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A B S T R A C T   

Our brain is constantly shaped by our immediate environments, and while some effects are transient, some have 
long-term consequences. Therefore, it is critical to identify which environmental risks have evident and long- 
term impact on brain development. To expand our understanding of the environmental context of each child, 
the Adolescent Brain Cognitive Development (ABCD) Study® incorporates the use of geospatial location data to 
capture a range of individual, neighborhood, and state level data based on the child’s residential location in order 
to elucidate the physical environmental contexts in which today’s youth are growing up. We review the major 
considerations and types of geocoded information incorporated by the Linked External Data Environmental 
(LED) workgroup to expand on the built and natural environmental constructs in the existing and future ABCD 
Study data releases. Understanding the environmental context of each youth furthers the consortium’s mission to 
understand factors that may influence individual differences in brain development, providing the opportunity to 
inform public policy and health organization guidelines for child and adolescent health.   

1. Introduction 

The physical environment encompasses both built and natural fac-
tors that can be a major determinant of our health and wellbeing 
(Braveman et al., 2011; Dahlgren and Whitehead, 1991; Evans and 
Stoddart, 1990; Keating and Hertzman, 1999). The built environment 
includes man-made spaces as well as state- and community-level con-
ditions in which we live, learn, work, and play (e.g. homes, buildings, 
streets, infrastructure, neighborhood conditions, access to resources, 
policy). The natural environment on the other hand includes land, air, 

and water, and includes aspects of our physical surroundings such as 
oceans, forests, greenspace, and climate (Woolf and Aron, 2013). These 
natural environments can also include potentially harmful substances, 
including exposure to air pollution and other toxins. 

Within the realm of environmental health, an extensive literature has 
emerged implicating the importance of the physical environment in 
which individuals grow up on human neurodevelopment. For example, 
living in an urban setting has been associated with mental health risk, 
including schizophrenia and post-traumatic stress disorder (Costa e Silva 
and Steffen, 2019; Fan et al., 2011; Haddad et al., 2015; Lambert et al., 
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2015; Pedersen and Mortensen, 2001b), whereas neighborhood condi-
tions, such as growing up in lower socioeconomic neighborhoods, have 
been linked with children’s verbal and emotional behavioral outcomes 
(Christian et al. 2015; Minh et al. 2017). As for the natural environment, 
emerging literature has also implicated greenspace as a potential pro-
tective factor, with links to better childhood neurodevelopmental out-
comes and lower risk of psychiatric disorders in adolescents and 
adulthood (Engemann et al. 2019; Liao et al. 2019; Younan et al. 2016). 
In terms of exposure to harmful substances, air pollution and lead 
exposure have been widely linked to cognitive functioning during 
childhood and adolescents (Cecil, 2011; Clifford et al. 2016; Lanphear 
et al. 2005; Volk et al. 2021) as well as increased the risk of mental 
health problems (Antonsen et al., 2020; Daneshparvar et al., 2016; Khan 
et al., 2019; Pedersen and Mortensen, 2006; Thurston et al., 2017) More 
recently, studies have begun to show these built and natural environ-
mental factors during childhood and adolescence influencing brain 
structure and function (Bell et al. 2021; Herting et al. 2019; Rakesh et al. 
2021a, 2021b). Indeed, these strong links between various physical 
environmental factors and health outcomes has led to the strong impetus 
for elucidating how an individual’s exposome, or the totality of exposure 
experienced by an individual over their lives, may affect one’s health 
(Wild, 2012). Thus, questions remain as to when during development 
and how these various exposures may exert their unique or interactive 
effects on neurodevelopment and what children may be most vulnerable 
to such exposures. Moreover, although evidence has been mounting on 
the impact of the physical environment on neurodevelopment outcomes, 
these studies have primarily focused on single exposures, cross-sectional 
behavioral measurements or implemented neuroimaging methods in 
smaller samples and have largely focused on study participants from a 
single limited geographical location. Thus, future research requiring 
large scale, population neuroimaging and longitudinal studies are 
needed to identify the potential biological mechanisms that may un-
derlie the link between physical environmental exposures and brain 
development. 

The Adolescent Brain Cognitive Development (ABCD) Study® pro-
vides a unique opportunity to investigate the links between exposure to 
multiple built and natural environmental factors and the developing 
child and adolescent brain in a population-based study of U.S. children. 
The large, diverse sample (i.e. N~11,800 children enrolled at 9–10 years 
of age) and a longitudinal design, including annual follow-up for 9 years, 
allows researchers to examine environmental impacts on cognitive, 
behavioral, and multimodal neuroimaging measurements in youth 
across 21 metropolitan areas in America. By linking information about 
the physical environment of ABCD participants through geocoding of 
their residential locations, the ABCD Study® holds great potential in 
contributing to our understanding of environmental-based changes in 
human brain development. Although the process of identifying and 
linking physical environmental exposures is an ever-evolving process, 
the LED Environment Working Group within the consortium has already 
begun to map several residential-, census-, and state-level variables to 
better understand the built and natural environment of ABCD partici-
pants. Thus, the goal of the current manuscript is to serve as a resource 
for the field regarding the existing LED Environment measures in the 
ABCD Study in hopes of facilitating open science and the use of these 
data by researchers who are interested in how the built and natural 
environment impacts neurodevelopment. In the following sections, we 
first discuss key aspects to geospatial mapping and data linkage efforts in 
the ABCD Study, including: (1) describing our workflow for linking 
environmental measurements in the ABCD Study while maintaining 
privacy protection for our participants; (2) reviewing the currently 
linked environmental measurements obtained by geospatial mapping in 
detail, and (3) discussing strengths and limitations of these data, 
including outlining how the current environmental data may be useful 
towards understanding social determinants of health using the ABCD 
Study dataset as well as considerations for the user and future directions 
of the geospatial mapping and data linkage efforts in the ABCD Study. 

2. Estimating the physical environment through geospatial 
mapping 

Fig. 1 shows an overview of the collection of residential addresses, 
geocoding process, and linkage to external data sources. Below, we 
outline each step of the process in greater detail. 

2.1. Collection of residential addresses 

After parents/caregivers and children completed written informed 
consent and written assent, respectively, primary residential addresses 
were collected in-person from the participant’s caregiver during both 
the baseline study visit (October 2016 to October 2018) and at each 
follow-up study visit occurring approximately every 12 months. At the 
baseline visit, the parent or caregiver was asked, “At what address does 
your child live?” by the Research Assistant (RA); the RA recorded the 
answer in the secure personal identifiable information (PII) portal. If a 
child spent less than 80% of their time at the primary address, the RA 
was able to record up to 2 additional current addresses in the PII to 
capture time spent at several home locations. Address 1 is treated as the 
primary address, with the percentages of time spent in primary, sec-
ondary, and tertiary addresses also recorded if the child split their time 
between multiple home addresses. At the follow-up in-person visits, the 
RA updated the current addresses as needed. As part of the second-year 
follow-up visit, the RA also collected up to 10 previous lifetime ad-
dresses for the child. 

2.2. Data processing for residential addresses 

As pointed out in prior reviews on the applications of geocoding on 
health sciences (Goldberg et al., 2013), converting residential addresses 
to the latitude and longitude is the most basic and critical step for the 
subsequent geospatial data linkage. To achieve this, the latitude and 
longitude of baseline residential addresses were geocoded by the ABCD 
Data Analysis Informatics and Resource Center (DAIRC) using the 
Google Maps Application Programming Interface (API) (“Google Maps 
Static API Documentation,” 2021), and each address was assigned a 
Status Code and/or Error Message. Status codes included “OK” (no er-
rors occurred in geocoding the address) or “ZERO_RESULTS” (the geo-
code was successful but returned no results indicating the geocoder 
passed a non-existent address). Error messages of the geocoding issues 
included: “city not found”, “state not found”, “street not found”, “zip 
code not found”, or “geocode zip code does not match typed zip code”. 
Only addresses that generated an “OK” status were used for exposure 
assignment. Of all addresses collected at the baseline visit, 98.99% were 
successfully geocoded. For follow-up address data collection (including 
collecting up to 10 lifetime addresses), the Google API was used in 
real-time to ensure address validity (Status code “OK”) and generate a 
map of the location in Google Maps so the participant could verify the 
address’s general location ensuring appropriate longitude and latitude. 

2.3. PII and ethics 

One critical task for geospatial mapping in the ABCD Study is to 
ensure the protection of privacy of the participating individuals and 
their families. The policy of the ABCD Study strictly prohibits the 
identification of participants; therefore, we took precautions in 
designing our geospatial mapping pipelines. 

We modularized and compartmentalized the pipeline, as illustrated 
in Fig. 2. After PII were recorded and validated by the on-site re-
searchers, data were automatically encrypted and stored in a secured, 
firewall-protected intranet server. Participants’ identification (ID) and 
addresses were then dissociated and separately encrypted. The encryp-
ted addresses were then exposed to the geocoding API for converting 
into longitude and latitude (Step 2 in Fig. 2). In parallel, the ABCD Study 
researchers curated a geographic information system (GIS) database, 
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based on the initial scientific inputs from the community and the 
feasibility of the datatype (described below). GIS is a general framework 
used for capturing, storing, managing, and displaying data related to 
geospatial locations on the Earth’s surface (Campbell and Shin, 2011). 
An example of the LED Environment GIS curation and the corresponding 
query functions can be found in the ABCD Study’s Github page 
(https://github.com/ABCD-STUDY/geocoding). The curated GIS data-
base was imported into the secured server and used to query the cor-
responding values given longitude and latitude (Step 3 in Fig. 2). After 
the values were assigned, the longitude and latitude were removed from 
the subsequent process, avoiding the leakage of PII. The assigned values 

and the corresponding encrypted keys were then linked back to the 
participant ID, producing a decrypted dataset without any PII (Step 4 in 
Fig. 2). While the encryption and decryption in the PII server were 
unique to ABCD, as it was developed to bridge the need between 
maintaining the PII of ABCD Study as a whole and the geocoding pro-
cess, the geocoding data linkage is built upon the existing code bases for 
assigning values given the spatial coordinates and GIS database (Gold-
berg et al. 2013). Currently, we adopt deterministic value assignment 
without considering mapping uncertainties. Although this would limit 
the statistical modeling for spatial inference, it was a practical solution 
given a wide swath of environmental variables with different spatial 

Fig. 1. Collection and linking of residential address information in the ABCD Study. Current residential data include both retrospectively collected primary resi-
dential addresses as well as prospective data collection at each annual study visit. Exposure assessment comes from linking geocodes to external data resources. 
Linkage has primarily focused on addresses collected at baseline. In future releases, retrospective and prospective data will be linked with special consideration to the 
spatial and temporal domains to minimize misclassification between when and where a child resided and the contextual variables of any given environmental 
dataset. API = application programming interface. QC = quality control. PII = personally identifiable information. 

Fig. 2. Conceptual workflow of modularized geocoding pipeline of ABCD Study. Colored rectangles represent different compartmentalized modules, while the 
geocoding processes are labeled numerically (Step 1–4, further detailed in the maintext). 
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resolutions were requested for geocoding. 
Finally, we imposed rounding for continuous geocoded variables to 

avoid identifiability as some GIS maps can have resolution fine enough 
to have one single unique value for one particular ABCD participant. 

Although it might be theoretically possible to identify individuals using 
multiple variables as triangulation, the data use agreement that governs 
the responsibility of the approved researchers prohibit such usage. 

Fig. 3. Example of three types of geospatial data used for linkage, including spatial polygons, point data, and raster data. Area Deprivation Index (spatial polygon), 
traffic counts (point data), and fine particulate air pollution (PM2.5) plotted for 3 different recruitment areas in the U.S., including Los Angeles, California (top row), 
St. Louis, Missouri (middle row), and Ann-Arbor-Detroit region, Michigan (bottom row). 
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2.4. Types of geospatial data 

With every address, census tract, and city having its own longitude 
and latitude, GIS data can be linked to estimate participants’ physical 
environments. There are two primary spatial data types in GIS: (1) 
vector data, which is comprised of either points, lines, or spatial poly-
gons with associated values, and (2) spatial data (or raster data), which 
is represented by grid cells (also referred to as pixels). Examples of 
vector geospatial data are shown in the first two columns of Fig. 3. 
Spatial polygons may be associated with data aggregated at various 
spatial levels, and are irregular polygonal regions defined by historical, 
statistical, legal, and/or administerial reasons. Example data of spatial 
polygons include the census tracts used by the US Census, zip codes used 
by the United States Postal Service, or counties by local governments. 
The census tracts are polygons created with the intention of having 
about 4000 people in each of them, although the actual number ranges 
(Bureau of the Census, 2018). Zip codes on the other hand are clusters of 
lines with more than 41,000 zip codes with some populations of a single 
zip code exceeding 100,000. The first column of Fig. 3 illustrates this 
data type using the Area Deprivation Index, a measurement of neigh-
borhood deprivation derived from the American Community Survey. 
The second column in Fig. 3 illustrates traffic counts, which are point 
data that were obtained by surveying stations at various geographical 
locations. In contrast, raster data are usually obtained by model esti-
mation, incorporating multiple sources such as satellite imaging and 
ground station surveys, as is seen for fine particulate matter (PM2.5) in 
the third column of Fig. 3. 

3. Physical environment assessments 

The curated GIS database compiled by the ABCD Study LED Envi-
ronment Working Group includes both vector and raster data of multiple 
built and natural environmental contextual variables. As shown in  
Table 1 and outlined in greater detail below, various environmental 
datasets have been used to map environmental factors to the state-, 
census-, residential-level for ABCD Study participants to date. 

3.1. Evidence of stigma and potential biases 

Youth grow up in overlapping circles of cultural and socio-political 
contexts, from their local family and neighborhoods to the states and 
countries in which they live. We typically focus on the experience of 
stigma and bias at a relatively local level (e.g., family, local community 
members, peers). Critically, there are also important indicators of more 
systemic or structural bias reflected in social norms at the community or 
institutionalized laws, policies and practices that may either reflect the 
behavior of individuals or shape the behavior of individuals in youths’ 
local environment(s). However, we rarely directly examine the rela-
tionship between objective measures of systemic/structural bias and 
function in youth. The ABCD Study provides a novel opportunity to 
address such critical questions with empirical data, given the geographic 
variability of the sites involved in the ABCD Study, which affords sig-
nificant divergence across youth in their exposure to such systemic 
biases. To address such questions, colleagues at Harvard University 
created state-level indicators of three types of structural stigma (Hat-
zenbuehler et al., 2021): gender (i.e., potential bias about women), race 
(i.e., potential bias about Black individuals), and ethnicity (i.e., poten-
tial bias about Latinx individuals). This information was linked to each 
youth in the ABCD Study as a function of their baseline site (state) of 
participation and does not yet include information about whether the 
child moved to a different state, which may have different state level 
indicators, at later visits. 

To create these state-level measures, they used several types of data 
(described in detail in (Hatzenbuehler et al., 2021)). First, they obtained 
data about implicit and explicit attitudes about each of these three 
identity groups aggregated at the state-level, derived from large-scale 

projects that spanned several years: Project Implicit (years 
2003–2018), the General Social Survey (years 1974–2014), and the 
American National Election Survey (1992–2016). Second, for informa-
tion on gender, they obtained state-level data of women’s economic and 
political statuses (e.g., earning ratios, participation in the labor market 
and political office, business ownership, etc.) and information about 
reproductive policies, such as information about availability of abortion 
providers. Third, for information on attitudes towards Latinx in-
dividuals, they examined state-level policies on immigration, recog-
nizing that many Latinx individuals are not immigrants but that such 
state-level policies likely influence the experience of all individuals in 
the community with that identity. These data can be used to examine 
how these state level biases interact with youth’s identities to predict a 
range of factors, such as educational experience, mental health, brain 
development, and substance use/abuse. 

3.2. Marijuana laws 

In the United States, public acceptance of cannabis use has increased 
(Johnston et al. 2020) alongside increased access because of broader 
cannabis legalization. Currently, 36 states have legalized either recrea-
tional or medical cannabis use. Early research suggests that cannabis 
legalization does not lead to increases in adolescent cannabis use (Cerdá 
et al. 2018; Sarvet et al. 2018). However, among younger adolescents (7th 
and 8th grade), greater exposure to cannabis advertisements was associ-
ated with greater use, intention to use, and positive expectancies 
(D’Amico et al. 2018). The difference in results as a function of age 
highlights the importance of understanding how cannabis regulations 
affect younger cohorts of children and adolescents who may have greater 
exposure to cannabis advertisement after living in an environment with 
legal access to cannabis for a longer period. Furthermore, the ABCD Study 
is an ideal dataset to examine the effects of cannabis legalization because 
there are 21 sites located in 17 states with various state cannabis policies. 
In addition, the ABCD Study is collecting detailed substance use data 
unlike other national surveys. Cannabis legalization categories were 
assigned to participants based on their state of residence. The four 
cannabis legalization categories are: 1. Recreational – allows adults to use 
cannabis for recreational purposes, 2. Medical – allows adults to use 
cannabis for medical conditions, 3. Low THC/CBD – allows adults to use 
cannabis that is low in THC and high in CBD for medical conditions, and 4. 
No legal access to cannabis – forbids access to cannabis. Information about 
states current cannabis laws were obtained from two websites: 
http://www.ncsl.org/research/health/state-medical-marijuana-laws. 
aspx and https://www.mpp.org/states/. 

3.3. Urbanicity 

Urbanicity can provide information as to the impact of living in 
urban areas. Urbanicity indices may reflect the presence of environ-
mental and social conditions that are more common in urban areas, such 
as pollution, congestion, and increased rates of social interactions. To 
date, various health factors have been linked to urbanicity, such as in-
creases in overweight/obesity, increased calorie intake, decreased 
physical activity, increased drug and alcohol use, and mental health 
disorders, among many others (Evans et al. 2020; Rudolph et al. 2014; 
Stowe et al. 2019). In the ABCD Study, we have linked five measures of 
urbanicity to residential addresses, including two density measures 
(population and gross residential), census-tract derived metrics classi-
fying the locations as urban or non-urban areas, walkability, and motor 
vehicle information including distance to roadway and traffic volumes. 

Population density refers to the number of people living in a given 
unit of area (i.e., crowding). Differences in population density have been 
linked to psychological and environmental quality of life (Fassio et al., 
2013), and has been shown to moderate relationships between the built 
environment and health outcomes (Liu et al. 2007). Thus, information 
about variability of population density (low versus high) may be 
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Table 1 
Environmental Context Variables Currently Linked in the ABCD Study for baseline data(Year 1). Asterisk (*) indicates that this measure is available starting in Release 
4.0.  

Domain Measure Description Temporal Domain of 
Data 

Spatial 
Resolution of 
Data 

Citation or Data Source Descriptive 
Statistics 
of ABCD 

Built Environment Variables 
Laws and Biases Race Bias Composite of multiple multi decade 

surveys tapping implicit and explicit 
attitudes at a state-wide level. 

2016 State Hatzenbuehler et al. (2021) Range: 
-1.98–1.11 
Mean (SD): 
-0.18 (0.74) 

Gender Bias Composite of multiple multi decade 
surveys tapping implicit and explicit 
attitudes as well as data on women’s 
economic and political status. 

2016 State Hatzenbuehler et al. (2021) Range: 
-1.84–1.27 
Mean (SD): 
-0.25 (0.90) 

Ethnicity Bias Composite of multiple multi decade 
surveys tapping implicit and explicit 
attitudes as well as data on state-level 
immigration policies. 

2016 State Hatzenbuehler et al. (2021) Range: 
-1.75–0.64 
Mean (SD): 
-0.48 (0.69) 

Marijuana Laws Categorization of current marijuana 
status as recreational, medicinal, low 
THC/CBD, or no legal access. 

2016 State http://www.ncsl.org/research/h 
ealth/state-medical-marijuana- 
laws.aspx and https://www.mpp. 
org/states/ 

Proportion: 
0.25 recreational 
0.45 medical 
0.29 low T/C 
0.01 not legal 

Urbanization Gross 
Residential 
Density 

Housing units per acre from EPA’s 
Smart Location Database. 

Estimate from 2010 Census Tract Ramsey and Bell (2014a, 2014b) Range: 
0–219 
Mean (SD): 
3.96 (7.00) 

Population 
Density 

Population Count Adjusted to Match 
2015 Revision of UN WPP Country 
Totals in persons per 1 km2. 

Estimate from 2010 Census Tract https://beta.sedac.ciesin.columb 
ia.edu/data/set/gpw-v4-populat 
ion-density-adjusted-to-2015-u 
nwpp-country-totals 

Range: 
0–60283 
Mean (SD): 
2189 (2658)  

Urban Area Categorical measure of whether a 
census block is “urban” (2500 or more 
people) or “rural” (less than 2500 
people). 

Estimate from 2010 Census Tract https://www.census.gov/progra 
ms-surveys/geography/about/fa 
q/2010-urban-area-faq.html 

Proportion: 
0.09 Rural 
0.03 Urban 
Clusters 
0.87 Urbanized 

National 
Walkability 
Index 

Composite index ranking census 
block groups according to their 
walkability. 

Estimate from 2010 Census Tract https://www.epa.gov/sma 
rtgrowth/smart-location-ma 
pping#walkability 

Range: 
1.17–19.83 
Mean (SD): 
10.67 (4.07) 

Traffic Traffic counts modeled at the 1 km2 

resolution. 
Estimate from 2016 Address 

Point 
https://downloads.esri.com/esri 
_content_doc/dbl/us/Kalibrat 
e_TrafficMetrixManual_Versi 
on140.pdf 

Range: 
0–157,145 
Mean (SD): 
12793 (11869) 

Proximity to 
Roads 

Number of meters away from major 
road or highway. 

Estimate from 2016 Address 
Point 

https://nationalmap.gov/sma 
ll_scale/mld/1roadsl.html 

Range: 
0.01–34314.62 
Mean (SD): 
1187 (1283) 

Neighborhood 
Quality 

Area Deprivation 
Index (ADI) 

Composite index of a census tract’s 
socioeconomic disadvantage based on 
income, education, employment, and 
housing quality using data from the 
American Community Survey. 

Average of annual 
estimates spanning 
2010–2014 

Census Tract Kind et al. (2014) Weighted Sum - 
Range: 
0–125.8 
Mean (SD): 
93.73 (23.22) 

Social 
Vulnerability 
Index (SVI)* 

Composite index of 15 census 
variables indicating an area’s 
potential need for support following a 
disaster. 

Average of annual 
estimates spanning 
2014–2018 

Census Tract Flanagan et al. (2011) Total Score - 
Range: 
0–1 
Mean (SD): 
0.42 (0.30) 

Opportunity 
Atlas (OA)* 

Estimate of income in adulthood 
based on the Opportunity Atlas 
childhood census blocks for children 
born 1978–1983. 

Average of annual 
estimates between 
2014 and 2015 

Census Tract https://www.opportunityatlas. 
org/ 

Avg Score - 
Range: 
0.22–0.78 
Mean (SD): 
0.52 (0.10) 

Child 
Opportunity 
Index (COI) 2.0 * 

Composite index of 29 variables 
tapping neighborhood conditions 
relevant to healthy child 
development. 

Estimate from 2015 Census Tract Acevedo-Garcia et al. (2020) Nationally 
normed overall 
COI - 
Range: 
1–100 
Mean (SD): 
60.4 (30.5) 

Crime County level counts of arrests and 
offences from Uniform Crime 
Reporting Program Data. 

3 years average from 
2010 

County http://doi.org/10.3886/ICPS 
R33523.v2 

Grand total - 
Range: 
0–348049 
Mean (SD): 
53268 (86316) 

Lead Risk Census Tract 

(continued on next page) 
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important for contextualizing relationships between the build environ-
ment and health outcomes in the ABCD Study. As such, the population 
density from the Gridded Population of the World (GPW), provided by 
the Socioeconomic Data and Applications Center (SEDAC), has been 
linked to ABCD individual participant address information. 
National-level population estimates from 2010 used in this metric have 
been adjusted to the United Nations World Population estimates, which 
can often be corrected for over- or under-reporting (United Nations, 
2021) and mapped to an ~1-km grid. Population density values repre-
sent persons per km2. Similarly, gross residential density is a measure of 
housing units per acre on unprotected land and is an alternative measure 
of crowding. This measure was obtained from the Smart Location 
Database created by the United States Environmental Protection Agency 
based on the 2010 Census Data (Ramsey and Bell 2014a; 2014b) and 
also linked to ABCD Study individual addresses. 

While many studies have documented the effects of increased 
urbanicity on child and adolescent health outcomes, few studies have 
focused on differential risk associated with living in a rural area relative 
to an urban area (Crouch et al. 2019; Curtiset al., 2011). Although the 
number of studies devoted to this topic are few, linking this information 
to the ABCD Study may provide an opportunity to further investigate 
both positive (Crouch et al. 2021) and negative (Crouch et al. 2020) 
impacts of living in an rural area. To classify individuals as living in a 
rural or urban area, urban-rural census tract variables from 2010 were 
mapped to each address. Based on this external database, the Census 
Bureau identifies two types of urban areas, including Urbanized Areas 
(UAs) of 50,000 or more people and Urban Clusters (UCs) of at least 
2500, but less than 50,000 people. Rural areas are those that encompass 
all population, housing, and territory not included within an urban area 
(“Federal Register” 2011). 

In urban places, city planning designs have limited the walkability 

between work, home, and recreational spaces, with distances too great 
to walk (Frank et al. 2006). Such reduction in walkability leads to fewer 
opportunities for physical activity and a risk for health. Understanding 
potential links between the walkability of the built environment of the 
child and physical and mental health outcomes is important in the 
context of the ABCD Study (Frank et al. 2006). A measure of walkability 
was linked to ABCD participant addresses using the National Walkability 
Index from the Smart Location Database created by the United States 
Environmental Protection Agency (https://www.epa.gov/smartgrowth 
/smart-location-mapping#walkability) based on 2010 census data. 
Walkability scores were calculated at the census-tract level, ranking 
each census tract on a range from 1 to 20 according to relative walk-
ability. The walkability score is based on a weighted formula that uses 
ranked indicators as related to the propensity of walk trips. The 
ranked-indicator scores used in the weighted formula include a combi-
nation of diversity of employment types plus the number of occupied 
housing, pedestrian-oriented intersections, and proportion of workers 
who carpool. 

Beyond population density and walkability, epidemiological studies 
have also reported associations between road proximity and brain 
health. Various neurodevelopment, cognitive functioning, and mental 
health outcomes have been linked to living near major roadways (Brunst 
et al. 2019; Ha et al. 2019; Pedersen and Mortensen 2001a; Reuben et al. 
2021; Wang et al. 2017). As such, the ABCD Study may be valuable to 
help understand how the distance of a child’s home to major roadways 
as well as the daily traffic patterns on nearby roadways impacts cogni-
tive and neurodevelopmental trajectories over time. Therefore, we have 
mapped road proximity and traffic volume estimates to residential ad-
dresses of the child in the ABCD Study to provide insight into both the 
major roadways nearby and how many cars and trucks typically utilize 
these roads. the geospatial coordinates of the major roads were obtained 

Table 1 (continued ) 

Domain Measure Description Temporal Domain of 
Data 

Spatial 
Resolution of 
Data 

Citation or Data Source Descriptive 
Statistics 
of ABCD 

Imputed estimate of lead exposure 
based on age of homes and poverty 
levels in census tract. 

Average of annual 
estimates spanning 
2010–2014 

Washington Tracking Network, 
Washington State Department of 
Health. Childhood lead risk map. 
https://fortress.wa.gov/doh/wt 
n/WTNPortal/ 

Range: 
0–10 
Mean (SD): 
5 (3.1) 

Natural Environment Variables  
Air Quality Fine particulate 

(PM2.5) 
Spatio-temporal model predictions 
measured in μg/m3 at 1 km2 

resolution. 

Annual average of 
daily estimates, 
maximum and 
minimum daily level 
in 2016 

Address 
Point 

Di et al. (2019) Range: 
1.72–15.90 
Mean (SD): 
7.65 (1.58) 

Nitrous dioxide 
(NO2) 

Spatio-temporal model predictions 
measured in ppb (parts per billion) at 
1 km2 resolution. 

Annual average of 
daily estimates, 
maximum and 
minimum daily level 
in 2016 

Address 
Point 

Di et al. (2020) Range: 
1.99–37.94 
Mean (SD): 
18.87 (6.03) 

Ozone (O3) Spatio-temporal model predictions 
measured in ppb (parts per billion) at 
1 km2 resolution. 

Annual average of 
daily estimates, 
maximum and 
minimum daily level 
in 2016 

Address 
Point 

Requia et al. (2020) Range: 
29.85–54.27 
Mean (SD): 
41.66 (4.40) 

Elevation and 
Climate 

Elevation Meters above sea level. 2016 Address 
Point 

https://developers.google.com/ 
maps/documentation/ 
elevation/overview 

Range: 
0–2621 
Mean (SD): 
341.1 (501.7) 

Temperature* Maximum daily temperature (degrees 
Celsius) of seven days prior to MRI 
scan at 4 m2 resolution. 

Daily estimates 
linked to multiple 
days prior to visit 
from January 2016 – 
June 2020 

Address 
Point 

Daly et al. (2015) Range: 
-19–45.6 
Mean (SD): 
21.7 (9.9) 

Humidity* Maximum daily vapor pressure deficit 
(hectopascals, hPa) of seven days 
prior to MRI scan at 4 m2 resolution. 

Daily estimates 
linked to multiple 
days prior to visit 
from January 2016 – 
June 2020 

Address 
Point 

Daly et al. (2015) Range: 
0–93.3 
Mean (SD): 
15.8 (10.6)  
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through the North American Atlas for roads, as last updated July 2012 
(https://demographics5.arcgis.com/arcgis/rest/services/USA_Traffic 
_Counts/MapServer/0), and the shortest distance to a major roadway in 
meters was linked to participant’s residential addresses. Traffic count 
data linked to the residential address includes average annual daily 
traffic as published and managed from Kalibate and Esri for the 2018 
calendar year and summarized at the 1-km2 spatial resolution 
(https://demographics5.arcgis.com/arcgis/rest/services/USA_-
Traffic_Counts/MapServer/0). These traffic counts are taken Sunday 
thru Saturday and seasonally adjusted to represent the average day of 
the year (https://demographics5.arcgis.com/arcgis/rest/services/U 
SA_Traffic_Counts/MapServer/0). 

3.4. Neighborhood quality 

In the field of developmental cognitive neuroscience, socioeconomic 
status has traditionally been treated as an individual-level variable, 
specific to each family or person. However, socioeconomic status can 
also be attributed to neighborhoods and communities, which may 
represent an independent construct from family-level socioeconomic 
status (Taylor et al. 2020; Wolf et al., 2017) with considerable effects on 
child development (Leventhal and Brooks-Gunn, 2000). In the ABCD 
Study, detailed questions are asked about socioeconomic and social 
factors at the family-level. Thus, the ABCD Study is an ideal dataset to 
examine the independent and multiplicative associations of family- and 
neighborhood-level socioeconomic status on adolescent health. In-
vestigations with these ABCD data can elucidate the underlying mech-
anisms by which various contexts (i.e., family and neighborhood 
poverty or opportunity) uniquely influence development and potential 
emerging health disparities (Braveman and Barclay, 2009). Accordingly, 
the ABCD Study has incorporated the Area Deprivation Index measure of 
neighborhood-level socioeconomic status in past data releases, as well as 
information on crime and risk of lead (Pb) exposure. Moving forward, 
three additional metrics, including the Social Vulnerability Index, Op-
portunity Atlas, and the Child Opportunity Index, have been linked in 
the 4.0 annual data release. 

3.4.1. Area deprivation index (ADI) 
The ADI represents a composite multivariable metric of neighbor-

hood disadvantage (i.e., socioeconomic status), with higher values 
representing greater disadvantage. Developed and popularized by Singh 
(2003), the ADI was initially constructed to determine how area depri-
vation was associated with mortality. However, as more pertinent to 
ABCD, per studies of related measures of neighborhood disadvantage, 
increased disadvantage is indirectly associated with children’s devel-
opmental outcomes (Elliot et al. 1996; Kohen et al. 2008) and adult 
health problems (Ross and Mirowsky, 2001) through other neighbor-
hood- and/or family-level variables. The ABCD Study includes the 
composite ADI metrics, including the weighted ADI score and its na-
tional percentile, along with the 17 component variables used to create 
the composite scores at the census-tract level for participants’ primary, 
secondary, and tertiary addresses at baseline, all of which were derived 
from the 2011–2015 American Community Survery (ACS; https://www. 
census.gov/programs-surveys/acs). A description of the 17 component 
variables is included in Supplemental Table 2. The code used by the 
ABCD Study to compute the ADI is also available (https://github. 
com/ABCD-STUDY/geocoding/blob/master/Gen_data_proc.R). 

3.4.2. Social vulnerability index (SVI) 
The SVI, published by the Center for Disease Control (CDC), is a 

composite metric that can be used to identify which communities are 
most vulnerable to stressors such as natural disasters, human-caused 
disasters, and disease outbreaks (CDC/ATSDR’s Social Vulnerability 
Index (SVI), 2021; Flanagan et al. 2011). Like the ADI, the SVI in-
corporates 15 variables from the ACS, which are described in Supple-
mental Table 3. These 15 items are grouped into 4 themes: 

socioeconomic status (1− 4), household composition and disability 
(5− 8), minority status and language (9− 10), and housing type and 
transportation (11− 15). SVI is calculated by deriving percentiles of each 
variable (at the county or census-tract level), summing the percentiles 
within the theme, and summing these totals across themes, with higher 
values of SVI representing greater vulnerability to disaster and disease. 
Here, linking SVI to ABCD data provides the opportunity to better un-
derstand not only how environmental contexts are interrelated with 
adolescent development, but how environmental vulnerability to 
external stressors (and the presence of such stressors) may invoke 
downstream effects on developmental outcomes. The 4.0 annual release 
for the ABCD Study includes the census-tract level SVI for participants’ 
primary, secondary, and tertiary addresses. 

3.4.3. Opportunity atlas 
The neighborhoods in which children in America grow up can in-

fluence outcomes in adulthood. As such, the Opportunity Atlas (Chetty 
et al. 2018) estimates measures of average outcomes across 20,000 
people in adulthood (born 1978–1983) according to the census tracts in 
which they grew up (i.e., childhood census tracts). The ABCD Study 
includes scores from the Opportunity Atlas that indicate the predicted 
2014–2015 mean income earnings of adults aged 31–37 years that grew 
up in that census tract as children. Scores are provided based on the 
childhood census tracts of the Opportunity Atlas cohort, but we also 
provide the adult mean earnings disaggregated by parental household 
income percentiles based on the national income distribution during 
their childhood. For example, the mean income earnings at the 25th 
percentile rank correspond to the mean income earnings of adults whose 
parents were at the 25th percentile of the national income distribution. 
More information on the Opportunity Atlas can be found at 
https://opportunityinsights.org/policy/frequently-asked-questions/. 
Although the outcomes for census tracts are based on children who were 
born in those tracts between 1978 and 1983, Chetty et al. (2018) suggest 
that these longitudinal outcomes are best suited for measuring stable 
outcomes in earnings in adulthood. Linking measures from the Oppor-
tunity Atlas to the ABCD Study allows for objective measures of neigh-
borhood economic opportunity (i.e., upward mobility) to study in 
relation to health outcomes in ABCD youth. However, while the Op-
portunity Atlas estimates can be used as predictors of economic oppor-
tunity for children today, it is important to combine these estimates with 
additional data to determine applicability to neighborhoods that have 
undergone substantial change in the last several decades. 

3.4.4. Child opportunity index (COI) 2.0 
There are vast differences in neighborhood access to opportunities 

and quality of conditions for children across America, including access 
to good schools and healthy foods, green spaces such as safe parks and 
playgrounds, safe housing and cleaner air. These inequitable neighbor-
hood differences can negatively influence the current living conditions 
of a child, as well as development throughout childhood and subsequent 
health outcomes in adulthood (Acevedo-Garcia et al. 2014). Children 
who grow up in neighborhoods with access to more educational and 
health opportunities are more likely to grow up to be healthy adults. The 
COI 2.0 is a national contemporary measure of neighborhood opportu-
nity, comprising a comprehensive dataset that aggregates 29 indicators 
of neighborhood conditions for 72,000 census tracts in the United States. 
Beginning with the ABCD 4.0 data release, the ABCD Study provides 
scores for the COI 2.0 overall index, and the three domain indices that 
comprise the overall index: (1) education (e.g., third grade reading and 
math proficiency, school poverty), (2) health and environment (e.g., 
access to green space and healthy food), and (3) social and economic 
opportunities (Acevedo-Garcia et al. 2020). We have also included 
scores for the 29 indicators that comprise the three domains. Detailed 
documentation describing the indicators that comprise each of the do-
mains as well as the dataset source and year for each of the 29 indicators 
can be found in Supplemental Table 4 and the COI 2.0 technical 
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documentation (Acevedo-Garcia et al. 2014). Given the diverse de-
mographics of the ABCD Study participants, linking the COI 2.0 gives us 
objective measures of neighborhood opportunities for participants so 
that we can assess the influence of neighborhood quality on adolescent 
health and potential emerging health disparities. 

3.4.5. Crime 
Crime rates are an important neighborhood characteristic that can 

cause distress on individuals’ mental well-being (Dustmann and Fasani, 
2016) and has been linked with various children’s developmental out-
comes (Sharkey, 2010; Baranyi et al. 2021). However, the impact of 
crime within the context of other neighborhood variables and how these 
impact neural mechanisms during children’s development is less clear. 
To empower researchers to investigate the impact of local crime rates in 
the broader context of the built environment, we obtained county-level 
crime statistics from Uniform Crime Reporting Data (https://doi. 
org/10.3886/ICPSR33523.v2). In addition to the total crime rates, we 
also provided subcategories of the crime, including violent crimes, drug 
violations, drug sales, marijuana sales, drug possessions, and DUIs. 

3.4.6. Risk of lead exposure 
The removal of lead from gasoline (for on-road vehicles) and house 

paint has been associated with dramatic declines in childhood lead 
exposure, which, given lead’s effects on child development (Lanphear 
et al. 2005), has been regarded as one of the greatest public health 
achievements of the 20th century (Gilbert and Weiss, 2006). Unfortu-
nately, exposure to lead remains a dire public health concern, as risk of 
exposure persists through lead-contaminated water pipes and ingestion 
of lead-contaminated dust and soil per leaded gas vehicular emissions 
and non-remediated lead-based paint (Gibson et al. 2020; Jacobs et al. 
2002; Lanphear and Roghmann, 1997; Mielke et al. 2019; Roy and 
Edwards 2019). Collectively, children living in older homes are at 
greater risk of exposure (Jacobs et al. 2002). In 2016, Rad Cunningham 
at the Washington State Department of Health developed a nationwide 
map quantifying risk of lead exposure at the census-tract level, in which 
risk of lead exposure was a function of housing age and poverty rates 
(Frostenson, 2016). More specifically, “housing age” reflected the esti-
mated number of homes in each census tract with lead-paint hazards 
based on decades of construction (e.g., lead-paint hazards would be 
more likely in homes built before 1940 than in homes built in the 
1970 s). Marshall et al. (2020) and Wheeler et al. (2019) reported that 
these lead-risk estimates were valid proxies of childhood lead exposure, 
in that, across several states and cities, there was a greater prevalence of 
elevated blood lead levels in census tracts with higher risk scores; 
further research will permit determining the extent to which these 
lead-risk scores are predictive of individuals’ observed blood-lead levels. 
Accordingly, the ABCD Study incorporated the aforementioned lead-risk 
scores using code freely available on GitHub (https://github.com/v 
oxmedia/data-projects/blob/master/vox-lead-exposure-risk/calculate 
-lead-risk.py), to estimate census tract lead-risk scores of participants’ 
primary, secondary, and tertiary residential addresses. 

3.5. Air quality 

Air pollution, or the presence of toxic particulates and gases within 
the atmosphere, is one of the most widespread environmental issues 
affecting global health today. Adverse effects of air pollution exposure 
on mortality (Stieb, Judek, and Burnett, 2002), and morbidity (Ander-
son et al., 2012), as well as respiratory and cardiovascular health are 
well documented (Brunekreef and Holgate 2002), but a growing body of 
evidence suggests that air pollution exposure may also compromise 
brain development (Block and Calderón-Garcidueñas 2009; 
Calderón-Garcidueñas et al. 2015) with long lasting effects on cognition 
(Guxens et al. 2014; 2018) and mental health (Buoli et al. 2018; Gu et al. 
2020; Khan et al. 2019; Power et al. 2015; Roberts et al. 2019). How-
ever, because of challenges to accurately model air pollution exposure 

and a dearth of well-powered longitudinal neuroimaging studies that 
span adolescence, much remains unknown regarding the effects of air 
pollution on neurocognitive development during adolescence (Herting 
et al. 2019). ABCD provides a unique opportunity to investigate the 
effects of air pollution exposure during critical developmental periods 
on adolescent brain development and behavior. 

Using state-of-the-art air pollution modeling at high spatial resolu-
tion created by colleagues at Harvard University, ABCD provides a 
number of measures capturing participant’s residential exposure to 
three criteria ambient air pollutants: fine particulate (PM2.5), nitrous 
dioxide (NO2), and ozone (O3). These ambient air pollutant exposure 
estimates are derived from a hybrid spatiotemporal model at the 
1 × 1 km2 spatial resolution (Di, 2020; Di et al., 2019; Requia et al., 
2020). This hybrid model combines the strengths of satellite-based 
aerosol optical depth models, land-use regression, and chemical trans-
port models. This model has previously been trained for the continental 
United States from 2000 to 2016 and tested with left-out monitors. Daily 
1 × 1 km2 ambient exposure estimates were then averaged across the 
2016 calendar year and linked to the nearest estimate of the 1 × 1 km2 

grid for the latitude and longitudinal of the baseline residential ad-
dresses. In addition to computing average annual estimates for PM2.5, 
NO2, and O3, ABCD includes the minimum and maximum levels of all 
three pollutants in 2016 in the 4.0 annual release, as well as the number 
of days that PM2.5 levels exceeded the National Ambient Air Quality 
Standards (NAAQS) threshold of 35 µg/m3. By including this array of 
measures, researchers have the opportunity to gain insight into differ-
ential effects of long-term (i.e., annual average) versus focal (i.e., max 
level in a year) air pollution exposure, as well as the degree to which 
National Ambient Air Quality Standards’ thresholds are meaningful in 
terms of preventing adverse effects of air pollution exposure on the 
adolescent brain. 

3.6. Elevation and climate 

The existing literature suggests that temperature, including heat and 
cold stress, can negatively impact how the human body functions, and 
cognitive functioning is no exception (Laurent et al. 2018). Studies suggest 
heat waves can impact test scores across American high school students 
(Goodman et al. 2018) and that fluctuations in temperature may also 
increase symptom severity in individuals affected by certain neurological 
conditions (Obradovich et al. 2018). Moreover, climate change has 
already made temperatures hotter, producing more intensive heat waves 
in the U.S. (Patz et al. 2014). Thus, characterizing the climate that par-
ticipants may have experienced at home prior to ABCD Study visits may be 
useful to determine how seasons or weather may relate to individual 
differences in brain functioning. By considering the climate, the ABCD 
Study holds the potential to answer pertinent questions regarding poten-
tial effects of hotter and/or greater fluctuations in temperature on brain 
function in today’s youth. Thus, to account for potential differences in 
climate, the ABCD Study has mapped temperature, humidity, and eleva-
tion to residential addresses as part of the 4.0 ABCD data release. 
Maximum daily temperature (℃) and vapor pressure deficit (VPD; hPa) 
data derived at the 30-arcsec (~800 m) spatial resolution from 1981 
through June of 2020 (Daly et al., 2015), were mapped to the residential 
address for the 7 days prior to each individual’s baseline study visit. Given 
that temperature and air pressure also decrease as a function of elevation, 
for completeness, elevation was also mapped to the residential address 
using the Google Maps Elevation API (https://developers.google. 
com/maps/documentation/elevation/overview). 

4. Strengths and limitations: considerations for the end user 

The LED Environment Working Group strives to include additional 
information about the built and natural environments of all participants 
in the ABCD Study. These data provide an additional perspective about 
differences both between study sites and individual differences among 
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children within even a single given study site location. Integrating these 
external environmental factors are likely important in considering both 
mediating and moderating effects and allows for important questions to 
be asked with implications for policies that may help ensure all children 
can thrive. That is, given the wealth of additional data collected in the 
ABCD Study, the addition of understanding the built and natural envi-
ronment in ABCD provides the opportunity to think more broadly about 
how these factors may influence neurodevelopment of children within 
the established social determinants of health framework of public health 
(Fig. 4)(Dahlgren and Whitehead, 1991). Specifically, health outcomes, 
including neurodevelopment, cognition, and mental health as measured 
extensively by the ABCD Study, have been recognized to be influenced 
by complex interactions among environmental, social, and economic 
factors that are ultimately closely tied to one another (Mahler, 1980). 
Dahlgren and Whitehead (1991) provided a visual representation of 
such complex processes as a model of the main determinants of health 
and well-being in public health, which has since helped shape public 
health policy at both national and global scales (Braveman et al., 2011; 
Graham, 2010). Thus, capturing the broader physical environment 
makes the ABCD Study an ideal resource for researchers interested in 
studying how various distal and proximal factors may impact devel-
oping children and their health. While a number of development 
cognitive research studies have focused on individual factors, including 
socio-demographic factors (i.e. age, sex, genes, family-level socioeco-
nomic status), lifestyle (e.g. physical activity, diet), and social envi-
ronments (i.e. social relationships, social networks, cultural factors), 
additional natural and built environmental factors including neighbor-
hood quality, community-level access to resources and opportunities, 
and exposure to harmful substances, provides an additional layer as to 
understanding and identifying key factors of neurodevelopment and to 
promote policies that lead to better health outcomes for all children 
across America. Specifically, these data can allow for researchers to 
examine if upstream built and natural factors (i.e. lack of greenspace, 
poor neighborhood walkability) might account for and/or moderate 
associations between physical activity and brain development, under-
standing the link between screen-time and mental health, determining 
how neighborhood conditions may impact the formation of peer groups, 
or exploring how recreational activities may moderate the relationship 
between adverse neighborhood conditions and mental health. In doing 
so, not only may we have a better understanding of the complex asso-
ciations between the various factors contributing to neurodevelopment 

across childhood and adolescence, but research findings may also point 
to possible public health targets for intervention and treatment. 

While there are clear strengths in mapping the environmental 
context of today’s youth in the ABCD Study, there are also several 
important technical limitations as well as considerations for researchers 
planning to use and interpret these data. A vital consideration to this 
type of geospatial research and the variables derived from it, is the ac-
curacy of the assignment of the exposure assessment at any given time. 
Several challenges arise in trying to maximize this accuracy. Any given 
geospatial database has both a spatial and temporal component. How 
these data were derived, and the degree of resolution is important to 
consider. For example, census tracts can be rather large, whereas in 
urban areas drastic differences in the environment can sometimes be 
noted to vary from street to street. Furthermore, individuals who live in 
the same census tract should not be considered to have the same expe-
riences or the same amount of exposure in the neighborhood as others 
with similar demographics. Moreover, many times, geospatial databases 
are compiled after data is available from other sources, such as the 
American Community Survey or the Environmental Protection Agency. 
Thus, exposure estimates can often reflect a snapshot in time that may or 
may not overlap directly with the time period that the child was at that 
residential location; requiring the researcher to consider if the exposure 
of interest can or cannot be assumed to be stable beyond the temporal 
domains of the dataset. For example, many databases may create vari-
ables using 5-year averages (i.e. 2010–2014 calendar year data) that 
have then been linked to the baseline residential addresses which were 
collected in 2016–2018. Another technical challenge is that retrospec-
tive address collection is hindered by recall bias, or the differences in the 
accuracy or completeness of caregivers in the ABCD Study to recall 
address details over the 9–10 years prior to study enrollment. In addi-
tion, exposure assessment based on residential geospatial location also 
fails to capture individual data on percentage of time in which children 
in the current study spend time at their primary address versus other 
daily activities and/or various locations, such as in school. Of course, it 
is important to note that misclassification of exposure may be lower for 
children in that they may spend more of their time around the home, as 
compared to other populations such as adults who may spend more time 
commuting, time at work, or so forth. Although children do spend a 
substantial period of time at school, which may or may not be in a 
similar geographical location to that of their primary residence. Lastly, 
there is not a direct correlation between external environmental 

Fig. 4. Adapted social determinants of health 
framework from (Barton and Grant, 2006) as 
first proposed by (Dahlgren and Whitehead, 
1991) to visualize the role of how the natural 
and built environment are part of a larger 
complex process by which health and 
well-being are affected. Health outcomes, such 
as brain and cognitive development as 
measured in the ABCD Study, is influenced by a 
set of multi-faceted and interlocking factors, 
running from the broad physical environment 
(green) through more proximal measures 
including social environment, lifestyle factors 
(blue). For the physical environment, the LED 
Environment Working Group is tasked with 
identifying and linking residential geocodes to 
various external databases in hopes of charac-
terizing these natural and built environmental 
contextual variables in the ABCD Study. Cate-
gories of the various existing types of environ-
mental factors already linked to each child’s 
baseline residential address are illustrated in 
green and blue bubbles and correspond with 
those datasets described in detail in Table 1. 
Gray bubbles are planned natural environ-

mental variables that will be linked in the future. Figure created with BioRender.com   
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exposures to chemicals and internal exposure doses. For some environ-
mental toxins, internal biomarkers exist to determine internal dose (e.g., 
metal exposures), whereas others, like air pollution, do not. Nonetheless, 
these geospatial factors can lead to misclassification, or information 
bias, which can severely affect observed associations between the 
exposure and the outcome. Therefore, given these limitations, it is 
important to note that while the current LED Environment measures 
may help provide a snapshot as to the built and natural environment 
surrounding ABCD participants’ residential homes, the current data fall 
short of fully characterizing participant exposomes. Thus, while 
continued efforts by the LED Environment Working Group aim to miti-
gate these challenges, findings should be interpreted considering these 
potential pitfalls, and misclassification should be acknowledged and 
discussed when necessary. 

Another potential challenge for researchers using these data is con-
ceptual and/or statistical collinearity and potential confounders. Envi-
ronmental variables included from various databases can greatly 
overlap in terms of theoretical construct. For example, various factors 
may represent broad constructs of economic advantage, and many 
variables from the same databases may be highly collinear. It is also 
important to note that although some estimates may draw from similar 
linked databases (i.e. census-tract estimates from the US Census or the 
American Community Survey), they may implement any number of 
transformations or operations when computing measures. In addition to 
considering the exposure of interest from these data, a number of spatial 
contextual variables may also be important to consider as source(s) of 
confounding. For example, ecological variables, such as air pollution, 
may be an important spatial confounder in examining associations be-
tween neighborhood socioeconomic factors and child health outcomes 
in ABCD. Some models of exposures may also include other important 
geospatial or socioeconomic factors in establishing estimates of expo-
sure, such as temperature and humidity in estimating ambient air 
pollution, or age of housing in compiling a metric for lead risk. There-
fore, it is vital in the early stages of planning analyses with these data to 
consider the choice of which variables to use for a given construct, 
identifying potential ecological or spatial confounders, and under-
standing the raw datasets that were utilized in calculating various 
environmental and societal variables included in the ABCD Study. 
Additional sensitivity analyses should always be considered to evaluate 
the impact of potential confounds and the specificity of the tested 
environments. 

Lastly, researchers should note that the environmental estimates do 
not represent the ‘lived’ or subjective experience of these exposures, 
with careful consideration given to the potential interpretation of any 
effects seen between these variables and brain and cognitive outcomes 
of interest. For example, these data are derived from outside databases 
that may capture an objective perspective of a given geospatial location, 
as they do not rely on the subjective report of the participants. However, 
these objective constructs do not necessarily reflect any individual’s 
subjective experience in a given state, census tract, or even residential 
neighborhood. It is likely that subjective experiences may moderate or 
mediate associations of external estimates of exposures. Further, 
neighborhood socioeconomic factors, environmental exposures, and 
potential health and behavioral outcomes should also be considered in 
light of local, state, and federal policies of racism, segregation, and 
inequality that has resulted in persistent inequalities in social, economic, 
and educational opportunities (Rothstein, 2017; Taylor, 2014; Wash-
ington, 2019; Zimring, 2017). For these reasons, socioeconomic and 
other family-level factors are likely to also be highly correlated to 
various built and natural exposure variables. Thus, thoughtful consid-
eration is vital in reporting on potential exposure and outcome associ-
ations but also the nexus of neighborhoods, communities, and 
environmental justice and equity. 

5. Future directions 

The LED Environmental Working Group has primarily focused on 
baseline residential addresses to provide additional contextual infor-
mation about the places where ABCD Study participants are growing up. 
In this process, we continually aim to implement ways to reduce expo-
sure misclassification. Current efforts include historical reconstruction 
of each child’s residential history, which offers the opportunity to create 
a better understanding about each child’s physical environmental ex-
posures across their lifespan. In doing so, quality assurance of retro-
spective residential addresses using commercial credit-reporting data is 
underway to help reduce recall bias (Hurley et al. 2017). Further, efforts 
are under way to improve syncing the temporal domains of linked 
database estimates with temporal changes in residential information for 
retrospective and prospective addresses. The ABCD Study’s Physical 
Health Working Group is also collecting biomarkers (i.e., blood, baby 
teeth, etc.) to measure exposure to some chemical toxins. Beyond 
improving exposure assessment, both the working group and its dis-
cussions with the greater larger scientific community has identified 
additional important linkage databases with other information 
regarding environmental toxins, urban settings, and neighborhood fac-
tors, such as greenspace and food deserts. The ABCD LED Environment 
Working Group envisions an ever-increasing resource for researchers 
who are keen to understand environmental impacts on the human brain. 
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