5.8-5.10. Then,

∀β satisfying

β′β = σ2
tR

2
T∼U (5.22)

with 0 ≤ R2
T∼U < 1. For a given vector a, the confounding bias is bounded by

Bias2
a ≤

1

σ2
t

R2
T∼U

1−R2
T∼U

‖ a′Γ̃ ‖2
2, (5.23)

where the bound is achieved when β is collinear with a′Γ̃.

Proof. See appendix.
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Figure 5.1: Plot the factor of confounding bias that only depends on R2
T∼U . The value

of
√
R2/(1−R2) doesn’t blow up until R2 is larger than about 0.95.

This theorem states that the true treatment effect lies in the interval a′τnaive±
√

1
σ2
t

R2
T∼U

1−R2
T∼U

‖ a′Γ̃ ‖2. As in the previous chapter, we refer to the right-hand side of Equation 5.23

as the “r2%-R2
T∼U bias” of the naive estimator given the value of R2

T∼U as r2%. From

Equation 5.23, the r2%-R2
T∼U bias depends on

R2
T∼U

1−R2
T∼U

, the ratio between the confounding

variation and non-confounding variation in T .
R2
T∼U

1−R2
T∼U

scales the bias for all estimands

by an equal proportion. Importantly, in contrast to the multi-treatment setting, the bias

about the treatment effect is unbounded, since
R2
T∼U

1−R2
T∼U

can be arbitrary large. But, in

practice, the ignorance regions of treatment effects don’t explode unless R2
T∼U > 0.95

(see Figure 5.1). The last factor of the confounding bias, ‖ a′Γ̃ ‖2
2, measures the degree

to which a′Y depends on the confounder U and varies across outcomes of interest. In

the following corollary, we characterize which outcomes have the largest bias and which

outcomes have identifiable treatment effects under Assumptions 1.3.1, 1.3.2, 4.3.2 and

4.3.1.

Corollary 5.3.1 Let d1 be the largest singular value of Γ̃. For all a ∈ Rq with ‖ a ‖2= 1,
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the confounding bias is bound by

Bias2
a ≤

d2
1

σ2
t

R2
T∼U

1−R2
T∼U

, (5.24)

with equality when a = uΓ̃
1 , the first left singular vector of Γ̃, and β being collinear with

vΓ̃
1 , the first right singular vector of Γ̃. When a ∈ Null(Γ̃), the naive estimate is unbiased,

that is, a′τnaive = a′τ .

Proof. See appendix.

Here, d2
1 denotes the variance of the first principal component of the residual outcomes

explained by confounding. For a = uΓ̃
1 , a′Y corresponds to the projection of outcomes

that is most associated with confounders, and therefore is the outcome of interest that

has the largest ignorance region. For any fixed R2
T∼U , when a is in the null space of Γ̃,

PATEa is identified because a′Y is uncorrelated with the confounders.

5.3.2 Generalizing Linear-Gaussian Model

Next, we extend our approach beyond the linear-Gaussian model. First, when Y is

Gaussian with arbitrary conditional mean µy|t and diagonal conditional variance matrix

Dy|t, we have

E(Y | do(t)) = µy|t −
1

σ2
t

D
1/2
y|t Γβ(t− µt) (5.25)

= µy|t −
1

σ2
t

D
1/2
y|t Γ̃(Im −

ββ′

σ2
t

)−1/2β(t− µt), (5.26)

where Γ̃ is the p× q matrix satisfying Γ̃Γ̃′ + Λỹ|t,u = Cy|t, and therefore, we have

PATEa,t1,t2 = a′(µy|t1 − µy|t2)− 1

σ2
t

a′D
1/2
y|t Γ̃(Im −

ββ′

σ2
t

)−1/2β(t1 − t2), (5.27)
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with its confounding bias denoted as Biasa,t1,t2 = a′(µy|t1 − µy|t2)− PATEa,t1,t2 .

Then, we have the following extension of Theorem 5.3.3

Theorem 5.3.4 Assume the model 5.2-5.6 with Gaussian outcomes. The confounding

bias of PATEa,t1,t2 is bounded by

Bias2
a,t1,t2

≤ 1

σ2
t

‖β‖2
2

σ2
t − ‖β‖2

2

‖ a′D1/2
y|t Γ̃ ‖2

2 (t1 − t2)2, (5.28)

where the bound is attained when β is collinear with a′D
1/2
y|t Γ̃.

‖β‖22
σ2
t−‖β‖22

can be viewed analogously as
R2
T∼U

1−R2
T∼U

, the ratio between confounding variation

and non-confounding variation in the treatment T . Since ‖β‖2
2 measures the confounding

strength, σ2
t is the marginal variance of treatment, and thus the denominator, σ2

t −

‖β‖2
2, measures the non-confounding fraction. In Section 5.4, we describe the strategy

for calibrating the magnitude of β by leveraging the idea of (implicit) partial R2 of T

explained by U . As before, ‖ a′D1/2
y|t Γ̃ ‖2

2, represent the strength of association between

U and a′Y conditional on T . When a′Y lies in the direction that has the largest cosine

similarity with U , we have the most ignorance about its treatment effect. When a′Y lies

in the null space of Γ̃, then the outcome of interest is uncorrelated with confounders, and

thus the naive estimator is unbiased.

When the observed outcome distribution is non-Gaussian, we cannot necessarily ex-

press PATEa,t1,t2 analytically, but can still calculate it (see Algorithm 2).

5.4 Calibration

In this section, we describe strategies for calibrating β in our sensitivity model. Fol-

lowing the strategies used in the multi-treatment setting, we calibrate our sensitivity
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Algorithm 2: Marginal Contrast Estimation with Multiple Outcomes.

1 Function ComputeMean(t, β):
2 for i = 1, 2, . . . , n do

3 µi ← 1
σ2
t
Γ̃(Im − ββ′

σ2
t

)−1/2β(ti − t) ;

4 for j = 1, 2, . . . , nSim do
5 Sample ỹij = [ỹij1, · · · , ỹijq]′ from N(µi, Cy|t) ;
6 yij = [yij, · · · , yij]′ ← [F−1

Y1|t(Φ(ỹij1)), · · · , F−1
Yq |t(Φ(ỹijq))]

′ ;

7 return 1
n

∑
ij v(yij)

8 return τ(ComputeMean(t1, β),ComputeMean(t2, β))

parameter vector β by considering the fraction of treatment variance explained by unob-

served confounders. Recall that β is a vector that parameterizes the correlation between

m-dimensional unobserved confounder U and treatment T . As argued in Chapter 4, in

the univariate case, the causal effect is identified given two sensitivity parameters: the

fraction of outcome variance explained by unobserved confounders, R2
Y∼U |T , and the frac-

tion of treatment variance explained by unobserved confounders, R2
T∼U [18]. In contrast

to the multi-treatment setting, there is no need to calibrate R2
Y∼U |T , because we are

considering the case where the residual correlation between outcomes and confounders

after conditioning on T is identifiable up to a causal equivalence class. Instead of the

outcome-confounder relationship, the treatment-confounder relationship, parameterized

by β, is unknown. As β is a vector, we separately consider its magnitude and direction.

5.4.1 Calibration in General

Calibrating the magnitude of β. When the treatment is Gaussian, the magnitude of

β can be directly characterized by R2
T∼U since

R2
T∼U =

Var(T )− Var(T | U)

Var(T )
=
‖β‖2

2

σ2
t

(5.29)
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is the fraction of variation in T that can be explained by U . Similar to previous chapters,

we can calibrate R2
T∼U by comparing it to the fraction of variance explained by different

observed covariates when they are available. Let X denotes observed covariates, and,

without loss of generality, assume that X and U are independent. As done in Cinelli and

Hazlett (2019) [18], we compute the fraction of variation in Y that can be explained by a

specific covariate (or set of covariates), Xj, after controlling for all other covariates X−j,

R2
T∼Xj |X−j :=

R2
T∼X −R2

T∼X−j

1−R2
T∼X−j

. (5.30)

For non-Gaussian treatment, calibration is less straightforward. Again, we adopt the

idea of “implicit R2” from Imbens (2003) [3], which is a measurement for non-Gaussian

variable, defined in parallel to the ordinary R2. When the observed treatment is binary,

we posit a logistic regression model for the treatment assignment. With Equation 5.2,

it can be shown that the coefficient of U equals β′

σ2
t−‖β‖22

in the logistic treatment model.

This implies

f(T = 1 | U,X) = logit−1{m(X) +
β′

σ2
t − ‖β‖2

2

U}. (5.31)

Under model 5.31, the implicit partial R2 of U in T equals

R2
T̃∼U |X :=

‖β‖22
(σ2
t−‖β‖22)2

Var(m(X)) +
‖β‖22

(σ2
t−‖β‖22)2 + π2/3

, (5.32)

which can be compared with the partial R2 of Xj defined in Equation 5.30 with

R2
T∼X =

Var(E(T | X))

Var(E(T | X)) + π2/3
. (5.33)

For more details, see Imbens (2003) [3] and Franks et al. (2019) [2] who discuss this
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strategy of using implicit R-squared values in logistic regression models for calibration.

Calibrating the direction of β. Given a magnitude of R2
T̃∼U , we now propose a default

method for identifying the direction of β for outcome of interest, a′Y . By default, we

suggest using the direction that maximizes the magnitude of confounding bias. As shown

in Theorem 5.3.4, when β is collinear with a′D
1/2
y|t Γ̃, the confounding bias of the naive

estimator for Gaussian outcomes is maximized at

| Biasa |=

√
‖β‖2

2

σ2
t (σ

2
t − ‖β‖2

2)
‖ a′D1/2

y|t Γ̃ ‖2 . (5.34)

As before, for non-Gaussian outcomes or alternative estimands, there may not be an

analytic solution to the direction which maximizes the bias, but, with our copula-based

method, we can still compute the direction via numerical optimization.

5.4.2 Calibration with Null Control Outcomes

Null control outcomes, which are outcomes that are assummed to be unaffected by the

treatment, have long been used to detect and correct potentially unobserved confounding

[84, 85, 51]. For example, researchers may wish to use Magnetic Resonance Imaging

(fMRI), which measures brain activity by detecting changes associated with blood flow,

to learn which regions of the brain are activated by a particular auditory stimulus, where

the confoundedness could be induced by the level of blood oxygenation, but voxels in

the white matter or cerebrospinal fluid can often be regarded as null controls to adjust

for the unwanted confoundedness [85]. Many statistical methods have been developed

to identify the true causal effect by using null controls [86, 87, 88, 84, 85]. Instead of

focusing on identification under strong assumptions, we show that null control outcomes

can be used to further shrink our ignorance about the treatment effect. We illustrate the
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idea specifically under model 5.8-5.10 in the following.

Let C be a set indexing c null control outcomes such that τj = 0 for any j ∈ C.

For these null control outcomes, their observed treatment effects, τnaive
C , must equal the

corresponding confounding bias. Since the bias is a function of the sensitivity vector β,

we can establish the following constraint on β:

τnaive
C =

1

σ2
t

√
1−R2

T∼U
Γ̃Cβ, (5.35)

where Γ̃C is a c×m matrix of Γ̃ that only contains rows corresponding to null controls.

First, constraint 5.35 implies that τnaive
C must be in the column space of Γ̃C so that the

null control assumptions are compatible with the observed data; second, it also implies

a lower bound on the magnitude of confoundedness, R2
T∼U , the fraction of confounding

variation in the treatment. We formalize these ideas in the following proposition:

Proposition 5.4.1 Suppose there are c known null control outcomes Yj with τj = 0 for

j ∈ C. Then, the null control compatibility condition QΓ̃C
τnaivej = τnaivej must hold, where

QΓ̃C
denotes the projection matrix into the column space of Γ̃C. In addition, the fraction

of variation in the treatment due to the confounding is lower bounded by

R2
T∼U ≥ R2

min :=
σ2
t ‖ Γ̃†Cτ

naive
C ‖2

2

1 + σ2
t ‖ Γ̃†Cτ

naive
C ‖2

2

, (5.36)

where Γ̃†C denotes a generalized inverse of Γ̃C.

Proof: See Appendix.

This lower bound quantifies the amount of confounding that becomes identifiable by

null control assumptions. In the next theorem, we show that ignorance regions become

smaller with null control assumptions.
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Theorem 5.4.1 For any value of R2
T∼U ≥ R2

min which satisfies null control compatibility

condition, the confounding bias for the treatment effect of the interested outcome a′Y is

in the interval

a′Γ̃Γ̃†Cτ
naive
C ±

√
R2
T∼U

σ2
t (1−R2

T∼U )
− ‖ Γ̃†Cτ

naive
C ‖2

2 ‖ a′Γ̃P⊥Γ̃C ‖2, (5.37)

where P⊥
Γ̃C

is the m×m projection matrix into the complement of the row space of Γ̃C.

Proof: See Appendix.

Note that the ignorance region is no longer centered at a′τnaive but instead a′τnaive −

a′Γ̃Γ̃†Cτ
naive
C due to the additional information gained from the null controls. Also, The-

orem 5.4.1 indicates that when Γ̃C is full rank, treatment effects for all outcomes are

identifiable. By comparing ignorance regions in Theorem 5.3.3 and 5.4.1, we can have

the following corollary.

Corollary 5.4.1 Under assumptions established in Theorem 5.4.1, null control outcomes

reduce the width of the ignorance region by a multiplicative factor of

√
1− R2

min

1−R2
min

/
R2
T∼U

1−R2
T∼U

‖ a′Γ̃P⊥
Γ̃C
‖2

‖ a′Γ̃ ‖2

≤ 1. (5.38)

The above corollary indicates that null control reduce the width of the worst-case igno-

rance region in two ways. The first factor under the radical constrains the magnitude

of unidentified confounding bias and reduces the width of the ignorance regions for all

outcomes by an equal proportion. The second factor depends on the specific outcome of

interest. The factor indicates that the ignorance region shrinks the most for outcomes

that have the most similar confounder-outcome association with the null control out-

comes. When a′Γ̃ is in the row space of Γ̃C, the treatment effect of a′Y is identified.
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When a′Γ̃ is orthogonal to the row space of Γ̃C, there is no further reduction of the igno-

rance region since
‖a′Γ̃P⊥

Γ̃C
‖2

‖a′Γ̃‖2
= 1. In sum, the best null control outcomes are those which

have large confounding bias and also have similar outcome-confounder association with

that of the outcome of interest.

5.5 Analysis of Metabolomic Aging Clocks

In this section, we demonstrate our method in analysis of the effect of age on small

molecules, called “metabolites”, in humans. The metabolome consists of the structural

and functional building blocks of an organism, which bridges genotype and phenotype and

plays an important role in studies of aging and age-related traits [83]. We utilize targeted

metabolomics dataset from [83] to investigate how aging affects the concentration of

metabolites in cerebrospinal fluid (CSF). Inferring the biological effect of aging on the

metabolome is complicated by potential confounders like by diet, exercise and lifestyle.

For instance, younger people tend to exercise more than seniors, and exercise is known to

significantly affect concentrations of some metabolites, such as lactate, pyruvate, TCA

cycle intermediates [89].

Our dataset consists of 39 targeted metabolites measured for 85 individuals, and their

corresponding age, ranging from 20 to 86 years old at time of healthy sample collection.

We follow the data pre-processing used by [83] and use the R package Amelia to impute

the missing values. We let T denote the age and Y = (Y1, · · · , Yq)(q = 39) be the

measured concentration of targeted metabolites in CSF. Our estimand of interest is the

biological effect of one year increase in age on each metabolite respectively. For simplicity,

we model the outcome model with a linear regression, although other flexible outcome

models like BART are also applicable [33]. With the linear assumption, our estimand

reduces to the regression coefficient, τj, which is invariant to the specific level of t1 and
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t2, i.e., our estimand is

PATEej = τj (5.39)

for all j = 1, · · · , q, and all t1, t2 such that t1 − t2 = 1.

We rescale all outcomes to unit variance and regress the scaled outcomes on age to

estimate τnaive
j under an assumption of no unobserved confounding, and we apply factor

analysis using the R function factanal to the residual outcomes. We use cross validation

to select the latent confounder dimension m = 3. First, we compute the ignorance regions

of the treatment effects for all metabolites assuming R2
T∼U ≤ 95% without incorporating

any null control assumptions. As a result, all ignorance regions contain zero, which

suggests that their treatment effects are sensitive to the unobserved confounding (see

Figure B.1). In Table B.2.1 of the Appendix, we include robustness values for each

metabolite, where the median is at 22% and the maximum is at 87% for glycerol 3-

phosphate. In the literature of metabolomics studies, priori information is often used to

assist analyses, for example, [90] utilizes metabolites that are known beforehand to be

associated or unassociated with the biological factors of interest to determine whether

their statistical approach for removing the unwanted variation has improved the analysis.

Here, by making use of the null control outcomes, we show that we can further shrink the

ignorance regions and make some of the metabolites with significant treatment effects

distinguishable from the others.

Calibration with null Controls. Following the discussion in Section 5.4.2, we demon-

strate the validity of our calibration method with null control outcomes. To demonstrate

our approach, we use sorbitol, a sugar substitute, as a null control, as it has a reduced

tendency to increase the sugar level in the blood and is used by diabetes patients and el-

derly individuals [91]. We plot the ignorance regions before and after the calibration with

the null control, ordered by the extent to which they are influence by the null control cal-
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Figure 5.2: Estimated effect of increasing age by one year on abundances of metabo-
lites before and after accounting for the null control outcome, sorbitol.

ibration (Figure 5.2). The ignorance region is constructed using 95% confidence interval

for τnaive in order to account for the estimation uncertainty of the observed data distri-

bution. With the additional information about confounders provided by the null control,

the ignorance region is largely reduced for treatment effects of the first few metabolites

on the left in plot 5.2. Also, the estimate under the nonconfoundedness assumption (i.e.

R2
T∼U = 0) for each metabolite changes after taking the null control outcome into ac-

count. Notably, we find that, after adjusting sorbitol to have a zero treatment effect, the

effect of age on alpha-ketoisovaleric acid becomes robustly negative at level R2
T∼U = 95%.

5.6 Discussion

In this chapter, we apply the copula-based sensitivity analysis to analyze multivariate

outcomes with scalar treatments. Unlike previous work, which focuses on causal identifi-

cation under strong assumptions, we explore the range of causal effects that are compat-
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ible with the observed data under weaker assumptions about unobserved confounders.

We show that bounds on the magnitude of confounding bias depend on the particular

outcome of interest, and also provide practical exercises for calibrating the sensitivity

parameters across multiple outcomes, and discuss the use of null control outcomes.

There are several directions we could further explore. First, the extension of our pro-

posed method by relaxing the copula assumptions, as having been discussed in Section

4.8, would also be of great interest for the multi-outcome case here, including the gener-

alization with variant conditional Gaussian copula that depends on t, or even with some

non-Gaussian copula that characterize treatment-confounder relationship. In addition,

we assume linearity of U in T to minimize the number of sensitivity parameters, ease

calibration, and improve interpretability. More sophisticated calibration methods are

needed for sensitivity parameters that characterize the nonlinear treatment-confounder

associations. Second, to account for both the estimation uncertainty and unobserved

confounding uncertainty, joint inference of the treatment and outcome models is prefer-

able. This has been explored by [92] in the multi-treatment case, and we believe that it

is also worth exploring in the multi-outcome case.

Either incorporating sparsity or null controls assumptions into the calibration of the

sensitivity parameters can further constrain the partially identified regions in the multi-

treatment or multi-outcome settings. [68] consider confounder adjustment in multiple

hypothesis testing under the null controls and sparsity conditions respectively, where the

null controls assumption requires the number of null control to be at least the dimension

of the confounders’ space while the sparsity condition requires at least half of the true

treatment effects to be null. However, unlike the null controls assumption, there is no

need for the sparsity assumption to pre-specify which treatment effects are likely to be

null. As mentioned in [84], to achieve better performance, it’s critical to choose null

controls that are specially suited to the study.
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Discussion

In this dissertation, we explored several methods for assessing sensitivity to unobserved

confounding in causal inference with structured and ordered treatments and outcomes.In

all sensitivity analysis methods we proposed, the identifiable parameters are clearly sep-

arated from the unidentifiable parameters so that the observable predictions remain un-

perturbed by the sensitivity analysis. In Chapter 2, we introduced a reparameterization

of the latent confounder model to explicitly decompose the effect of confounders on the

outcome into confounding and non-confounding variation. In Chapter 3, we extended

the Tukey’s sensitivity analysis [2] to ordinal treatments with multiple levels. Finally,

In Chapter 4 and 5, we focused on problems with multiple treatments and/or outcome

using a copula-based framework. For all methods, we provide practical solutions to char-

acterizing and calibrating the robustness of the causal treatment effects in these unique

settings.

Although we have shown that our approaches work effectively under the correspond-

ing settings, it would also be interesting to investigate how sensitive these methods are

to violations of the underlying assumptions about the sensitivity analysis models. For

instance, in the Tukey’s approach, we may want to test whether our method would still

99



Discussion Chapter 6

be valid if the true treatment assignment follows probit models instead the logits ones;

or, in the copula-based approach, how the method would perform when the conditional

association between Y , U given T actually follows some non-Gaussian coupla, such as

Archimedean copulas, which may not be completely monotone.

There are several extensions and generalizations of these methods that could be ex-

plored. For example, in all our methods, we assume there are no interactions between

confounders and treatments. To account for interactions, in the reparameterized la-

tent confounder models, the sensitivity parameter which characterizes the conditional

distribution of W given T should vary with the treatment. In the Tukey’s method,

the interaction would imply a more complicated treatment model beyond linearity in the

logit scale. For the copula-based method, the interaction between U and T would suggest

that the conditional copula, cψY (FY |t(y), FψT
U |t (u) | t), to be dependent on the multivariate

treatment. As a consequence, the number of sensitivity parameters increases, which is a

challenge for calibration and interpretation.

Lastly, we briefly explore a natural combination of the methods introduced in Chap-

ter 4 and 5: can our method be applied to the setting in which both the treatment and

outcome are multivariate? We demonstrated in model 4.11-4.13 that with multivariate

treatments, the confounder-treatment relationship, parameterized by B, is identifiable

up to a causal equivalence class, while the confounder-outcome relationship, parameter-

ized by γ is unidentifiable. Conversely, in model 5.8-5.10 with multivariate outcomes,

the confounder-outcome relationship, parameterized by Γ, is identifiable up to a causal

equivalence class, while the confounder-treatment relationship, characterized by β, is

unidentifiable. Consider the following linear model with multiple treatments and multi-
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ple outcomes:

U = εu, εu ∼ Nm(0, Σu), (6.1)

T = BU + εt|u, εt|u ∼ Nk(0, σ
2
t|uIk), (6.2)

Y = T T + ΓU + εy|t,u, εy|t,u ∼ Nq(0, σ
2
y|t,uIq), , (6.3)

where B, T and Γ are respectively k×m, q×k and q×m matrices. Note that, in the above

model, the treatment assignment mechanism defined in Equation 6.2 is same as the one in

model 4.11-4.13, where the conditional confounder distribution f(u | t) ∼ N(µu|t, Σu|t)

is identifiable, with µu|t and Σu|t as known functions of B and σ2
t|u. Additionally, as

the outcomes are multivariate in Equation 6.3, the confounder-outcome relationship,

characterized by Γ, can also be identified according to the discussion of Section 5.3.

Under model 6.1-6.3, the intervention distribution has density

f(y | do(T = t)) ∼ N(T T, σ2
y|t,uIq + ΓΣuΓ

′), (6.4)

and the observed outcome distribution can be written as

f(T | T = t) ∼ Nq(T naivet, Σy|t), (6.5)

where

T naivet = T t+ ΓΣuB
′(BΣuB

′ + σ2
t|uIk)

−1t (6.6)

= T t+ Γµu|t, (6.7)

Σy|t = σ2
y|t,uIq + Γ(Σu − ΣuB

′(BΣuB
′ + σ2

t|uIk)
−1BΣu)Γ

′, (6.8)

= σ2
y|t,uIq + ΓΣu|tΓ

′, (6.9)

which are fully identifiable.

For given t1, t2, our estimand of interest, PATEt1,t2 , can be written as a function of
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only the identifiable terms:

PATEt1,t2 = T (t1 − t2), (6.10)

= T naivet− Γµu|t, (6.11)

which indicates that the treatment effects is identifiable when both treatments and out-

comes are multivariate.

The situation we consider above is closely related to a line of work on identification

with null control treatments and outcomes. [50] discusses conditions under which the av-

erage treatment effects can be nonparametrically identified with a null control treatment

and a null control outcome, i.e. via a double null controls design, in the univariate treat-

ment and outcome case. Further method developments in double null control design can

be found in [93, 94]. Unlike previous works, we do not need to find external null controls

as proxies of the unobserved confounder, but instead, we can learn information about

the unobserved confounder from the multivariate correlation structures of the treatments

and outcomes, and we show that it is sufficient for identifying treatment effects under

model 6.1-6.3. There are many open questions about sensitivity analysis and identifi-

cation with multivariate treatments and multivariate outcomes in more general models,

which we leave to future work.
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Appendix for Chapter 4

A.1 Theory

A.1.1 General Contrast Estimation Algorithm

Algorithm 3: Marginal Contrast Estimation for Arbitrary Copulas

1 Function ComputeMean(t, ψ):
2 for k = 1, 2, . . . ,M do
3 Sample yk from f(y | t) ;
4 for i = 1, 2, . . . , n do
5 Sample uij from f(u | ti) ;
6 for j = 1, 2, . . . , N do
7 Sample uij from f(u | ti) ;
8 Compute cij ← cψ(yk, uij | t) ;

9 Compute wk ← 1
nN

∑
ij cij ;

10 return 1
M

∑
k ν(yk)wk

11 return τ(ComputeMean(t1, ψ),ComputeMean(t2, ψ)
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A.1.2 Derivation of Algorithm 1

Since we have Equation 4.4 and 4.5, furthermore, we can write

E[v(Y ) | do(t)] =

∫∫
v(y)f(y | ỹ)wψ(ỹ, t)f(ỹ | t)dỹdy, (A.1)

where wψ(ỹ, t) ≈ 1
|T |
∑

ti∈T

[∫
cψ(FỸ |t(ỹ), FU |t(u) | t)f(u | ti)du

]
. To verify Algorithm 1,

we only need to show that

∫
f(ỹ | t, u)f(u | ti)du ∼ N(γT (µu|ti − µu|t), 1), (A.2)

where f(ỹ | t, u) = f(ỹ | t)cψ(FỸ |t(ỹ), FU |t(u) | t). According to Equation 4.7 and 4.8, we

know that

f(u | ti) ∼ N(µu|ti , Σu|t), (A.3)

f(ỹ | t, u) ∼ N(γT (u− µu|t), σ2
ỹ|t,u). (A.4)

By integrating out the U , we have

∫
f(ỹ | t, u)f(u | ti)du =

1√
2π(σ2

ỹ|t,u + γTΣu|tγ)
exp

{
−

(y − γ′(µu|ti − µu|t))2

2(σ2
ỹ|t,u + γTΣu|tγ)

}
, (A.5)

where σ2
ỹ|t,u + γ′Σu|tγ = 1.

A.1.3 Proof of Theorem 4.3.1

Theorem 4.3.1 Assume model 4.7-4.9. Let [ψT ] = {ψ̃T = {Aµu|t, AΣu|tA} : A ∈

S+} where S+ is the space of symmetric positive definite matrices. Then [ψT ] is a causal

equivalence class.
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Proof: The intervention distribution for ỹ is defined as

fψ(ỹ | do(t)) =

∫ [∫
fψY (ỹ | t, u)fψT (u | t̃)du

]
f(t̃)dt̃ (A.6)

where ψY = γ and ψT = {µu|t,Σu|t}. Then,
∫
fγ(ỹ | t, u)fψT (u | t̃)du ∼ N(γT (µu|t̃ −

µu|t), 1) for any γ such that γ′Σu|tγ ≤ 1 (see Equation A.5). Let ψ̃T = {Aµu|t, AΣu|tA} ∈

[ψT ] where A ∈ S+ is a positive definite matrix and assume ψ̃Y = γ̃. Then,

∫
fγ̃(ỹ | t, u)fψ̃T (u | t̃)du ∼ N(γ̃′A(µu|t̃ − µu|t), 1). (A.7)

Let γ̃ = A−1γ be a bijective mapping from γ to γ̃. For any γ and positive definite A,

we have γ̃′AΣu|tAγ̃ = γ′Σu|tγ ≤ 1 so that γ̃ is a valid copula parameter. In addition,∫
fγ(ỹ | t, u)fψT (u | t̃)du =

∫
fγ̃(ỹ | t, u)fψ̃T (u | t̃)du, which implies fγ,ψT (ỹ | do(t)) =

fγ̃,ψ̃T (ỹ | do(t)). Since Y is a deterministic function of Ỹ , this implies fγ,ψT (y | do(t)) =

fγ̃,ψ̃T (y | do(t)). Therefore, [ψT ] is a causal equivalence class.

A.1.4 Proof of Theorem 4.4.1

Theorem 4.4.1 Suppose that the observed data is generated by model 4.11-4.13.

When there k treatments with 1 < m < k, then ψT is identified up to the causal equiva-

lence class [ψT ] = {ψ̃T = {Aµu|t, AΣu|tA} : A ∈ S+}. When there is a single treatment

(k = 1) or m = k confounders, then ψT is not identifiable up to causal equivalence class.

Proof: The sample covariance matrix of the treatments is a consistent estimator for

BΣuB
′+Λt|u, the covariance matrix T . As long as 1 < m < k, then the kth eigenvalue is

a consistent estimator for σ2
t|u. BΣuB

′ is identified by the m eigenvectors and eigenvalues

of the sample covariance matrix. The span of the first m eigenvectors of the sample
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covariance matrix is a consistent estimator for the span of B. With model 4.11-4.13, the

conditional distribution of confounder U

f(u | t) ∼ N(µu|t, Σu|t), (A.8)

where µu|t := ΣuB
′(BΣuB

′ + Λt|u)
−1t, Σu|t := Σu − ΣuB

′(BΣuB
′ + Λt|u)

−1BΣu, and the

intervention distribution

fγ,B,Σu(y | do(T = t)) ∼ N((τnaive − (BΣuB
′ + Λt|u)

−1BΣuγ)′t, σ2
y|t,u + γ′Σuγ), (A.9)

where all m-vectors γ which satisfy γTΣu|tγ ≤ σ2
y|t are valid sensitivity parameters.

Let B̃ = BA and Σ̃u = A−1ΣuA
−T for an arbitrary positive definite matrix A, so

that B̃Σ̃uB̃
′ + Λt|u = BΣuB

′ + Λt|u. Then, the observed treatments are consistent with

T = B̃Ũ + εt|u, where Ũ = A−1U ∼ Nm(0, Σ̃u). Hence, the conditional confounder

distribution

f(ũ | t) ∼ Nm(µ̃u|t, Σ̃u|t), (A.10)

where µ̃u|t = A−1µu|t and Σ̃u|t = A−1Σu|tA
−T . With B̃ and Σ̃u, the intervention distribu-

tion can be alternatively expressed as

fγ̃,B̃,Σ̃u(y | do(T = t)) ∼ N((τnaive − (B̃Σ̃uB̃
′ + σ2

t|uIk)
−1B̃Σ̃uγ̃)′t, σ2

y|t,u + γ̃′Σ̃uγ̃) (A.11)

with γ̃ satisfying γ̃T Σ̃u|tγ̃ ≤ σ2
y|t to be valid sensitivity parameter.

Let γ̃ = ATγ. If γTΣu|tγ ≤ σ2
y|t, then we have γ̃T Σ̃u|tγ̃ = γTΣu|tγ ≤ σ2

y|t and

fγ̃,B̃,Σ̃u(y | do(T = t)) = fγ,B,Σu(y | do(T = t)). Therefore, the causal equivalence class

characterized by ψT = {µu|t,Σu|t} is identifiable when 1 < m < k.
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A.1.5 Proof of Theorem 4.4.2 and 4.4.3

Proof of Theorem 4.4.2

Theorem 4.4.2 Suppose that the observed data is generated by model 4.11-4.13.

Then, ∀γ satisfying Assumptions 1 and 2,

γTΣu|tγ ≤ σ2
y|tR

2
Y∼U |T . (A.12)

For any given ∆t, we have

Bias2
∆t ≤ σ2

y|tR
2
Y∼U |T ‖ Σ

−1/2
u|t µu|∆t ‖2

2 . (A.13)

The bound is achieved when γ is colinear with Σ−1
u|tµu|∆t.

Proof: Under model 4.11-4.13, the variance of the observed outcome equals

σ2
y|t := V ar(Y | T )

= σ2
y|t,u + γT (Im −BT (BBT + Λt|u)

−1B)γ

= σ2
y|t,u + γTΣu|tγ,

(A.14)

where γ′Σu|tγ corresponds to the confounding variation, and σ2
y|t,u stands for the non-

confounding variation in the residual of observed outcome. Hence, the fraction of con-

founding variation in the residual of Y , R2
Y∼U |T , can be expressed in terms of equation

4.25, which produces a constrain for γ (equation 4.26) that the confounding variation

in the residual of Y , γTΣu|tγ, should not be larger than σ2
y|tR

2
Y∼U |T for a given level of

R2
Y∼U |T .

Let

Z := Σ
1/2
u|t γ, (A.15)

107



Appendix for Chapter 4 Chapter A

then the omitted variable bias in equation 4.20 can be written as

Bias∆t = ZTΣ
−1/2
u|t µu|∆t,

where ZTZ ≤ σ2
y|tR

2
Y∼U |T , implied by inequality 4.26.

Therefore,

Bias2
∆t = ZTΣ

−1/2
u|t µu|∆tµ

T
u|∆tΣ

−1/2
u|t Z (A.16)

≤ σ2
y|tR

2
Y∼U |T ‖ Σ

−1/2
u|t µu|∆t ‖2

2, (A.17)

where the bounds are reached when Z is colinear with Σ
−1/2
u|t µu|∆t, i.e., γ is colinear with

the Σ−1
u|tµu|∆t inferred by the relationship defined in equation A.15.

Corollary 4.4.1 Let d1 be the largest singular value of B. For all ∆t with ‖ ∆t ‖2= 1,

the squared bias is bounded by

Bias2
∆t ≤

d2
1

(d2
1 + σ2

t|u)

σ2
y|t

σ2
t|u
R2
Y∼U |T , (A.18)

with equality when ∆t = uB1 , the first left singular vector of B. When ∆t ∈ Null(B′),

the naive estimate is unbiased, that is, PATE∆t = τ ′naive∆t.

Proof: Suppose that the matrix B has the singular value decomposition,

B = UDV T ,

where the diagonal entries of D are the singular values of B in descending order. Then,

we can write

µu|∆t = V D(D2 + σ2
t|uIs)

−1UT∆t, (A.19)
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and

Σ−1
u|t = V [Is +

1

σ2
t|u
D2]V T . (A.20)

By plugging Equation A.19 and A.20 into the result of theorem 4.4.2, we have

Bias2
∆t ≤

σ2
y|t

σ2
t|u
R2
Y∼U |T ‖ V D(σ2

t|uIs +D2)−1/2UT∆t ‖2
2, (A.21)

where, according to Rayleigh quotient [95], the squared L2 norm reaches its maximum,

d2
1

(d2
1+σ2

t|u)
, when ∆t equals the first column of U , i.e., the first left singular vector of B.

Therefore, we have

Bias2
∆t ≤

d2
1

(d2
1 + σ2

t|u)

σ2
y|t

σ2
t|u
R2
Y∼U |T . (A.22)

Proof of Theorem 4.4.3

Theorem 4.4.3 Assume the model 4.7-4.9 with Gaussian outcomes. If Σu|t is non-

invertible, then Biast1,t2 is bounded if and only if µu|t1 − µu|t2 is in the row space of Σu|t.

When bounded,

Bias2
t1,t2
≤ σ2

y|tR
2
Y∼U |T‖(Σ

†
u|t)

1/2(µu|t1 −µu|t2)‖2
2, where Σ†u|t is the pseudo-inverse of Σu|t.

Proof: Under model 4.7-4.9, we have γTΣu|tγ+σ2
ỹ|t,u = 1, where γTΣu|tγ corresponds

to the confounding variation and σ2
ỹ|t,u corresponds to the non-confounding variation in

the Gaussianized Y . Therefore, the confounding variation, γTΣu|tγ should not be larger

than a given level of R2
Ỹ∼U |T ,

γTΣu|tγ ≤ R2
Ỹ∼U |T (A.23)

where R2
Ỹ∼U |T denotes the fraction of confounding variation in residual variance of Ỹ
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conditional on T 1.

Let

Z := Σ
1/2
u|t γ, (A.24)

then the omitted variable bias,

Biast1,t2 = σy|tZ
T (Σ†u|t)

1/2(µu|t1 − µu|t2), (A.25)

where ZTZ ≤ R2
Ỹ∼U |T , implied by inequality A.23.

Therefore,

Bias2
t1,t2

= σ2
y|tZ

T (Σ†u|t)
1/2(µu|t1 − µu|t2)(µu|t1 − µu|t2)T (Σ†u|t)

1/2Z (A.26)

≤ σ2
y|tR

2
Ỹ∼U |T ‖ (Σ†u|t)

1/2(µu|t1 − µu|t2) ‖2
2, (A.27)

where the bounds are reached when Z is colinear with (Σ†u|t)
1/2(µu|t1 − µu|t2), i.e., γ is

colinear with the Σ†u|t(µu|t1 − µu|t2).

Suppose that Σu|t has the eigendecomposition,

Σu|t = QΛQT , (A.28)

where Q is the square s × s matrix whose jth column is the eigenvector qj of Σu|t, and

Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues,

Λjj = λj, in descending order. If Σu|t is non-invertible and has rank p (p ≤ s), then we

have λj = 0 for j = p+ 1, · · · , s.

On the one hand, when µu|t1 − µu|t2 is in the row space of Σu|t, it can be expressed

as a linear combination of qj,
∑p

j=1 ajqj, aj ∈ R. Then, we have the squared omitted

1R2
Ỹ∼U |T coincides with R2

Ỹ∼U here, but we use notation R2
Ỹ∼U |T for consistency.
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variable bias

Bias2
t1,t2
≤ σ2

y|tR
2
Ỹ∼U |T ‖ (Σ†u|t)

1/2(µu|t1 − µu|t2) ‖2
2, (A.29)

= σ2
y|tR

2
Ỹ∼U |T ‖ Q(Λ†)1/2QT

p∑
j=1

ajqj ‖2
2, (A.30)

= σ2
y|tR

2
Ỹ∼U |T

s∑
i=1

(

p∑
j=1

ajλ
− 1

2
j Qij)

2, (A.31)

where Qij denotes the element at the ith row and jth column of matrix Q, and Λ† is the

pseudo-inverse of Λ by taking the reciprocal of each its non-zero element on the diagonal,

leaving the zeros in place.

On the other hand, when Bias2
t1,t2

is bounded, let’s assume that µu|t1 − µu|t2 is not in

the row space of Σu|t, say µu|t1 − µu|t2 = qs. Since λs = 0, λ
−1/2
s =∞ so as the bound of

Bias2
t1,t2

equal to ∞, which contradicts the condition that Bias2
t1,t2

is bounded.

Therefore, Bias2
t1,t2

is bounded if and only if µu|t1 − µu|t2 is in the row space of Σu|t.

A.1.6 Proof of Proposition 4.5.1, Theorem 4.5.1 and Corollary

Proof of Proposition 4.5.1

Proposition 4.5.1 Suppose there are c known null control treatment contrasts, tj1

versus tj2 for j ∈ C. Then, the null control compatibility condition µy|∆tcPMu|∆tc
= µy|∆tc

must hold where PMu|∆tc
denotes the projection matrix into the row space of Mu|∆tc. Ad-

ditionally, the partial fraction of variance explained due to confounders given treatments

is lower bounded by

R2
Y∼U |T ≥ R2

min =
1

σ2
y|t
‖ µy|∆tcM

†
u|∆tC ‖

2
2 .
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where M †
u|∆tC denotes a generalized inverse of Mu|∆tC .

Proof: Assume there are c null control treatment contrasts, satisfying

σy|tγ
′Σ

1/2
u|tMu|∆tC = µy|∆tC (A.32)

The solution for above equation exists if and only if µy|∆tCM
†
u|∆tcMu|∆tC = µy|∆tC holds,

which ensures that the null control assumptions are compatible. Under this condition,

all solutions to equation A.32 can be expressed as

γ′ =
1

σy|t
µy|∆tCM

†
u|∆tc(Σ

†
u|t)

1/2 + w′(I −Mu|∆tcM
†
u|∆tc)(Σ

†
u|t)

1/2, (A.33)

Since γ′Σu|tγ = R2
Y∼U |T , w can be any m× 1 vector satisfying

‖ w′(I −Mu|∆tcM
†
u|∆tc) ‖

2
2= R2

Y∼U |T −
1

σ2
y|t
‖ µy|∆tCM

†
u|∆tc ‖

2
2

Further,

‖ w′(I −Mu|∆tcM
†
u|∆tc) ‖

2
2≥ 0

must hold, we know that R2
Y∼U |T must be at least

1

σ2
y|t
‖ µy|∆tCM

†
u|∆tc ‖

2
2,

which proves Proposition 4.5.1.

Proof of Theorem 4.5.1 and Corollary

Theorem 4.5.1 For any value of R2
Y∼U |T > R2

min which satisfies null control com-

patibility condition, the confounding bias for the treatment effect of contrast ∆t is in the
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interval

µy|∆tcM
†
u|∆tC(Σ

†
u|t)

1/2(µu|t1 − µu|t2)± (A.34)

σy|t

√
R2
Y∼U |T −R2

min

∥∥∥Q⊥Mu|∆tc
(Σ†u|t)

1/2(µu|t1 − µu|t2)
∥∥∥

2
(A.35)

where Q⊥Mu|∆tc
is the m ×m projection matrix into the complement of the column space

of Mu|∆tc.

Corollary Under the assumptions established in Theorem 1, null controls reduce the

width of the partial identification ignorance region by a multiplicative factor of

√
1−R2

min/R
2
Y∼U |T

‖ Q⊥Mu|∆tc
(Σ†u|t)

1/2(µu|t1 − µu|t2) ‖2

‖ (Σ†u|t)
1/2(µu|t1 − µu|t2) ‖2

≤ 1 (A.36)

Proof: For treatment contrast, t1 versus t2, the omitted variable bias of PATEt1,t2 is

Biast1,t2 = γ′(µu|t1 − µu|t2) and so

µy|∆tCM
†
u|∆tc(Σ

†
u|t)

1/2(µu|t1 − µu|t2)± (A.37)

σy|t

√
R2
Y∼U |T −R2

min

∥∥∥(I −Mu|∆tcM
†
u|∆tc)(Σ

†
u|t)

1/2(µu|t1 − µu|t2)
∥∥∥

2
,

where the bounds are achieved when (I−Mu|∆tcM
†
u|∆tc)w has the largest cosine similarity

with Σ
−1/2
u|t µu|∆t.

Compare the second term of A.37 and the bound given in Theorem 4.4.3, we see that
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the width of ignorance region is shrunk by a multiplicative factor of

√
1−R2

min/R
2
Y∼U |T

‖ (I −Mu|∆tcM
†
u|∆tc)(Σ

†
u|t)

1/2µu|∆t ‖2

‖ (Σ†u|t)
1/2µu|∆t ‖2

. (A.38)

A.2 Modeling Choice Details

A.2.1 Identification and Inference in the Factor Model

Here, we briefly elaborate on identifiability of the probabilistic principal components

model, which is a prerequisite for our multi-cause sensitivity analysis. Identifiability

under various factor model assumptions is well studied and has a long history in the

literature [96, 97]. In the specific probabilistic principal components model 4.12, Tipping

and Bishop (1999) [98] provide a maximum likelihood solution for inferring the latent

confounder parameters conditional on m. Many procedures are available for selecting

the appropriate value of m, using for example Bayesian model selection techniques [99]

or large p, small n asymptotics Gavish and Donoho (2014) [100].

The change of variables described at the end of the subsection 4.4.1 further elu-

cidates important situations in which we cannot bound the omitted variable bias due

to non-identifiability of the factor model. Again, we focus on the rotated treatments

T̃ ∼ N(0,∆ + σ2
t|uIk) and highlight two simple situations in which we cannot bound the

the causal effects. First, when B is rank k, i.e. there exist m = k independent con-

founders, ∆ has no non-zero entries on the diagonal and thus we cannot identify either

∆ nor Cov(εt|u) = σ2
t|uIk, only their sum. Second, if Cov(εt|u) is an unknown arbitrary

diagonal matrix (as opposed to a matrix proportional to the identity), then Cov(εt|u) is
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not distinguishable from ∆. In both of these cases, the worst-case bias is unbounded since

the non-confounding variation of the treatment assignment, Cov(εt|u), can be arbitrarily

small. In such settings, we can still apply approaches used in single cause sensitivity

analysis, by specifying both ΨY and ΨT ; when the factor model is not identifiable, ΨT

must be chosen as a true parameter, e.g. by bounding the fraction of treatment variation

due to confounding, R2
T∼U .

A.2.2 Confounder Inference with Variational Autoencoders

Probabilistic Principal Component Analysis should only be used when the treatments

are approximately Gaussian treatments. For binary and other general treatment distri-

butions, more sophisticated probabilistic latent variables models are required. Examples

of such latent variable models include models for count data like the logistic factor anal-

ysis [101] and Poisson factor analysis methods [102]. Unfortunately, these models imply

posteriors which are non-Gaussian and heteroskedastic, violating Assumptions 4.3.2 and

4.3.1.

As such, for general treatment distributions, our approach is to infer a conditional

Gaussian latent variable model using a variational autoencoder (VAE). VAEs have been

extremely popular in machine learning, in particular for generating low dimensional rep-

resentations of complex inputs like images [103] but more recently have been used in

scientific and decision-making applications [104] and in applications to causal inference

[105]. A VAE consists of a prior distribution, f(u), typically for the low-dimensional

latent variables, a stochastic encoder, and a stochastic decoder. In our application, the

inferred stochastic decoder, f̂θ(t | u), is a non-linear map from latent confounders to a

distribution over causes. Together, the prior distribution for u and the decoder imply a

posterior confounder distribution, f̂(u | t).
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In practice, inference for the true posterior is intractable and so a variational approx-

imation, called the encoder, qφ(u | t), is used in place of the true posterior. Typically

the encoder is chosen to be a normal distribution with mean and variance which are

non-linear functions of the input, qφ = N(µφ(t), σ2
φ(t)). A crucial question is that how

well the Gaussian encoder approximates the true posterior; improving the variational

approximation to the true latent variable posterior is an area of active research. In this

work, we follow a common strategy of using the encoder learned by the VAE as the

proposal distribution in an importance sampler [104].

Specifically, we apply a variant of the Constant-Variance Variational Autoencoder

(CV-VAE) [106] to infer the conditional confounder distribution, f(u | t) ∼ N(µu|t,Σu|t),

in which Σu|t does not depend on the level of t. We use the importance sampling to

improve estimates of the conditional mean µu|t, and posterior variance, Σu|t. While this

appraoch only yields an approximation to the true posterior, we demonstrate the practical

effectiveness of this approach in Sections 4.6 and 4.7.
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A.2.3 Binary Outcomes

For binary outcomes with the risk ratio estimand:

RRt,• =
∑
ti∈T

Φ
(
Φ−1(µy|t) + γT (µu|ti − µu|t)

)/
Pr(Y = 1), (A.39)

which implies that

RRt1,t2 =
∑
ti∈T

Φ
(
Φ−1(µy|t1) + γT (µu|ti − µu|t1)

)/∑
ti∈T

Φ
(
Φ−1(µy|t2) + γT (µu|ti − µu|t2)

)
,

(A.40)

where γTΣu|tγ ≤ σ2
ỹ|tR

2
Ỹ∼U |T . We can numerically explore values of RRt1,t2 within

the valid domain of γ, and calculate the corresponding implicit partial R-squared by

R2
Ỹ∼U |T =

γTΣu|tγ

σ2
ỹ|t

. To calculate the robustness value, we only need to find the value of

R2
Ỹ∼U |T for which the corresponding RRt1,t2 = 1. Noticeably, RRt1,t2 is not monotone in

R2
Ỹ∼U |T , since the variance of intervention distribution also depends on γ. This is evi-

dent in the simulation in Section 4.6 where we fit the observed outcome model by probit

regression and the valid range for scalar γ is [− 1
σu|t

, 1
σu|t

]. We visualize the non-monotone

relationship between RRt1,t2 and R2
Ỹ∼U |T in Figure A.1.
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Figure A.1: RRt1,t2 is non-monotone in R2
Ỹ∼U |T . Positive values of R2 indicates

that U is positively correlated with Ỹ , and negative values of R2 means that U is
negatively correlated with Ỹ .

118



Appendix for Chapter 4 Chapter A

A.3 Additional Results

A.3.1 Additional Results from Simulation in Sparse Effects Set-

ting

null non−null
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case

τ

True Effect
RY

~
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2  = 0%
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~

~U|T
2  = 50%

RY
~

~U|T
2  = 100%

Figure A.2: Worst-case ignorance regions for 55 randomly chosen null effects (left) and
all 45 non-null effects (right) ordered by the magnitude of true effects in each group.
Two red arrows indicate non-null treatments for which the worst-case ignorance region
does not cover the true effect. This appears to be due to estimation error in the
outcome model, more so than with the VAE.
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Figure A.3: Change in E(|τ |) for the L1-minimized estimates as a function of R2
Y∼U |T ,

separated by null and non-null effects. (a) The magnitude of effects decreases with
R2, with a larger relative decrease for null contrasts. (b) The relative magnitude of
non-null and null effects increases with R2 in general. The magnitude of non-null
effects can be as large as 1.9 times the null effects when R2 is large.

A.3.2 Additional Results from the Actor Case Study
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Figure A.4: (a) Estimated partial R2 for observed confounders using method described
in section 4.5.1. Budget is the most dominant variable, which can explain significantly
higher variation in outcome Y . (b) Latent confounder dimension selection, based on
the reconstruction loss on the validation set.
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Table A.1: Robustness Value for Significant Actors

Effect RVmean(%) RVlimit(%)

John Ratzenberger 52.91 21.79 9.36
Tom Cruise 49.48 5.09 1.59
Stan Lee 47.53 14.43 4.16
Morgan Freeman 41.95 1.63 0.26
Will Smith 41.87 8.61 2.64
Bruce Willis 41.44 1.86 0.3
Tom Hanks 36.40 4.16 0.79
Harrison Ford 35.26 3.25 0.6
Arnold Schwarzenegger 34.13 3.39 0.55
Johnny Depp 31.53 1.27 0.08
Frank Welker 30.99 2.86 0.34
Brad Pitt 30.61 1.54 0.09
Judi Dench 30.01 8.87 1.41
Leonardo DiCaprio 29.52 36.47 7.35
Adam Sandler 28.39 3.22 0.19
Liam Neeson 27.40 0.91 0.03
Denzel Washington 26.09 2.01 0.11
Eddie Murphy 25.82 3.30 0.27
John Travolta 23.96 2.45 0.13
Robin Williams 23.26 1.12 0.03
Hugo Weaving 23.02 4.20 0.12
Michael Caine 22.23 3.03 0.11
Channing Tatum 22.22 2.33 0.06
Angelina Jolie 20.81 3.72 0.09
Carla Gugino 20.74 4.24 0.13
Octavia Spencer 20.68 5.78 0.13
Kathy Bates 20.58 8.25 0.17
Jim Carrey 19.79 2.79 0
Ian McKellen 19.02 4.70 0
Reese Witherspoon 18.97 8.17 0.27
Zoe Saldana 18.79 7.33 0.12
Kevin Hart 18.41 3.21 0.05
Timothy Spall 18.40 9.39 0.25
Jamie Foxx 18.15 6.02 0.01
Judy Greer 17.76 4.17 0.01
Tommy Lee Jones 17.67 2.96 0
Rose Byrne 16.85 7.62 0.05
Andy Serkis 16.53 9.48 0.05
Dennis Hopper -14.79 19.32 0
Kate Bosworth -16.01 5.20 0.04
Viggo Mortensen -16.24 6.50 0.02
Tim Blake Nelson -16.58 24.78 0.09
Jeremy Piven -17.45 4.86 0.06
Elias Koteas -21.64 13.87 1.06
Susan Sarandon -22.57 7.90 0.24
Mark Ruffalo -23.29 3.17 0.11
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B.1 Theory

B.1.1 Proof of Theorem 5.3.1

Theorem 5.3.1 Assume model 5.9-5.6. Let [ψY ] = {ψ̃Y = {ΓA} : A ∈ S+} where S+

is the space of symmetric positive definite matrices. Then [ψY ] is a causal equivalence

class.

Proof: The intervention distribution for ỹ is defined as

fψ(ỹ | do(t)) =

∫ [∫
fψY (ỹ | t, u)fψT (u | t̃)du

]
f(t̃)dt̃. (B.1)

Under model 5.9-5.6, we have

fψY (ỹ | t, u) ∼ Nq(Γ(u− µu|t), Λỹ|t,u), (B.2)

fψT (u | t) ∼ N(µu|t, Σu|t), (B.3)

with µu|t = Σuβ
σ2
t

(t− µt), Σu|t = Σu − Σuββ′Σu
σ2
t

, and parameters ψT = β, ψY = Γ.
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Thus, it can be derived that

∫
fψY (ỹ | t, u)fψT (u | t̃)du ∼ Nq(

ΓΣuβ

σ2
t

(t̃− t), Λỹ|t,u + ΓΣu|tΓ
T ) (B.4)

with sensitivity parameter β satisfying β′Σuβ ≤ σ2
t .

Let ψ̃Y = ΓA ∈ [ψY ] and Ũ = A−1U , with A being a symmetric positive definite

matrices, such that Γ̃Σ̃u|tΓ̃
′ + Λỹ|t,u = ΓΣu|tΓ

′ + Λỹ|t,u = Cy|t, where Σ̃u := Cov(Ũ) =

Cov(A−1U) = A−1ΣuA
−T and Σ̃u|t := Cov(Ũ | t) = Cov(A−1U | t) = A−1Σu|tA

−T .

Assume that ψ̃T = β̃. With ψ̃T , ψ̃Y and Ũ , the distribution in Equation B.4 can be

alternatively expressed as

∫
fψ̃Y (ỹ | t, u)fψ̃T (u | t̃)du ∼ Nq(

Γ̃Σ̃uβ̃

σ2
t

(t̃− t), Λỹ|t,u + Γ̃Σ̃u|tΓ̃
T ). (B.5)

Let β̃ = ATβ be a bijective mapping from β to β̃. For any β and rotation matrix A,

we have β̃′Σ̃uβ̃ = β′Σuβ ≤ σ2
t so that β̃ is a valid sensitivity parameter, and it’s easy

to see that
∫
fψY (ỹ | t, u)fψT (u | t̃)du =

∫
fψ̃Y (ỹ | t, u)fψ̃T (u | t̃)du, which implies that

fψY ,ψT (ỹ | do(t)) = fψ̃Y ,ψ̃T (ỹ | do(t)). Since Y is a deterministic function of Ỹ , this implies

fψT ,ψY (y | do(t)) = fψ̃T ,ψ̃Y (y | do(t)). Therefore, [ψY ] is a causal equivalence class.

B.1.2 Proof of Theorem 5.3.2

Theorem 5.3.2 Suppose that the observed data is generated by model 5.8-5.10. When

there q outcomes with 1 < m < q, then ψY is identified up to the causal equivalence class

[ψY ] = {ψ̃Y = {ΓA} : A ∈ S+ }. When there is a single outcome (q = 1) or at least

m = q confounders, then ψY is not identifiable up to causal equivalence class.
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Proof: Under model 5.8-5.10, the intervention distribution has density

fβ,Γ,Σu(y | do(T = t)) ∼ N((τnaive − ΓΣuβ

σ2
t

)t, Λy|t,u + ΓΣuΓ
′), (B.6)

where σ2
t := β′Σuβ+σ2

t|u, denoting the marginal variance of treatment, and all m-vectors

β which satisfy β′Σuβ ≤ σ2
t are valid sensitivity parameters.

Let Γ̃ = ΓA, Ũ = A−1U . Then, we have Σ̃u := Cov(Ũ) = A−1Cov(U)A−T =

A−1ΣuA
−T and Σ̃u|t := Cov(Ũ | t) = A−1Cov(U | t)A−T = A−1Σu|tA

−T , and thus

Cov(Y | t) = ΓΣu|tΓ
′ + Λy|t,u = Γ̃Σ̃u|tΓ̃

′ + Λy|t,u, which are both compatible with the ob-

served data. With Γ̃ and Σ̃u, the intervention distribution can be alternatively expressed

as

fβ̃,Γ̃,Σ̃u(y | do(T = t)) ∼ N((τnaive − Γ̃Σ̃uβ̃

σ2
t

)t, Λy|t,u + Γ̃Σ̃uΓ̃
′) (B.7)

for any valid sensitivity parameter β̃ satisfying β̃′Σ̃uβ̃ ≤ σ2
t .

Let β̃ = ATβ. If β′Σuβ ≤ σ2
t , then we have β̃′Σ̃uβ̃ = β′Σuβ ≤ σ2

t , and it can be

easily seen that fβ̃,Γ̃,Σ̃u(y | do(T = t)) = fβ,Γ,Σu(y | do(T = t)). Therefore, the causal

equivalence class characterized by ψY = {Γ} is identifiable when 1 < m < q.

B.1.3 Proof of Theorem 5.3.3

Theorem 5.3.3 Suppose that the observed data is generated by model 4.11-4.13. Then,

∀β satisfying

β′Σuβ = σ2
tR

2
T∼U (B.8)

with 0 ≤ R2
T∼U < 1. For given a, the confounding bias is bounded by

Bias2
a ≤

1

σ2
t

R2
T∼U

1−R2
T∼U

‖ a′Γ̃ ‖2
2, (B.9)
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where the bound is achieved when β is colinear with a′Γ̃.

Proof: The sensitivity parameter β can be reparameterized in terms of a direction dβ

and an R-squared:

β = dβuβ, (B.10)

where dβ = σt
√
R2
T∼U and uβ ∈ Cm−1 is a m-dimensional unit vector.

Therefore, we can write the eigendecomposition of matrix Im − ββ′

σ2
t

as

Im −
ββ′

σ2
t

= U



1− (d
β

σt
)2

1

. . .

1


UT , (B.11)

where U is an orthogonal matrix with the first column as uβ.

Thus, the Biasa can be simplified as

Biasa =
1

σ2
t

a′Γ̃(Im −
ββ′

σ2
t

)−1/2β (B.12)

=
dβ

σt
√
σ2
t − (dβ)2

a′Γ̃uβ (B.13)

=
1

σt

√
R2
T∼U

1−R2
T∼U

a′Γ̃uβ, (B.14)

≤ 1

σt

√
R2
T∼U

1−R2
T∼U

‖ a′Γ̃ ‖2, (B.15)

where the bounds are reached when uβ is colinear with a′Γ̃, i.e., β is colinear with a′Γ̃.

Corollary 5.3.1 Let d1 be the largest singular value of Γ̃. For all a ∈ Rq with ‖ a ‖2= 1,
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the confounding bias is bound by

Bias2
a ≤

d2
1

σ2
t

R2
T∼U

1−R2
T∼U

, (B.16)

with equality when a = uΓ̃
1 , the first left singular vector of Γ̃, and β being colinear with vΓ̃

1 ,

the first right singular vector of Γ̃. When a ∈ Null(Γ̃), the naive estimate is unbiased,

that is, a′τnaive = a′τ .

Proof: From Equation B.14, we have

Biasa =
1

σt

√
R2
T∼U

1−R2
T∼U

a′Γ̃uβ, (B.17)

where, according to Rayleigh quotient, a′Γ̃uβ reaches its maximum, d1, the largest sin-

gular value of Γ̃, when a = uΓ̃
1 , the first left singular vector of Γ̃, and uβ = vΓ̃

1 , the first

right singular vector of Γ̃.

Thus,

Bias2
a ≤

d2
1

σ2
t

R2
T∼U

1−R2
T∼U

. (B.18)

B.1.4 Proof of Proposition 5.4.1, Theorem 5.4.1 and Corollary

Proof of Proposition 5.4.1

Proposition 5.4.1 Suppose there are c known null control outcomes Yj with τj = 0

for j ∈ C. Then, the null control compatibility condition QΓ̃C
τnaivej = τnaivej must hold,

where QΓ̃C
denotes the projection matrix into the column space of Γ̃C. In addition, the
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fraction of confounding variation in treatment is lower bounded by

R2
T∼U ≥ R2

min :=
σ2
t ‖ Γ̃†Cτ

naive
C ‖2

2

1 + σ2
t ‖ Γ̃†Cτ

naive
C ‖2

2

, (B.19)

where Γ̃†C denotes a generalized inverse of Γ̃C.

Proof: Assume there are c null control outcomes, satisfying

τnaive
C =

1

σ2
t

√
1−R2

T∼U
Γ̃Cβ, (B.20)

The solution for above equation exists if and only if Γ̃CΓ̃
+
C τ

naive
j = τnaive

j holds, which

ensures that null control assumptions are compatible. Under this condition, all solutions

to Equation B.20 can be written as

β = σ2
t

√
1−R2

T∼U Γ̃+
C τ

naive
C + (I − Γ̃+

C Γ̃C)w. (B.21)

Since β′β = σ2
tR

2
T∼U , w can be any m× 1 vector satisfying

‖ (I − Γ̃+
C Γ̃C)w ‖2

2= σ2
tR

2
T∼U − σ4

t (1−R2
T∼U) ‖ Γ̃+

C τ
naive
C ‖2

2 (B.22)

In addition,

‖ (I − Γ̃+
C Γ̃C)w ‖2

2≥ 0 (B.23)

must hold, we know that R2
T∼U must be at least

σ2
t ‖ Γ̃†Cτ

naive
C ‖2

2

1 + σ2
t ‖ Γ̃†Cτ

naive
C ‖2

2

. (B.24)
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Proof of Theorem 5.4.1 and Corollary

Theorem 5.4.1 For any value of R2
T∼U ≥ R2

min which satisfies null control compat-

ibility condition, the confounding bias for the treatment effect of the interested outcome

a′Y is in the interval

a′Γ̃Γ̃†Cτ
naive
C ±

√
R2
T∼U

σ2
t (1−R2

T∼U )
− ‖ Γ̃†Cτ

naive
C ‖2

2 ‖ a′Γ̃P⊥Γ̃C ‖2, (B.25)

where P⊥
Γ̃C

is the m×m projection matrix into the complement of the row space of Γ̃C.

Corollary Under assumptions established in Theorem 5.4.1, null control outcomes

reduce the width of the general worst-case ignorance region by a multiplicative factor of

√
1− R2

min

1−R2
min

/
R2
T∼U

1−R2
T∼U

‖ a′Γ̃P⊥
Γ̃C
‖2

‖ a′Γ̃ ‖2

≤ 1. (B.26)

Proof: For outcome of interest, a′Y , the omitted variable bias equals Biasa =

1

σ2
t

√
1−R2

T∼U
a′Γ̃β and so it is bounded by

a′Γ̃Γ̃†Cτ
naive
C ±

√
R2
T∼U

σ2
t (1−R2

T∼U )
− ‖ Γ̃†Cτ

naive
C ‖2

2 ‖ a′Γ̃P⊥Γ̃C ‖2 (B.27)

with P⊥
Γ̃C

:= (I− Γ̃†CΓ̃C), where the bounds are achieved when (I− Γ̃+
C Γ̃C)w has the largest

cosine similarity with a′Γ̃.

Compare the bound with the one in Theorem 5.3.3, we see that the width of ignorance
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region is shrunk by a multiplicative factor of

√
1− R2

min

1−R2
min

/
R2
T∼U

1−R2
T∼U

‖ a′Γ̃P⊥
Γ̃C
‖2

‖ a′Γ̃ ‖2

. (B.28)

B.2 Additional Results

B.2.1 Additional Results from Analysis of Metabolomic Aging

Clocks

−0.2

−0.1

0.0

0.1

0.2

A
ce

ta
m

id
e

U
rid

in
e

4−
A

m
in

ob
ut

yr
ic

 a
ci

d
U

ra
ci

l
G

ly
ce

ro
l 3

−p
ho

sp
ha

te
A

de
no

si
ne

S
er

in
e

al
ph

a−
H

yd
ro

xy
is

ov
al

er
ic

 a
ci

d
al

ph
a−

ke
to

is
ov

al
er

ic
 a

ci
d

A
rg

in
in

e
G

ly
co

cy
am

in
e

4−
M

et
hy

lv
al

er
ic

 a
ci

d
A

sp
ar

ag
in

e
F

ru
ct

os
e

H
om

os
er

in
e

C
itr

ac
on

ic
 a

ci
d

In
os

in
e

C
af

fe
in

e
Tr

yp
to

ph
an

P
he

ny
la

la
ni

ne
A

ce
ty

lg
ly

ci
ne

A
ce

ty
lc

ar
ni

tin
e

A
m

ilo
rid

e
1−

M
et

hy
la

de
no

si
ne

2−
de

ox
yg

ua
no

si
ne

A
nt

hr
an

ili
c 

ac
id

G
ly

ci
ne

3?
−H

yd
ro

xy
−1

2 
K

et
ol

ith
oc

ho
lic

 A
ci

d
D

O
PA

S
er

ot
on

in
S

or
bi

to
l

G
ly

cy
lp

ro
lin

e
A

sp
ar

tic
 a

ci
d

D
ec

an
oy

lc
ar

ni
tin

e
C

ar
ni

tin
e

X
an

th
in

e
C

ys
tin

e
H

IA
A

K
yn

ur
en

in
e

C
au

sa
l E

ffe
ct

 (
U

ni
t: 

σ 
( Y

 ) 
)

RT~U
2  :

0%
95%

Figure B.1: Estimated effect of increasing age by one year on abundances of metabo-
lites. The ignorance regions are on case by case basis with R2

T∼U = 95%. All ignorance
regions include zero.
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Table B.1: Robustness Value for Metabolites

Effect RV(%)

Cystine 0.03 45
HIAA 0.03 49
Carnitine 0.03 56
Kynurenine 0.03 58
Xanthine 0.03 50
Decanoylcarnitine 0.02 62
DOPA 0.02 55
3?-Hydroxy-12 Ketolithocholic Acid 0.02 33
Serotonin 0.02 27
Aspartic acid 0.02 56
Glycylproline 0.02 43
Sorbitol 0.02 17
Amiloride 0.01 16
Acetylglycine 0.01 22
1-Methyladenosine 0.01 23
2-deoxyguanosine 0.01 33
Anthranilic acid 0.01 86
Acetylcarnitine 0.01 20
Glycine 0.01 21
Tryptophan 0.01 3
Phenylalanine 0.01 5
Inosine 0.00 1
Caffeine 0.00 2
Citraconic acid 0.00 1
Homoserine -0.01 2
Glycocyamine -0.01 13
Arginine -0.01 9
4-Methylvaleric acid -0.01 6
alpha-ketoisovaleric acid -0.01 15
alpha-Hydroxyisovaleric acid -0.01 36
Fructose -0.01 6
Asparagine -0.01 4
Adenosine -0.01 64
Serine -0.01 10
Glycerol 3-phosphate -0.02 87
Uracil -0.02 14
Uridine -0.02 19
4-Aminobutyric acid -0.02 71
Acetamide -0.03 30
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