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ABSTRACT 

Microstructure in polymers is developed during shaping operations which 
are carried out in the fluid state. Propagation of the large stresses caused 
by singularities associated with the flow of viscoelastic liquids near corners 
and lips is a limiting factor in the numerical solution of processing flows; 
the strength of the singularity is unknown. There is considerable evidence to 
indicate that the no-slip boundary condition is inappropriate in polymer 
processing flows, but the proper replacement has not been established. Other 
significant issues include flow instabilities and the analysis of the flow of 
anisotropic liquids. 

INTRODUCTION 

Polymeric materials are used in the solid phase, but many of the end-use 
properties are determined by microstructure that is developed during fluid-
state shaping operations. These shaping operations (injection and compression 
molding, fiber spinning, extrusion, etc.) generally involve flow through 
complex geometrical shapes, and often include free-surface flows; the flow is 
accompanied by very large temperature changes, usually at extremely high rates 
of cooling. Solidification occurs as part of the processing operation, and the 
solid phase morphology is dependent on the processing history of the liquid. 

The distinguishing characteristic of polymeric liquids is that they are 
viscoelastic; that is, the stress state depends on the entire history of 
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	deformation of a material element. Stress constitutive equations for solutions 
and melts of flexible polymers have been derived from both phenomenological and 

Li  quasi-molecular considerations (e.g., 1, 2, 3). The most elementary repres-
entation of the stress in a polymeric liquid is contained in the Maxwell 
liquid, 

A 
[

a
r + v.Vr - ,- .Vv - (Vv) t .r] + r 	AG {Vv + (Vv)t] 	 (1) 

Here r is the extra-stress, v is the velocity, and A and C are material con. 
stants, known as the relaxation time and the shear modulus, respectively. The 
shear viscosity, i, is equal to the product AG. The extra-stress is not devia- 
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toric (i.e., trace r o 0; indeed, trace r is proportional to the entropic free 
energy associated with the deformation). This fluid model shows exponential 
relaxation of stresses after shearing, normal stresses during steady shearing 
that vary with the square of the shear rate, and a constant viscosity. 

Real polymeric liquids typically show quadratic normal stresses and a con-
stant shear viscosity only at very low deformation rates. The viscosity of the 
Maxwell liquid in steady extension is a monotonically increasing function of 
extension rate, and becomes unbounded at a finite stretch rate equal to 1/2X; 
real polymeric liquids show bounded extensional viscosities, and the exten-
sional viscosities of polymer melts rarely exceed the zero-shear viscosity by 
more than an order of magnitude, though differences of many orders of 
magnitude are observed in dilute solutions. In addition, real polymeric 
liquids show a spectrum of relaxation modes, which can be broken down into a 
sum of partial stresses: 

(2) 

Each of the partial stresses r. would be described by Equation (1) in the most 
elementary representation, with a spectrum of material parameters (A, G). 

More realistic constitutive equations, some of which are derivable from 
transient network models (c.f. 4), are of the general form 

	

r 	

1k 	 1 1Vv  
D(r. .)

C 	i. 	

G 
A (r/G). 	 + A 	1 

	A 	+ (W)tI 	 (3) 
i 

D/Dt is any properly-invariant derivative, of which the form in Equation (1) is 
a special case. A(r/G.) is a tensor function of the extra-stress, which might 
involve one or more additional material parameters. The material parameters 
(A , C) are typically functions of an internal structural parameter (sometimes 
interpreted as representing the degree of entanglement or the local microstruc-
ture), which itself evolves according to a kinetic equation, and the tempera-
ture dependence of material parameters must be included for application to 
practical processing problems. 

The Maxwell liquid can be represented alternatively as an in.tegral over 
the past history of deformation, as follows: 

r 	cJ 	1exp [(t'-t)/),} [c'(t,t') - I]dts 	 (4) 

C' is the Finger strain tensor. Integral constitutive equations which capture 
the important physics are typically of the "Kaye-BKZ" form, 

[ 2 
3u 

C1(t,t') - 2 --- C(tt 1 )] dt' 	 (5f ) T- 

where u is a strain energy function that depends on t-t' and the first and 
second invariants (I i  and I)  of C . There is usually not a one-to-one equiv-
alence between integral and differential constitutive equations. 

Many of the polymers of current interest for possible high-performance 
applications have rigid elements in the molecular backbone, and stress con-
stitutive equations developed for flexible polymers are not applicable. The 
rigid molecular systems are usually liquid crystalline, with a "domain"-like 
microstructure in the liquid state that persists over a micron length scale. 
The Leslie-Ericksen continuum theory (5) developed for monomeric liquid crys-
tals may describe some of the mechanical responses of these rigid-rod polymers, 
as may the Doi theory of liquid crystalline polymers (2), but both have serious 
deficiencies; the Leslie-Ericksen theory was not developed for macromolecules, 
and cannot account for phenomena such as the observed creep in nematic elastic 
stresses (6), while the Doi theory does not include these elastic stress terms 
at all. Neither theory can apparently account for the observed "domain" struc-
ture in the melt. 
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NUMERICS AND SINGULARITIES 

The numerical solution of flow problems in complex geometries with stress 
constitutive equations like those listed above has been a major topic of study 
for the last decade, and has been the subject of five international workshops, 
the proceedings of which have been published as special issues of J. Non-
Newtonian Fluid Mechanics. The topic is the subject of other papers in this 
symposium, and the state of the art is summarized in the comprehensive review 
by Keunings (7). Successful numerical simulation of flow in complex geometries 
has been elusive, apparently because of the propagation of exceedingly large 
stresses that are generated near corners and lips. The nature of the 
singularity for viscoelastic liquids near a confined corner or lip is unknown, 
and it is therefore not possible to evaluate calculations of velocity fields 
and stress growth near corners. Solution of the singularity for Equation (1) 
and its generalizations would be a major contribution to the understanding of 
processing fluid mechanics, and could lead to major advances in the simulation 
of processing flows. A rough estimate (8) based on a limiting case suggests 
that the stresses generated in a finite region near a corner or a lip could 
exceed the adhesive strength between the polymeric liquid and the metal die, 
and even the ultimate strength of the liquid, unless the no-slip condition is 
relaxed. 

ADHESION BOUNDARY CONDITION 

The no-slip boundary condition has been a fundamental tenet of classical 
fluid mechanics for more than a century. There is growing evidence to suggest 
that this boundary condition is inappropriate for the flow of polymer melts. 
The most dramatic manifestation of failure of the no-slip condition under 
processing conditions is contained in Ramamurthy's experiments (9), which 
demonstrate that the onset of a flow instability in extrusion can be delayed by 
changing the materials of construction of the metal die. The correct 
melt/metal boundary condition is not known, but there appears to be a region 
beyond a critical stress in which the slip velocity is linear in the wall 
stress (10). The continuum boundary condition at a solid surface is probably 
related to conformational changes in the polymer chain caused by the presence 
of the surface, by adsorption, and perhaps by chemical reaction. Determination 
of this interaction will have far-reaching consequences, which of course 
include enhanced ability to compute stress and velocity distributions in 
processing flows. 

FLOW INSTABILITIES 

Polymer processing operations are often limited by the onset of flow 
instabilities. Extrudate surface distortion, known as "sharkskin" or "melt 
fracture", has been the subject of numerous hydrodynamic stability analyses 
using viscoelastic constitutive equations (e.g., 11,12,13); a flow instability 
in simple shear at low Reynolds number has never been established, however, 
when the no-slip boundary condition is implemented. A stability analysis by 
Pearson and Petrie (14) which is based on introduction of a wall slip law does 
predict one set of stability experiments nicely (10), but the predicted wave 
form is not that observed experimentally. Low Reynolds number instability of 
viscoelastic liquids remains an open and challenging question. 

The stability of the interface between immiscible polymeric liquids in 
coprocessing operations (co-extrusion, co-molding, etc.) is an important 
question that has received little attention. Free surface instabilities in 
flows for which thin-sheet and thin-filament approximations are appropriate, 
such as fiber spinning and film blowing, are understood at least in qualitative 
terms (15,16,17,18). 
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4 ANISOTROPIC LIQUIDS 

Processing flows often involve deformation and shaping of anisotropic 
liquids, particularly liquid crystalline polymers and fiber-filled composites. 
These materials are characterized in flow by coordinated motions of rigid ele-
ments, either microscopically in the polymer backbone or in the form of macro-
scopic fibers. We have already noted that the Leslie-Ericksen theory for 
nematic liquid crystals is probably not appropriate for the flow of polymeric 
liquid crystals. The mechanics of Leslie-Ericksen liquids has been studied in 
only the simplest flows, and solutions for converging flow have only just been 
obtained (19). These fluids contain orientation boundary layers that are 
induced by wall ordering and elastic stresses, and for certain values of 
rheological parameters "tumbling" flows can exist. 

A complete continuum theory exists for non-interacting suspensions of 
rigid fibers (20,21), and the theory is in good agreement with flow experiments 
in a contraction. Large qualitative differences relative to the flow of the 
unfilled suspending fluid are predicted and observed at fiber loadings as small 
as 0.1 percent. There is no continuum theory available for the concentrated 
fiber systems of interest in real composite processing applications, however, 
and it is clear that the theory for dilute fiber suspensions is inappropriate 
because of the neglect of coordinated motions. It is likely that some insight 
is available through solution of the Leslie-Ericksen equations for monomeric 
nematic liquid crystals, despite the fact that the elastic stresses resulting 
from the interactions of rigid particles in a liquid crystal have a thermo-
dynamic basis that is absent in the fiber-filled systems. 
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