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ABSTRACT

The problem of spin decoupling spin 1=1 nuclei with large quadrupolar

splittings w
Q

(e.g. deuterium) from dilute S spins via double quantum

transitions is dealt with. The normal two spin-~ single quantum decoupling

problem (I=~,S=~) is first dealt with as a reminder of the coherent averaging

approach and to understand the dependence of the S resonance linewidth on

the I rf field intensity (WI) and resonance offset (6w). The double quantum

problem (I=l,S=~) is then treated analogously by introducting fictitious

spin-~ operators for the I double quantum transition. The decoupling

condition is found to be very sensitive to the spin-I resonance condition

go as ~ ~ with the spin I rf field intensity at resonance in the

wI .
quantum reg1me (WI «WQ). Experimental examples on heavy ice,

dimethyl-sulfoxide-d
6

and benzene-d
6

are presented verifying the quantitative

theoretical predictions. Extensions to higher order multiple quantum effects for

spin I > I and for several coupled spin-!2 nuclei are discussed.
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I. INTRODUCTION

The application of heteronuclear spin decoup1ing has made an important

contrib~tion to solid state nmr. In it& most common form we have a sample

with abundant spins I and dilute spins S. By strongly irradiating the I

spins wi th a radio frequency field near their Larmor frequency we can spin

d 1 h f h S . 1 11' h b . f hi h 1ecoup e t em rom t e sp1ns a oW1ng teo servat10n 0 a g reso u-

tion spectrum. Figure 1 depicts this approach in simple schematic terms,

showing the S free induction decay while continuously irradiating the I

13 2
This has been applied to nmr of C and other nuclei in solids.

A potentially useful candidate for such experiments is the case

I = deuterium, S =proton. By spin decoupling the deuterium in a ~ 99%

deuterated sample we could directly observe a high resolution proton

spectrum. Figure 2 indicates the difficulty of such an approach. The

deuterium nucleus has spin-l and the interaction of the quadrupole moment

with electric field gradients causes a splitting of the spectrum into

lines (two allowed transitions) separated by 2wQ, where

quadrupolar frequency. Typically, the splitting can be

WQ denotes a

~high, \lQ - 2n '\,

100 kHz. Thus, it might appear that the deuterium decoup1ing rf field

intensity must be sufficient to cover the entire quadrupo1ar spectrum,

1. e .•

where wI is the intensity of the rf field. The situation appears

particularly acute in the case of a polycrystalline sample where all the

orientations of the electric field gradients give a continuous distribution
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of w
Q

. The deuterium nmr spectrum expected for such a case is shown

in Figure 3 for an axially symmetric field gradient. Figure 4 shows

an example of 99% deuterated dimethyl sulfoxide (DMSO-d6) showing the

center portion of such a spectrum. The maximum splitting is 2V
Q

~

88 kHz which makes it difficult for our decoup1ing transmitter to

cover the full spectral range.

3It was realized a few years ago by Meiboom and co-workers in

their liquid crystal work that deuterium spin decoup1ing might take

place via deuterium double quantum transitions, i.e., rapid transitions

between the m = ±l levels. Since the m=O level does not affect the

S spin this should indeed suffice. Furthermore, although this is a

second order process it is resonant for all spins (the m = ±1 splitting

is 2wO independent of wQ to first order) and might provide a better

mechanism for decoupling than the strongly off resonant allowed transi-

tions. In fact, Meiboom ~ ale were able to decouple deuterium in

oriented molecules in liquid crystal solution, where 2wQ is a few kHz,

with moderate rf fields. Very recently, we extended this to solids

and showed that even in 99% deuterated ice where 2wQ ~ 230 kHz a field
_ wI 4

of vI =2n ~ 20 kHz sufficed for spin decoupling. Using second order

perturbation theory, we estimated that instead of (1), the criterion

for the onset of spin decoupling via double quantum transitions is

;~tua11y much ' ~s stringent:

(2)

where D roughly characterizes the 1-S dipolar coupling.
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Various schemes for deuterium spin decoupling have been proposed

as indicated schematically in Figure 5. Except for special cases t

the third approach of double quantum decoupling appears to be the

simplest and has the most promise in terms of utilization of the rf

power. The purpose of the present paper is to present a more quanti-

tative analysis and set of experiments of spin decoupling for spin-I.

We shall see that the result (2) is indeed borne out by a more rigorous

analysis. The effects of frequency offset of the rf irradiation on the

I-spins are also accounted for. The approach adopted is to calculate

the effects of the quadrupolar and rf irradiation fields on the I-S

dipolar coupling Hamiltonian XIS and to find the conditions for

making the effective XIS vanish.

In Section II we outline the well known and simple problem of spin

decoupling when both I and S are spins-~ so no quadrupolar splitting

is involved. This serves to introduce the form of the Hamiltonian and

to illustrate the approach for calculating the effective XIS when rf

5
irradiation is applied to the I spins t using coherent averaging theory.

This yields the expected condition for normal single quantum spin

decoupling. The asymptotic dependence of the S linewidth on the I

resonance offset and on wI for large wI is also estimated theoretically.

In Section III the I-spin is taken as spin-l with quadrupolar coupling

parameter wQ. We introduce fictitious spin-~ operators used previously

6to describe'uouble quant:c.J coherence. In the practically interesting

case D « WI « wQ the system is formally identical to a fictitious spin-~

coupled to the S-spin and we derive the double quantum decoupling

condition for the eff~ctive XIS. Again the asymptotic dependence of
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the S-linewidth on wI and ~v is calculated.

In Section IV experimental resultb are presented illustrating the

deuterium spin decoupling in solids and showing the behavior as a

function of deuterium rf field wI and resonance offset bw and comparison

with theory. We conclude in Section V with an extension to two coupled

spin-~ 1 spins where double quantum effects can also be observed and

n
a brief discussion of higher order multiple quantum effects for spin 1 =

2

or n coupled spins-~.
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II. SPIN DECOUPLING FOR SPINS-~

This section is intended to serve as an introduction to notation

and background for the subsequent application to the novel double

quantum effects. The coherent averaging treatment for normal single

quantum decoupling outlined here has been treated previously.5

A. Hamiltonian

The situation of interest here is depicted schematically in Figure

6. Spins I=~ interact with spins S=~ and are subjected to rf irradiation

near their Larmor frequency and we neglect I-I and S-S couplings. The

effects of many body I-I interactions have been treated elsewhere~c

We shall be interested in what follows in coherent I interactions due

to quadrupolar couplings or a small number of dipolar interactions which

lead to multiple quantum effects and where the calculation can be done

exactly. Thus the neglect of many body I-I interactions is justified.

This is especially so for 99% deuterated material, where the deuterium-

deuterium coupling is not normally larger than deuterium-proton

coupling, so the effects of I-I interactions on the spin decoupling are

expected to be weak, and we need only to overcome the 1-5 interactions.
2c

~e consider that I are abundant and 5 dilute, so several I spins interact

with S of which only one is shown in Figure 6.

The spin Hamiltonian for this system in high 'nagnetic field is

given in angular velocity units _1:

(3)
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where wOI and wos are the I and S Larmor frequencies, wI is the intensity

of the I rf field at frequency w near wOI and J~S is the tr~ncated

I-S dipolar interaction Hamiltonian:

:J{IS .. Sz Lb. I .
. J JZ
J

The parameters b. characterize the I-S dipolar coupling:
J

r.3
J

(4~

(5)

where YI and YS are magnetogyric ratios, r
j

is the distance between 5

and I spin j and 8j is the angle between the S-1 vector and the magnetic

field.

In the rotating frame at frequency w for I and wos for S, (3) is

transformed to:

(6)

where

~w C WOI - W (7)

and the counterotating rf terms have been ignored. We shall henceforth

remain in the rotating f~ame.

The Hamiltonian in (6) contains three terms; a resonance offset

~w, an rf field wI and the 1-S coupling. It is the third term XIS

which is responsible for the splitting and broadening of the S resonance.
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We now calculate the effect of the first two terms on XIS using

5coherent averaging theory. This is done conveniently by applying

a tilt (T) transformation to a new frame with the operator:

T = exp(ieI )
y y

such that the effective field in the rotating frame defined by ~w

(8)

and wI is along the new z axis. The Hamiltonian in this tilted frame

has the form:

where:

Je' = - w I + X'
e z IS

(9)

X' S Lb. (I. cose -I. sine)
IS z j J JZ JX

and we' e are given by:

(~w2 + 2 !::
W = W ) 2

e 1

e = -1 wI
tan

~w

(10)

(11)

(12)

We now calculate the effect of w I on ~l assuming w » I I~I'sl I by
e z IS e

calculating the average I-S Hamiltonian Xis due to coherent averaging

by w I at frequency w :
e z e

where:

JC' c j(O) + j(l) + j(C2)
IS IS IS IS + .•.• (13)
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t
c

-(0) 1

~ dt J{" (t)J{'IS = -
t ISc

(14)

x(1)
IS

-i
=--

2 t
c

t
c

~ dtIdt ' [Xi S( t), XiS(t ' ) ] (15)

- (2)
J{'IS

-i
=--

6 t c

+ [JC' (t")[X' (t') XI'S(t)]]) (16)IS IS '

and we neglect higher order terms. t c and J{'rs(t) are defined by:

2TT
t =­

c we

and:

(17)

= e
itw I

e Z v,
<TI.

IS
e
-itw I

e Z (18)

We find by explicit evaluation, inserting (18) and (10) into (14)-(16):'

JcI(OS) = cose S ~b.I.
z ~ J JZ

J

(19)

(20)

U(2)
IS

sinG Lb~ (P2(cose)I. - sinG case I. )
j J JX JZ

(21)
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The expressions (19)-(21) summarize the desired result, namely

the leading terms in the interaction between I and S spins. We have

to X(2) and not stopped at ~I(ls) since we find easily that:gone IS

[j(l) S] = 0
IS' x (22)

-(1)
and thus J(IS

that X(O) = 0
IS

does not directly affect the S spectrum. Thus in the case

we must go to the next contributing term xi~). Decoupling

will be efficient when j(i~) and xi~) become small. From (19) this means

first of all

cose '\" 0 (23)

i.e., from (12) the onset of decoupling occurs when w
l

starts to get

larger than !J.w.

(24)

From (21) this means secondly, using (23) and (11) i.e., taking e = 90°:

(25)

where D roughly characterizes the strength of the dipolar coupling and

can be written as the square root of the second moment of the line

due to the operator part of (21) with e = 90°

3

(

Tr[S
3 1 z

D =-
2

(26)
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Equations (24) and (25) express what we expect, that wI must cover

both the resonance offset 6w and the dipolar broadening, (namely the

larger of the two) for the onset of spin decoupling.

C. ASymptotic Behavior of S Linewidth

The asymptotic functional dependence of the S linewidth for large

WI on 6w and wI can also be extracted and we do so for two experimental

situations.

1. Off resonance decoupling

Assume the rigid Shalf linewidth at half height with no I irradiation

is given by 00' and the Shalf linewidth at half height with decoupling

is given by o. We investigate how 0/00 depends on 6w for large wI'

Since wI is large and we take 6w +0, the leading term in ~' is given
IS

by (19). Thus we see immediately

=

and from (12) this means:

cosS (27)

o
Thus for small 6w the asymptotic large wI dependence of 0 on 6w is

o
given by

o
6

o
6w +° wI large (29)
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2. On resonance decoupling

In this case we assume ~w = 0 and investigate the asymptotic

behavior

in the S

o
of ~ as a function of wI for

o
linewidth is assumed to arise

large wI'

=- (2)
from j(IS

The leading term

given by (21) since

Ki~) = 0 and from (22) Ki~) can only contribute in higher order via

cross terms. We assume in this case the S linewidth to be proportional

to the square root of its second moment, which is reasonable for a

Gaussian-like lineshape:

Which can be calculated from (21) for the case that e

o 1(~b.6)~_= __ JJ

00 8w
1

2 4:b" 2
J J

(30)

(31)

Assuming a Gaussian like shape for the S line we take (or the rigid half

1 · "d h 2cl.newl. t :

where M2 is the rigid second moment given by:

1 "2M2 = 3 1(1+1) ~b"
j J

(32)

(33)

Using (31)-(33) and defining a dimensionless parameter ~ which depends

on the lattice:
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°we find finally for the asymptotic behavior of --
°0

(34)

°°0 =
o WI large (35)

where C is a numerical constant easily evaluated from (31)-(34). Note

that 00 is related to the parameter D in (26) and for our assumption of

a Gaussian line:

D '\, °o (36)

So that the rigid linewidth 00 can be used as the parameter for the

decoupling criterion, i.e.,

(37)

We note here that physically, the decoupling occurs because the applied

perturbation WIlx is vectorially orthogonal to the coupling operator

I z and causes it to rotate and average to zero. We now apply these

considerations to the case of double quantum effects for spin I = 1

where we hope that we can find similar orthogonal vector operators.



0 U \;-~~ '} ,:;j " > ,';
~,) '''1 /! '>J

-13-

III. DOUBLE QUANTU}! EFFECTS

In this section we treat the theoretical problem of central interest

in this paper, namely that of spins I ~ 1 coupled to our S spin. This

is depicted schem"tically in Figure 7. The Hamiltonian in the rotating

frame is the same as that of equation (6) with the addition of the I

spin quadrupolar interaction:

(38)

we assume that:

(39)

WI much smaller than wQ•

i.e., we irradiate near the center of the quadrupolar spectrum with an

WI
We next show that in the limit «1 the problem of decouplingwQ

XIS reduces to a spin-~ problem.

A. Fictitious Spin-~ Operators

6
Following the theory of double quantum nmr we define the

7following nine fictitious spin-~ operators I . in terms of the
p,~

spin-l angular momentum operators I :
p

I
p,l

I p,2

1p,3

= 1- I
2 P

1-
2

(I I +1 I )
q r r q

1 (1 2_1 2)
2 q r p,q,r = x,y,z or

cyclic peluutation (40)
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/

The usefulness of these operators derives from the fact that for

each p(p

relations:

x,y,z) the I . fulfill spin-!i angular momentum commutation
p,1

[I ., I .] = iI K
p,1 P,] p,

i, j ,k = 1,2,3 or

cyclic permutation (41)

Thus each p describes a fictitious two level spin-~ subspace with three

orthogonal vector operators. Each is an SU(2) subgroup of the full

SU(3) group, We term the subspace corresponding to p the p- space.

In particular, the I . operators have matrix elements only between
Z,1

the I = 1 levels m = ±l and thus correspond to double quantum transitions.

They are termed double quantum operators and the z- space is often called

7the double quantum frame. In many cases, the frames are uncoupled from

each other, i.e., the evolution of the operators does not involve changes

in p, only independent rotations in each p- space. We shall see shortly

that such is the case for double quantum irradiation and we shall thus

have found the orthogonal operators required for double quantum spin

decoupling.

Note that we can equally well use the fictitious spin-~ operators

in the I z basis described by Vega and by Ernst, et a1. (6)in all that

follows by making the correspondence

1-3
-I -+ I

z,3 x

I
1-3

z,2
-+ I

Y

I I 1-3
-+

z,l z

where I i-j P 1" b 1 1means a op au 1 sp1n operator etween eve s i and j.
p
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Rewriting the Hamiltonian (38) in terms of the spin-~ operators

t40) we have:

(42)

where:

We now apply a transformation to a tilted frame with the operator:

(43)

where:

T
x,2

ilji I 2
e x x, (44)

-1 2wl,,, = tan --
'fix W

Q
(45)

Remembering that wI « WQ from (30), i. e. , lji ~ 0, the transformed
x

Hamiltonian in this new frame can be written to a good approximation

6
as:

Je ~ -2~wI 1z,
(46)

The third term 3WQ(Ix ,3-T ,3) commutes with all the other terms

in the Hamiltonian and can be dropped since it will have no effect on

the decoupling. We thus obtain finally:

~ -26wI 1
z,

I + Je
ISz,3

(47)
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with Krs given by (43). The subscript DQ is placed to denote double

quantum, since only r . (or I 1-3 in the
Z,1 p

appear in the effective Hamiltonian. The

effective rf field operator which induces

alternative notation) operators
W 2

1operator --- I 3 is anwQ z,

transitions between m = ±l and

was used to explain our Fourier transform double quantum nmr experiments

and double quantum spin 10ckin~8 (Figure 8) depicts the double quantum

transition schematically.

Equation (47) is no~ formally identical to equation (6) for the

spin-~ case . We identify I , and I in the latter case with our I
Z x z,l

and I double quantum operators respectively, and ~w and wI with
z,3 W 2

2~w and :Q respectively. KIS also has the same form with I
jZ

replaced

by 21. 1 according to (40). Thus the system behaves like a fictitious
JZ,

spin-~ case in double quantum space with effective resonance offset
W 2

1field 2~w along the z,l axis and effective rf field --- along the z,3wQ
field. Figure 9 summarizes this section by depicting the double quantum

frame Hamiltonian schematically.

B. Double Quantum Decoupling

The Hamiltonian in equation (47) contains three terms; a resonance
W 2

offset 2~w an effective rf field __1_ and the I-S coupling. We now wish
~

to calculate the effect of the first two terms in (47) on the third,

KIS ' which is reponsible for the broadening of the S line. Equation

(41) enSl r 2S that the operator I 1 wil precess about the effectivez,

field defined by the first two terms in (47) depicted in Figure 9. This

will cause a coherent averaging of Krs ' We have solved exactly this

problem in Section lIB, and we proceed by analogy here by first
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transferring to a tilted frame defined so that the effective field is

along the z,l axis in the double quantum frame: The transformation

operator is by direct analogy to (8):

Tz,2

where:

(48)

-1
8

D
= tan (49)

and from (47) the transformed Hamiltonian is given by direct analogy

with (9):

where

Xl DQ

we

= -w I + Xl
e z,l IS

(50)

(51)

again the subscript D on e
D

and WeD serve to indicate that this is the

double quantum case, distinguished from the 8 and w in the spin-~ case.
e

Now applying coherent averaging theory assuming we » I IJ~SI I we

obtain by analogy with (19) and (21) using (43) for XIS:

x(O) =
IS 2co: 'J

D
S ~ b. I . 1z4J J JZ,

J

(52)

;j( 1)
IS 4sin8n - 1-s 2 Lb. 2

(cos8DI. 3-1:. sin8 I. 1)
weD z j J J z, 2 D J Z,

(53)
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-(2)
J{IS = 8sine D

(54)

The decoupling conditions for the double quantum case can now be

written down easily.

from (52):

-(0) -(2)
We need to make JeIS and J{IS small, so we demand,

and from (54), together with (49), (51) and (55):

(55)

> D (56)

Thus we arrive at the condition for double quantum decoupling stated

previously in equation (2) and derived loosely in reference 4.

We now follow Section IIC and derive the quantitative behavior
W 2

1of the S linewidth for large ---D on the I spins in the double quantumwQ
case.

in (52) yielding

to lIC.!.

1. Off resonance double quantum decoupling.
W 2

We assume a large __1_ off resonance in analogy
wQ

case, the residual I-S coupling is dominated by xi~)

In this

for the linewidth 0 relative to the full undecoupled linewidth 0 of
o

the S spins:

o7;- = cose D -

o (

26w
W 4 ~

(26w)2 + ~)
WQ

(57)
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2
For large wI such that wI »2~w wQ the asymptotic behavior is:

o
(5

o
~W +0 wI large (58)

Note the extreme predicted sensitivity of the double quantum decoupling

to the resonance condition, due to the large wQ multiplying ~w, in

contrast to the normal single quantum decoupling case, equations (28),

(29) •
3

This sensitivity to resonance was observed by Meiboom et al.

in liquid crystal deuterium decoupling, and is borne out by our experi-

ments on solids described in Section IV.

2. On resonance double quantum decoupling

-(0) (1)
We now have ~w = 0, so K

IS
= 0 and since K

IS
is ineffective we

calculate : using the residual term xi~) with 8n = 90°. Again,
o

assuming for simplicity that the S linewidth is proportional to the

square root of its second moment, we can use equation (30) which gives

in this case:

2 Lb. 6
~0 l j J

-=
0

0 2wl
4 Lb. 2

J

(59)

We have used the fact that for ~w

(60)

from equation (51). Assuming a Gaussian lineshape we obtain in analogy

to equations (32) to (35):
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(61)

where CD is a numerical constant and ~ is given by (34) .

easily evaluated from (32). (33) and (59). 6 is the rigid S line
o

half width at half height with no I spin decoupling. We therefore

6
predict a more drastic dependence of ~ on wl

o

6
~ '\,

o
(62)

(35) •

1
than in the single quantum case which depends on ---2

w
l

as in equation

A summary of the decoupling conditions appears in Figure 10

showing the relaxed wl requirement for double quantum decoupling.
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IV. EXPERIHENTS

A. Experimental Details

Experiments were done on samples of deuterated dimethylsulfoxide

(DMSO-d
6

) deuterated benzene (C
6
D

6
) and heavy water (D

20
). In all

cases the samples were deuterated to > 99% and the residual < 1%

protons were observed while decoupling the deuterium under different

conditions. Since all these materials are liquids at room temperature,

they were cooled by gaseous nitrogen for the solid state work. The

most appealing way to do the experiments would be to use single

crystals with well defined w
Q

values. However, as seen in Figures

3 and 4 even in a powder most of the deuterium spectral intensity is

concentrated in a small region of wQ values near the singularities.

This is especially so in the present case where the electric field

gradient tensors are close to axially symmetric. Thus we take these

to be the effective wQ values in all our samples. For DMSO 2 wQ =

44 kHz and for benzene 2 wQ = 70 kHz, giving us two independent

values on which to check our theory.

The spectrometer used in these experiments was similar to that

described previously for our 13C work9 , modified for deuterium-proton

double resonance. The deuterium decoup1ing amplifier was a modified

radio amateur transmitter producing several hundred watts of rf power

at 16.3 r-lliz. A schematic diagram of the spectrometer and the In::lebuilt

probe are shown in Figure 11. Calibration of the rf fields WI was

performed both by normal single quantum experiments on the liquid

8samples and by double quantum rotary decays on the solid samples.
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B. Deuterium Decoupled Spectra

As a qualitative introduction to the type of spectra observed

experimentally with deuterium decoupling we show some simple illustra-

tive examples. Figure 12 shows three spectra indicating the effect of

double quantum decoupling on the residual protons in a perdeuterated

(~99.5% deuterium) sample of DMSO. In the solid the deuterium

quadrupolar broadening is large as indicated in Figure 4. The effect

of a moderate rf field on the deuterium with wI « WQ is sufficient to

effect spin decoupling. As expected for the double quantum process,

this is very sensitive to deuterium frequency and is discussed in more

detail in the next section. Also shown is an isotropic liquid spectrum

of the same sample for comparison.

The onset of double quantum decoupling is shown in more detail

in Figure 13. At an rf intensity of VI = 10.4 kHz the residual lH

spectrum is completely decoupled and a further increase in rf

intensity to VI = 46.5 kHz serves only to induce an appreciable Bloch­

Siegert shift. lO The lH linewidth under decoupling conditions is

determined by a combination of lH_lH dipolar coupling and by anisotropy

f h b lk ' 'b'l" 4o t e u magnet1c suscept1 1 1ty.

One of the potential applications of double quantum deuterium

decoupling is the resolution of lH_lH dipolar couplings in selectively

doped proton groups in a deuterated host. For example, the study

of quantum mechanical tunneling in methyl groups at low temperatures

would benefit from this.
12

Figure 14 indicates that indeed fine

1structure is apparent in the residual H spectrum when 10% protonated
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DMSO is doped into a deuterated host. The additional peaks arise from

intramolecular and intermolecular dipolar couplings.

As a final example of the resolution obtained by double quantum

decoupling we depict in Figure 15 the residual lH spectra obtained

in deuterated ice and presented in our preliminary communication.
4

This constitutes the first measurement of the proton chemical shift

anisotropy in ice, a materi3lin which there is a great deal of interest

and for which many other measurements and calculations have been made.
13

Of particular interest are the atomic and molecular motions in ice,

which are responsible for various relaxation mechanisms. By studying

the lH lineshape as a function of temperature, we have been able to

separate out and characterize clearly for the first time that component

of the relaxation arising from proton motion amongst sites related by

14
tetrahedral symmetry. The value of 60 = 34 ± 4 ppm for the chemical

shift is similar to that obtained recently using a multiple pulse

h . 15tec nlque.

C. Dependence on rf Intensity and Resonance Offset

In this section we present experimental results designed to

investigate the sensitivity of the double quantum decoupling to the

I resonance condition (equation (48» and the ~ dependence on rf
w

intensity (equation (52». Firstly, the resona~ce offset behavior

was investigated on perdeuterated dimethylsulfoxide at -75°C. The

extra linewidth of the residual protons due to 2D coupling was observed

as the 2D spins were irradiateJ with a constant rf field (VI) at

several frequencies. The dependence of the excess proton linewidth
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as function of the offset from deuterium resonance for four values of

v is shown in Figure 16. The calculated solid curves are from equation
1

(57) with no adjustable parameters. Similar behavior is observed in a

completely different sample, perdeuterated benzene at -35°C as shown

in Figure 17 for a VI of ~ 10 kHz. Note in both cases the good agree-

ment between theory and experiment with no adjustable parameters, and

the sensitivity of the decoupling to the deuterium resonance condition.

The dependence of the decoupling on rf field intensity VI was

checked on the same two samples. In Figure 18 the dependence of residual

proton linewidth is shown as a function of deuterium VI applied at

resonance in DMSO-d 6. The solid line is the asymptotic ~ dependence

VI
from equation (61). The dashed line indicates the behavior we would

expect if the decoupling had to proceed through the allowed single

quantum transitions. Figure 19 shows analogous results for benzene-d
6

.

In both cases we get excellent agreement between experiment and

the behavior predicted for pure double quantum effects both for the

onset of decoupling and for the asymptotic~ behavior.
VI

D. Lineshapes and Linewidths

In the previous sections we were interested in the S-linewidth

dependence on ~v and vI (for large VI) of the I-spin. It is possible

to be somewhat more precise and we make here some brief comments about

Ie S lineshape and about the VI dependence for finite VI" The S

lineshape is given by the Fourier transform of the free induction

d f
. 16ecay unctl0n:

G(t) { -iJCt iJ(t } S 2= Tr e S e S ITrx x x
(63)
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where X is the spin Hamiltonian. In the case that I is a spin-~

the appropriate K in the rotating frame is given by equation (6).

If we do not decouple, i.e., wI

evaluated explicitly, yielding:

0, then the trace in (63) can be

G(t) ° (64)

If the I spins are irradiated off resonance by ~w with a large

WI then the appropriate Hamiltonian is that in equation (19) and again

the trace can be evaluated explicitly by replacing b. in (64) with
J

cose b. where e is given by (12):
J

G(t) 1
I = 2' large wI (65)

Thus, we see that in the case of single quantum decoupling

the S-lineshape does not change as the large I w1 is shifted off resonance

and only scales in width as cose.

What happens in the case of I being spin-l and subject to double

quantum decoupling? The appropriate Hamiltonian is given in equations

(42) and (43). Again, for no irradiation on I the trace in (63) is

explicitly evaluated as:

G(t) = IT 1
3

(I + 2 cos b.t)
. J
J

I = 1, wl = ° (66)

If the I spins are now irradiated at ~w from resonance with a
W 2

1large -- , then the appropriate Hamiltonian is given by equationwQ
(52) and thus evaluation of the trace in (63) is the same as (66)
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with replacement of b
j

by cose
D

b
j

where e
D

is defined in (49):

G(t) = IT! (1 + 2 cos (cose D bJ.t»
. 3
J

(67)

We have not verified this double quantum lineshape and scaling

effect quantitatively, but it certainly would be interesting to do

so.

Finally, in this section we discuss the dependence of the S line-

width on the I = 1 irradiation strength wI at resonance. The asymptotic
W 2

behavior for large __1_ was described in equations (59)-(61) and experi­
w

Q
mental results were shown in Figures 18 and 19. The question is whether

we can say something about the lineshape under these conditions and also

about the wI dependence over the whole wI range. At resonance, the

(68)largeA.b.
J J

=b.
J

appropriate Hamiltonian in (63) for double quantum decoupling with
W 2

large __1_ is given by (54) with e
D

= 90 0
• The trace can be evaluated

wQ
and yields the same as (66) if b. is replaced

J

where:

A.
J

= (69)

be scaled

Thus, for

2
wI

large --- the S-lineshape should still remain the same and
wQ

by (69). To account for the full (including small wI and

no decoupling) wI dependence, we assume
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A.
J

1 + A.
J

'j
j•

(70)

This reduces to the correct limits for wI ~ 0 (no decoupling)

and wI ~ 00 (asymptotic behavior) and is found to be an excellent

assumption in exact calculation on a small number of spins. Using

(70), the dependence of S-linewidth on I-wI at resonance can be

explicitly calculated; assuming that the linewidths are proportional

to the second moments as in equation (32) we find:

where wl * can obviously be regarded as a threshold decoupling

intensity and is given by

Equation (71) thus provides an extension of (61) to the full wI

range.

(71)

(72)

Figure 20 demonstrates that indeed (72) predicts the wI dependence

on resonance of the S linewidth quite well. The experimental data

from Figure 18 are compared this time with the full expression in

(71) yielding a best value for the threshold decoupling intensity of

7.4 KHz

wllich agrees quite well with the value estimated from the lattice

constants for DMSO.
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v. COUPLED SPINS AND MULTIPLE QUANTUM EFFECTS

In this section we mention two rather natural extensions of the

double quantum effects described in this paper, namely to an I spin

system which consists itself of coupled spins-~ (e.g., 2 strongly

13coupled protons (I) coupled to C(s» and secondly to higher order

multiple quantum effects (e.g., I > 1 or several coupled spins-~).

These extensions are obvious not only to the spin decoupling phenomena,

but also to multiple quantum coherence, i.e., the excitation and

detection of specific multiple quantum transitions for spin I > 1 or

for coupled spin-~ systems. This latter extension to Fourier transform

multiple quantum spectroscopy will be described in detail elsewhere.

As a simple example of a coupled spin-~ system we take 2 equivalent

protons (I) coupled equally to another spin-~ (S) as described in

F · 21 Th' . f' 1 . . lH l3C19ure . 1S 1S a system 0 pract1ca 1nterest, S1nce 2-

groups occur in the aliphatic chains of liquid crystals, polymers and

biological membranes where NMR studies are of great importance. We

wish to know the two I spins are decoupled from the S-spin by irradiating

them near resonance. The Hamiltonian is given by:

(73)

where in the rotating frame at resonance for S and off resonance by

6w for I:

(74)
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= b(Il + 1
2

)Sz z z
(75)

We know that two equivalent coupled protons produce orthogonal

. 1 d' 1 17s1ng et an tr1p et states. We expect that the singlet does not

couple to the S spin and that the triplet can be treated identically

to the spin I = 1 problem in the previous sections. We thus define

double quantum fictitious spin-~ operators

(denote this state 1-1> by i = 1) to I~,~>

by j = 4) proton transitions:

i-j f(b)
I for the I-~,-~>

p

(denote this state 1+1>

1-4 (I
lx

I
2x

- I
ly

I 2y)I x

1-4
(IlxIZy + I 1yI 2x)I =y

1-4
~ (lIz + 12z) (76)I z

These behave exactly as -I 3' Iz, z,2 and I 1 of Section III.z, They

are a special case of the general fictitious spin-~ operators I
i

- j defined
p

6(b)
by Vega and by Ernst, et al., 1n a multilevel system. Levels 2 and 3

refer to the singlet and the remaining triplet state which do not enter

the DQ behavior.

Proceeding now by exact analogy to the double quantum condition of

Section III, in the case that wI « a,we transform the Hamiltonian in

(73) by the infinitess5.mal

with the angle

transformation operator ~ ~logous to (44)

-1
I/J = tan (77)
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yielding to a good approximation the effective double quantum

Hamiltonian:

2

~ -2~w 11- 4 + wI 11- 4 + 2bI l - 4 S
z a x z z

The term proportional to (31lzI 2z - ~1·!2) commutes with XDQ and

1-4
with I and has thus been dropped since it will not affect thez

experiment. The problem is now formally identical to the spin-l

case (equation (47» and the decoupling conditions at resonance

can be ~~itten down immediately:

(78)

> b (79)

Thus, the rf intensity does not always need to be larger than

the I spectral width (a) as is commonly thought. The two I spins can

be made to flip coherently up and down by the resonant double quantum

process more easily than each one separately. This effect was noticed

previously in our liquid crystal work where moderate WI fields on

protons decoupled them from 13C spins on aliphatic end chains despite

the strong proton-proton couplings. 4 ,18 All the other analogous

properties to spin-l may be treated in a similar fashion.

3As a final simple example consider the case of a spin I = 2

(relevant to li thium NHR) coupled to spin 1 in high magnetic "ield.S = -
2

In direct extension of the double quantum ideas, Figure 22 shows that

here we expect resonant triple as well as single quantum transitions.
6(b)

The cross section in the regime WI « w
Q

for the triple quantum transitions
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where 2w
Q

is the full

Thus, as shown in Figure 23 we expect that

4
order perturbation theory; more preciselyfrolll 3rd

3w 3
_1_

2
2wQ

spectrum.

3
wI

should go as 2
wI)

it is given by

width of the I

when a resonant rf field of intensity wI is applied to the I = t spins
3 3w1

3
1

the ± 2 transition should flip at a rate of ----2 and the ± 2 single
2w

quantum transition at 2w
l

• Thus the conditionQfor the onset of

decoupling in this case and observation of a sharp S signal is:

>
2

DwQ (80)

where again D characterizes the I-S dipolar coupling (a particular

coupling b is shown in Figure 23). The extension to spin 1:

(81)

is straightforward.

protons.

Similar considerations can be applied to N equivalent coupled

A . d . 1 4 d . h hs ment10ne preV10US y un er cont10ns were t e proton-

proton coupling is much stronger than the proton S-spin coupling, the

proton system behaves in many respects as an independent set of spins

N+l, N-l, ••. which should exhibit multiple quantum effects

of the type discussed above. Note that as N gets large the criterion

(81) approaches the accepted rule that wI must be of the order of

the stronger I-I coupling.
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Figure Captions

1. Schematic description of spin decoupling. We wish to observe

spins S whose resonance is broadened by interaction with spins

I. Irradiation of the I spins with near resonant radio frequency

radiation under the appropriate conditions serves to decouple

them from the S spins giving a lengthened free induction decay

following the S-pulse.

2. Spin I = I in high magnetic field. The degenerate allowed transi-

tions are split by the quadrupolar interaction into two lines

separated by 2WQ" For deuterium the quadrupolar coupling parameter
W

is typically of the order of ~ ~ 100 kHz. Thus it is difficult

tc "cover" the allowed I transitions with practical values of

3. Expected spectrum for polycrystalline arrangement of deuterium

spins with axially symmetric electric field gradient tensor. For

deuterium the maximum width of such a spectrum is typically of the

order of ~ 100 kHz.

4. Center portion of deuterium Fourier transform ~m spectrum of solid

dimethylsulfoxide-d6 (DMSO-d
6
). The total width of the spectrum

is 88 kHz.

5. Possible schemes for deuterium spin decoupling.

6. Spin decoupling case when I = ~, S = ~ showing coupled spins,

typical spectrum and I energy levels. Applying a resonant rf

field of intensity wI to the I spins splits the ± ~ levels in

the rotating frame by wl ' thus causing inversions of the I spins
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at a rate wI relative to the S spins. The tilted rotating

frame refers to the rotating frame and then to a tilt which

diagonalizes the Hamiltonian putting z along wI.

7. Spin deco'lpling case when I = 1, S = ~ showing coupled spins,

typical spectrum and I energy levels. Applying a resonant rf

field of intensity wI to the I spins such that wI « wQ splits

Schematic description of double8.

the ± 1 levels in the rotating

inversions of the I spins at a

2
frame b2 wI /wQ thus causing

wI
rate --- relative to the S spins.

wQ
quantum transitions at exact

Larmor frequency W causing ± 1 inversions with no appreciable
o

effect on O.

9. Schematic description of effective fields in double quantum frame.

The operators I l' I 2 and I 3 (axes 1,2,3) can be replaced byz, z, z,
1-3and I to conform to the more general definitions
x

and notation of reference 6(b).

10. Summary of spin decoupling conditions for deuterium with large

quadrupolar splitting wQ coupled weakly (D ~ b) to spins S.

11. Schematic of spectrometer used for some of the 2n-I H experiments.

12. Demonstration of double quantum spin decoupling in solid. The

residual protons in perdeuterated DMSO-d6 are observed, top with

no deuterium irradiation. At center is the spectrum when the

deuterium spins are irradiated at resonance with a moderate

(VI ~ 10 kHz) rf field. The deuterium spectrum is much ~ider than

10 kHz as shown in Figure 4.

13. Dependence of residual proton spectrum in solid DMSO-d6 on
wI

intensity VI = -- of deuterium rf irradiation. At V ~ 10 kHz
2IT 1
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the spins are essentially completely decoupled and a further

incre~se in wI causes only an appreciable Bloch-Siegert shift.

14. Resolution of lH_1H dipolar coupling fine structure in solid

UMSO-h6 doped 1.0% in to a lat tice of DMSO-d6 •

IS. Resolution of the chemical shift spectrum for residual protons

in heavy ice without (top) and with (bottom) deuterium double

quantum spin decoupling. The deuterium spectral width in this

case is ~ 230 kHz.

16. Behavior of the excess proton linewidth in DMSO-d6 at -7SoC

caused by deuterium dipolar coupling as the deuterium spins are

irradiated at various frequencies ~v from resonance. Note the

sensitivity of the decoupling condition to the I resonance

condition, a characteristic of the double quantum decoupling

process. The solid lines are theoretical calculated in the

text.

17. Same as Figure 16 for residual protons in solid perdeuterated

benzene at -3SoC.

18. Behavior of the excess proton linewidth in DMSO-d6 at -7SoC as

the deuterium spins are irradiated at resonance with various

values of wI to induce double quantum decoupling. The solid

line shows the asymptotic ~ behavior expected from theory
w

as explained in the text. the dashed line shows the expected

beh~vior if double quantum transitions did not occur.

19. Same as Figure 18 for residual protons in solid perdeuterated

benzene at -3SoC.
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20. Comparison of the data in Figure 18 with the full theoretical

V)l depe~dence of the linewidth calculated from equation (71)
W ..

with fn = 7.4 kHz.

21. Spin decoupling case for two equivalent spins I = ~ coupled

strongly (a) to each other and weakly (b) to a spin-S, showing

coupled spins, typical spectrum and I energy levels. The triplet

manifold l±l>T' 10>T of the I spins behaves exactly as the spin

I = 1 case in Figure 7 with wQ replaced by a.

22. 3Schematic description of triple quantum transition in spin I = 2

system with wI « wQ. The splitting is wA - Wc = 2wQ.

23. Spin decoupling case 3 1
showing coupled spins,when I = 2' S =-2'

typical spectrum and I energy levels. Applying a resonant rf

inversions of these pairs of level at the above

the rotating frame
2

3 wI .2 ---2 thus caus~ng

wQ
frequencies.

field of intensity wI to the I spins splits the

3
by 2wl and the ± 2 levels qy

1
± 2 levels in
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Deuterium Powder Pattern
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