
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Advances in Optimization on Riemannian Manifolds

Permalink
https://escholarship.org/uc/item/3t34k0b0

Author
Li, Jiaxiang

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3t34k0b0
https://escholarship.org
http://www.cdlib.org/

Advances in Optimization on Riemannian Manifolds

By

JIAXIANG LI
DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Applied Mathematics

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Krishnakumar Balasubramanian, Chair

Shiqian Ma

Thomas Strohmer

Committee in Charge

2023

i

© Jiaxiang Li, 2023. All rights reserved.

To my parents

ii

Contents

Abstract v

Acknowledgments vi

Chapter 1. Introduction 1

1.1. Basics on numerical optimization 5

1.2. Basics on Riemannian manifolds 8

1.3. Basic Riemannian optimization scheme 13

Chapter 2. Stochastic Gradient-free Algorithms for Riemannian Optimization 17

2.1. Introduction 17

2.2. Zeroth-order Smooth (deterministic) Riemannian Optimization 32

2.3. Stochastic Zeroth-order Riemannian Optimization Algorithms 34

2.4. Numerical Experiments and Applications 44

2.5. Conclusions 52

Chapter 3. Zeroth-order Stochastic Averaging Algorithms for Riemannian Optimization 53

3.1. Introduction 53

3.2. Zeroth-order RASA for smooth manifold optimization 56

3.3. RASA with retractions and vector transports 67

3.4. Numerical experiments 81

Chapter 4. Federated Learning Algorithms on Riemannian Manifolds 86

4.1. The RFedSVRG Algorithm 87

4.2. Convergence analysis 91

4.3. Proofs 93

4.4. Numerical experiments 98

iii

4.5. Conclusions 101

Chapter 5. Riemannian Alternating Direction Method of Multipliers 104

5.1. Introduction 104

5.2. A Riemannian ADMM 109

5.3. Convergence Analysis 111

5.4. Applications and Numerical Experiments 119

5.5. Conclusions 130

Bibliography 132

iv

Advances in Optimization on Riemannian Manifolds

Abstract

Optimization on Riemannian manifolds is a topic that draws attention widely in the opti-

mization community due to its applications in various fields. The problem differs from classical

nonconvex optimization due to the loss of linearity. In this dissertation, we inspect the optimization

problems on Riemannian manifolds with different aspects.

In the second chapter, we consider stochastic zeroth-order optimization over Riemannian sub-

manifolds. We propose estimators of the Riemannian gradient and Hessians and use them to solve

Riemannian optimization problems in the multiple settings and analyze their convergence theo-

retically. We also provide numerous numerical examples to verify the efficacy of the proposed

method.

In the third chapter, we continue the topic of the second chapter by incorporating Riemannian

moving-average stochastic gradient estimators. This improves the analysis of the previous chapter

by achieving optimal sample complexities to get ϵ-approximation first-order stationary points with

batch-free iteration. We also improve the algorithm’s practicality by using retractions and vector

transport which reduces per-iteration complexity.

In the fourth chapter, we consider the federated learning problem on Riemannian manifolds,

with applications such as federated PCA and federated kPCA. We propose a Riemannian federated

SVRG method and analyze its convergence rate under different scenarios. Numerical experiments

are conducted to show that the advantages of the proposed method are significant.

In the last chapter, we consider a class of Riemannian optimization problems where the ob-

jective is the sum of a smooth function and a nonsmooth function. We propose a Riemannian

alternating direction method of multipliers (ADMM) with easy computable steps in each iteration.

The iteration complexity of the proposed algorithm for obtaining an ϵ-stationary point is analyzed

under mild assumptions. Numerical experiments are conducted to demonstrate the advantage of

the proposed method.

v

Acknowledgments

First and foremost, I’d like to show my heartfelt thanks to my esteemed advisors, Prof. Shiqian

Ma and Prof. Krishnakumar Balasubramanian. Their patience, wisdom, and support have been in-

strumental in shaping my research and academic growth. Prof. Ma introduced me to the fascinating

realm of optimization, providing me with invaluable insights and advice. Prof. Balasubramanian

has been helping me from the very beginning of my Ph.D., offering unwavering support and men-

torship. I consider myself immensely fortunate to have had the privilege of working with them for

the past five years.

I am also deeply indebted to the distinguished members of my qualification and dissertation

committee, Prof. Thomas Strohmer, Prof. Albert Fannjiang, and Prof. Lifeng Lai. Their expertise,

suggestions, and valuable insights have played a crucial role in the development of my research. I

appreciate their dedicated time and effort in evaluating my work, helping me refine it, and ultimately

aiding me in achieving this academic milestone.

The Department of Mathematics at UC Davis has been an invaluable academic home, and

I wish to express my gratitude to the outstanding faculty members who helped me in my Ph.D.

journey. I am also profoundly thankful to the friendly and supportive staff in the math department.

I’m also honored to be deeply connected with the Department of Statistics since Prof. Xiaodong

Li served as my initial advisor and Prof. Balasubramanian became my advisor in my 5th year.

It has been a privilege to share this journey with exceptional peers and friends at UC Davis.

Special thanks to Tesi Xiao, my friend since our undergraduate days and a priceless companion

throughout our Ph.D. studies. Tesi’s friendship and academic companionship have been a source of

strength. I offer my heartfelt congratulations to him on his recent marriage and wish him a lifetime

of love and happiness. I’d also like to express my appreciation to all my friends, including Shouwei

Hui, Ye He, Xuxing Chen, and countless others. I feel greatly honored to have all of the people in

my life during my Ph.D. journey.

Last, my deepest gratitude goes to my parents, who planted the seed of knowledge in my mind

and nurtured it with constant love and support. There has been sorrow and sadness in my family

during the pandemic yet they stood beside me, providing silent strength through the ups and downs

of my Ph.D. studies. I thank them for being the real hero to support me to this accomplishment.

vi

CHAPTER 1

Introduction

Optimization on Riemannian manifolds is a topic that draws attention widely in the opti-

mization community due to its applications in various fields, including low-rank matrix comple-

tion [Boumal and Absil, 2011, Vandereycken, 2013], phase retrieval [Bendory et al., 2017, Sun et al.,

2018], dictionary learning [Cherian and Sra, 2016, Sun et al., 2017b], dimensionality reduction [Ha-

randi et al., 2017, Mishra et al., 2019, Tripuraneni et al., 2018] and manifold regression [Lin et al.,

2017, 2020]. The problem can be formulated abstractly as

(1.1) min
x∈M

f(x)

whereM is a d-dimensional Riemannian manifold and f :M→ R is a function, usually assumed

to be smooth. Note that f cannot satisfy the common notion of convexity due to the loss of

linearity since we are now on a manifold. In practice one might just have the noisy estimate of the

function/gradient, namely we have

(1.2) min
x∈M

f(x) := Eξ[F (x; ξ)]

where we only have access to the stochastic function F (x; ξ). One concrete example is the so-called

finite-sum structured problem:

(1.3) min
x∈M

f(x) :=
1

n

n∑
i=1

fi(x)

where we only have access to fi.

Another extension from (1.1) is the nonsmooth composite problem:

(1.4) min
x∈M⊂RD

f(x) + h(x)

where h is usually assumed to be a proper convex function in the ambient space RD.

1

Manifold optimization algorithms usually transform an manifold constrained problem into an

unconstrained problem by viewing the manifold as the ambient space and using proper retraction

to deal with the loss of linearity, thus achieve better convergence results. We refer to [Absil et al.,

2008, Boumal, 2023] for a detailed discussion on general Riemannian optimization methods. In

this dissertation, we mainly focus on solving the previously mentioned problems in the following

aspects:

(1) We studied solving (1.1), (1.2) and (1.4) by zeroth-order (a.k.a. gradient-free) methods and

analyzed it convergence behaviour. In particular, we solve (1.2) with a fully-online batch-

free derivative-free algorithm by utilizing the moving average technique. Our proposed

methods are the state-of-the-art methods for solving these three problems in gradient-free

settings;

(2) We studied solving the stochastic problem (1.2) in federated learning setting to enable dis-

tributed machine learning on manifolds. The proposed algorithm utilizes a novel average-

on-the-tangent-space technique which enables a much faster convergence in numerical ex-

periments. We also provide theoretical convergence guarantee under certain algorithmic

conditions;

(3) We proposed and studied the convergence of a Riemannian ADMM algorithm for solving

(1.4). The proposed algorithm requires only mild conditions to converge to a KKT point

for (1.4) and is the first algorithm with convergence guarantee in the line of operator-

splitting algorithms for solving (1.4).

We provide a comprehensive review of literature before proceeding to the main body of this

dissertation.

For smooth Riemannian optimization (1.1), it was shown that Riemannian gradient descent

method require O(1/ϵ2) iterations to converge to an ϵ-stationary point [Boumal et al., 2018]. Sto-

chastic algorithms for solving (1.2) were also studied [Bonnabel, 2013, Kasai et al., 2018, Weber

and Sra, 2019, Zhang et al., 2016b, Zhou et al., 2019]. In particular, using the SPIDER variance

reduction technique, Zhou et al. [2019] proved that O(1/ϵ3) oracle calls are required to obtain an

ϵ-stationary point in expectation. When the function f takes a finite-sum structure as (1.3), the

2

Riemannian SVRG [Zhang et al., 2016b] achieves ϵ-stationary solution with O(k2/3/ϵ2) oracle calls

where k is number of summands.

Various works have studied the situation where one have no access to the gradient of f or F

in (1.1), (1.2) and (1.4), which we refer to as gradient-free or zeroth-order optimization in this

monograph. Most of these work consider the situation when M is simply the Euclidean space

Rd, and we refer the reader to Audet and Hare [2017], Conn et al. [2009], Larson et al. [2019]

for more details. The oracle complexity of methods from the above works are at least linear in

terms of their dependence on dimensionality. Recent works in this field have been focusing on

stochastic zeroth-order optimization in high-dimensions Balasubramanian and Ghadimi [2021], Cai

et al. [2022], Golovin et al. [2019], Wang et al. [2018]. Assuming a sparse structure (for example,

the function being optimized depends only on s of the d coordinates), the above works have shown

that the oracle complexity of zeroth-order optimization depends only poly-logarithmically on the

dimension d, and it has a linear dependency only on the sparsity parameter s, which is typically

small compared to d in several applications. Compared to these works, we assume a manifold

structure on the function being optimized and obtain oracle complexities that depend only on the

manifold dimension and independent of the ambient Euclidean dimension.

Apart from the above, Bayesian optimization is yet another popular class of methods for opti-

mizing functions based on noisy function values. This approach aims at finding the global minimizer

by enforcing a Gaussian process prior on the space of function being optimized and using Bayesian

sampling techniques. We refer the reader to Frazier [2018], Mockus [1994, 2012], Shahriari et al.

[2015] for an overview of such techniques in the Euclidean settings and their applications to a

variety of fields including robotics, recommender systems, preference learning and hyperparameter

tuning. A common limitation of the above algorithms is that they usually do not scale well to solve

high-dimensional problems. Recent developments on Bayesian optimization for high-dimensional

problems include Li et al. [2016], Mutny and Krause [2018], Rolland et al. [2018], Wang et al. [2020b,

2016] where people considered zeroth-order optimization with structured functions (for example,

sparse or additive functions), and developed Bayesian optimization algorithms and related analysis.

3

Very recently, Jaquier and Rozo [2020], Jaquier et al. [2020], Oh et al. [2018] considered heuris-

tic Bayesian optimization algorithms for function defined over non-Euclidean domains, including

Riemannian domains, without any theoretical analysis.

For the finite-sum setting in (1.3), we called it a distributed optimization problem if each of

the function Fi is stored in different devices. We call it a federated learning (FL) problem if there

exists one central server that can access all of each Fi with certain communication concern. For the

distributed optimization setting, minimizing the communication cost when solving (1.3) becomes

another important concern. WhenM is simply the Euclidean space Rd, perhaps the most natural

idea for FL is the FedAvg algorithm [McMahan et al., 2017], which averages local gradient descent

updates and yields a good empirical convergence. However in the data heterogeneous situation,

FedAvg suffers from the client-drift effect that each local client will drift the solution towards the

minimum of their own local loss function [Charles and Konečnỳ, 2021, Karimireddy et al., 2020,

Li et al., 2019, Malinovskiy et al., 2020, Mitra et al., 2021, Pathak and Wainwright, 2020]. Many

ideas were studied to resolve this issue. For example, Li et al. [2020] proposed the FedProx algo-

rithm, which regularizes each of the local gradient descent update to ensure that the local iterates

are not far from the previous consensus point. The FedSplit Pathak and Wainwright [2020] was

proposed later to further mitigate the client-drift effect and convergence results were obtained for

convex problems. FedNova Wang et al. [2020a] was also proposed to improve the performance of

FedAvg, however it still suffers from a fundamental speed-accuracy conflict under objective hetero-

geneity Mitra et al. [2021]. Variance reduction techniques were also incorporated to FL leading

to two new algorithms: federated SVRG (FSVRG) [Konečnỳ et al., 2016] and FedLin [Mitra et al.,

2021]. These two algorithms require transmitting the full gradient from the central server to each

local client for local gradient updates, therefore require more communication between clients and

the central server. Nevertheless, FedLin achieves the theoretical lower bound for strongly convex

objective functions [Mitra et al., 2021] with an acceptable amount of increase in the communication

cost.

Decentralized distributed optimization on manifolds has also drawn attentions in recent years [Al-

imisis et al., 2021, Chen et al., 2021b, Shah, 2017]. Under this setting, each local agent solves a

local problem and then the central server takes the consensus step. The consensus step is usually

4

done by calculating the Karcher mean on the manifold [Shah, 2017, Tron et al., 2012], or calculating

the minimizer of the sum of the square of the Euclidean distances in the embedded submanifold

case [Chen et al., 2021b]. Such consensus steps usually require solving an additional problem in-

exactly with no exact convergence rate guarantee [Chen et al., 2021c, Tron et al., 2012]. It is

worth mentioning that the PCA problem under federated learning setting has been considered in

the literature Grammenos et al. [2020]. The proposed method in Grammenos et al. [2020] relies

on the SVD of data matrices and a subspace merging technique and the aim of the algorithm

in Grammenos et al. [2020] is to achieve (ϵ, δ)-differential privacy. Note that above works are for

decentralized distributed manifold optimization, where as federated learning manifold optimization

is still largely empty in the literature.

When the nonsmooth function h presents as in (1.4), Riemannian sub-gradient methods (RSGM)

are widely used [Borckmans et al., 2014, Li et al., 2021] and they require O(1/ϵ4) iterations. ADMM

for solving (1.4) has also been studied [Kovnatsky et al., 2016, Lai and Osher, 2014], but they usu-

ally lack convergence guarantee, while the analysis presented in [Zhang et al., 2020] requires some

strong assumptions. Our work of Riemannian ADMM [Li et al., 2022] proposed and analyzed an

ADMM-type algorithm under mild conditions. On the other hand, proximal gradient type methods

are also studied for solving (1.4). For example, the manifold proximal gradient method (ManPG)

[Chen et al., 2020] for solving (1.4) requires O(1/ϵ2) number of iterations to find an ϵ-stationary

solution. Variants of ManPG such as ManPPA [Chen et al., 2021a], ManPL [Wang et al., 2022b]

and stochastic ManPG [Wang et al., 2022a] have also been studied. Note that none of these works

considers the zeroth-order setting. Recently, there are some attempts on stochastic zeroth-order

Riemannian optimization [Chattopadhyay et al., 2015, Fong and Tino, 2022], but they are mostly

heuristics and do not have any rigorous convergence guarantees. We refer to Chapter 5 for a detailed

review on primal-dual based manifold optimization.

1.1. Basics on numerical optimization

In this section we briefly review basic concepts for numerical optimization, which we refer to

Beck [2017], Bubeck et al. [2015], Nesterov [2018], Nocedal and Wright [1999] for a detailed study.

5

Note that we don’t consider the manifold constraintM here and only deal with Euclidean functions

in this section, and ⟨x, y⟩ = x⊤y is the common Euclidean inner product.

We first review the concept of (Lipschitz) smoothness of a function.

Definition 1.1.1 ((Lipschitz) smoothness). A continuous differentiable function f : Ω ⊂ Rd →

R is called L-Lipschitz smooth if we have: ∀x, y ∈ Ω

(1.5) ∥∇f(y)−∇f(x)∥ ≤ L∥x− y∥

Further, we have (see Beck [2017])

(1.6) f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥x− y∥2.

The next concept is the (strongly) convexity which is the central notion of convex optimization.

Definition 1.1.2 ((Strong) convexity). Consider a convex set Ω ⊂ Rd. A function f : Ω→ R

is called convex if for any x, y ∈ Ω, we have f((1 − t)x + ty) ≤ (1 − t)f(x) + tf(y). It’s further

called µ-strongly convex if we have f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y)− µt(1−t)
2 ∥x− y∥2.

If f is a continuous differentiable function, then it is convex if and only if (see Beck [2017])

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ , and is µ-strongly convex if and only if h(y) ≥ h(x) + ⟨∇h(x), y −

x⟩+ µ
2∥x− y∥2.

If f is a second differentiable function, then it is convex if and only if (see Beck [2017])

d2f((1−t)x+ty)
dt2

≥ 0, and is µ-strongly convex if and only if d2f((1−t)x+ty)
dt2

≥ µ.

The importance of convexity is that it guarantees that every local minimum is global minimum,

thus provides a tamed environment that allows gradient-based algorithm to converge nicely; see

Bubeck et al. [2015] for a comprehensive study.

Now we discuss the notion of stationarity for both convex and nonconvex problems.

Definition 1.1.3 (Global and local minimizer). f : Ω ⊂ Rd → R. x∗ is the global minimizer

of f if ∀x ∈ Ω,

f(x∗) ≤ f(x).

6

x∗ is a local minimizer of f if there exist a neighborhood U ⊂ Ω, x∗ ∈ U , we have ∀x ∈ U ,

f(x∗) ≤ f(x).

A famous result in convex optimization is that x∗ is the global minimizer of a proper convex

function f if and only if 0 ∈ ∂f(x∗), where ∂ denotes the set of subgradients. We refer to [Bubeck

et al., 2015] for a detailed study on classical convex optimization results.

For nonconvex optimization one usually cannot achieve a global (or even local) minimizer, thus

we have the following notion of stationary point

Definition 1.1.4 (Stationary point). f : Ω ⊂ Rd → R is continuous differentiable. x̄ is the

stationary point of f if

∇f(x̄) = 0

also x̄ is the ϵ-(approximate) stationary point of f if

∥∇f(x̄)∥ ≤ ϵ

We will generalize all of these notions to their manifold counterparts in the next sections. Now

we turn to some basic notions in stochastic optimization. Suppose a function f , which is the

expectation of some stochastic function:

f(x) = Eξ[F (x; ξ)].

We have the following assumptions that we utilize in the following chapters to character the ap-

proximation error between f and F :

Definition 1.1.5 (Unbiased and bounded-variance estimators). We say ∇F (x; ξ) is an unbi-

ased estimator of ∇f if

Eξ[∇F (x; ξ)] = ∇f(x)

also ∇F (x; ξ) is an estimator of ∇f with bounded variance σ2 if

Eξ∥∇F (x; ξ)−∇f(x)∥2 ≤ σ2.

7

Note that if F (x; ξ) = f(x) + ξ where ξ ∼ N (0, σ2) is a Gaussian random variable then the

above assumption is naturally satisfied.

We also have the following stationarity notion under stochastic setting

Definition 1.1.6 (Stationary point for stochastic setting). If f and F are continuous differ-

entiable. x̄ is the ϵ-(approximate) stationary point of f if

Eξ∥∇F (x̄; ξ)∥2 ≤ ϵ2.

1.2. Basics on Riemannian manifolds

In this part, we briefly review the basic Riemannian manifold tools we use for optimization on

Riemannian manifolds; see Boumal [2023], Do Carmo [1992], Lee [2006], Tu [2011] for the details.

SupposeM is an m-dimensional differentiable manifold. The tangent space TxM at x ∈ M is a

linear subspace that consists of the derivatives of all differentiable curves on M passing through

x: TxM := {γ′(0) : γ(0) = x, γ([−δ, δ]) ⊂ M for some δ > 0, γ is differentiable}. Notice that

for every vector γ′(0) ∈ TxM, it can be defined in a coordinate-free sense via the operation over

smooth functions: ∀f ∈ C∞(M), γ′(0)(f) := df◦γ(t)
dt |t=0. The notion of Riemannian manifold is

defined as follows.

Definition 1.2.1 (Riemannian manifold). Manifold M is a Riemannian manifold if it is

equipped with an inner product on the tangent space, ⟨·, ·⟩x : TxM× TxM → R, that varies

smoothly onM. The (0, 2)-tensor field ⟨·, ·⟩x is usually referred to as Riemannian metric.

As an example, consider the Stiefel manifold given by

M = St(n, p) := {X ∈ Rn×p : X⊤X = Ip}.(1.7)

The tangent space of St(n, p) is given by TXM = {ξ ∈ Rn×p : X⊤ξ + ξ⊤X = 0}. One could equip

the tangent space with common inner product ⟨X,Y ⟩ := tr(X⊤Y) to form a Riemannian manifold.

For additional examples, see Absil et al. [2008, Chapter 3] or Boumal [2023, Chapter 7] .

We also review the notion of the differential between manifolds here.

8

Definition 1.2.2 (Differential and Riemannian gradients). Let F : M → N be a C∞ map

between two differential manifolds. At each point x ∈ M, the differential of F is a mapping (also

known as the push-forward):

DF : TxM→ TF (x)N

s.t. ∀ξ ∈ TxM, DF (ξ) ∈ TxN is given by

(DF (ξ))(f) := ξ(f ◦ F) ∈ R, ∀f ∈ C∞
F (x)(M)

If N = R, i.e. f ∈ C∞(M), the differential of f is usually denoted as df . For a Riemannian

manifold with Riemannian metric ⟨·, ·⟩, the Riemannian gradient for f ∈ C∞(M) is the unique

tangent vector gradf(x) ∈ TxM s.t.

df(ξ) = ⟨gradf, ξ⟩x, ∀ξ ∈ TxM.

If M is an embedded submanifold of a Euclidean space and ∇f is the common Euclidean

gradient, then we have [Boumal, 2023]

gradf(x) = projTx M(∇f(x)).

where proj is just the Euclidean orthogonal projection.

We also need the notion of exponential mapping and parallel transport for the next chapters.

To this end, we need to first recall the definition of a geodesic.

Definition 1.2.3 (Geodesic, exponential mapping and retractions). Given x ∈ M and ξ ∈

TxM, the geodesic is the curve γ : I → M, 0 ∈ I ⊂ R is an open set, so that γ(0) = x,

γ̇(0) = ξ and ∇γ̇ γ̇ = 0 where ∇ : TxM× TxM → TxM is the Levi-Civita connection defined

by Riemannian metric tensor. In local coordinate sense, γ is the unique solution of the following

second-order differential equations:

d2γk

dt2
+ Γk

i,j

dγi

dt

dγj

dt
= 0

under Einstein summation convention, where Γk
i,j are Christoffel symbols, again defined by metric

tensor. The exponential mapping Expx is defined as a mapping from TxM to M s.t. Expx(ξ) :=

9

γ(1) with γ being the geodesic with γ(0) = x, γ̇(0) = ξ. A natural corollary is Expx(tξ) := γ(t) for

t ∈ [0, 1].

Given any curve γ(t) on M, one could calculate the length of the curve and define the dis-

tance between the two points x, y ∈ M respectively by L(γ) :=
∫ b
a ∥γ

′(t)∥γ(t)dt and dist(x, y) :=

minγ,γ(a)=x,γ(b)=y L(γ). If the manifold is a complete Riemannian manifold, according to Do Carmo

[1992, Corollary 3.9], there exists a unique minimal geodesic γ satisfying γ(a) = x, γ(b) = y that

minimizes L(γ). Therefore, we can always calculate the distance with respect to the minimal geo-

desic as dist(x, y) =
∫ b
a ∥γ

′(t)∥γ(t)dt,∇γ′γ′ = 0, γ(a) = x, γ(b) = y.

A retraction mapping Retrx is a smooth mapping from TxM to M such that: Retrx(0) = x,

where 0 is the zero element of TxM, and the differential of Retrx at 0 is an identity mapping, i.e.,

dRetrx(tη)
dt

∣∣∣
t=0

= η, ∀η ∈ TxM. In particular, the exponential mapping Expx is a special case of

retraction. Notice that the retraction is not always injective from TxM toM for any point x ∈M,

thus the existence of the inverse of the retraction function Retr−1
x is not guaranteed. However, when

M is complete, the exponential mapping Expx is always defined for every ξ ∈ TxM, and the inverse

of the exponential mapping Exp−1
x (y) ∈ TxM is always well-defined for any x, y ∈ M. Also, since

Expx(tξ) generates geodesics, we have dist(x,Expx(tξ)) = t∥ξ∥x.

Throughout this dissertation, we always assume that M is complete, so that Expx is always

define for every ξ ∈ TxM. For ∀x, y ∈M, the inverse of the exponential mapping Exp−1
x (y) ∈ TxM

is called the logarithm mapping, and we have dist(x, y) = ∥Exp−1
x (y)∥x, which derives directly from

dist(x,Expx(ξ)) = ∥ξ∥x.

As an example, the retractions on Stiefel manifolds can be defined by the QR decomposition,

RX(ξ) := Q where X + ξ = QR. It can also be defined through the Polar decomposition as

RX(ξ) := UV ⊤, where X + ξ = UΣV ⊤ is the (thin) singular value decomposition of X + ξ. The

geodesic on the Stiefel manifold is given by:

X(t) =
[
X(0) Ẋ(0)

]
exp

t

 A(0) −S(0)

I A(0)

 I

0

 exp(−A(0)t),

for A(t) = X⊤(t)Ẋ(t) and S(t) = Ẋ⊤(t)Ẋ(t) with initial point X(0) and initial speed Ẋ(0). The

exponential mapping is thus given by ExpX(0)(Ẋ(0)) = X(1). The computation cost of the QR and

10

Polar decomposition retractions are of order 2nk2 + O(k3) and 3nk2 + O(k3), whereas as shown

by Chen et al. [2020, Section 3] the exponential mapping takes 8nk2 + O(k3), which illustrates

the favorability of retractions in practical computations. We refer to Absil et al. [2008, Chapter

4] and Boumal [2023, Chapter 3] for additional examples and more discussions on retractions and

exponential mappings.

With the notion of geodesic, we have the following definition of geodesic convexity and strong-

convexity, which are the generalizations of their Euclidean counterparts:

Definition 1.2.4 (Geodesic (strong) convexity). A geodesic convex set Ω ⊂ M is a set such

that for any two points in the set, there exists a geodesic connecting them that lies entirely in Ω. A

function h : Ω→ R is called geodesic convex if for any p, q ∈ Ω, we have h(γ(t)) ≤ (1−t)h(p)+th(q)

where γ is a geodesic in Ω with γ(0) = p and γ(1) = q. It’s called µ-geodesic strongly convex if we

have h(γ(t)) ≤ (1− t)h(p) + th(q)− µt(1−t)
2 dist(p, q)2.

If h is a continuous differentiable function, then it is geodesic convex if and only if (see [Boumal,

2023, Chapter 11]) h(q) ≥ h(p)+ ⟨gradh(p),Exp−1
p (q)⟩p , and is geodesic strongly convex if and only

if h(q) ≥ h(p) + ⟨gradh(p),Exp−1
p (q)⟩p + µ

2 dist(p, q)
2.

If h is a second differentiable function, then it is geodesic convex if and only if (see [Boumal,

2023, Chapter 11]) d2h(γ(t))
dt2

≥ 0, and is geodesic strongly convex if and only if d2h(γ(t))
dt2

≥ µ.

We also present the definition of vector and parallel transport, which are also used later in our

algorithm design and convergence analysis.

Definition 1.2.5 (Vector and parallel transport). A vector transport T on a smooth manifold

M is a smooth mapping TM× TM → TM : (ηx, ξx) → Tηx(ξx) ∈ TM, where the subscript

x means that the vector is in TxM, such that: (i) There exists a retraction R so that Tηx(ξx) ∈

TRx(ηx)M, (ii) T0xξx = ξx for all ξx ∈ TxM, and (iii) Tηx(aξx + bζx) = aTηx(ξx) + bTηx(ζx), i.e.,

linearity. Particularly, for a complete Riemannian manifold (M, ⟨·, ·⟩), we can construct a special

vector transport, namely the parallel transport P , that can map vectors to another tangent space

“parallelly”, i.e., ∀η, ξ ∈ TxM and y ∈M,

⟨PExp−1
x (y)(η), PExp−1

x (y)(ξ)⟩y = ⟨η, ξ⟩x.(1.8)

11

Notice that parallel transport is not the only transport that satisfies (1.8), and we call the vector

transport an isometric vector transport if it satisfies (1.8).

We can equivalently view P as a mapping from the tangent space TxM to TyM. We hence

denote P y
x : TxM → TyM. Note that parallel transport depends on the curve along which the

vectors are moving. If the curve is not specified, it refers to the case when we are considering the

minimal geodesic connecting the two points, which exists due to completeness.

As an example, for the Stiefel manifold in (1.7), there is no closed-form expression for the

parallel transport, whereas one can always utilize the projection onto the tangent space, given

by projTX M(ξ) = (I − XX⊤)ξ + X skew(X⊤ξ), where skew(A) := (A − A⊤)/2, to transport

ξ ∈ TX0 St(n, p) to TX St(n, p). We refer to Absil et al. [2008, Chapter 8] and Boumal [2023,

Chapter 10] for additional examples and more discussions on vector and parallel transports.

We also have the following definition of Lipschitz smoothness on the manifolds:

Definition 1.2.6 ((Geodesic) Lipschitz smoothness). A function f : Ω ⊂ M → R is called

(Geodesic) L-Lipschitz smooth if we have: ∀x, y ∈ Ω

(1.9) ∥gradf(y)− Px→ygradf(x)∥ ≤ Ldist(x, y)

Further, we have (see [Zhang et al., 2016b])

(1.10) f(y) ≤ f(x) + ⟨gradf(x),Exp−1
x (y)⟩x +

L

2
dist(x, y)2.

We new present the notion of Riemannian Hessian.

Definition 1.2.7 (Riemannian Hessian). For function f :M → R, the Riemannian Hessian

is a symmetric 2-form Hess(f) : TM× TM→ R is defined as: ∀ξ, η ∈ TM,

Hess(f)(ξ, η) = ⟨∇ξgradf, η⟩

where ∇ here is the Levi-Civita connection. H can also be interpreted as a linear map Hess(f) :

TM→ TM, ∀ξ ∈ TxM,

Hess(f)(ξ) = ∇ξgradf.

12

We now discuss the notion of second fundamental form, which will be helpful in characterizing

a geometric condition used in later to quantify the error of approximating parallel transports with

vector transports. In general, the notion of second fundamental form can be studied for general

isometric immersions and we restrict here to the embedding in Euclidean spaces only for brevity.

Definition 1.2.8 (Second fundamental form). Suppose M ⊂ RD is a complete Riemannian

manifold equipped with the Euclidean metric. For any ξ, η ∈ TM, denote the extension of two vector

fields to RD as ξ̄, η̄ ∈ RD, also the directional derivative of η̄ along ξ̄ as ∇̄ξ̄η̄ ∈ RD. The second

fundamental form refers to the bilinear and symmetric vector, B(ξ, η) = ∇̄ξ̄η̄ − ∇ξη ∈ (TM)⊥,

which quantifies the deviation of the Riemannian directional derivatives (depicted by Levi-Civita

connection ∇) from the Euclidean one (common directional derivative ∇̄).

Finally, we remark that there are various definitions of second fundamental forms, among which

the most common one is a quadratic form related to B; see Do Carmo [1992, Chapter 6, Definition

2.2]. Here we simply refer to B as the second fundamental form.

1.3. Basic Riemannian optimization scheme

In this section we study basic schemes for solving (1.1) and (1.2) and provide their convergence

behavior. The aim is to provide a flavor of the research in this subject without digging into the

detailed setting of the main bodies of this dissertation. We refer to Absil et al. [2008], Boumal

[2023], Boumal et al. [2018] for the details.

We have the following basic Riemannian gradient descent scheme for solving the Riemannian

optimization problem (1.1) (see Absil et al. [2008]):

(1) Compute the Riemannian gradient gradf(xk) at the current point xk, either by definition

or by projection (embedded submanifold case).

(2) Use a retraction operator Retrx : TxM → M to map the update −ηkgradf(xk) back to

M, as a result we get the next iteration by:

(1.11) xk+1 = Retrxk(−ηkgradf(xk))
13

For (1.2), we have to change the update (1.11) into:

(1.12) xk+1 = Retrxk(−ηkgradF (xk; ξk))

since in (1.2) we only have the access to the stochastic function F (x; ξ). Here ξk is an independent

and identically distributed (i.i.d.) sample. In practice one may employ the mini-batch sampling

technique, which means that at iteration k, we sample multiple i.i.d. ξ to further boost the perfor-

mance:

(1.13) xk+1 ← Retrxk(−ηkGk), with Gk =
1

mk

mk∑
i=1

gradF (xk; ξk,i)

Note that ifM = Rd, the above scheme reduces to the common gradient descent method since

we can always take Retrx(y) = x+ y in Euclidean spaces.

Now to proceed to the convergence analysis, we need the following assumptions over our function

f and F :

Assumption 1.3.1. Function f in (1.1) and (1.2) is L-geodesic Lipschitz smooth, i.e. satisfies

Definition 1.2.6.

Assumption 1.3.2. For the function F (1.2), stochastic gradients of F are unbiased and have

bounded-variance, i.e. we have Eξ[gradF (x; ξ)] = gradf(x) and Eξ[∥gradF (x; ξ)−gradf(x)∥2x] ≤ σ2.

We have the following theorems for the convergence of RSGD (1.11):

Theorem 1.3.1 (Convergence of RSGD (1.11)). Assume the inverse exponential map is well-

defined on M, f :M→ R. Suppose Assumption 1.3.1 holds, then the RSGD algorithm in (1.11)

with ηk ≡ η = 1/L satisfies:

1

T

T−1∑
k=0

E∥gradf(xk)∥2 ≤ 2L(f(x0)− f∗)

T
(1.14)

Proof. Since

f(xk+1) ≤f(xk) + ⟨gradf(xk),Exp−1
xk (x

k+1)⟩+ L

2
∥Exp−1

xk (x
k+1)∥2

=f(xk)− (η − η2L

2
)∥gradf(xk)∥2

14

if we take η = 1
L we get:

1

2L
∥gradf(xk)∥2 ≤ f(xk)− f(xk+1)

and the result follows by summing up above inequality from k = 0 to k = T − 1 (which is usually

refer to as “telescoping” trick). □

We have the following theorems for the convergence of (mini-batch) stochastic RSGD (1.12):

Theorem 1.3.2 (Convergence of stochastic RSGD (1.13)). Assume the inverse exponential map

is well-defined on M, f :M→ R. Suppose Assumption 1.3.1 and 1.3.2 hold, then the mini-batch

RSGD algorithm in (1.13) with ηk ≡ η = 1/L and mk ≡ m satisfies:

1

T

T−1∑
k=0

E∥gradf(xk)∥2 ≤ L(f(x0)− f∗)

2T
+

σ2

4m
(1.15)

Proof. Denote

Gk :=
1

mk

mk∑
i=1

gradF (xk, ξk,i)

which is the mini-batch stochastic gradient. Since

f(xk+1) ≤f(xk) + ⟨gradf(xk),Exp−1
xk (x

k+1)⟩+ L

2
∥Exp−1

xk (x
k+1)∥2

=f(xk)− η⟨gradf(xk), Gk⟩+ η2L

2
∥Gk∥2

=f(xk) +
η2L

2
∥Gk − 1

ηL
gradf(xk)∥2 − 2

L
∥gradf(xk)∥2,

if we take η = 1
L and take the expectation, we have

Ef(xk+1) ≤ Ef(xk) +
η2L

2

σ2

m
− 2

L
E∥gradf(xk)∥2,

and we obtain the following inequality by telescoping:

1

T

T−1∑
k=0

E∥gradf(xk)∥2 ≤ L(f(x0)− f∗)

2T
+

σ2

4m
.

□

To get rid of the batch size m, we have the follow theorem:

15

Theorem 1.3.3 (Theorem 5 in Zhang et al. [2016a]). Suppose the same setting as above theorem,

then the RSGD algorithm in (1.12) (i.e. (1.13) with mk = 1) with η = c/
√
T , c =

√
2(f(x0)−f(x∗))

Lσ2

satisfies:

1

T

T−1∑
k=0

E[∥gradf(xk)∥2] ≤
√

2(f(x0)− f(x∗))L

T
σ

These fundamental results shows the things we can do: we are able to bound the norm of the

Riemannian gradient to a reasonable level, i.e. we are able to approach a stationary point. The

goals in the next chapters would still be around this central concern.

16

CHAPTER 2

Stochastic Gradient-free Algorithms for Riemannian Optimization

2.1. Introduction

In this chapter we consider the Riemannian optimization problem in (1.4), which we restate

here:

(2.1) min
x∈M⊂RD

f(x) + h(x)

whereM is a Riemannian submanifold embedded in RD, f :M→ R is a smooth and possibly non-

convex function, and h : RD → R is a convex and nonsmooth function. Here, convexity and smooth-

ness are interpreted as the function is being considered in the ambient Euclidean space. Unless

stated otherwise, we consider the stochastic setting for f , i.e., f(x) = Eξ[F (x, ξ)] =
∫
ξ F (x, ξ)dP (ξ)

where P refers to the distribution of random vector ξ. Iterative algorithms for solving (2.1) usually

require the gradient and Hessian information of the objective function. However, in many applica-

tions, the analytical form of the function f (or h) and its gradient are not available, and we can

only obtain noisy function evaluations via a zeroth-order oracle. This setting, termed as stochastic

zeroth-order Riemannian optimization, generalizes stochastic zeroth-order Euclidean optimization

(i.e., whenM≡ Rd in (2.1)), a topic which goes back to the early works of Matyas [1965], Nelder

and Mead [1965], Nemirovski and Yudin [1983] in the 1960’s; see also Audet and Hare [2017], Conn

et al. [2009], Larson et al. [2019] for recent books and surveys.

In the Euclidean setting, two popular techniques for estimating the gradient from (noisy) func-

tion queries include the finite-differences method [Spall, 2005] and the Gaussian smoothing tech-

niques [Nemirovski and Yudin, 1983]. Earlier works in this setting focused on using the estimated

gradient to obtain asymptotic convergence rates of iterative optimization algorithms. Recently, ob-

taining non-asymptotic guarantees on the oracle complexity of stochastic zeroth-order optimization

has been of great interest. Towards that, Nesterov [2011], Nesterov and Spokoiny [2017] analyzed

17

the Gaussian smoothing technique for estimating the Euclidean gradient from noisy function eval-

uations and proved that for unconstrained convex minimization, one needs O(d2/ϵ2) noisy function

evaluations to obtain an ϵ-optimal solution.

This complexity was improved by Ghadimi and Lan [2013] to O(d/ϵ2) when the objective func-

tion is further assumed to be gradient-smooth. Note that this oracle complexity depends linearly on

the problem dimension n and it was proved that the linear dependency on d is unavoidable Duchi

et al. [2015], Jamieson et al. [2012]. Nonconvex and smooth setting was also considered in Ghadimi

and Lan [2013]. In particular, now assuming h ≡ 0 and M ≡ Rd in (2.1), it was shown that the

number of function evaluations for obtaining an ϵ-stationary point x̄ (i.e., E∥∇f(x̄)∥2 ≤ ϵ2), is

O(d/ϵ4).

2.1.1. Motivating Applications. Our motivation for developing a theoretical framework for

stochastic zeroth-order Riemannian optimization is due to several important emerging applications;

see, e.g., Chattopadhyay et al. [2015], Jaquier et al. [2020], Kachan [2020], Marco et al. [2017], Yuan

et al. [2019]. Below, we discuss two concrete examples, which we will revisit in Section 2.4.2, to

illustrate the applicability of the methods developed in this work. We also briefly discuss a third

application in topological data analysis, and numerical experiments on this application will be

conducted in a future work, as it is more involved and beyond the scope of this paper.

2.1.1.1. Black-box Stiffness Control for Robotics. Our first motivating application is from the

field of robotics. It has become increasingly common to use zeroth-order optimization techniques

to optimize control parameter and policies in robotics Drieß et al. [2017], Marco et al. [2016], Yuan

et al. [2019]. This is because that the cost functions being optimized in robotics are not available

in a closed form as a function of the control parameter. Invariably for a given choice of control

parameter, the cost function needs to be evaluated through a real-world experiment on a given

robot or through simulation. Recently, domain knowledge has been used as constraints on the

control parameter space, among which a common choice is the geometry-aware constraint. For

example, control parameters like stiffness, inertia and manipulability lie on the positive semidefi-

nite manifold, orthogonal group and unit sphere, respectively. Hence, there is a need to develop

zeroth-order optimization methods over the manifolds to optimize the above mentioned control

parameters Jaquier et al. [2020].

18

2.1.1.2. Zeroth-order Attacks on Deep Neural Networks (DNNs). Our second motivating appli-

cation is based on developing black-box attacks to DNNs. Despite the recent success of DNNs,

studies have shown that they are vulnerable to adversarial attacks: even a well-trained DNN could

completely misclassify a slightly perturbed version of the original image (which is undetectable

to the human eyes); see, e.g., Goodfellow et al. [2014], Szegedy et al. [2013]. As a result, it is

extremely important on the one hand to come up with methods to train DNNs that are robust

to adversarial attacks, and on the other hand to develop efficient attacks on DNNs with the goal

being to make them misclassify. In practice, as the architecture of the DNN is not known to the

attacker, several works, for example, Chen et al. [2017], Cheng et al. [2018], Tu et al. [2019] use

zeroth-order optimization algorithms for designing adversarial attacks. However, existing works

have an inherent drawback– the perturbed testing example designed to fool the DNN is not in

the same domain as the original training data. For example, despite the fact that natural images

typically lie on a manifold Weinberger and Saul [2004], the perturbations are not constrained to lie

on the same manifold. This naturally motivates us to use zeroth-order Riemannian optimization

methods to design adversarial examples to fool DNNs, which at the same time preserves the man-

ifold structures in the dataset. As demonstrated by our numerical experiments, the Riemannian

black-box attack succeeds more often than the Euclidean black-box attack when the attack region

is small; See Section 2.4.2 for more details.

2.1.1.3. Black-box Methods for Topological Dimension Reduction. The third motivating exam-

ple is from the field of dimension reduction, a popular class of techniques for reducing the dimension

of high-dimensional unstructured data for feature extraction and visualization. There exists a va-

riety of methods for this task; we refer the interested reader to Burges [2010], Lee and Verleysen

[2007] for more details. However, a majority of the existing techniques are based on geometric

motivations. Recently, there has been a growing literature on using topological information for

performing data analysis [Chazal and Michel, 2021, McInnes et al., 2018, Rabadán and Blumberg,

2019]. One such method is a dimension reduction technique called Persistent Homology-Based Pro-

jection Pursuit [Kachan, 2020]. Roughly speaking, given a point-cloud data set with cardinality n

and dimension m (i.e., a matrix X ∈ Rm×n), persistence homology refers to developing a multi-

scale characterization of topologically invariant features available in the data. Such information is

19

summarized in terms of the so-called persistence diagram, D(X), which is a multiset of points in a

two-dimensional plane. The idea in Kachan [2020] is to obtain a transformation P⊤ ∈ Rp×m, with

p≪ m, such that the topological summaries of the original dataset X and the reduced dimensional

dataset P⊤X are close to each other; that is, the persistence diagram D(X) and D(P⊤X) are close

in the 2-Wasserstein distance. The problem is then formulated as (informally speaking),

min
{P∈Rm×p:P⊤P=I}

W2(D(X), D(P⊤X)),

which is an optimization problem over the Stiefel manifold. It turns out that calculating the gradient

of the above objective function is highly non-trivial and computationally expensive Leygonie et al.

[2021]. However, evaluating the objecting function for various value of the matrix P is relatively

less expensive. Hence, this serves as yet another problem in which the methodology developed in

this work could be applied naturally.

2.1.2. Main Contributions. We now summarize our main contributions.

(1) In Section 2.1.3, we propose the (stochastic) zeroth-order Riemannian gradient (2.2) and Hessian

(2.12) estimators, which addresses the infeasibility issue of the sampling for the case of derivative-

free optimization over manifolds.

(2) In Section 2.3, we demonstrate the applicability of the developed estimators for stochastic zeroth-

order Riemannian optimization, as listed below. A summary of these results is given in Table

2.1. To the best of our knowledge, our results are the first complexity results for stochastic

zeroth-order Riemannian optimization.

• When h(x) ≡ 0, and F (x, ξ) satisfies certain Riemannian gradient smoothness assumption,

we propose a zeroth-order Riemannian stochastic gradient descent method (ZO-RSGD) and

analyze its oracle complexity under two different settings (see Theorem 2.3.1).

• When h(x) is convex and nonsmooth, we propose a zeroth-order stochastic Riemannian

proximal gradient method (ZO-SManPG) and provide its oracle complexity for obtaining an

ϵ-stationary point of (2.1) (see Theorem 2.3.2).

20

Algorithm Structure Iteration Complexity Oracle Complexity

ZO-RSGD
smooth,

stochastic
O
(
1/ϵ2

)
O(d/ϵ4)

ZO-RSGD
smooth, stochastic,

Geo-convex
O (1/ϵ) O

(
d/ϵ2

)
ZO-SManPG

nonsmooth
stochastic

O
(
1/ϵ2

)
O
(
d/ϵ4

)
ZO-RSCRN

Lipschitz Hessian
stochastic

O(1/ϵ1.5) O
(
d/ϵ3.5 + d4/ϵ2.5

)
Table 2.1. Summary of the convergence results proved in this paper. For all but
the ZO-RSCRN algorithm, the reported complexities correspond to ϵ-stationary solu-
tion; for the ZO-RSCRN algorithm the complexities correspond to ϵ-local minimizers.
Here, d is the intrinsic dimension of the manifoldM. Furthermore, Iteration com-
plexity refers to the number of iterations and oracle complexity refers to the number
of calls to the (stochastic) zeroth-order oracle.

• When h(x) ≡ 0 and F (x, ξ) satisfies certain Lipschitz Riemannian Hessian property, we pro-

pose a zeroth-order Riemannian stochastic cubic regularized Newton’s method (ZO-RSCRN)

that provably converges to an ϵ-approximate local minimizer (see Theorem 2.3.3).

(3) In Section 2.4, we provide experimental results on simulated data to quantify the performance of

our methods. We then demonstrate the applicability of our methods to the problem of black-box

attacks to deep neural networks and robotics.

2.1.3. Zeroth-order Riemannian Gradient Estimator. Recall that in the Euclidean set-

ting, Nesterov and Spokoiny Nesterov and Spokoiny [2017] analyzed the Gaussian smoothing based

zeroth-order gradient estimator. However, as that estimator requires function evaluations outside

of the manifold to be well-defined, it is not directly applicable for the Riemannian setting. To

address this issue, we introduce our stochastic zeroth-order Riemannian gradient estimator below.

Definition 2.1.1 (Zeroth-Order Riemannian Gradient). Generate u = Pu0 ∈ TxM, where

u0 ∼ N (0, In) in Rn, and P ∈ Rn×n is the orthogonal projection matrix onto TxM. Therefore

u follows the standard normal distribution N (0, PP⊤) on the tangent space in the sense that, all

the eigenvalues of the covariance matrix PP⊤ are either 0 (eigenvectors orthogonal to the tangent

plane) or 1 (eigenvectors embedded in the tangent plane). The zeroth-order Riemannian gradient

21

estimator is defined as

(2.2) gµ(x) =
f(Retrx(µu))− f(x)

µ
u =

f(Retrx(µPu0))− f(x)

µ
Pu0.

Note that the projection P is easy to compute for commonly used manifolds. For example, for

the Stiefel manifold M, the projection is given by projTxM(Y) = (I − XX⊤)Y + X skew(X⊤Y),

where skew(A) := (A−A⊤)/2 (see Absil et al. [2008]).

Remark 2.1.1. In this work, we assume that the function f is defined on submanifolds embedded

in Euclidean space, so that it is efficient to sample from the associated tangent space, as discussed

above; see also Diaconis et al. [2013]. We remark that the above gradient estimation methodology is

more generally applicable to other manifolds. However, the generality comes at the cost of practical

applicability as it is not an easy task to efficiently sample Gaussian random objects on the tangent

space of general manifolds; see Hsu [2002] for more details.

We now discuss some differences between the zeroth-order gradient estimators in the Eu-

clidean setting [Nesterov and Spokoiny, 2017] and the Riemannian setting (2.2). In the Eu-

clidean case, the zeroth-order gradient estimator can be viewed as estimating the gradient of the

Gaussian smoothed function, fµ(x) = 1
κ ∫Rn f(x + µu)e−

1
2
∥u∥2du, because ∇fµ(x) = Eu(gµ(x)) =

1
κ ∫Rn

f(x+µu)−f(x)
µ ue−

1
2
∥u∥2du, where κ is the normalization constant for Gaussian. This was also

observed as an instantiation of Gaussian Stein’s identity Balasubramanian and Ghadimi [2021].

However, this observation is no longer true in the Riemannian setting, as we incorporate the re-

traction operator when evaluating gµ, and this forces us to seek for a direct evaluation of Eu(gµ(x)),

instead of utilizing properties of the smoothed function fµ. We also remark that, gµ(x) is a biased

estimator of gradf(x). The difference between them can be bounded as in Proposition 2.1.1. Some

intermediate results for this purpose are as follows.

Lemma 2.1.1. Suppose X is a d-dimensional subspace of Rn, with orthogonal projection matrix

P ∈ Rn×n. u0 follows a standard normal distribution N (0, In), and u = Pu0 is the orthogonal

projection of u0 onto the subspace X . Then ∀x ∈ X , we have

(2.3) x =
1

κ

∫
Rn

⟨x, u⟩ue−
1
2
∥u0∥2du0, and ∥x∥2 = 1

κ

∫
Rn

⟨x, u⟩2e−
1
2
∥u0∥2du0,

22

where κ is the constant for normal density function: κ := ∫Rn e−
1
2
∥u∥2du = (2π)n/2.

Proof. Proof of Lemma 2.1.1 By the definition of covariance matrix, we have 1
κ

∫
Rn u0u

⊤
0 e

− 1
2
∥u0∥2du0 =

In. Since ⟨x, u⟩ = ⟨x, u0⟩, ∀x ∈ X , we have

(2.4)
1

κ

∫
Rn

⟨x, u⟩u0e−
1
2
∥u0∥2du0 = x,

which implies 1
κ ∫Rn⟨x, u⟩ue−

1
2
∥u0∥2du0 = Px = x. Similarly, taking inner product with x on both

sides of Eq. (2.4), we have ∥x∥2 = 1
κ

∫
Rn⟨x, u⟩2e−

1
2
∥u0∥2du0. □

The following bound for the moments of normal distribution is restated without proof.

Lemma 2.1.2. [Nesterov and Spokoiny, 2017] Suppose u ∼ N (0, In) is a standard normal dis-

tribution. Then for all integers p ≥ 2, we have Mp := Eu(∥u∥p) ≤ (n+ p)p/2.

Corollary 2.1.1. For u0 ∼ N (0, In) and u = Pu0, where P ∈ Rn×n is the orthogonal projec-

tion matrix onto a d dimensional subspace X of Rn, we have Eu0(∥u∥p) ≤ (d+ p)p/2.

Proof. Proof of Corollary 2.1.1 Assume the eigen-decomposition of P is P = Q⊤ΛQ, where

Q is an unitary matrix and Λ is a diagonal matrix with the leading d diagonal entries being 1 and

other diagonal entries being 0. Denote ũ = Qu0 ∼ N (0, In), then Λũ = (ũ1, ..., ũd, 0, ..., 0). Since

u = Q⊤Λũ has the same distribution as Λũ, we have E∥u∥p = E∥(ũ1, ..., ũd, 0, ..., 0)∥p ≤ (d+ p)p/2,

by Lemma 2.1.2. □

Now we provide the bounds on the error of our gradient estimator gµ(x) in (2.2). To proceed

we need the following assumption:

Assumption 2.1.1 (L-retraction-smoothness). There exists Lg ≥ 0 such that the following

inequality holds for function f in (2.1):

(2.5) |f(Retrx(η))− f(x)− ⟨gradf(x), η⟩x| ≤
Lg

2
∥η∥2,∀x ∈M, η ∈ TxM.

Assumption 2.1.1 is also known as the restricted Lipschitz-type gradient for pullback function

f̂x(η) := f(Retrx(η)) Boumal et al. [2018]. The condition required in Boumal et al. [2018] is weaker

because it only requires Eq. (2.5) to hold for ∥η∥x ≤ ρx, where constant ρx > 0. In our convergence

23

analysis, we need this assumption to be held for all η ∈ TxM, i.e., ρx = ∞. This assumption is

satisfied when the manifold M is a compact submanifold of Rn, the retraction Retrx is globally

defined1 and function f is L-smooth in the Euclidean sense; we refer the reader to Boumal et al.

[2018] for more details. We also emphasize that Assumption 2.1.1 is weaker than the geodesic

smoothness assumption defined in Zhang and Sra [2016]. The geodesic smoothness states that,

∀η ∈ M, f(Expx(η)) ≤ f(x) + ⟨gx, η⟩x + Lgd
2(x,Expx(η))/2, where gx is a subgradient of f , d(·, ·)

represents the geodesic distance. Such a condition is stronger than our Assumption 2.1.1, in the

sense that, if the retraction is the exponential mapping, then geodesic smoothness implies the

L-retraction-smoothness with the same parameter Lg Bento et al. [2017].

Recall that d denotes the dimension of the manifoldM, we have the following error bounds:

Proposition 2.1.1. Under Assumption 2.1.1, we have

(a) ∥Eu0(gµ(x))− gradf(x)∥ ≤ µLg

2 (d+ 3)3/2,

(b) ∥gradf(x)∥2 ≤ 2∥Eu0(gµ(x))∥2 +
µ2

2 Lg(d+ 6)3,

(c) Eu0(∥gµ(x)∥2) ≤
µ2

2 L2
g(d+ 6)3 + 2(d+ 4)∥gradf(x)∥2.

Proof. Proof of Proposition 2.1.1 For part (a), since

E(gµ(x))− gradf(x) =
1

κ

∫
Rn

(
f(Retrx(µu))− f(x)

µ
− ⟨gradf(x), u⟩

)
ue−

1
2
∥u0∥2du0,

we have (by Lemma 2.1.1)

∥E(gµ(x))− gradf(x)∥

= ∥ 1

µκ

∫
Rn

(f(Retrx(µu))− f(x)− ⟨gradf(x), µu⟩)ue−
1
2
∥u0∥2du0∥

≤ 1

µκ

∫
Rn

Lg

2
∥µu∥2∥u∥e−

1
2
∥u0∥2du0 =

µLg

2κ

∫
Rn

∥u∥3e−
1
2
∥u0∥2du0 ≤

µLg

2
(d+ 3)3/2,

where the first inequality is by due to (2.5), and the last inequality is from Corollary 2.1.1. This

completes the proof of part (a).

1If the manifold is compact, then the exponential mapping Expx is already globally defined. This is known as the
Hopf-Rinow theorem Do Carmo [1992].

24

To prove part (b), note that

∥gradf(x)∥2 =
∥∥∥∥1κ
∫
Rn

⟨gradf(x), u⟩ue−
1
2
∥u0∥2du0

∥∥∥∥2
=

∥∥∥∥ 1

µκ

∫
Rn

([f(Retrx(µu))− f(x)]− [f(Retrx(µu))− f(x)− ⟨gradf(x), µu⟩])ue−
1
2
∥u0∥2du0

∥∥∥∥2
≤2∥E(gµ(x))∥2 +

2

µ2

∥∥∥∥∫
Rn

(f(Retrx(µu))− f(x)− ⟨gradf(x), µu⟩)ue−
1
2
∥u0∥2du0

∥∥∥∥2
≤2∥E(gµ(x))∥2 +

2

µ2

∫
Rn

(f(Retrx(µu))− f(x)− ⟨gradf(x), µu⟩)2∥u∥2e−
1
2
∥u0∥2du0

≤2∥E(gµ(x))∥2 +
µ2

2
Lg(d+ 6)3,

where the last inequality is from the same trick as in part (a). This completes the proof of part

(b).

Finally, we prove part (c). Since E(∥gµ(x)∥2) = 1
µ2Eu0

[
(f(Retrx(µu))− f(x))2∥u∥2

]
, and

(f(Retrx(µu))−f(x))2 = (f(Retrx(µu))−f(x)−µ⟨gradf(x), u⟩+µ⟨gradf(x), u⟩)2 ≤ 2(
Lg

2 µ2∥u∥2)2+

2µ2⟨gradf(x), u⟩2, we have

(2.6)

E(∥gµ(x)∥2) ≤
µ2

2
L2
gE(∥u∥6) + 2E(∥⟨gradf(x), u⟩u∥2) ≤ µ2

2
L2
g(d+ 6)3 + 2E(∥⟨gradf(x), u⟩u∥2).

Now we bound the term E(∥⟨gradf(x), u⟩u∥2) using the same trick as in Nesterov and Spokoiny

[2017]. Without loss of generality, assume X is the d-dimensional subspace generated by the first

d coordinates, i.e., ∀x ∈ X , the last n − d elements of x are zeros. Also for brevity, denote

g = gradf(x). We have that

E(∥⟨gradf(x), u⟩u∥2) = 1

κ

∫
Rn

⟨gradf(x), u⟩2∥u∥2e−
1
2
∥u0∥2du0

=
1

κ(d)

∫
Rd

(
d∑

i=1

gixi

)2(d∑
i=1

x2i

)
e−

1
2

∑d
i=1 x

2
i dx1 · · · dxd,

where xi denotes the i-th coordinate of u0, the last n− d dimensions are integrated to be one, and

κ(d) is the normalization constant for d-dimensional Gaussian distribution. For simplicity, denote

25

x = (x1, ..., xd), then

E(∥⟨gradf(x), u⟩u∥2) = 1

κ(d)

∫
Rd

⟨g, x⟩2∥x∥2e−
1
2
∥x∥2dx

≤ 1

κ(d)

∫
Rd

∥x∥2e−
τ
2
∥x∥2⟨g, x⟩2e−

1−τ
2

∥x∥2dx ≤ 2

κ(d)τe

∫
Rd

⟨g, x⟩2e−
1−τ
2

∥x∥2dx

=
2

κ(d)τ(1− τ)1+d/2e

∫
Rd

⟨g, x⟩2e−
1
2
∥x∥2dx =

2

τ(1− τ)1+d/2e
∥g∥2,

(2.7)

where the second inequality is due to the following fact: xpe−
τ
2
x2 ≤ (2

τe)
p/2. Taking τ = 2

(d+4) gives

the desired result. □

2.1.4. Zeroth-order Riemannian Hessian Estimator. We now extend the above method-

ology and propose estimators for the Riemannian Hessian in the stochastic zeroth-order setting.

We restrict our discussion to compact submanifolds embedded in Euclidean space, so that the def-

inition of Riemannian Hessian in Definition 1.2.7 is applied. We assume the following assumption

of F (x, ξ):

Assumption 2.1.2. Given any point x ∈M and η ∈ TxM, we have

(2.8) ∥P−1
η ◦HessF (Retrx(η), ξ) ◦ Pη −HessF (x, ξ)∥op ≤ LH∥η∥,

almost everywhere for ξ, where Pη : TxM → TRetrx(η)M denotes the parallel transport and ◦ is

the function composition. Here ∥ · ∥op is the operator norm in the ambient Euclidean space.

Assumption 2.1.2 is the analogue of the Lipschitz Hessian type assumption from the Euclidean

setting, and induces the following equivalent conditions (see, also Agarwal et al. [2021]):

∥P−1
η gradF (Retrx(η), ξ)− gradf(x)−HessF (x, ξ)[η]∥ ≤ LH

2
∥η∥2∣∣∣∣F (Retrx(η), ξ)−

[
F (x, ξ) + ⟨η, gradF (x, ξ)⟩+ 1

2
⟨η,HessF (x, ξ)[η]⟩

]∣∣∣∣ ≤ LH

6
∥η∥3.

(2.9)

In the Euclidean setting, Pη reduces to the identity mapping. Throughout this section, we also as-

sume that F (·, ξ) satisfies Assumption 2.1.1 and the following assumption, which is used frequently

in zeroth-order stochastic optimization [Balasubramanian and Ghadimi, 2021, Ghadimi and Lan,

2013, Zhou et al., 2019].

26

Assumption 2.1.3. We have (with E = Eξ) that, E[F (x, ξ)] = f(x), E[gradF (x, ξ)] = gradf(x)

and E
[
∥gradF (x, ξ)− gradf(x)∥2

]
≤ σ2, ∀x ∈M.

We first introduce the following identity which follows immediately from the second-order Stein’s

identity for Gaussian distribution [Stein, 1972].

Lemma 2.1.3. Suppose X is a d-dimensional subspace of Rn, with orthogonal projection matrix

P ∈ Rn×n, P = P 2 = P⊤, and u0 ∼ N (0, In) is a standard normal distribution and u = Pu0 is the

orthogonal projection of u0 onto the subspace. Then ∀H ∈ Rn×n, H⊤ = H, and H = PHP (which

means that the eigenvectors of H lies all in X), we have

(2.10) PHP =
1

2κ

∫
Rn

⟨u,Hu⟩(uu⊤ − P)e−
1
2
∥u0∥2du0 = E

[
1

2
⟨u,Hu⟩(uu⊤ − P)

]
,

where ∥ · ∥ here is the Euclidean norm on Rn, and κ is the constant for normal density function

given by κ := ∫Rn e−
1
2
∥u∥2du = (2π)n/2.

The identity in (2.10) simply follows by applying the second-order Stein’s identity, E[(xx⊤ −

In)g(x)] = E[∇2g(x)], directly to the function g(x) = 1
2⟨x,Hx⟩ and multiplying the resulting

identity by P on both sides.

Lemma 2.1.4. [Balasubramanian and Ghadimi, 2021] Suppose X is a d-dimensional subspace of

Rn, with orthogonal projection matrix P ∈ Rn×n, P = P 2 = P⊤, and u0 ∼ N (0, In) is a standard

normal distribution and u = Pu0 is the orthogonal projection of u0 onto the subspace. Then

(2.11) E[∥u0u⊤0 − In∥8F] ≤ 2(n+ 16)8 and E[∥uu⊤ − P∥8F] ≤ 2(d+ 16)8.

Proof. Proof of Lemma 2.1.4 See Balasubramanian and Ghadimi [2021] for the proof of the

first inequality in Eq. (2.11). We now show how to get the right part from the left. Similar to the

proof of Corollary 2.1.1, we use an eigen-decomposition of P = QTΛQ and get (again ũ = Qu):

E∥uu⊤ − P∥8F = E∥(ũ1, ..., ũd)⊤(ũ1, ..., ũd)− Id∥8F ≤ 2(d+ 16)8,

which completes the proof. □

27

We now propose our zeroth-order Riemannian Hessian estimator, motivated by the zeroth-order

Hessian estimator in the Euclidean setting proposed by Balasubramanian and Ghadimi [2021].

Definition 2.1.2 (Zeroth-Order Riemannian Hessian). Generate u ∈ TxM following a stan-

dard normal distribution on the tangent space TxM, by projection u = Pxu0 as described in Section

2.1.3. Then, the zeroth-order Riemannian Hessian estimator of a function f at the point x is given

by

(2.12) Hµ(x) =
1

2µ2
(uu⊤ − P)[F (Retrx(µu), ξ) + F (Retrx(−µu), ξ)− 2F (x, ξ)].

Note that our Riemannian Hessian estimator is actually the Hessian estimator of the pullback

function F̂x(η, ξ) = F (Retrx(η), ξ), ∀x ∈M and η ∈ TxM projected onto the tangent space TxM.

We immediately have the following bound on the variance of Hµ(x).

Lemma 2.1.5. Under Assumption 2.1.1, the Riemannian Hessian estimator given in Eq. (2.12)

satisfies

(2.13) EU ,Ξ∥Hµ(x)∥4F ≤
(d+ 16)8

8
L2
g.

Proof. Proof of Lemma 2.1.5 From Assumption 2.1.1 and Corollary 2.1.1 we have

E|F (Retrx(µu), ξ) + F (Retrx(−µu), ξ)− 2F (x, ξ)|8

=E|F (Retrx(µu), ξ)− F (x, ξ)− ⟨gradF (x, ξ), µu⟩+ F (Retrx(−µu), ξ)− F (x, ξ)− ⟨gradF (x, ξ),−µu⟩|8

≤E[µ
2Lg

2
∥u∥2 + µ2Lg

2
∥u∥2]8 = E[µ16L8

g∥u∥16] ≤ µ16L8
g(d+ 16)8.

(2.14)

Moreover, we have

E∥Hµ(x)∥4F =E
∥∥∥∥ 1

2µ2
(uu⊤ − P)[F (Retrx(µu), ξ) + F (Retrx(−µu), ξ)− 2F (x, ξ)]

∥∥∥∥4
F

≤ 1

16µ8

(
E|F (Retrx(µu), ξ) + F (Retrx(−µu), ξ)− 2F (x, ξ)|8E∥uu⊤ − P∥8

)1/2
≤(d+ 16)4

8µ8

(
E|F (Retrx(µu), ξ) + F (Retrx(−µu), ξ)− 2F (x, ξ)|8

)1/2
,

(2.15)

28

where the first inequality is by Hölder’s inequality and the second one is by Lemma 2.1.4. Combining

(2.14) and (2.15) yields the desired result (2.13). □

We will also use the mini-batch multi-sampling technique. For i = 1, ..., b, denote each Hessian

estimator as

(2.16) Hµ,i(x) =
1

2µ2
(uiu

⊤
i − P)[F (Retrx(µui), ξi) + F (Retrx(−µui), ξi)− 2F (x, ξi)].

The averaged Hessian estimator is given by

(2.17) H̄µ,ξ(x) =
1

b

b∑
i=1

Hµ,i(x).

We now have the following bound of H̄µ,ξ(x) and Hessf(x).

Lemma 2.1.6. Under Assumption 2.1.1 and Assumption 2.1.2, let H̄µ,ξ(x) be calculated as in

Eq. (2.17), then we have that: ∀x ∈M and ∀η ∈ TxM,

(2.18) EU ,Ξ∥H̄µ,ξ(x)−Hessf(x)∥2op ≤
(d+ 16)4√

2b
Lg +

µ2L2
H

18
(d+ 6)5,

(2.19) EU ,Ξ∥H̄µ,ξ(x)−Hessf(x)∥3op ≤ C̃
(d+ 16)6

b3/2
L1.5
g +

1

27
µ3L3

H(d+ 6)7.5,

where ∥ · ∥op denotes the operator norm and C̃ is some absolute constant.

Proof. Proof of Lemma 2.1.6 Denote E = EU ,Ξ as the expectation with respect to all previous

random variables. We first show Eq. (2.18). Denote Xi = Hµ,i−EHµ,i, then Xi’s are iid zero-mean

random matrices. Since ∥ · ∥op ≤ ∥ · ∥F , we have

E∥H̄µ,ξ(x)− EH̄µ,ξ(x)∥2op = E

∥∥∥∥∥1b
b∑

i=1

Xi

∥∥∥∥∥
2

op

≤ E

∥∥∥∥∥1b
b∑

i=1

Xi

∥∥∥∥∥
2

F

=E

 1

b2

b∑
i=1

∥Xi∥2F +
1

b2

∑
i ̸=j

⟨Xi, Xj⟩

 = E

[
1

b2

b∑
i=1

∥Xi∥2F

]

=E
1

b2
b∥X1∥2F = E

1

b
∥Hµ,1 − EHµ,1∥2F =

1

b
E
[
∥Hµ,1∥2F − ∥EHµ,1∥2F

]
≤1

b
E∥Hµ,1∥2F ≤

1

b

√
E∥Hµ,1(x)∥4F ≤

(d+ 16)4

2
√
2b

Lg,

(2.20)

29

where the third inequality is from the Jensen’s inequality, and the last inequality is due to Eq. (2.13).

Note that (2.20) immediately implies

E∥H̄µ,ξ(x)−Hessf(x)∥2op ≤2E∥H̄µ,ξ(x)− EH̄µ,ξ(x)∥2op + 2∥EH̄µ,ξ(x)−Hessf(x)∥2op

≤(d+ 16)4√
2b

Lg + 2∥EH̄µ,ξ(x)−Hessf(x)∥2op.
(2.21)

Now we bound the term ∥EH̄µ,ξ(x)−Hessf(x)∥2op. Note that

|⟨η, (EHµ,i(x)−Hessf(x))[η]⟩|

=

∣∣∣∣⟨η,(E [1

2µ2
(uu⊤ − P)[f(Retrx(µu)) + f(Retrx(−µu))− 2f(x)]

]
−Hessf(x)

)
[η]⟩
∣∣∣∣

=

∣∣∣∣⟨η,(E [1

2µ2
(uu⊤ − P)[f(Retrx(µu)) + f(Retrx(−µu))− 2f(x)− µ2⟨u,Hessf(x)[u]⟩]

])
[η]⟩
∣∣∣∣

=
1

2µ2

∣∣∣∣⟨η,(E [[f(Retrx(µu))− f(x)− µ2

2
⟨u,Hessf(x)[u]⟩

+f(Retrx(−µu))− f(x)− µ2

2
⟨u,Hessf(x)[u]⟩](uu⊤ − P)

])
[η]⟩
∣∣∣∣ ,

which together with Assumption 2.1.2 yields

|⟨η, (EHµ,i(x)−Hessf(x))[η]⟩| ≤ µLH

6
E
[
∥u∥3∥uu⊤ − P∥op

]
∥η∥2

Hölder
≤ µLH

6

√
E∥u∥6E∥uu⊤ − P∥2F ∥η∥

2 ≤ µLH

6
(d+ 6)5/2∥η∥2,

(2.22)

where the last inequality is by Corollary 2.1.1 and Lemma 2.1.4. (2.22) implies

(2.23) ∥EH̄µ,ξ(x)−Hessf(x)∥op ≤
µLH

6
(d+ 6)5/2.

Combining (2.21) and (2.23) gives Eq. (2.18).

30

Now we show Eq. (2.19). By a similar analysis we have

E∥H̄µ,ξ(x)−Hessf(x)∥3op

≤E(∥H̄µ,ξ(x)− EH̄µ,ξ(x)∥op + ∥EH̄µ,ξ(x)−Hessf(x)∥op)3

≤8E∥H̄µ,ξ(x)− EH̄µ,ξ(x)∥3op + 8∥EH̄µ,ξ(x)−Hessf(x)∥3op
Hölder
≤ 8

√
E∥H̄µ,ξ(x)− EH̄µ,ξ(x)∥2opE∥H̄µ,ξ(x)− EH̄µ,ξ(x)∥4op

+ 8∥EH̄µ,ξ(x)−Hessf(x)∥3op,

(2.24)

where the second inequality is by the following fact: when a, b ≥ 0, (a+ b)3 ≤ max{(2a)3, (2b)3} ≤

8a3+8b3. Moreover, since ∥·∥op ≤ ∥·∥F , and Xi = Hµ,i−EHµ,i are iid zero-mean random matrices,

we have

E∥H̄µ,ξ(x)− EH̄µ,ξ(x)∥4op = E∥1
b

b∑
i=1

Xi∥4op ≤
C

b4

(
E∥

b∑
i=1

Xi∥op + (bE∥Xi∥4op)1/4
)4

≤C

b4

√√√√E∥

b∑
i=1

Xi∥2F + (bE∥Xi∥4F)1/4
4

=
C

b4

√√√√ b∑

i=1

E∥Xi∥2F + (bE∥Xi∥4F)1/4
4

=
C

b4

(√
b
√
E∥X1∥2F + (bE∥X1∥4F)1/4

)4

≤ C

b4

(√
b 4

√
E∥X1∥4F + (bE∥X1∥4F)1/4

)4

=
C

b4
(
√
b+

4
√
b)4E∥Hµ,1 − EHµ,1∥4F ≤

16C

b2
E∥Hµ,1 − EHµ,1∥4F

=
16C

b2
E(∥Hµ,1∥2F − 2⟨Hµ,1,EHµ,1⟩+ ∥EHµ,1∥2F)2

≤16C

b2
E(∥Hµ,1∥2F + 2∥Hµ,1∥F ∥EHµ,1∥F + ∥EHµ,1∥2F)2

≤16C

b2
E(2∥Hµ,1∥2F + 2∥EHµ,1∥2F)2 ≤

16C

b2
E(2∥Hµ,1∥2F + 2E∥Hµ,1∥2F)2

≤64C

b2
(E∥Hµ,1∥4F + E∥Hµ,1∥4F) ≤

128C

b2
(d+ 16)8L2

g,

(2.25)

where the first inequality is due to the Rosenthal inequality Rio [2009], C is an absolute constant,

the fourth inequality is due to the fact 1 ≤ 4
√
b ≤
√
b. Plugging Eq. (2.20), Eq. (2.23) and Eq. (2.25)

back to Eq. (2.24) gives the desired result (2.19). □

31

2.2. Zeroth-order Smooth (deterministic) Riemannian Optimization

For the sake of completeness, in this section, we focus on the case when the exact function

evaluations of f are available and h ≡ 0. For this case, we propose ZO-RGD, the zeroth-order

Riemannian gradient descent method and provide its complexity analysis. The algorithm is formally

presented in Algorithm 1. The following theorem gives the iteration and oracle complexities of

Algorithm 1 for obtaining an ϵ-stationary point of (2.1).

Algorithm 1: Zeroth-Order Riemannian Gradient Descent (ZO-RGD)

1: Input: Initial point x0 ∈M, smoothing parameter µ, step size ηk, fixed number of iteration
N .

2: for k = 0, 1, 2, ... do
3: Sample a standard Gaussian random vector uk ∈ Txk

M by orthogonal projection in
Definition 2.1.1.

4: Compute the zeroth-order gradient gµ(xk) by Eq. (2.2).
5: Update xk+1 = Retrxk

(−ηkgµ(xk)).
6: end for

Theorem 2.2.1. Let f satisfy Assumption 2.1.1 and suppose {xk} is the sequence generated by

Algorithm 1 with the stepsize ηk = η̂ = 1
2(d+4)Lg

. Then, we have

1

N + 1

N∑
k=0

EUk
∥gradf(xk)∥2 ≤

4

η̂

(
f(x0)− f(x∗)

N + 1
+ C(µ)

)
,(2.26)

where Uk denotes the set of all Gaussian random vectors we drew for the first k iterations 2, and

C(µ) =
µ2Lg

16
(d+3)3

(d+4) + µ2

16
(d+6)3

(d+4) +
µ2Lg

16
(d+6)3

(d+4)2
. In order to have

(2.27)
1

N + 1

N∑
k=0

EUk
∥gradf(xk)∥2 ≤ ϵ2,

we need the smoothing parameter µ and number of iteration N (which is also the number of calls

to the zeroth-order oracle) to be set as µ = O
(
ϵ/d3/2

)
, N = O

(
d/ϵ2

)
.

Proof. Proof of Theorem 2.2.1 From Assumption 2.1.1 we have

f(xk+1) ≤ f(xk)− ηk⟨gµ(xk), gradf(xk)⟩+
η2kLg

2
∥gµ(xk)∥2.

2The notation of taking the expectation w.r.t. a set, is to take the expectation for each of the elements in the set.

32

Taking the expectation w.r.t. uk on both sides, we have

Euk
[f(xk+1)] ≤ f(xk)− ηk⟨Euk

(gµ(xk)), gradf(xk)⟩+
η2kLg

2
Euk

(∥gµ(xk)∥2)

≤f(xk)− ηk⟨Euk
(gµ(xk)), gradf(xk)⟩+

η2kLg

2

(
µ2

2
L2
g(d+ 6)3 + 2(d+ 4)∥gradf(xk)∥2

)
,

where the last inequality is by Proposition 2.1.1. Now Take ηk = η̂ = 1
2(d+4)Lg

, we have

Euk
[f(xk+1)]

≤f(xk) +
η̂

2
(∥gradf(xk)∥2 − 2⟨Euk

(gµ(xk)), gradf(xk)⟩) +
µ2Lg

16

(d+ 6)3

(d+ 4)2

=f(xk) +
η̂

2
(∥gradf(xk)− Euk

(gµ(xk))∥2 − ∥Euk
(gµ(xk))∥2) +

µ2Lg

16

(d+ 6)3

(d+ 4)2

≤f(xk) +
η̂

2

(
µ2L2

g

4
(d+ 3)3 − 1

2
∥gradf(xk)∥2 +

µ2

4
Lg(d+ 6)3

)
+

µ2Lg

16

(d+ 6)3

(d+ 4)2

=f(xk)−
η̂

4
∥gradf(xk)∥2 + C(µ),

where the second inequality is from Proposition 2.1.1. Define ϕk := f(xk) − f(x∗). Now take the

expectation w.r.t. Uk = {u0, u1, . . . , uk−1}, we have

ϕk+1 ≤ ϕk −
η̂

4
EUk
∥gradf(xk)∥2 + C(µ).

Summing the above inequality over k = 0, . . . , N yields (2.26).

Therefore with µ = O(ϵ/d3/2) we have C(µ) ≤ η̂ϵ2/4. Taking N ≥ 8(d+4)Lg(f(x0)− f(x∗))/ϵ2

yields (2.27). In summary, the number of iterations for obtaining an ϵ-stationary solution isO(d/ϵ2),

and hence the total zeroth-order oracle complexity is also O(d/ϵ2). □

Remark 2.2.1. Note that in Algorithm 1, we only sample one Gaussian vector in each iteration

of the algorithm. In practice, one can also sample multiple Gaussian random vectors in each

iteration and obtain an averaged gradient estimator. Suppose we sample m i.i.d. Gaussian random

vectors in each iteration and use the average ḡµ(x) =
1
m

∑m
i=1 gµ,i(x), then the bound for our zeroth-

order estimator becomes

(2.28) E(∥ḡµ(x)− gradf(x)∥2) ≤ µ2L2
g(d+ 6)3 +

2(d+ 4)

m
∥gradf(x)∥2.

33

Hence, the final result in Theorem 2.2.1 can be improved to

1

N + 1

N∑
k=0

EUk
∥gradf(xk)∥2 ≤ 4Lg

f(x0)− f(x∗)

N + 1
+ µ2L2

g(d+ 6)3,(2.29)

with η̂ = 1/Lg and C(µ) = µ2Lg(d+6)3/2. Therefore the number of iterations required is improved

to N = O(1/ϵ2) when we set µ = O(ϵ/d3/2) and m = O(d). However, the zeroth-order oracle

complexity is still O(d/ϵ2). The proof of (2.28) and (2.29) is given in Appendix C of our published

version [Li et al., 2023]. This multi-sampling technique played a key role in our stochastic and

non-smooth case analyses.

2.3. Stochastic Zeroth-order Riemannian Optimization Algorithms

We now demonstrate the applicability of the developed Riemannian derivative estimation

methodology in previous section, for various classes of stochastic zeroth-order Riemannian opti-

mization algorithms.

2.3.1. Zeroth-Order Stochastic Riemannian Optimization for Nonconvex Problem.

Recall that our task is to solve (2.1). In this section, we focus on the following smooth problem

(2.30) min
x∈M

f(x) :=

∫
ξ
F (x, ξ)dP (ξ),

where P is a random distribution, F is a function satisfying Assumption 2.1.1, in variable x,

almost surely. Note that f automatically satisfies Assumption 2.1.1 by the Jensen’s inequality. In

the stochastic case, our zeroth-order Riemannian gradient estimator is given by

(2.31) ḡµ,ξ(x) =
1

m

m∑
i=1

gµ,ξi(x), where gµ,ξi(x) =
F (Retrx(µui), ξi)− F (x, ξi)

µ
ui,

and ui is a standard normal random vector on TxM. We also immediately have that

(2.32) Eξigµ,ξi(x) =
f(Retrx(µu))− f(x)

µ
u = gµ(x).

The mini-batch approach above enables us to obtain the following bound on E∥ḡµ,ξ(x)−gradf(x)∥2,

the proof of which is given in the appendix of our published version Li et al. [2023].

34

Lemma 2.3.1. For the Riemannian gradient estimator in (2.31), under Assumptions 2.1.1 and

2.1.3, we have

E∥ḡµ,ξ(x)− gradf(x)∥2 ≤ µ2L2
g(d+ 6)3 +

8(d+ 4)

m
σ2 +

8(d+ 4)

m
∥gradf(x)∥2,(2.33)

where the expectation E is taken for both Gaussian vectors U = {u1, ..., um} and ξ.

Our zeroth-order Riemannian stochastic gradient descent algorithm (ZO-RSGD) for solving (2.30),

is presented in Algorithm 2.

Algorithm 2: Zeroth-order Riemannian Stochastic Gradient Descent (ZO-RSGD)

1: Input: Initial point x0 ∈M, smoothing parameter µ, multi-sample constant m, step size ηk.
2: for k = 0, 1, 2, ... do
3: Sample the standard Gaussian random vectors uki on Txk

M by orthogonal projection in
Definition 2.1.1, and sample ξki , i = 1, ...,m.

4: Compute the zeroth-order gradient ḡµ,ξ(xk) by Eq. (2.31).
5: Update xk+1 = Retrxk

(−ηkḡµ,ξ(xk)).
6: end for

Now we present convergence analysis for obtaining an ϵ-stationary point of (2.30).

Theorem 2.3.1. Let F satisfy Assumption 2.1.1, w.r.t. variable x almost surely. Suppose {xk}

is the sequence generated by Algorithm 2 with the stepsize ηk = η̂ = 1
Lg

. Under Assumption 2.1.3,

we have

1

N + 1

N∑
k=0

EUk,Ξk
∥gradf(xk)∥2 ≤ 4Lg

f(x0)− f(x∗)

N + 1
+ C(µ),(2.34)

where C(µ) = 2µ2L2
g(d + 6)3 + 16(d+4)

m σ2, Uk denotes the set of all Gaussian random vectors

and Ξk denotes the set of all random variable ξk in the first k iterations. In order to have

1
N+1

∑N
k=0 EUk,Ξk

∥gradf(xk)∥2 ≤ ϵ2, we need the smoothing parameter µ, number of sampling m in

each iteration and number of iterations N to be

µ = O
(
ϵ/d3/2

)
, m = O

(
dσ2/ϵ2

)
, N = O

(
1/ϵ2

)
.(2.35)

Hence, the number of calls to the zeroth-order oracle is mN = O(d/ϵ4).
35

Proof. Proof of Theorem 2.3.1 From Assumption 2.1.1, we have:

f(xk+1) ≤ f(xk)− ηk⟨ḡµ,ξ(xk), gradf(xk)⟩+
η2kLg

2
∥ḡµ,ξ(xk)∥2

Take ηk = η̂ = 1
Lg

, we have

f(xk+1) ≤ f(xk)− ηk⟨ḡµ,ξ(xk), gradf(xk)⟩+
η2kLg

2
∥ḡµ,ξ(xk)∥2

= f(xk) +
1

2Lg

(
∥ḡµ,ξ(xk)− gradf(xk)∥2 − ∥gradf(xk)∥2

)
.

Take the expectation for the random variables at iteration k on both sides, we have

Ekf(xk+1) ≤ f(xk) +
1

2Lg

(
Ek∥ḡµ,ξ(xk)− gradf(xk)∥2 − ∥gradf(xk)∥2

)
Eq. (2.33)

≤ f(xk) +
1

2Lg

(
µ2L2

g(d+ 6)3 +
8(d+ 4)

m
σ2 +

(
8(d+ 4)

m
− 1

)
∥gradf(xk)∥2

)
.

Summing up over k = 0, ..., N (assuming that m ≥ 16(d+ 4)) yields (2.34).

In summary, the total number of iterations for obtaining an ϵ-stationary solution of (2.30) is

O(1/ϵ2), and the stochastic zeroth-order oracle complexity is O(d/ϵ4). □

Remark 2.3.1. For the Euclidean case, in the unconstrained setting, it was shown in Ghadimi

and Lan [2013] that if we assume prior knowledge on the total number of iterations N , one could

prove a similar oracle complexity (with the Euclidean dimension) even with m = 1. However for

the Riemannian case, selecting m as in (2.35) seems to be required for our current theoretical

analysis. In particular, properties of (Euclidean) Gaussian smoothed function fµ(x) =
1
κ

∫
x f(x +

µu)e−
1
2
∥u∥2du, such as ∇fµ(x) = E(gµ(x)) used in Ghadimi and Lan [2013], cannot be naturally

extended to the Riemannian case. Furthermore, it is not very obvious how to calculate and interpret

the gradient of the Riemannian counterpart fµ(x) =
1
κ

∫
x∈TxM f(Retrx(µu))e

− 1
2
∥u∥2du.

2.3.2. Zeroth-order Stochastic Riemannian Proximal Gradient Method. We now

consider the general optimization problem of the form in (2.1). For convenience, we define p(x) :=

f(x) + h(x). We assume thatM is a compact submanifold, h is convex in the embedded space Rn

and is also Lipschitz continuous with parameter Lh, and f satisfies Assumption 2.1.3.

36

The non-differentiability of h prohibits Riemannian gradient methods to be applied directly.

In Chen et al. [2020], by assuming that the exact gradient of f is available, a manifold proximal

gradient method (ManPG) is proposed for solving (2.1). One typical iteration of ManPG is as

follows:

vk := argmin ⟨gradf(xk), v⟩+
1

2t
∥v∥2 + h(xk + v), s.t., v ∈ Txk

M

xk+1 := Retrxk
(ηkvk),

(2.36)

where t > 0 and ηk > 0 are step sizes. In this section, we develop a zeroth-order counterpart of

ManPG (ZO-SManPG), where we assume that only noisy function evaluations of f are available. The

following lemma from Chen et al. [2020] provides a notion of stationary point that is useful for our

analysis.

Lemma 2.3.2. Let v̄k be the minimizer of the v-subproblem in (2.36). If v̄k = 0, then xk is

a stationary point of problem (2.1). We say xk is an ϵ-stationary point of (2.1) with t = 1
Lg

, if

∥v̄k∥ ≤ ϵ/Lg.

Our ZO-SManPG iterates as:

vk := argmin ⟨ḡµ,ξ(xk), v⟩+
1

2t
∥v∥2 + h(xk + v), s.t., v ∈ Txk

M,

xk+1 := Retrxk
(ηkvk),

(2.37)

where ḡµ,ξ(xk) is defined in Eq. (2.31). Note that the only difference between ZO-SManPG (2.37) and

ManPG (2.36) is that in (2.37) we use ḡµ,ξ(x) to replace the Riemannian gradient gradf in (2.36).

A more complete description of the algorithm is given in Algorithm 3. Now we provide some useful

lemmas for analyzing the iteration complexity of Algorithm 3.

Lemma 2.3.3. (Non-expansiveness) Suppose v := argminv∈TxM⟨g1, v⟩+ 1
2t∥v∥

2 + h(x+ v) and

w := argminw∈TxM⟨g2, w⟩+ 1
2t∥w∥

2 + h(x+ w). Then we have

(2.38) ∥v − w∥ ≤ t∥g1 − g2∥.

Proof. Proof of Lemma 2.3.3 By the first order optimality condition Yang et al. [2014], we

have 0 ∈ 1
t v + g1 + projTxM∂h(x + v) and 0 ∈ 1

tw + g2 + projTxM∂h(x + w), i.e. ∃p1 ∈ ∂h(x + v)

37

Algorithm 3: Zeroth-Order Stochastic Riemannian Proximal Gradient Descent
(ZO-SManPG)

1: Input: Initial point x0 onM, smoothing parameter µ, number of multi-sample m, step size
ηk.

2: for k = 0, 1, 2, ... do
3: Sample m standard Gaussian random vector ui on Txk

M by by orthogonal projection in
Definition 2.1.1, i = 1, ...,m.

4: Compute the zeroth-order gradient the random oracle ḡµ(xk) by Eq. (2.31).
5: Solve vk from Eq. (2.37).
6: Update xk+1 = Retrxk

(ηkvk).
7: end for

and p2 ∈ ∂h(x+ w) such that v = −t(g1 + projTxM(p1)) and w = −t(g2 + projTxM(p2)). Therefore

we have

⟨v, w − v⟩ = t⟨g1 + projTxM(p1), v − w⟩

⟨w, v − w⟩ = t⟨g2 + projTxM(p2), w − v⟩.
(2.39)

Now since v, w ∈ TxM, and using the convxity of h, we have

(2.40) ⟨projTxM(p1), v − w⟩ = ⟨p1, v − w⟩ = ⟨p1, (v + x)− (w + x)⟩ ≥ h(v + x)− h(w + x).

Substituting Eq. (2.39) and into (2.40) yields,

⟨v, w − v⟩ ≥ t⟨g1, v − w⟩+ h(v + x)− h(w + x)

⟨w, v − w⟩ ≥ t⟨g2, w − v⟩+ h(w + x)− h(v + x).

Summing these two inequalities gives ⟨v − w, v − w⟩ ≤ t⟨g2 − g1, v − w⟩, and Eq. (2.38) follows by

applying the Cauchy-Schwarz inequality. □

Corollary 2.3.1. Suppose vk is given by (2.37), and v̄k is solution of the v-subproblem in

Eq. (2.36), then we have

EUk,Ξk
∥vk − v̄k∥2F ≤ t2

(
µ2L2

g(d+ 6)3 +
8(d+ 4)

m
σ2 +

8(d+ 4)

m
∥gradf(xk)∥2

)
.

Proof. Proof of Corollary 2.3.1 By Lemma 2.3.3, we have

EUk,Ξk
∥vk − v̄k∥2F ≤ t2EUk,Ξk

∥ḡµ,ξ(xk)− gradf(xk)∥2F .
38

From Lemma 2.3.1,

EUk,Ξk
∥ḡµ,ξ(xk)− gradf(xk)∥2F

≤µ2L2
g(d+ 6)3 +

8(d+ 4)

m
σ2 +

8(d+ 4)

m
∥gradf(xk)∥2.

The desired result hence follows by combining these two inequalities. □

The following lemma shows the sufficient decrease property for one iteration of ZO-SManPG.

Lemma 2.3.4. For any t > 0, there exists a constant η̄ > 0 such that for any 0 ≤ ηk ≤ min{1, η̄},

the (xk, vk) generated by Algorithm 3 satisfies

(2.41) p(xk+1)− p(xk) ≤ −
(ηk
2t
− C̃

)
∥vk∥2,

where C̃ = µ2L2
g(d+6)3+ 8(d+4)

m σ2+ 8(d+4)
m G2 and G is the upper bound of the Riemannian gradient

gradf(x) (existence by the compactness ofM).

Proof. Proof of Lemma 2.3.4 Notice that

f(xk+1)− f(xk) ≤ ⟨gradf(xk),Retrxk
(ηkvk)− xk⟩+

Lg

2
∥Retrxk

(ηkvk)− xk∥2

= ⟨gradf(xk)− ḡµ,ξ(x),Retrxk
(ηkvk)− xk⟩+ ⟨ḡµ,ξ(x),Retrxk

(ηkvk)− xk⟩+
Lg

2
∥Retrxk

(ηkvk)− xk∥2,

where the inequality follows from Assumption 2.1.1. Moreover, by Lemma 2.3.1 and the Fact 3.6

of Chen et al. [2020], we have

⟨gradf(xk)− ḡµ,ξ(x),Retrxk
(ηkvk)− xk⟩ ≤ ∥gradf(xk)− ḡµ,ξ(x)∥∥Retrxk

(ηkvk)− xk∥

≤M2
1 η

2
k

[
µ2L2

g(d+ 6)3 +
8(d+ 4)

m
σ2 +

8(d+ 4)

m
∥gradf(x)∥2

]
∥vk∥2.

The rest of the proof of bounding ⟨ḡµ,ξ(x),Retrxk
(ηkvk)−xk⟩+ Lg

2 ∥Retrxk
(ηkvk)−xk∥2 follows from

exactly the same process as in (Chen et al. [2020], Lemma 5.2). We omit the details for brevity. □

Theorem 2.3.2. Under Assumption 2.1.3 and Assumption 2.1.1, the sequence generated by

Algorithm 3, with ηk = η̂ < min{1, η̄} and t = 1/Lg, satisfies:

1

N

N−1∑
k=0

EUk,Ξk
∥v̄k∥2 ≤

4t(p(x0)− p(x∗))

(η̂ − 8C̃)tN
+

η̂Nt2

η̂ − 8C̃t
C̃ +

8t3

η̂ − 8C̃t
C̃2,(2.42)

39

where C̃ = µ2L2
g(d+6)3+ 8(d+4)

m σ2+ 8(d+4)
m G2 and G is the upper bound of the Riemannian gradient

gradf(x) over the manifoldM. To guarantee

min
k=0,...,N−1

EUk,Ξk
∥v̄k∥2F ≤ ϵ2/L2

g,

the parameters need to be set as: µ = O
(
ϵ/d3/2

)
, m = O

(
dG2/ϵ2

)
, N = O

(
1/ϵ2

)
. Hence, the

number of calls to the stochastic zeroth-order oracle is O(d/ϵ4).

Proof. Proof of Theorem 2.3.2 Summing up (2.41) over k = 0, . . . , N − 1 and using Corol-

lary 2.3.1, we have:

p(x0)− EUk,Ξk
p(xk) ≥

N−1∑
k=0

[
ηk
2t
− C̃]EUk

∥vk∥2F ≥ [
η̂

4t
− 2C̃]

N−1∑
k=0

2EUk,Ξk
∥vk∥2F

≥ [
η̂

4t
− 2C̃]

N−1∑
k=0

[
EUk,Ξk

∥v̄k∥2F − t2
(
µ2L2

g(d+ 6)3 +
8(d+ 4)

m
σ2

+
8(d+ 4)

m
∥gradf(xk)∥2

)]

≥ [
η̂

4t
− 2C̃]

N−1∑
k=0

EUk,Ξk
∥v̄k∥2F −

η̂Nt

4

(
µ2L2

g(d+ 6)3 +
8(d+ 4)

m
σ2 +

8(d+ 4)

m
G2

)

+ 2t2
(
µ2L2

g(d+ 6)3 +
8(d+ 4)

m
σ2 +

8(d+ 4)

m
G2

)2

,

which immediately implies the desired result (2.42). □

Remark 2.3.2. The subproblem Eq. (2.37) is the main computational effort in Algorithm 3.

Fortunately, this subproblem can be efficiently solved by a regularized semi-smooth Newton’s method

whenM takes certain forms. We refer the reader to Chen et al. [2020], Xiao et al. [2018] for more

details.

2.3.3. Escaping saddle points: Zeroth-order stochastic cubic regularized Newton’s

method over Riemannian manifolds. In this section, we consider the problem of escaping

saddle-points and converging to local minimizers in a stochastic zeroth-order Riemannian set-

ting. Towards that, we leverage the Hessian estimator methodology developed in Section 2.1.4

and analyze a zeroth-order Riemannian stochastic cubic regularized Newton’s method (ZO-RSCRN)

40

Algorithm 4: Zeroth-Order Riemannian Stochastic Cubic Regularized Newton’s Method
(ZO-RSCRN)

1: Input: Initial point x0 onM, smoothing parameter µ, multi-sample parameter m and b,
cubic regularization parameter α.

2: for k = 0, 1, 2, ... do
3: Compute ḡµ,ξ(xk) and H̄µ,ξ(xk) based on (2.31) and (2.17) respectively.
4: Solve ηk = argminη m̂xk,α(η), where m̂x,α(η) is defined in (2.43).
5: Update xk+1 = Retrxk

(Px(ηk)).
6: end for

for solving (2.30), which provably escapes the saddle points. Our approach is motivated by

Zhang and Zhang [2018], where the authors proposed the minimization of function mx,σ(η) =

f(x) + ⟨gradf(x), η⟩ + 1
2⟨Px ◦ Hessf(x) ◦ Px[η], η⟩ + αk

6 ∥η∥
3 at each iteration. The zeroth-order

counterpart replaces the Riemannian gradient and Hessian with the corresponding zeroth-order es-

timators. The proposed ZO-RSCRN algorithm is described in Algorithm 4. In ZO-RSCRN, the function

in the cubic regularized subproblem is

(2.43) m̂x,α(η) = f(x) + ⟨ḡµ,ξ(x), η⟩+
1

2
⟨H̄µ,ξ(x)[η], η⟩+

α

6
∥η∥3.

Note that if η̂ = argminη m̂x,α(η), then the projection Px(η̂) is also a minimizer, because ḡµ,ξ(x)

and H̄µ,ξ(x) only take effect on the component that is in TxM.

Theorem 2.3.3. For manifoldM and function f :M→ R under Assumptions 2.1.1, 2.1.2 and

2.1.3, define kmin := argmink EUk,Ξk
∥ηk∥, then the update in Algorithm 4 with α ≥ LH satisfies:

(2.44) E∥gkmin+1∥ ≤ O(ϵ), and E[λmin(Hessfkmin+1)] ≥ −O(
√
ϵ),

given that the parameters satisfy:

(2.45) N = O
(
1/ϵ3/2

)
, µ = O

(
min

{
ϵ

d3/2
,

√
ϵ

d5

})
, m = O(d/ϵ2), b = O(d4/ϵ),

where λmin denotes the smallest eigenvalue. Hence, the zeroth-order oracle complexity is O(d/ϵ7/2+

d4/ϵ5/2).

Proof. Proof of Theorem 2.3.3 Denote fk = f(xk), gk = gradf(xk) and E = EUk,Ξk
for ease

of notation. We first provide the global optimality conditions of subproblem Eq. (2.43) following

41

Nesterov and Polyak [2006]:

(2.46) (H̄µ,ξ(x) + λ∗I)η + ḡµ,ξ(x) = 0, λ∗ =
α

2
∥η∥, H̄µ,ξ(x) + λ∗I ⪰ 0.

Since the parallel transport Pη is an isometry, we have

∥gk+1∥ = ∥P−1
ηk

gk+1∥

=∥(P−1
ηk

gk+1 − gk −Hessfk[ηk]) + (gk − ḡµ,ξ(xk))

+ (Hessfk[ηk]− H̄µ,ξ(xk)[ηk]) + (ḡµ,ξ(xk) + H̄µ,ξ(xk)[ηk])∥

≤∥P−1
ηk

gk+1 − gk −Hessfk[ηk]∥+ ∥gk − ḡµ,ξ(xk)∥

+ ∥Hessfk[ηk]− H̄µ,ξ(xk)[ηk]∥+ ∥ḡµ,ξ(xk) + H̄µ,ξ(xk)[ηk]∥

Eq. (2.9)

≤ LH

2
∥ηk∥2 + ∥gk − ḡµ,ξ(xk)∥

+ ∥Hessfk[ηk]− H̄µ,ξ(xk)[ηk]∥+ ∥ḡµ,ξ(xk) + H̄µ,ξ(xk)[ηk]∥

Eq. (2.46)
=

LH

2
∥ηk∥2 + ∥gk − ḡµ,ξ(xk)∥+ ∥Hessfk[ηk]− H̄µ,ξ(xk)[ηk]∥+ λ∗∥ηk∥

Eq. (2.46)

≤ LH

2
∥ηk∥2 + ∥gk − ḡµ,ξ(xk)∥+ ∥Hessfk[ηk]− H̄µ,ξ(xk)∥op∥ηk∥+

α

2
∥ηk∥2

≤LH

2
∥ηk∥2 + ∥gk − ḡµ,ξ(xk)∥+

1

2
∥Hessfk − H̄µ,ξ(xk)∥2op +

1

2
∥ηk∥2 +

α

2
∥ηk∥2.

Taking expectation on both sides of the above inequality gives (by Eq. (2.33) and Eq. (2.18))

(2.47) E∥gk+1∥ −
√

δg − δH ≤
1

2
(LH + α+ 1 + 2L2∥gk∥)E∥ηk∥2,

where δg = µ2L2
g(d + 6)3 + 8(d+4)

m (G2 + σ2), G is the upper bound of ∥gradf∥ over M, and δH =

(d+16)4

b Lg +
µ2L2

H
18 (d+ 6)5.

42

Since P−1
ηk

is an isometry, we have:

λmin(Hessfk+1) = λmin(P
−1
ηk
◦Hessfk+1 ◦ Pηk)

≥λmin(P
−1
ηk
◦Hessfk+1 ◦ Pηk −Hessfk)

+ λmin(Hessfk − H̄µ,ξ(xk)) + λmin(H̄µ,ξ(xk))

Eq. (2.8)

≥ − LH∥ηk∥+ λmin(Hessfk − H̄µ,ξ(xk)) + λmin(H̄µ,ξ(xk))

=λmin(Hessfk − H̄µ,ξ(xk)) + λmin(H̄µ,ξ(xk)− LH∥ηk∥I)

Eq. (2.46)

≥ λmin(Hessfk − H̄µ,ξ(xk))−
α+ 2LH

2
∥ηk∥.

Taking expectation, we obtain (by Eq. (2.18))

(2.48)
α+ 2LH

2
E∥ηk∥ ≥ −(

√
δH + Eλmin(Hessfk+1)).

Now we will upper bound E∥ηk∥. From Assumption 2.1.2, we have

f̂xk
(ηk) ≤ f(xk) + g⊤k ηk +

1

2
η⊤k Hkηk +

LH

6
∥ηk∥3

=

(
f(xk) + ḡµ(xk)

⊤ηk +
1

2
η⊤k H̄µ(xk)ηk +

LH

6
∥ηk∥3

)
+

(
(gk − ḡµ(xk))

⊤ηk +
1

2
η⊤k (Hk − H̄µ(xk))ηk

)
.

(2.49)

Using Eq. (2.46) we have

f(xk) + ḡµ(xk)
⊤ηk +

1

2
η⊤k H̄µ(xk)ηk +

LH

6
∥ηk∥3

=f(xk)−
1

2
η⊤k H̄µ(xk)ηk + (

LH

6
− α

2
)∥ηk∥3

=f(xk)−
1

2
η⊤k (H̄µ(xk) +

α

2
∥ηk∥I)ηk − (

α

4
− LH

6
)∥ηk∥3

≤f(xk)− (
α

4
− LH

6
)∥ηk∥3 ≤ f(xk)−

α

12
∥ηk∥3,

(2.50)

43

where the last inequality is due to α ≥ LH . Moreover, by Cauchy-Schwarz inequality and Young’s

inequality, we have

E
[
(gk − ḡµ(xk))

⊤ηk +
1

2
η⊤k (Hk − H̄µ(xk))ηk

]
≤E∥gk − ḡµ(xk)∥∥ηk∥+

1

2
E∥Hk − H̄µ(xk)∥op∥ηk∥2

≤ 32

3α
E∥gk − ḡµ(xk)∥3/2 +

12

α
E∥Hk − H̄µ(xk)∥3op +

α

24
E∥ηk∥3.

(2.51)

Plugging (2.50) and (2.51) to Eq. (2.49), we have

(2.52) Efk+1 ≤ fk −
α

24
E∥ηk∥3 +

32

3LH
δ3/4g +

12

LH
δ̃H ,

where δ̃H = C̃ (d+16)6

b3/2
L1.5
g + 1

27µ
3L3

H(d+ 6)7.5. Taking the sum for (2.52) over k = 0, . . . , N − 1, we

have

1

N

N∑
k=0

E∥ηk∥3 ≤
24

LH

(
f0 − f∗

N
+

32

3LH
δ3/4g +

12

LH
δ̃H

)
,

which together with (2.45) yields

(2.53) E∥ηkmin
∥3 ≤ O(ϵ3/2), and E∥ηkmin

∥2 ≤ O(ϵ).

Combining Eq. (2.53), Eq. (2.47) and Eq. (2.48) yields (2.44). □

Remark 2.3.3. To solve the subproblem, we implement the same Krylov subspace method as

in Agarwal et al. [2021], where the Riemannian Hessian and vector multiplication is approximated

by Lanczos iterations. Note also that in our setting, we only require vector-vector multiplications

due to the structure of our Hessian estimator in Eq. (2.12). For the purpose of brevity, we refer to

Agarwal et al. [2021], Carmon and Duchi [2018] for a comprehensive study of this method.

2.4. Numerical Experiments and Applications

We now explore the performance of the proposed algorithms on various simulation experiments.

Finally, we demonstrate the applicability of stochastic zeroth-order Riemannian optimization for

the problems of zeroth-order attacks on deep neural networks and controlling stiffness matrix in

44

Dimension ϵ Stepsize No. iter. ZO-RGD Aver. No. iter. RGD
15× 5 10−3 10−2 460± 137 442
25× 15 10−3 10−2 892± 99 852
50× 20 10−2 5× 10−3 255± 26 236

Table 2.2. Comparison of ZO-RGD and RGD on the Procrustes problem. Notice
here we take a larger ϵ when the dimension is large. The variance introduced by
the Gaussian random vector in the zeroth-order algorithms prevents us from taking
smaller values in practice. The last column of Fig. 2.1 shows a similar phenomenon.

robotics. We conducted our experiments on a desktop with Intel Core 9600K CPU and NVIDIA

GeForce RTX 2070 GPU.

2.4.1. Simulation Experiments. For all the simulation experiments listed below, we plot

the average result over 100 runs. We set µ = 10−8 if not otherwise specified. In theory, the smaller

µ is, the better the results are. However in practice we have to compromise the machine precision,

and 10−8 comes up as an appropriate choice. We set the stepsize ηk = 1/Lg as specified in the

theory. Moreover we choose the retraction which is based on the QR decomposition for Stiefel

manifold and the exponential mapping on positive definite manifold as defined in Chapter 11 of

Boumal [2023].

Experiment 1: Procrustes problem [Absil et al., 2008]. This is a matrix linear regression

problem on a given manifold: minX∈M ∥AX − B∥2F , where X ∈ Rn×p, A ∈ Rl×n and B ∈ Rl×p.

The manifold we use is the Stiefel manifoldM = St(n, p). In our experiment, we pick up different

dimension n and p and record the time cost to achieve prescribed precision ϵ. The entries of

matrix A are generated by standard Gaussian distribution. We use the retraction based on Polar

decomposition. We compare our ZO-RGD (Algorithm 1) with the first-order Riemannian gradient

method (RGD) on this problem. The results are shown in Table 2.2. For each run, we sample

m = np − 1
2p(p + 1) Gaussian samples for each iteration. The multi-sample version of ZO-RGD

closely resembles the convergence rate of RGD, as shown in Fig. 2.1. These results indicate our

zeroth-order method ZO-RGD is comparable with its first-order counterpart RGD, though the former

one only uses zeroth-order information.

Remark 2.4.1. Fig. 2.2 shows the effect of choosing m that are smaller than the values suggested

by our theory. We note that a small value of m, for example, m = 15 is already good enough for

45

0 200 400 600 800 1000

number of iterations

10-4

10-3

10-2

10-1

100

101

102 Norm of current gradient

ZO-RGD
RGD

0 200 400 600 800 1000

number of iterations

10-3

10-2

10-1

100

101

102

103 Norm of current gradient

ZO-RGD
RGD

0 200 400 600 800 1000

number of iterations

10-15

10-10

10-5

100

105 Norm of current gradient

ZO-RGD
RGD

0 0.2 0.4 0.6 0.8 1 1.2

CPU time

10-4

10-3

10-2

10-1

100

101

102 Norm of current gradient

ZO-RGD
RGD

(a) (n, p) = (15, 5)

0 2 4 6 8 10

CPU time

10-3

10-2

10-1

100

101

102

103 Norm of current gradient

ZO-RGD
RGD

(b) (n, p) = (25, 15)

0 10 20 30 40 50 60 70

CPU time

10-15

10-10

10-5

100

105 Norm of current gradient

ZO-RGD
RGD

(c) (n, p) = (50, 20)

Figure 2.1. The convergence curve of ZO-RGD v.s. RGD. Above: The x-axis
corresponds to the number of iterations and y-axis is the norm of Riemannian gra-
dient at corresponding points; Below: The x-axis corresponds to the CPU time (in
seconds). Here for the ZO-RGD we take the mini-batch m as suggested by our the-
ory. However, in Figure 2.2 we notice that setting m sufficiently large suffices for
obtaining the same accuracy. Correspondingly for this case, the CPU time is also
reduced, although we do not plot it explicitly.

problem sizes (n, p) = (15, 5). Proving this observation theoretically seems to be non-trivial and we

plan to examine this in a future work.

Experiment 2: k-PCA [Tripuraneni et al., 2018, Zhang et al., 2016b, Zhou et al.,

2019]. k-PCA on Grassmann manifold is a Rayleigh quotient minimization problem. Given a

normalized data matrix A ∈ Rd×n and H = A⊤A, we want to solve minX∈Gr(n,p)−1
2Tr(X

⊤HX).

The Grassmann manifold Gr(n, p) is the set of p-dimensional subspaces in Rn. We refer the reader

to Absil et al. [2008] for more details about the Grassmann quotient manifold. This problem can

be written as a finite sum problem: minX∈Gr(n,p)

∑n
i=1−

1
2Tr(X

⊤a⊤i aiX), where ai ∈ Rn is the i-th

row of A. We compare our ZO-RSGD algorithm (Algorithm 2) and its first-order counterpart RSGD

46

0 200 400 600 800 1000

number of iterations

10-4

10-3

10-2

10-1

100

101

102 Norm of current gradient

ZO-RGD
RGD

0 200 400 600 800 1000

number of iterations

10-3

10-2

10-1

100

101

102 Norm of current gradient

ZO-RGD
RGD

0 200 400 600 800 1000

number of iterations

10-3

10-2

10-1

100

101

102 Norm of current gradient

ZO-RGD
RGD

0 0.01 0.02 0.03 0.04 0.05

CPU time

10-4

10-3

10-2

10-1

100

101

102 Norm of current gradient

ZO-RGD
RGD

(a) m = 1

0 0.05 0.1 0.15 0.2 0.25 0.3

CPU time

10-3

10-2

10-1

100

101

102 Norm of current gradient

ZO-RGD
RGD

(b) m = 15

0 0.2 0.4 0.6 0.8 1

CPU time

10-3

10-2

10-1

100

101

102 Norm of current gradient

ZO-RGD
RGD

(c) m = 50

Figure 2.2. The convergence curve of ZO-RGD v.s. RGD with different choice of
m. Here the dimension is fixed to be (n, p) = (15, 5). The CPU time is in seconds.

on this problem. The results are shown in Fig. 2.3 (a) and (d). In our experiment, we set n = 100,

p = 50, and the matrix A ∈ Rn×p is a normalized randomly Gaussian data matrix. The mini-batch

sample number m is taken as 40, a number which achieves reasonable results in experiment within

a short time (taking m = np− 1
2p(p+1) is too time consuming in this case). We use the retraction

based on the QR decomposition. From Fig. 2.3 (a) and (d), we see that the performance of ZO-RSGD

is similar to its first-order counterpart RSGD.

Experiment 3: Sparse PCA [Jolliffe et al., 2003, Zou and Xue, 2018, Zou et al.,

2006]. The sparse PCA problem, arising in statistics, is a Riemannian optimization problem over

the Stiefel manifold with nonsmooth objective:

min
X∈St(n,p)

−1

2
Tr(X⊤A⊤AX) + λ∥X∥1,

47

100 101 102 103

100

Norm of gradient

ZO-RSGD
RSGD
ZO-RGD

(a) Experiment 2: m = 20

0 20 40 60 80 100 120

101

Function value

ManPG
ZO-SManPG
Riemannian Subgradient

(b) Experiment 3

0 50 100 150 200 250 300

9

10

11

12

13

14

15

16

Function value

RSGD
ZO-RSGD
RGD

(c) Experiment 4

100 101 102 103
10-5

10-4

10-3

10-2

10-1

100 Norm of gradient

ZO-RSGD
RSGD
ZO-RGD

(d) Experiment 2: m = 40

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5
Norm of the solution of subproblem

ManPG
ZO-SManPG

(e) Experiment 3

0 50 100 150 200 250 300

0.2

0.3

0.4

0.5

0.6

0.7

0.8
0.9

Norm of gradient

RSGD
ZO-RSGD
RGD

(f) Experiment 4

Figure 2.3. The convergence of three numerical experiments. The x-axis always
denotes the number of iterations. Figures (a) and (d) are results for k-PCA (Exper-
iment 2). Here three algorithms are compared: ZO-RSGD (Algorithm 2), RSGD, and
ZO-RGD (Algorithm 1). Figures (b) and (e) are results for sparse PCA (Experiment
3) in which the y-axis of Figure (e) denotes the norm of vk in (2.36) (for ManPG)
and (2.37) (for ZO-SManPG), which actually measures the optimality of the prob-
lem. Here three algorithms are compared: ZO-SManPG (Algorithm 3), ManPG and
Riemannian subgradient method. Figures (c) and (f) are results for Karcher mean
of PSD matrices problem (Experiment 4). Here three algorithms are compared:
RSGD, ZO-RSGD (Algorithm 2), and RGD.

similar to a LASSO version of k-PCA problem. Here, A ∈ Rd×n is again the normalized data

matrix. We compare our ZO-SManPG (Algorithm 3) with ManPG Chen et al. [2020] and Riemannian

subgradient method Li et al. [2021]. In our numerical experiments, we chose (d, n, p) = (50, 100, 10),

and entries of A are drawn from Gaussian distribution and rows of A are then normalized. Again

the mini-batch m is taken as np− 1
2p(p+1), the dimension of the manifold. We use the retraction

based on the Polar decomposition. The comparison results are shown in Fig. 2.3 (b) and (e). These

results show that our ZO-SManPG is comparable to its first-order counterpart ManPG and they are

both much better than the Riemannian subgradient method.

48

Experiment 4: Karcher mean of given PSD matrices [Bini and Iannazzo, 2013,

Kasai et al., 2018, Zhang and Sra, 2016]. Given a set of positive semidefinite (PSD)

matrices {Ai}ni=1 where Ai ∈ Rd×d and Ai ⪰ 0, we want to calculate their Karcher mean:

minX∈Sd
++

1
2n

∑n
i=1 (dist (X,Ai))

2, where dist (X,Y) = ∥ logm(X−1/2Y X−1/2)∥F (logm stands for

matrix logarithm) represents the distance along the corresponding geodesic between the two points

X,Y ∈ Sd++. This experiment serves as an example of optimizing geodesically convex functions

over Hadamard manifolds, with ZO-RSGD (Algorithm 2). In our numerical experiment, we take

d = 3, n = 500 and mini-batch number m = 20. We use the retraction that is based a second-

order Taylor’s expansion of the exponential mapping. We compare our ZO-RSGD algorithm with its

first-order counterpart RSGD and RGD. The results are shown in Fig. 2.3 (c) and (f), and from

these results we see that ZO-RSGD is comparable to its first-order counterpart RSGD in terms of

function value, though it is inferior to RSGD and RGD in terms of the size of the gradient.

Experiment 5: Procrustes problem with ZO-RSCRN. Here, we consider the Procrustes

problem in Experiment 1 and use the ZO-RSCRN with both estimated gradients and Hessians. Fol-

lowing Agarwal et al. [2021], we use the gradient norm as a performance measure (although the

algorithm converges to local-minimzers). We use the Lanczos method (specifically Algorithm 2

from Agarwal et al. [2021]) for solving the sub-problem in Step 4. Furthermore, as we are estimat-

ing the second order information, we set n = 12 and p = 8 and consider ϵ = 10−3. We use the

retraction based on the Polar decomposition. In Figure 2.4, (a), we plot the gradient norm versus

iterations for RSCRN in the zeroth order and second-order setting. We notice that the zeroth-order

method compares favourably to the second-order counterpart in terms of iteration complexity. Scal-

ing up ZO-RSCRN to even higher-dimension seems more challenging. One plausible approach is to

apply variance reduction techniques – we leave it as an interesting and important problem that we

plan to tackle in a future work.

2.4.2. Real world applications.

2.4.2.1. Black-box stiffness control for robotics. We now study the first motivating example

discussed in Section 2.1.1.1 on the control of robotics with the policy parameter being the stiffness

matrix KP ∈ Sd++, see Jaquier et al. [2020] for more engineering details. Mathematically, given

49

the current position of robot p̂ and current speed ṗ, the task is to minimize

(2.54) f(KP) = wp∥p̂− p∥2 + wd det(K
P) + wc cond(K

P)

with p being the new position, and cond is the condition number. With a constant external force f e

applied to the system, we have the following identity which solves p byKP : f e = KP(p̂−p)−KDṗ,

where the damping matrix KD = KP for critical damped case. As the stiffness matrix is a positive

definite matrix, the above optimization problem is a Riemannian optimization problem over the

positive definite manifold (where the manifold structure is the same as the Karcher mean problem).

The function f is not known analytically and following Jaquier et al. [2020], we use a simulated

setting for a robot (7-DOF Franka Emika Panda robot) to evaluate the function f for a given value

of KP , with the same parameters as in Jaquier et al. [2020]. We compare our ZO-RGD method with

Euclidean Zeroth-order gradient descent (ZO-GD) method Balasubramanian and Ghadimi [2021].

We use the retraction that is based a second-order Taylor’s expansion of the exponential mapping.

We test the cases when d = 2 and d = 3 for minimizing function f w.r.t KP , and the results are

shown in Figure 2.4, (b) and (c). In our experiments, the stepsize of ZO-GD is 3×10−4 and ZO-RGD

is 10−3. Note that for ZO-GD method, one has to project the matrix back to the positive definite

set, whereas the ZO-RGD method intrinsically guarantees that the iterates are positive definite, thus

is much more stable. Also, due to the fact that ZO-RGD is more stable, the stepsize of ZO-RGD can

be larger than ZO-GD, which results in faster convergence.

2.4.2.2. Zeroth-order black-box attack on Deep Neural Networks (DNNs). We now return to the

motivating example described in Section 2.1.1.2 and propose our black-box attack algorithm, as

stated in the Appendix E of our published version [Li et al., 2023]. For the sake of comparison, we

also assume the architecture of the DNN is known and use “white-box” attacks based on first-order

Riemannian optimization methods and compare against the PGD attack Madry et al. [2017], which

is a white-box attack and does not explicitly enforce any constraints on the perturbed testing data.

For simplicity, we assume the manifold is a sphere. That is, we assume that the perturbation set S

is given by S(r) = {δ : ∥δ∥2 = r}, where r is the radius of the sphere. The main motivation of the

sphere constraint is to guarantee that the perturbed image is always within a certain distance from

the original image, which is consistent with the optimal ℓ2-norm attack studied in the literature Lyu

50

(a) RSCRN

0 50 100 150 200 250
101

102

function value curve, dimension d=2

ZO-GD
ZO-RGD

(b) 2d case

0 50 100 150 200 250

102

103 function value curve, dimension d=3

ZO-GD
ZO-RGD

(c) 3d case

Figure 2.4. Figure (a) corresponds to Experiment 5. Figures (b) and (c) corre-
spond to the experiments on the robotic minimization function in (2.54). The x-axis
in all figures correspond to iteration number.

et al. [2015]. We start our zeroth-order attack from a perturbation and maximize the loss function on

the sphere. For the black-box method, to accelerate the convergence, we use Euclidean zeroth-order

optimization to find an appropriate initial perturbation (the Appendix E of our published version [Li

et al., 2023]). It is worth noting that the zeroth-order attack in Chen et al. [2017], Tu et al. [2019]

has a non-smooth objective function, which has O(n3/ϵ3) complexity to guarantee convergence

Nesterov and Spokoiny [2017], whereas the complexity needed for our method is O(d/ϵ2).

We first tested our method on the giant panda picture in the Imagenet data set Deng et al.

[2009], with the network structure the Inception v3 network structure Szegedy et al. [2016]. The

attack radius in our algorithm is taken to be 0.05 times the ℓ2 norm of the original image. We

use the orthogonal projection onto the sphere as the retraction. Both white-box and black-box

Riemannian attacks are successful, which means that they both create test images which the DNN

misclassifies, see Figure 2.5. We also tested our first and zeroth-order manifold attack algorithms

and the Euclidean black-box attack Chen et al. [2017] on the CIFAR10 dataset, and the network

structure we used is the VGG net Simonyan and Zisserman [2014]. From the experiments, we

note that the Riemannian black-box attack has a larger successful rate compared to the Euclidean

black-box attack Chen et al. [2017] when the radius of the attack is relatively small. The detailed

results are provided in Appendix E of our published version [Li et al., 2023].

51

(a) Original image (b) PGD attack (c) First-order attack on the
sphere

(d) Zeroth-order attack on
the sphere

Figure 2.5. The attack on giant panda picture Deng et al. [2009]. (a): the original
image; (b): the PGD attack with a small diameter; (c) Riemannian attack (see
our published version [Li et al., 2023]) on the sphere with the same diameter; (d):
Riemannian zeroth-order attack (see our published version [Li et al., 2023]). ’Indri’
refers to the class to which the original image is misclassified to.

2.5. Conclusions

In this chapter, we proposed zeroth-order algorithms for solving Riemannian optimization over

submanifolds embedded in Euclidean space in which only noisy function evaluations are available for

the objective. These algorithms adopt new estimators of the Riemannian gradient and Hessian from

noisy objective function evaluations, based on a Riemannian version of the Gaussian smoothing

technique. The proposed estimators overcome the difficulty of the non-linearity of the manifold

constraint and the issues that arise in using Euclidean Gaussian smoothing techniques when the

function is defined only over the manifold. The iteration complexity and oracle complexity of the

proposed algorithms are analyzed for obtaining an appropriately defined ϵ-stationary point or ϵ-

approximate local minimum. The established complexities are independent of the dimension of the

ambient Euclidean space and only depend on the intrinsic dimension of the manifold. Numerical

experiments demonstrated that the proposed zeroth-order algorithms are comparable to their first-

order counterparts.

52

CHAPTER 3

Zeroth-order Stochastic Averaging Algorithms for Riemannian

Optimization

3.1. Introduction

Consider again zeroth-order algorithms for solving the following Riemannian optimization prob-

lem (1.2), which we restated here:

min
x∈M

f(x) := Eξ[F (x, ξ)],(3.1)

whereM is a d-dimensional complete manifold, f :M→ R is a smooth function, and we can access

only the noisy function evaluations F (x, ξ). A natural zeroth-order algorithm is to estimate the

gradients of f and use them in the context of Riemannian stochastic gradient descent. The main

difficulty in doing so is the construction of the zeroth-order gradient estimation. Assuming that

we have independent samples ui that are standard normal random vectors supported on TxM,

the tangent space at x ∈M, our previous chapter proposed to construct the zeroth-order gradient

estimator as

GExp
µ (x) =

1

m

m∑
i=1

F (Expx(µui), ξi)− F (x, ξi)

µ
ui(3.2)

where µ > 0 is a smoothing parameter. Note here that if a retraction is available, then one could

also replace the exponential mapping with a retraction based estimator,

GRetr
µ (x) =

1

m

m∑
i=1

F (Retrx(µui), ξi)− F (x, ξi)

µ
ui.(3.3)

The merit of having a Gaussian distribution on the tangent space is that the variance of the

constructed estimator Gµ(x) will only depend on the intrinsic dimension d of the manifold, and is

53

Result Objective Manifold Operations m N

Zo-RSGD

Algorithm 2 in Chapter 2
Smooth,
2MB

general Retr O(d/ϵ2) Ω(1)

Zo-RASA,
Alg 5, Thm 3.2.1

Smooth,
2MB

General Exp map,
PT

O(d) Ω(1)
O(1) Ω(d)

Zo-RASA,
Alg 6, Thm 3.3.2

Smooth,
4MB

Compact,
2nd FF bound

SO-Retr,
VT

O(d) Ω(1)
O(1) Ω(1)

Table 3.1. Conditions required to establish a sample complexity of
O(d/ϵ4) for various algorithms for convergence to stationarity in the sense
of Definition 3.2.1. For instance, to obtain the O(d/ϵ4) sample complexity for
Alg 5, we need to require m = O(d) and N = Ω(1), or m = O(1) and N = Ω(d).
Here, 2MB and 4MB stand for bounded second central moment (i.e., variance) (As-
sumption 3.2.2) and fourth central moment (Assumption 3.3.3) respectively. 2nd
FF stands for second fundamental form (Theorem 3.3.1). SO-RETR stands for
second-order retraction (Assumption 3.3.4). PT and VT stand for parallel and vec-
tor transport respectively (see, Definition 1.2.5). The parameter d is the intrinsic
dimension of the manifoldM, m is the batch-size, N is the total number of iterations
required, and ϵ is the desired precision. Oracle complexity refers to the number of
calls to the stochastic zeroth-order oracle. We also remark here that although our
previous chapter uses retraction, its convergence analysis also assumes retraction-
based smoothness. For Zo-RASA, we need the initial batch-size m0 = O(d).

independent of the dimension n of the ambient Euclidean space. See also Wang [2023], Wang et al.

[2021] for additional follow-up works.

According to the previous chapter, to obtain an ϵ-approximate stationary solution of (3.1) (as

in Definition 3.2.1) using the above approach, we established a sample complexity of O(d/ϵ4), with

O(1/ϵ2) iteration complexity and m = O(d/ϵ2) per-iteration batch size. Even considering d = 1

for simplicity, this suggests for example that to get an accuracy of ϵ ≈ 10−3, one needs batch-sizes

of order m ≈ 106 resulting in a highly impractical per-iteration complexity. Intriguingly, when

implementing these algorithms in practice, favorable results are obtained even when the batch-size

is simply set between ten and fifty. Thus, there exists a discrepancy between the current theory and

practice of stochastic zeroth-order Riemannian optimization. Furthermore, in online Riemannian

optimization problems [Maass et al., 2022, Wang et al., 2023] where the data sequence is observed

in a streaming fashion, waiting for very long time-periods in each iteration in order to obtain the

required order of batch-sizes is highly undesirable.

The main motivation of the current work stems from the above-mentioned undesirable issues

associated with the use of mini-batches in stochastic Riemannian optimization algorithms by our

54

Chapter 2. We address the problem by getting rid of the use of mini-batches altogether, and by

developing batch-free, fully-online algorithm, Zeroth-order Riemannian Averaging Stochastic Ap-

proximation (Zo-RASA) algorithm, for solving (3.1). We show that to obtain the sample complexity

of O(d/ϵ4), Zo-RASA only requires m = 1 (see the remark after Theorem 3.2.1), which is a signifi-

cant improvement compared to Li et al. [2023]. The first version of Zo-RASA in Algorithm 5 uses

exponential mapping and parallel-transports. However, this version is not implementation-friendly.

As a case-in-point, consider the Stiefel manifold (see (1.7)) for which we highlight that there is

no closed-form expression for the parallel transport P xk+1

xk . Indeed, they are only available as so-

lutions to certain ordinary differential equation, which increases the per-iteration complexity of

implementing Algorithm 5. To overcome this issue and to develop a practical version of the RASA

framework, we replace the exponential mapping and parallel transport by retraction and vector

transport respectively, resulting in the practical version of Zo-RASA method in Algorithm 6. As we

discussed in Section 1.2, in the case of Stiefel manifolds, retractions cost only 1/4 the time of an

exponential mapping. Also, while there is no closed-form for parallel transport on Stiefel manifolds,

vector transport has an easy closed-form implementation. We establish that Algorithm 6 has the

same sample complexity as Algorithm 5, with significantly improved per-iteration complexity. We

now highlight two specific novelties that we introduce in this work to establish the above result.

• Moving-average gradient estimators and Lifting-based Riemannian-Lyapunov anal-

ysis. We introduce a Riemannian moving-average technique (see, Line 4 in Algorithm 5 and

Algorithm 6) and a corresponding novel Riemannian-Lyapunov technique for analyzing zeroth-

order stochastic Riemannian optimization problems, which works in the lifted space by tracking

both the optimization trajectory and the gradient along the trajectory (see (3.7)). For Eu-

clidean problems, these techniques were introduced and extended in Balasubramanian et al.

[2022], Ghadimi et al. [2020], Ruszczyński [1987], Ruszczynski [2021], Ruszczynski and Syski

[1983]. However, those works rely heavily on the Euclidean structure. Non-trivial adaptions are

needed to extend such methodology and analyses to the Riemannian settings; see Theorem 3.2.1

and Theorem 3.3.2.

• Approximation error between parallel and vector transports. A major challenge in an-

alyzing Algorithm 6 is to handle the additional errors introduced by the use of retractions and

55

Algorithm 5: Zo-RASA

1: Input: Initial point x0 ∈M, g0 = GExp
µ (x0), total number of iterations N , parameters β > 0,

τ0 = 1, τk = 1/
√
N or τk = 1/

√
dN when k ≥ 1, and stepsize tk = τk/β.

2: for k = 0, 1, 2, . . . , N − 1 do
3: xk+1 ← Expxk(−tkgk)
4: gk+1 ← (1− τk)P

xk+1

xk gk + τkP
xk+1

xk Gk
µ where Gk

µ = GExp
µ (xk) is given by (3.2) with batch-size

m = mk

5: end for

vector transports. We identify a novel geometric condition on the manifolds under consideration

(see Assumption 3.3.1) under which we provide novel error bounds between parallel and vector

transports (see Theorem 3.3.1). We further show that the proposed condition, which plays a

crucial role in our subsequent convergence analysis, is naturally satisfied if the second funda-

mental form of the manifold is bounded. We remark that the obtained error bounds, between

parallel and vector transport, are of independent interest and are potentially applicable to a

variety of other Riemannian optimization problems.

In Table 3.1, we summarize the sample complexities of stochastic zeroth-order Riemannian opti-

mization algorithms.

3.2. Zeroth-order RASA for smooth manifold optimization

We now introduce the Zeroth-order Riemannian Average Stochastic Approximation (Zo-RASA)

algorithm for solving (3.1). The formal procedure is stated in Algorithm 5, where P y
x is the parallel

transport from TxM to TyM along the minimum geodesic connecting x and y. To establish the

sample complexity of Algorithm 5, we extend the analysis of Ghadimi et al. [2020], which is in-turn

motivated by the lifting-technique introduced in Ruszczyński [1987], Ruszczynski and Syski [1983],

to the Riemannian setting. As such works heavily rely on the Euclidean structure, our proofs

involve a non-trivial adaption of such techniques.

We first recalled from Chapter 1 that we have the following notion of stationarity:

Definition 3.2.1 (ϵ-approximate first-order stationary solution for (3.1)). We call a point x̄

an ϵ-approximate first-order stationary solution for (3.1) if it satisfies E[∥gradf(x̄)∥2x̄] ≤ ϵ2, where

the expectation is with respect to both the problem and algorithm-based randomness.

56

In our convergence analysis, we always choose τ0 = 1, and we consider two choices of τk when

k ≥ 1:

(3.4) τk = 1/
√
N or τk = 1/

√
dN, k ≥ 1,

which corresponds to large or single batch, respectively. Moreover, we always choose tk = τk/β,

where β is a positive constant determined by the smoothness constant in Assumption 3.2.1 (see

Theorem 3.2.1), so that the step-size and the averaging weights are in the same order. Furthermore,

we define

(3.5) Γ0 = Γ1 = 1, and Γk = Γ1

k−1∏
i=1

(1− τ2i).

This leads to the following inequalities which will be used frequently in our convergence analysis:

(3.6)
N∑

i=k+1

τiΓi ≤ Γk+1 and
N∑

i=k+1

τ2i Γi ≤ τkΓk+1.

To proceed, we construct the following potential function

W (x, g) := (f(x)− f∗)− η(x, g), where η(x, g) := − 1

2β
∥g∥2x, g ∈ TxM,(3.7)

where f∗ = minx∈M f(x) and β > 0 is a constant to be determined later. Note that the potential

function in (3.7) has the component of both function value and the norm of the (estimated) gradi-

ents, also that W is always non-negative. In our analysis, we proceed by bounding the difference of

potential function between successive iterates. More specifically, using the convexity of the norm,

for any pair (x, g), we have ∥gradf(x)∥2x ≤ −2β η(x, g) + 2∥g − gradf(x)∥2x. This observation will

be leveraged in the proof of Theorem 3.2.1 to obtain the sample complexity of Algorithm 5 for

obtaining an ϵ-approximate stationary solution.

We also highlight that our convergence analysis extensively utilizes the isometry property of

parallel transport, stated in (1.8), i.e., ⟨P y
x (η), P

y
x (ξ)⟩y = ⟨η, ξ⟩x. This result is a generalization of

the isometry in the Euclidean spaces, since the inner product in Euclidean spaces is unchanged if

one moves the beginning point of the vectors together. A direct result of this identity is that the

length of the vectors is unchanged, namely ∥P y
x (ξ)∥y = ∥ξ∥x, which we will also use extensively.

57

We now introduce the assumptions needed for our analysis.

Assumption 3.2.1. The function f : M → R is L-smooth on M, i.e., ∀x, y ∈ M, we have

∥P y
x gradf(x) − gradf(y)∥y ≤ L d(x, y). An immediate consequence (see, for example, Boumal

[2023, Proposition 10.53]) of this condition is that we have |f(y)− f(x)−⟨gradf(x),Exp−1
x (y)⟩x| ≤

L
2 ∥Exp

−1
x (y)∥2x.

Assumption 3.2.1 is a generalization of the standard gradient-Lipschitz assumption in Eu-

clidean optimization [Lan, 2020, Nesterov, 2018] to the Riemannian setting, and is made in several

works [Boumal, 2023]. To generalize it to the Riemannian setting, due to the fact that gradf(x)

and gradf(y) are not in the same tangent space, we need to utilize parallel transports P y
x to match

the two vectors in the same tangent space.

Throughout the paper, we define Fk as the σ-algebra generated by all the randomness till itera-

tion k of the algorithms. Namely, for Algorithm 5, we have Fk = σ(ξ0, . . . , ξk, x0, . . . , xk, g0, . . . , gk).

Assumption 3.2.2. Along the trajectory of the algorithm, the stochastic gradients are unbiased

and have bounded-variance, i.e., for k ∈ {1, . . . , N}, we have Eξ[gradF (xk; ξk)|Fk−1] = gradf(xk)

and Eξ[∥gradF (xk; ξk)− gradf(xk)∥2
xk |Fk−1] ≤ σ2.

The above assumption is widely used in stochastic Riemannian optimization literature; see,

for example, Boumal [2023], Li et al. [2023], Zhang et al. [2016a], and generalizes the standard

assumption used in Euclidean stochastic optimization [Lan, 2020, Nesterov, 2018].

Now we proceed to the convergence analysis of Algorithm 5. We first state the following stan-

dard result characterizing the approximation error of GExp
µ (given by (3.2)) to the true Riemannian

gradient.

Lemma 3.2.1 (Proposition 1 in Li et al. [2023] with exponential mapping). Under Assumptions

3.2.1, 3.2.2 we have ∥EGExp
µ (x)− gradf(x)∥2x ≤

µ2L2

4 (d+ 3)3, E∥GExp
µ (x)∥2x ≤ µ2L2(d+ 6)3 + 2(d+

4)∥gradf(x)∥2x and E∥GExp
µ (x)− gradf(x)∥2x ≤ µ2L2(d+ 6)3 + 8(d+4)

m σ2 + 8(d+4)
m ∥gradf(x)∥2x, where

the expectation is taken toward all the Gaussian vectors in Gµ and the random variable ξ.

Based on the above result, we have the following Lemma 3.2.2 which bounds the difference

of gk to the true Riemannian gradient gradf(xk), and Lemma 3.2.3 bounds the difference of two

58

consecutive gk, where we use parallel transport to make gk and gk+1 in the same tangent space,

i.e., ∥P xk

xk+1g
k+1 − gk∥2

xk .

Lemma 3.2.2. Suppose the Assumptions 3.2.1 and 3.2.2 hold, and {xk, gk} is generated by

Algorithm 5. We have

E∥gk − gradf(xk)∥2xk(3.8)

≤Γkσ̃
2
0 + Γk

k∑
i=1

((1 + τi−1)τi−1

Γi

L2∥gi−1∥2
xi−1

β2
+

τ2i−1

Γi
σ̃2
i−1 + τkσ̂

2
)
,

where the expectation E is taken with respect to all random variables up to iteration k, including

the random variables {ui}ki=1 used to construct the zeroth-order estimator as in (3.2). Here the

notations are defined as:

σ̂2 :=
µ2L2

4
(d+ 3)3

σ̃2
k := σ2

k +
8(d+ 4)

mk
E∥gradf(xk)∥2xk where σ2

k := µ2L2(d+ 6)3 +
8(d+ 4)

mk
σ2.

(3.9)

Moreover, from (3.6) we have

N∑
k=1

τkE∥gk − gradf(xk)∥2xk ≤
N−1∑
k=0

(
(1 + τk)τk

L2E∥gk∥2
xk

β2
+ τ2k σ̃

2
k + τkσ̂

2

)
+ σ̃2

0,

N∑
k=1

τ2kE∥gk − gradf(xk)∥2xk ≤
N−1∑
k=0

(
(1 + τk)τ

2
k

L2E∥gk∥2
xk

β2
+ τ3k σ̃

2
k + τ2k σ̂

2

)
+

N∑
k=1

τ2k σ̃
2
0.

Proof. Firstly, note that we have the following: gk − gradf(xk) = (1 − τk−1)P
xk

xk−1g
k−1 +

τk−1P
xk

xk−1G
k−1
µ −gradf(xk) = (1−τk−1)P

xk

xk−1(g
k−1−gradf(xk−1))+(P xk

xk−1gradf(x
k−1)−gradf(xk))+

τk−1P
xk

xk−1(G
k−1
µ − gradf(xk−1)) = (1 − τk−1)P

xk

xk−1(g
k−1 − gradf(xk−1)) + τk−1ek−1 + τk−1∆

f
k−1.

Hence, we have

∥gk − gradf(xk)∥2xk

≤(1− τk−1)∥gk−1 − gradf(xk−1)∥2xk−1 + τk−1∥ek−1∥2xk + τ2k−1∥∆
f
k−1∥

2
xk

+ 2τk−1⟨(1− τk−1)P
xk

xk−1(g
k−1 − gradf(xk−1)) + τk−1ek−1,∆

f
k−1⟩xk ,

(3.10)

59

where the notation is defined as ek−1 :=
1

τk−1
(P xk

xk−1gradf(x
k−1)−gradf(xk)), and ∆f

k−1 := P xk

xk−1(G
k−1
µ −

gradf(xk−1)). Denote δk−1 = ⟨(1− τk−1)P
xk

xk−1(g
k−1−gradf(xk−1))+ τk−1ek−1,∆

f
k−1⟩xk . The main

novelty in the proof of this lemma is that δ is no longer an unbiased estimator (which is true for

the first-order situation). We have by Lemma 3.2.1 that

2Euk [δk−1] = 2⟨(1− τk−1)P
xk

xk−1(g
k−1 − gradf(xk−1)) + τk−1ek−1,Euk [∆

f
k−1|Fk−2]⟩xk

≤∥(1− τk−1)P
xk

xk−1(g
k−1 − gradf(xk−1)) + τk−1ek−1∥2xk + ∥EukGk−1

µ − gradf(xk−1)∥2xk−1

≤(1− τk−1)∥gk−1 − gradf(xk−1)∥2xk−1 + τk−1∥ek−1∥2xk + σ̂2.

Notice that in the above computation, the expectation is only taken with respect to the Gaussian

random variables that we used to construct Gµ(x
k−1). Plugging this back to (3.10), we have

Euk∥gk − gradf(xk)∥2
xk ≤ τk−1σ̂

2 + (1− τ2k−1)∥gk−1− gradf(xk−1)∥2
xk−1 + τk−1(1 + τk−1)∥ek−1∥2xk +

τ2k−1∥∆
f
k−1∥

2
xk . Now dividing both sides of this inequality by our new definition of Γk, we get

1
Γk

Euk∥gk−gradf(xk)∥2
xk ≤ 1

Γk−1
∥gk−1−gradf(xk−1)∥2

xk−1 +
(1+τk−1)τk−1

Γk
∥ek−1∥2xk +

τ2k−1

Γk
∥∆f

k−1∥
2
xk +

τk−1

Γk
σ̂2.

By Assumptions 3.2.1, 3.2.2 and Lemma 3.2.1, we have that ∥ei∥2xi+1 ≤ L2

τ2i
d(xi, xi+1)2 ≤

L2t2i ∥gi∥2xi
τ2i

=
L2∥gi∥2

xi

β2 , and E[∥∆f
i ∥2xi+1 |Fi−1] ≤ σ2

i +
8(d+4)
mi

E[∥gradf(xi)∥2
xi |Fi−1]. Hence, by applying

law of total expectation (to take the expectation over all random variables), we have 1
Γk

E∥gk −

gradf(xk)∥2
xk ≤ 1

Γk−1
E∥gk−1 − gradf(xk−1)∥2

xk−1 +
(1+τk−1)τk−1

Γk

L2E∥gk−1∥2
xk−1

β2 +
τ2k−1

Γk
σ̃2
k−1 +

τk−1

Γk
σ̂2.

Now by telescoping the sum in the above equation, we get (note that we take g0 = Gµ(x
0))

E∥gk − gradf(xk)∥2xk ≤ ΓkE∥Gµ(x
0)− gradf(x0)∥2x0

+ Γk

k∑
i=1

(
(1 + τi−1)τi−1

Γi

L2E∥gi−1∥2
xi−1

β2
+

τ2i−1

Γi
σ̃2
i−1 +

τi−1

Γi
σ̂2

)

≤ Γkσ̃
2
0 + Γk

k∑
i=1

(
(1 + τi−1)τi−1

Γi

L2E∥gi−1∥2
xi−1

β2
+

τ2i−1

Γi
σ̃2
i−1 +

τi−1

Γi
σ̂2

)
.

60

This proves (3.8). From (3.6) we have

N∑
k=1

τkE∥gk − gradf(xk)∥2xk

≤
N∑
k=1

τkΓk

k∑
i=1

(
(1 + τi−1)τi−1

Γi

L2E∥gi−1∥2
xi−1

β2
+

τ2i−1

Γi
σ̃2
i−1 +

τi−1

Γi
σ̂2

)
+ σ̃2

0

=
N−1∑
k=0

(N∑
i=k+1

τiΓi

)
1

Γk+1

(
(1 + τk)τk

L2E∥gk∥2
xk

β2
+ τ2k σ̃

2
k + τkσ̂

2

)
+ σ̃2

0

≤
N−1∑
k=0

(
(1 + τk)τk

L2E∥gk∥2
xk

β2
+ τ2k σ̃

2
k + τkσ̂

2

)
+ σ̃2

0,

where we used
∑N

k=1 τkΓk ≤ Γ1 = 1 due to (3.6), so that the last term is simply σ̃2
0.

By using similar calculations, we have that

N∑
k=1

τ2kE∥gk − gradf(xk)∥2xk ≤

N∑
k=1

τ2kΓk

k∑
i=1

(
(1 + τi−1)τi−1

Γi

L2E∥gi−1∥2
xi−1

β2
+

τ2i−1

Γi
σ̃2
i−1 +

τi−1

Γi
σ̂2

)
+

N∑
k=1

τ2k σ̃
2
0

=

N−1∑
k=0

(
N∑

i=k+1

τ2i Γi

)
1

Γk+1

(
(1 + τk)τk

L2E∥gk∥2
xk

β2
+ τ2k σ̃

2
k + τkσ̂

2

)
+

N∑
k=1

τ2k σ̃
2
0

≤
N−1∑
k=0

τk

(
(1 + τk)τk

L2E∥gk∥2
xk

β2
+ τ2k σ̃

2
k + τkσ̂

2

)
+

N∑
k=1

τ2k σ̃
2
0,

which completes the proof. □

Lemma 3.2.3. Suppose Assumptions 3.2.1 and 3.2.2 hold. We have

N∑
k=1

E∥P xk

xk+1g
k+1 − gk∥2xk ≤ 2

N∑
k=0

τ2k σ̂
2 + 2

N∑
k=0

(
τ2k + τ3k

)
σ2
k + 2

N∑
k=0

τ2k σ̃
2
0

+ 2

N∑
k=0

(1 + τk)τ
2
k

L2E∥gk∥2
xk

β2
+ 2

N∑
k=0

(
τ2k + τ3k

) 8(d+ 4)

mk
E∥gradf(xk)∥2xk

(3.11)

where the expectation E is taken with respect to all random variables up to iteration k, which includes

the Gaussian variables u in the zeroth-order estimator as in (3.2).

61

Proof. First note that ∥P xk

xk+1g
k+1−gk∥2

xk = τ2k∥Gk
µ−gk∥2xk = τ2k∥Gk

µ−gradf(xk)+gradf(xk)−

gk∥2
xk ≤ 2τ2k∥Gk

µ − gradf(xk)∥2
xk + 2τ2k∥gradf(xk) − gk∥2

xk . Taking the expectation conditioned on

Fk−1, we get

1

2
E[∥P xk

xk+1g
k+1 − gk∥2xk |Fk−1]

≤τ2kE[∥Gk
µ − gradf(xk)∥2xk |Fk−1] + τ2kE[∥gradf(xk)− gk∥2xk |Fk−1]

≤τ2k
(
σ2
k +

8(d+ 4)

mk
E[∥gradf(xk)∥2xk |Fk−1]

)
+ τ2kE[∥gradf(xk)− gk∥2xk |Fk−1],

where last inequality is by Lemma 3.2.1. Now using law of total expectation to take the expectation

for all random variables and summing up over k = 0, ..., N − 1, we have

1

2

N∑
k=1

E∥P xk

xk+1g
k+1 − gk∥2xk

≤
N∑
k=1

τ2kσ
2
k +

N∑
k=1

τ2k
8(d+ 4)

mk
E∥gradf(xk)∥2xk +

N∑
k=1

τ2kE∥gradf(xk)− gk∥2xk

≤
N∑
k=0

τ2k σ̂
2 +

N∑
k=0

(
τ2k + τ3k

)
σ2
k +

N∑
k=0

τ2k σ̃
2
0

+

N∑
k=0

(1 + τk)τ
2
k

L2E∥gk∥2
xk

β2
+

N∑
k=0

(
τ2k + τ3k

) 8(d+ 4)

mk
E∥gradf(xk)∥2xk ,

where the second inequality is by Lemma 3.2.2. □

Now we are ready to present our main result.

Theorem 3.2.1. Suppose Assumptions 3.2.1 and 3.2.2 hold. In Algorithm 5, we set µ =

O
(

1
Ld3/2N1/4

)
, and β ≥ 4L. Then the following holds.

(i) If we choose τ0 = 1, τk = 1/
√
N , k ≥ 1 and mk ≡ 8(d + 4), k ≥ 0, then we have

1
N+1

∑N
k=0 E∥gradf(xk)∥2xk ≤ O(1/

√
N).

(ii) If we choose τ0 = 1, τk = 1/
√
dN , k ≥ 1, m0 = d and mk = 1 for k ≥ 1, then we have

1
N+1

∑N
k=0 E∥gradf(xk)∥2xk ≤ O(

√
d/N), for all N = Ω(d).

Here the expectation E is taken with respect to all random variables up to iteration k, which includes

the random variables u in zeroth-order estimator (3.2).

62

Before we proceed to the proof of Theorem 3.2.1, we have the following Lemma 3.2.4 which will

be utilized in the proof.

Lemma 3.2.4. Suppose we take parameters the same as Theorem 3.2.1, then we have

τk
2β
−

τ2kL

2β2
−

(1 + τk)τ
2
k

β

L2

β2
≥ τk

4β
,(3.12a)

τk
2
−
(
4

(
2L2

β2
+ 1

)
(1 + τk) + 1

)
8(d+ 4)

mk
τ2k ≥

τk
4
.(3.12b)

Proof. To show (3.12a), using β ≥ 4L, we just need to show that τk/8+ (1+ τk)τk/16 ≤ 1/4,

which holds naturally in both cases (i) and (ii).

As for (3.12b), again by β ≥ 4L we just need to show that
(
4(1/8+1)(1+τk)+1

)
(8(d+ 4)/mk)τk ≤

1/4. In case (i), this is equivalent to 18τ2k + 22τk − 1 ≤ 0, which is guaranteed when N ≥ 520.

For case (ii), similar calculation shows that we need τk ≤ (
√
222 + 9/(d+ 4)− 22)/36, which is

guaranteed when N ≥ 3.2 · 104 · (d+ 4)2/d. □

Proof of Theorem 3.2.1. By the isometry property of parallel transport,

η(xk, gk)− η(xk+1, gk+1) =
1

2β
∥gk+1∥2xk+1 −

1

2β
∥gk∥2xk

=
1

2β
∥P xk

xk+1g
k+1∥2xk −

1

2β
∥gk∥2xk

=− ⟨− 1

β
gk, P xk

xk+1g
k+1 − gk⟩xk +

1

2β
∥P xk

xk+1g
k+1 − gk∥2xk .

By combining this and Assumption 3.2.1, we have the following bound for the difference of the

merit function (defined in (3.7)), evaluated at successive iterates:

W (xk+1, gk+1)−W (xk, gk)

≤− tk⟨gradf(xk), gk⟩xk +
t2kL

2
∥gk∥2xk +

1

β
⟨gk, P xk

xk+1g
k+1 − gk⟩xk +

1

2β
∥P xk

xk+1g
k+1 − gk∥2xk

=

(
t2kL

2
− tk

)
∥gk∥2xk + tk⟨gk, Gk

µ − gradf(xk)⟩xk +
1

2β
∥P xk

xk+1g
k+1 − gk∥2xk .

63

Moreover, we have

Euk [⟨gk, Gµ(x
k)− gradf(xk)⟩xk] = ⟨gk,EukGµ(x

k)− gradf(xk)⟩xk

≤1

2
∥gk∥2xk +

1

2
∥EukGµ(x

k)− gradf(xk)∥2xk ≤
1

2
∥gk∥2xk +

1

2
σ̂2,

where the expectation is only taken with respect to the Gaussian random variables that we used

to construct Gµ(x
k). Therefore, by using the law of total expectation, we have EW (xk+1, gk+1)−

EW (xk, gk) ≤ 1
β

(
τ2kL
2β −

τk
2

)
E∥gk∥2

xk +
τk
2β σ̂

2 + 1
2βE∥P

xk

xk+1g
k+1 − gk∥2

xk , and we thus have (by sum-

ming up the above inequality over k = 0, ..., N):

N∑
k=0

(
EW (xk+1, gk+1)− EW (xk, gk)

)

≤
N∑
k=0

1

2β

(
τ2kL

β
− τk

)
E∥gk∥2xk +

N∑
k=0

τk
2β

σ̂2 +
1

2β

N∑
k=1

E∥P xk

xk+1g
k+1 − gk∥2xk ,

(3.13)

where the last term sums from 1 since g1 − P x1

x0 g
0 = τ0(G

0
µ − g0) = 0.

Utilizing (3.11) and (3.13), we have (note that W ≥ 0)

N∑
k=0

1

2β

(
τk −

τ2kL

β

)
E∥gk∥2xk ≤W (x0, g0) +

N∑
k=0

τk
2β

σ̂2 +
1

2β

N∑
k=1

E∥P xk

xk+1g
k+1 − gk∥2xk

≤W (x0, g0) +
1

2β

N∑
k=0

(τk + 2τ2k)σ̂
2 +

1

β

N∑
k=0

(
τ2k + τ3k

)
σ2
k +

1

β

N∑
k=0

τ2k σ̃
2
0

+
1

β

N∑
k=0

(1 + τk)τ
2
k

L2E∥gk∥2
xk

β2
+

1

β

N∑
k=0

(
τ2k + τ3k

) 8(d+ 4)

mk
E∥gradf(xk)∥2xk .

Combining this with (3.12a) we have

N∑
k=0

τkE∥gk∥2xk ≤ 4βW (x0, g0) + 2

N∑
k=0

(τk + 2τ2k)σ̂
2 + 4

N∑
k=0

(
τ2k + τ3k

)
σ2
k

+ 4

N∑
k=0

τ2k σ̃
2
0 + 4

N∑
k=0

(
τ2k + τ3k

) 8(d+ 4)

mk
E∥gradf(xk)∥2xk .

(3.14)

64

By Lemma 3.2.2 and (3.14), we get (also by τk ≤ 1)

1

2

N∑
k=0

τkE∥gradf(xk)∥2xk ≤
N∑
k=0

τkE∥gk − gradf(xk)∥2xk +

N∑
k=0

τkE∥gk∥2xk

≤
N−1∑
k=0

τ2k σ̃
2
k +

N−1∑
k=0

τkσ̂
2 +

(
2L2

β2
+ 1

) N∑
k=0

τkE∥gk∥2xk + 2σ̃2
0

≤
(
8L2

β
+ 4β

)
W (x0, g0) +

N∑
k=0

[
τk + 2

(
2L2

β2
+ 1

)
(τk + 2τ2k)

]
σ̂2

+

N∑
k=0

[
τ2k + 4

(
2L2

β2
+ 1

)
(τ2k + τ3k)

]
σ2
k +

[
4

(
2L2

β2
+ 1

) N∑
k=0

τ2k + 2

]
σ̃2
0

+
N∑
k=0

[
4

(
2L2

β2
+ 1

)
(τ2k + τ3k) + τ2k

]
8(d+ 4)

mk
E∥gradf(xk)∥2xk ,

(3.15)

where τ0E∥g0− gradf(x0)∥2x0 ≤ σ̃2
0 is used in the last term on the second line. By combining (3.15)

and (3.12b) we get

N∑
k=0

τk
4
E∥gradf(xk)∥2xk

≤
N∑
k=0

[
τk
2
−
(
4

(
2L2

β2
+ 1

)
(τ2k + τ3k) + τ2k

)
8(d+ 4)

mk

]
E∥gradf(xk)∥2xk

≤
(
8L2

β
+ 4β

)
W (x0, g0) +

N∑
k=0

[
τk + 2

(
2L2

β2
+ 1

)
(τk + 2τ2k)

]
σ̂2

+

N∑
k=0

[
τ2k + 4

(
2L2

β2
+ 1

)
(τ2k + τ3k)

]
σ2
k +

[
4

(
2L2

β2
+ 1

) N∑
k=0

τ2k + 2

]
σ̃2
0.

(3.16)

For case (i) in Theorem 3.2.1, (3.16) can be rewritten as

1

N + 1

N∑
k=0

E∥gradf(xk)∥2xk ≤
c1W (x0, g0)√

N
+ c2σ̂

2 +
c3

1
N

∑N
k=0 σ

2
k√

N
+

c4√
N

σ̃2
0,

for some absolute positive constants c1, c2, c3 and c4. The proof for case (i) is completed by noting

that (see (3.9)) σ̂2 = O(1/
√
N), 1

N

∑N
k=0 σ

2
k = O(1) and σ̃2

0 = O(1).

65

For case (ii) in Theorem 3.2.1, (3.16) can be rewritten as

1

N + 1

N∑
k=0

E∥gradf(xk)∥2xk ≤ c′1W (x0, g0)

√
d

N
+ c′2σ̂

2 +
c′3

1
N

∑N
k=0 σ

2
k√

dN
+ c′4

√
d

N
σ̃2
0,

for some positive constants c′1, c
′
2, c

′
3 and c′4. The proof of case (ii) is completed by noting that

σ̃2
0 = O(1), σ̂2 = O(1/

√
N) and 1

N

∑N
k=0 σ

2
k = O(d). □

Remark 3.2.1. If we sample R ∈ {0, 1, 2, ..., N} with P(R = k) = τk/(
∑N

k=0 τk), then the left

hand side of the inequalities in Theorem 3.2.1, i.e., 1
N+1

∑N
k=0 E∥gradf(xk)∥2xk , becomes E∥gradf(xR)∥2

xR .

If we use this sampling in case (i) of Theorem 3.2.1, then to get an ϵ-approximate stationary so-

lution as in Definition 3.2.1, we require an iteration complexity of N = O(1/ϵ4) and so an oracle

complexity of Nm = O(d/ϵ4). Case (i) requires m = O(d) per-iteration, which might be inconve-

nient in practice. Case (ii) of Theorem 3.2.1 avoids this, as in case (ii) both the iteration complexity

and the oracle complexity are N = O(d/ϵ4), with batch size m = O(1). This makes case (ii) more

convenient to use in practice, from a streaming or online perspective. For the simulations in Sec-

tion 3.4, we thus choose m = O(1) and apply the result from case (ii). We also remark that the

above results provide concrete solutions to the question raised by Scheinberg [2022], namely, on the

need for mini-batches (and its order per-iteration) in zeroth-order stochastic optimization1.

Remark 3.2.2. Notice that to prove (3.12b), we need N = Ω(d) for case (ii) in Theorem 3.2.1.

We can remove this condition if in addition we have that gradf(x) is uniformly upper bounded:

∥gradf(x)∥x ≤ G, ∀x ∈ M; see also Assumption 3.3.2 which we utilize in the next section. Under

this condition, (3.15) directly gives:

1

2

N∑
k=0

τkE∥gradf(xk)∥2xk ≤
N∑
k=0

[
τk + 2

(
2L2

β2
+ 1

)
(τk + 2τ2k)

]
σ̂2

+

N∑
k=0

[
τ2k + 4

(
2L2

β2
+ 1

)
(τ2k + τ3k)

]
σ2
k +

[
4

(
2L2

β2
+ 1

) N∑
k=0

τ2k + 2

]
σ̃2
0

+
N∑
k=0

[
4

(
2L2

β2
+ 1

)
(τ2k + τ3k) + τ2k

]
8(d+ 4)

mk
G2 +

(
8L2

β
+ 4β

)
W (x0, g0),

1Although Scheinberg [2022] focuses on the Euclidean case, the discussion there also holds in the Riemannian setting.

66

whose right hand side has the same order as (3.16). Therefore in this case we do not need N = Ω(d)

for case (ii) to achieve the same rates of convergence as in Theorem 3.2.1.

3.3. RASA with retractions and vector transports

Algorithm 5 is based on exponential mapping and parallel transport, which has a high per-

iteration complexity for various manifold choicesM. In this section, we focus on reducing the per-

iteration complexity of the Zo-RASA algorithm. The approach is based on replacing the exponential

mapping and parallel transport with retractions and vector transports, respectively, which leads to

practically efficient implementations and improved per-iteration complexity.

The convergence analysis of algorithms with retractions and vector transports are sharply dif-

ferent and much harder than the one we presented in Section 3.2. Recall that the analysis in

Section 3.2 relied on the isometry property (1.8) of the parallel transports, which is no longer avail-

able for vector transports. We hence assume explicit global error bounds between the difference of

retraction to exponential mapping, as well as vector transport to parallel transport in Assumption

3.3.1. In Section 3.3.1.2 we provide conditions on the manifold under which such assumptions are

naturally satisfied and provide explicit examples. Based on this, we establish that under a bounded

fourth (instead of the second) central moment condition, the same sample complexity result as in

the previous section could be obtained for the practical versions of Zo-RASA algorithm on compact

manifolds.

3.3.1. Approximation error of retractions and vector transports. We start with the

following condition on the vector transport used; recall the notation from Definition 1.2.5.

Assumption 3.3.1. If x+ = Retrx(g), g ∈ TxM, then with d denoting the geodesic distance,

the vector transport Tg satisfies the following inequalities:

∥Tg(v)∥x+ ≤ ∥v∥x, d(x, x+) ≤ ∥g∥x, ∥Tg(v)− P x+

x (v)∥x+ ≤ C∥v∥xd(x, x+)(3.17)

for any vector v ∈ TxM.

An intuitive explanation of the first inequality in (3.17) is that our retraction and vector trans-

port are “conservative” so that their length/magnitude is not longer than the exact operation of

67

exponential mapping and parallel transport. As for the last inequality in (3.17), we are essentially

positing that the vector transport would not “twist” the vector too much so that its difference

from the parallel-transported vector is not large. In general, conditions in (3.17) require the vector

transport not to be very far from the parallel-transported vectors on the new tangent space.

3.3.1.1. Comparison to prior works. We now provide a detailed comparison to similar type of

conditions proposed in two prior works, Huang et al. [2015] and Sato [2022], and highlight the

differences and advantages of our proposal. According to the definition of vector transport in

Definition 1.2.5, we need to specify a retraction associated with the transport so that Tηx(ξx) ∈

TRx(ηx)M. In this section, we consider the projection retraction, denoted simply as R.

Given two transports, TS and TR, Huang et al. [2015] propose certain conditions on approximat-

ing one with the other. First they require that TS is isometric, i.e., ⟨TSη(ξ), TSη(ζ)⟩Rx(η) = ⟨ξ, ζ⟩x,

hence we can basically regard TS as parallel transport for comparison. Let TR denote the differential

of the retraction, given by TRη(ξ) = DRx(η)[ξ] =
d
dtRx(η + tξ) ∈ TRx(η)M. Now the conditions

stated in Equations (2.5) and (2.6) in Huang et al. [2015] are as follows: there exists a neighbor-

hood U of x, such that ∀y ∈ U we have ∥TSη − TRη∥op ≤ c0∥η∥x and ∥T −1
Sη
− T −1

Rη
∥op ≤ c0∥η∥x,

where η = R−1
x (y) and ∥ · ∥op is the operator norm. These assumptions are essentially local results,

and as a result, Huang et al. [2015] needs to impose an additional stringent condition (see, their

Assumption 3.2) that all the updates in their algorithms are already sufficiently close to the (local)

optimal value to prove their convergence results. With the above conditions (in particular for a T1η
satisfying their conditions in (2.5) and (2.6)), Huang et al. [2015] shows in Lemma 3.5 that locally

we have ∥T1η(ξ)− T2η(ξ)∥y ≤ c0∥η∥x∥ξ∥x. The proof of their Lemma 3.5 relies on the smoothness

of the local coordinate form of the vector transports, which could hold only when we have a coor-

dinate chart covering the local neighborhood we consider. Hence, the assumptions in Huang et al.

[2015] are in a different flavor from ours. In particular, our assumptions are global, and we show in

Theorem 3.3.1 that they are satisfied by a certain (global) assumption on the second fundamental

form of the manifoldM.

The existing work Huang et al. [2015] also assumes the so-called locking condition TSη(ξ) =

βTRη(ξ), where β = ∥ξ∥x/∥TRξ
(ξ)∥Rξ(x), which means that the approximating transport keeps the

same direction as the parallel transport TS . In our analysis, we avoid such a condition since we

68

are trying to transport two vectors gk and Gk
µ (see Algorithm 6), and not just one previous gra-

dient as in the Riemannian quasi-Newton method [Huang et al., 2015]. Another existing work

Sato [2022] requires algorithm-specific conditions in their Assumption 3.1. To elaborate, we re-

call that the deterministic Riemannian conjugate gradient iterates (Algorithm 1 in Sato [2022])

are given by xk+1 ← Rxk
(tkηk) and ηk+1 ← −gradf(xk+1) + βk+1skT

k(ηk), where tk, βk and sk

are parameters and T k is a transport map from Txk
M to Txk+1

M. Given this, their Assump-

tion 3.1 requires that there exist C ≥ 0 and index sets K1 ⊂ N and K2 = N − K1 such that∥∥T (k) (ηk)−DRxk
(tkηk) [ηk]

∥∥
xk+1

≤ Ctk ∥ηk∥2xk
, k ∈ K1 and

∥∥T (k) (ηk)−DRxk
(tkηk) [ηk]

∥∥
xk+1

≤

C
(
tk + t2k

)
∥ηk∥2xk

, k ∈ K2.

Our assumption differs from the above in three aspects: (i) we do not make algorithm-specific

assumptions, where each inequality depends on the iterate number k; (ii) we are not only compar-

ing transporting ηk (which is the direction along which we update xk), but also the zeroth-order

estimator Gk
µ (see Algorithm 6), i.e., we assume a more general inequality by replacing DRx(tkη)[η]

with DRx(tkη)[ξ], where ξ can be different from η; (iii) we derive the last inequality in (3.17) using

global assumption of second fundamental form of the manifold M in Theorem 3.3.1, instead of

assuming it.

3.3.1.2. Illustrative Examples. We now further inspect Assumption 3.3.1 by checking the condi-

tions under which (3.17) holds in general, and also verifying it for various matrix-manifolds arising

in applications.

We start with the first inequality in (3.17). It holds naturally if the manifold is a submanifold

and the vector transport is the orthogonal projection, due to the non-expansiveness of orthogonal

projections. The second inequality in (3.17) is much trickier. For the scope of this work, we

show that the second equation in (3.17) holds for projectional retractions and projectional vector

transports on Stiefel manifold, which also includes spheres and orthogonal groups as special cases.

If the inverse of the retraction in Assumption 3.3.1 is well-defined, the second inequality in (3.17)

could equivalently be stated as ∥Exp−1
x (x+)∥x ≤ ∥Retr−1

x (x+)∥x, which may hold for a larger class

of manifolds and retractions. We leave a detailed study of this as future work.

Stiefel manifold. Consider the Stiefel manifold St(d, p) defined in (1.7), with the tangent

space TX St(d, p) = {ξ|X⊤ξ + ξ⊤X = 0} and Euclidean inner product ⟨X,Y ⟩ := tr(X⊤Y). We

69

consider the projectional retraction [Absil and Malick, 2012] given by X+ = RX(ξ) := UV ⊤,

where X + ξ = UΣV ⊤ is the (thin) singular value decomposition of X + ξ. Also, the projectional

vector transport T is simply projecting a tangent vector ξ ∈ TX0 St(d, p) to TX St(d, p). It is clear

that ∥T (ξ)∥ ≤ ∥ξ∥ due to the non-expansiveness of orthogonal projections (note that TX St(d, p) is

simply a linear subspace). To show d(X,X+) ≤ ∥ξ∥, denote γ(t) the minimal geodesic connectingX

and X+ with γ(0) = X and γ(1) = X+, so that d(X,X+) =
∫ 1
0 ∥γ

′(t)∥dt. Notice that we can define

another curve c(t) = U(t)V ⊤(t), where X+tξ = U(t)Σ(t)V ⊤(t) is the singular value decomposition.

The curve c(t) = RetrX(tξ) is the parameterized curve of projectional retraction. Now using the

distance with respect to the minimal geodesic, we have d(X,X+) =
∫ 1
0 ∥γ

′(t)∥dt ≤
∫ 1
0 ∥c

′(t)∥dt ≤∫ 1
0 ∥ξ∥dt = ∥ξ∥, where ∥c′(t)∥ ≤ ∥ξ∥ is due to the non-expansiveness of orthogonal projections,

namely, ∥c(t1) − c(t2)∥ ≤ ∥X + t1ξ − (X + t2ξ)∥. Indeed, although St(d, p) is not a convex set,

the non-expansiveness condition still holds [Gallivan and Absil, 2010], because (X + ξ)⊤(X + ξ) =

Ip + ξ⊤ξ ⪰ Ip, and the projection of X + ξ onto the Stiefel manifold is the same as projection

onto its convex hull {X ∈ Rd×p|∥X∥2 ≤ 1}. Now we turn to the last inequality in (3.17). Given

a complete embedded submanifold, we can show that the last inequality in (3.17) holds under the

boundedness of the second fundamental form in Theorem 3.3.1, given that the vector transport is

the orthogonal projection to the new tangent space.

Theorem 3.3.1. Suppose M is an embedded complete Riemannian submanifold of Euclidean

space. Suppose for all unit vector ξ, η ∈ TM, ∥ξ∥ = ∥η∥ = 1, the norm of the second fundamental

form B(ξ, η) is bounded by constant C. Consider the parallel transport P y
x along the minimal

geodesic from x ∈M to y ∈M, we have ∥projTy M(v)−P y
x (v)∥ ≤ C∥v∥d(x, y), for any v ∈ TxM.

That is, the last inequality in (3.17) holds with constant C.

Proof. Without loss of generality, we assume ∥v∥ = 1, otherwise conduct the proof for v/∥v∥.

Denote the minimum geodesic γ with unit speed connecting x and y, parameterized by variable

t, also denote the parallel transported vector of v along γ as v(t), i.e. v(0) = v. Now for the

extrinsic geometry, we denote v = v⊤(t)+ v⊥(t), where v⊤(t) ∈ Tγ(t)M and v⊥(t) is orthogonal to

Tγ(t)M. Note that the left-hand side of the inequality we want to prove is now parameterized as

∥v(t)− v⊤(t)∥.
70

Now since v(t) is a parallel transport of v, the tangent component must be zero, i.e., (v′(t))⊤ = 0.

Now consider any parallel unit vector z(t) ∈ Tγ(t)M along γ, then ⟨(v⊥)′(t), z(t)⟩ = −⟨v⊥(t), z′(t)⟩ =

−⟨v⊥(t), B(γ′(t), z(t))⟩, where B is the second fundamental form. Along with the fact that (v⊤)′ =

−(v⊥)′ we get ⟨(v⊤)′(t), z(t)⟩ = ⟨v⊥(t), B(γ′(t), z(t))⟩. Now the right-hand side has a uniform upper

bound of C, and by the arbitrarily chosen z(t) ∈ Tγ(t)M, we get ∥((v⊤)′(t))⊤∥ ≤ C.

We can now bound the derivative of ∥v(t)− v⊤(t)∥ as (∥v(t)− v⊤(t)∥2)′ = (1− 2⟨v(t), v⊤(t)⟩+

∥v⊤(t)∥2)′ = −2⟨v(t), (v⊤(t))′⟩+2⟨v⊤(t), (v⊤(t))′⟩ = 2⟨v⊤(t)−v(t), ((v⊤(t))′)⊤⟩ ≤ 2C∥v⊤(t)−v(t)∥.

Therefore, we get ∥v(t) − v⊤(t)∥′ ≤ C. Now integrating the above inequality from x to y along

the minimal geodesic γ (i.e., with respect to t) and using the distance with respect to the minimal

geodesic, we obtain ∥projTy M(v)− P y
x (v)∥ ≤ Cd(x, y), which completes the proof. □

Theorem 3.3.1 connects extrinsic and intrinsic geometry by measuring the difference of orthog-

onal projection (extrinsic operation) and parallel transport (intrinsic operation), which might be

of independent interest for studying embedded submanifolds. The condition in Theorem 3.3.1 is

stronger than the bounded sectional curvature condition since if the second fundamental form is

bounded, the sectional curvature is also bounded by the Gauss formula (see Chapter 6, Theorem

2.5 in Do Carmo [1992]). We point out that the condition of Theorem 3.3.1 is still satisfied by all

the embedded submanifold applications we consider, namely the sphere, the orthogonal group and

the Stiefel manifold. In particular, we have the following observation.

Proposition 3.3.1. Suppose M is a compact complete embedded Riemannian submanifold of

Euclidean space (i.e. satisfying Assumption 3.3.2), then the norm of the second fundamental form

∥B(ξ, η)∥ is uniformly bounded for all unit vector ξ, η ∈ TM, ∥ξ∥ = ∥η∥ = 1.

The proof is immediate, since for all unit vector ξ, η ∈ TM, ∥B(ξ, η)∥ ∈ R is a smooth function

defined over a compact domain, and therefore it is upper bounded. As a result, Assumption 3.3.1

holds for all the embedded submanifold applications we consider, namely the sphere, the orthogonal

group and the Stiefel manifold.

Remark 3.3.1. We remind the readers that Theorem 3.3.1 requires the embedded submanifold

assumption, yet Assumption 3.3.1 does not, as long as (3.17) hold. This is also the main reason

why we summarize our assumption as in Assumption 3.3.1, and not present Theorem 3.3.1 directly.

71

Example: Grassmann manifold. Above, we have shown that Assumption 3.3.1 holds for a

class of embedded matrix submanifolds. Yet another setting is that of quotient manifolds (e.g., the

Grassmann manifold) which arises in applications of Riemannian optimization. Such manifolds are

not naturally embedded submanifolds of a Euclidean space. As a result, we can inspect Assumption

3.3.1 directly for such manifolds. Taking the Grassmann manifold as an example, we next verify

Assumption 3.3.1. To proceed, we utilize the following result.

Lemma 3.3.1. Suppose X ∈ St(d, p), G ∈ Rd×p with X⊤G = 0, and the QR decomposition of

X + G = QR where Q ∈ St(d, p) and R ∈ Rp×p is upper triangular. The principal angle between

the subspace spanned by X and Q is given by ∥Θ∥F , where Θ := arccos(Σ) where Σ is the singular

value matrix of X⊤Q, i.e., X⊤Q = UΣV ⊤; see, for example Edelman et al. [1998, Section 4.3].

We have that ∥Θ∥F ≤ ∥G∥F .

Proof. Since R⊤R = (X+G)⊤(X+G) = Ip+∥G∥2F , we know that all the singular values of R

are greater than or equal to 1. Denote Σ = diag([σ1, ..., σp]). Since X
⊤Q = X⊤(X+G)R−1 = R−1,

we know that the singular value decomposition of R = V Σ−1U⊤ (which implies that σi ≤ 1,

∀i = 1, 2,, p) and ∥R∥2F = ∥Σ−1∥2F =
∑p

i=1
1
σ2
i
. Also, as ∥R∥2F = ∥X +G∥2F = tr((X +G)⊤(X +

G)) = p+∥G∥2F , we get ∥G∥2F =
∑p

i=1
1
σ2
i
−p. Thus, ∥Θ∥2F = ∥ arccos(Σ)∥2F =

∑p
i=1(arccos(σi))

2 ≤∑p
i=1(

1
σ2
i
− 1) = ∥G∥2F , where we use the fact that (arccos(t))2 ≤ 1

t2
− 1, ∀t ∈ (0, 1]. □

Now we can inspect the Grassmann manifold. The Grassmann manifold Gr(d, p) is the set of

all p-dimensional subspace of Rd; see, for example, [Absil et al., 2008, Section 2.1]. A quotient

formulation writes Gr(d, p) = St(d, p)/O(p) with O(p) = {Q ∈ Rp×p|Q⊤Q = Ip} being the orthog-

onal group. The elements of the Grassmann manifold can be expressed as [X] ∈ Gr(d, p) with

[X] := {XQ|Q ∈ O(p)} and X ∈ St(d, p). The element ξ̄ on the tangent space T[X]Gr(d, p) can

be shown with a one-to-one mapping (called the horizontal lift) to the set [ξ] with ξ ∈ TX St(d, p)

and X⊤ξ = 0.

Suppose we start from an element [X] ∈ Gr(d, p) with X ∈ St(d, p) and the initial speed Ḡ ∈

T[X]Gr(d, p), where G ∈ TX St(d, p) and X⊤G = 0. We denote the singular value decomposition

of G = UΣV ⊤ with U ∈ Rd×p and Σ, V ∈ Rp×p. Then the exponential mapping is given by

Y := Exp[X](Ḡ) = [XV cos(Σ) + U sin(Σ)], where sin and cos are matrix trigonometric functions;

72

see [Absil et al., 2008, Example 5.4.3]. Also, the parallel transport is given by: ξ̄1 = P
[Y]
[X](ξ̄) with

ξ1 = −XV sin(Σ)U⊤ξ+U cos(Σ)U⊤ξ+(I−UU⊤)ξ. See [Absil et al., 2008, Example 8.1.3]. Hence,

the projectional retraction is given by Y ′ := Retr[X](Ḡ) = [X+G] = [Q], where X+G = QR is the

QR decomposition of X +G; see [Absil et al., 2008, Example 4.1.5]. Furthermore, the projectional

vector transport is given by ξ̄2 = TḠ(ξ̄) with ξ2 = (I − Y Y ⊤)ξ. See [Absil et al., 2008, Example

8.1.10].

Now we show that (3.17) is satisfied. It is obvious that ∥TḠ(ξ̄)∥ = ∥(I − Y Y ⊤)ξ∥ ≤ ∥ξ∥. The

geodesic distance of [X] and the projectional retraction [Q] is exactly the principal angle between

the subspace spanned by X and Q, see [Edelman et al., 1998, Section 4.3]. Following Lemma 3.3.1,

we can hence conclude that d([X], [Q]) = ∥Θ∥F ≤ ∥G∥F . Now we inspect the last equation in

(3.17). We can directly check that ∥ξ1 − ξ2∥F = ∥Aξ∥F ≤ ∥A∥F ∥ξ∥F , with

A :=−XV sin(Σ)U⊤ + U cos(Σ)U⊤ + Y Y ⊤ − UU⊤

=−XV sin(Σ)U⊤ + U cos(Σ)U⊤ − U cos2(Σ)U⊤ +XV cos2(Σ)V ⊤X⊤

+ U sin(Σ) cos(Σ)V ⊤X⊤ +XV cos(Σ) sin(Σ)U⊤.

Note also that we have the bound

∥A∥ =∥ −XV sin(Σ)U⊤ + U cos(Σ)U⊤ − U cos2(Σ)U⊤ +XV cos2(Σ)V ⊤X⊤

+ U sin(Σ) cos(Σ)V ⊤X⊤ +XV cos(Σ) sin(Σ)U⊤∥

≤∥ sin(Σ)∥+ ∥ cos(Σ)(I − cos(Σ))∥+ 2∥ sin(Σ) cos(Σ)∥ ≤ 4∥ sin(Σ)∥ ≤ 4∥G∥,

where we use the fact that X⊤X = U⊤U = V ⊤V = Ip and all norms are the Frobenius norm.

Therefore, we see that the last equation in (3.17) is satisfied with C = 4.

3.3.2. Convergence of retraction and vector transport based Zo-RASA. We now pro-

ceed to the convergence analysis of Zo-RASA algorithm with retraction and vector transports. Al-

gorithm 6 is the analog of Algorithm 5, using retraction and vector transport. Notice that the

zeroth-order estimator used in Algorithm 6 is as defined in (3.3), which is with respect to the

retraction in contrast to (3.2). Also T is the vector transport where we write T k := T−tkgk
for

73

Algorithm 6: Zo-RASA with retraction and vector transport

1: Change the updates of xk+1 and gk+1 in Algorithm 5 respectively to

xk+1 ← Retrxk(−tkgk) and gk+1 ← (1− τk)T k(gk) + τkT k(Gk
µ),

where Gk
µ = GRetr

µ (xk) is given by (3.3) with batch-size m = mk.

brevity. The vector transport we use in experiments is simply the orthogonal projection onto the

target tangent space.

For our analysis, apart from the smoothness condition in Assumption 3.2.1, we also need to

assume that the manifold is compact.

Assumption 3.3.2. The manifoldM is compact with diameter D, and the Riemannian gradient

satisfies ∥gradf(x)∥x ≤ G.

Here, G could potentially be a function of D and the constant L from Assumption 3.2.1, due to

compactness and smoothness. We remark that this compactness assumption is satisfied by various

matrix manifolds like the Stiefel manifold and the Grassmann manifold (see, for example, Lemma

5.1 in Milnor and Stasheff [1974]).

Turning to the stochastic gradient oracles, the bounded second moment condition in Assump-

tion 3.2.2 is now replaced by the following condition of bounded fourth central moment. Such a

condition is needed to conduct our convergence analysis. It is interesting to relax this assumption

or show this condition is necessary and sufficient to design batch-free, fully-online algorithms with

vector transports and retractions.

Assumption 3.3.3. Along the trajectory of the algorithm, we have that the stochastic gradients

are unbiased and have bounded fourth central moment, i.e., for each k ∈ {1, . . . , N}, we have

Eξ[gradF (xk; ξk)|Fk−1] = gradf(xk) and Eξ[∥gradF (xk; ξk)− gradf(xk)∥4
xk |Fk−1] ≤ σ4.

Note that Assumption 3.3.3 implies Assumption 3.2.2. To proceed with the convergence analysis

of Algorithm 6, we also need to assume that the retraction we use in Algorithm 6 is a second-order

retraction, as in Assumption 3.3.4.

Assumption 3.3.4. The retraction we use in Algorithm 6 is a second order retraction, i.e.

∀ξ ∈ TxM, we have d(Retrx(ξ),Expx(ξ)) ≤ C∥ξ∥2x.
74

Note that the notion of second order retraction is only a local property, i.e., the above inequality

only holds when ∥ξ∥ is not too large. We refer to second order retraction without this locality

restriction, since we assume the compactness ofM in Assumption 3.3.2 and thus the condition in

Assumption 3.3.4 also holds for large ∥ξ∥ and the constant C will globally depend on the curvature

of the manifold. We also point out that the condition in Assumption 3.3.4 is satisfied by projectional

retractions; see, for example, [Absil and Malick, 2012, Proposition 2.2]. The study of higher-order

(better) approximation to the exponential mapping by the retractions is still an on-going research

topic Gawlik and Leok [2018], while here we only need a second-order retraction.

The following result in Lemma 3.3.2, which is a standard comparison-type result, will be utilized

in the subsequent proof.

Lemma 3.3.2 (Theorem 6.5.6 in Burago et al. [2022]). Suppose the sectional curvature of M

is upper bounded, then ∀ξ, η ∈ TxM, we have ∥ξ − η∥x ≤ C d(Expx(ξ),Expx(ξ)), without loss of

generality we assume the constant to be C = 1 for the rest of the paper.

The following result shows that with a second-order retraction, the smoothness with respect to

exponential mapping implies the smoothness with respect to retractions.

Lemma 3.3.3. Suppose Assumption 3.2.1, 3.3.1 and 3.3.2 hold, if the retraction we use in

Algorithm 6 and (3.3) satisfy Assumption 3.3.4, then there exists a parameter L′ > 0, such that f is

also L′-smooth with the retraction, i.e., |f(Retrx(η))−f(x)−⟨gradf(x), η⟩x| ≤ L′

2 ∥η∥
2
x, ∀η ∈ TxM.

From now on, we denote L as the parameter that satisfies both Assumption 3.2.1 and Lemma 3.3.3

for brevity.

Proof. Denote y = Retrx(η). Note that we have |f(y) − f(x) − ⟨gradf(x), η⟩x| ≤ |f(y) −

f(x) − ⟨gradf(x),Exp−1
x (y)⟩x| + |⟨gradf(x),Exp−1

x (y) − η⟩x| ≤ L∥Exp−1
x (y)∥2x + ∥gradf(x)∥x∥η −

Exp−1
x (y)∥x ≤ L∥η∥2x +Gd(Expx(η), y) ≤ (L+GC)∥η∥2x =: L′∥η∥2x, where the first inequality is by

Assumption 3.2.2, the second is by Assumption 3.3.1 and Lemma 3.3.2, and the last inequality is

by Assumption 3.3.4. □

We remind the readers that Lemma 3.3.3 can guarantee that the retraction-based zeroth-order

estimator (3.3) still satisfies Lemma 3.2.1. In addition, we have the following bound on the fourth

moment of GRetr
µ .

75

Lemma 3.3.4. Consider Gµ given by (3.3). Under Assumptions 3.2.1, 3.3.1, 3.3.2 and 3.3.3,

we have E∥GRetr
µ (x)∥4x ≤

µ4L4

2 (d+12)6+3d2∥gradf(x)∥4x, where the expectation is taken toward the

Gaussian vectors when constructing Gµ and the random variable ξ.

Proof. Since E∥GRetr
µ (x)∥4x = 1

µ4Eu[(f(Retrx(µu))− f(x))4∥u∥4x] and

(f(Retrx(µu))− f(x))4

=(f(Retrx(µu))− f(x)− ⟨gradf(x), µu⟩x + ⟨gradf(x), µu⟩x)4

≤8(f(Retrx(µu))− f(x)− ⟨gradf(x), µu⟩x)4 + 8(⟨gradf(x), µu⟩x)4

≤8
(
L

2
∥µu∥2x

)4

+ 8(⟨gradf(x), µu⟩x)4,

where the last inequality is by Lemma 3.3.3. Therefore we have

E∥GRetr
µ (x)∥4x ≤

µ4L4

2
E∥u∥12x + 8E[⟨gradf(x), u⟩4x∥u∥4x]

≤ µ4L4

2
(d+ 12)6 + 8E[⟨gradf(x), u⟩4x∥u∥4x],

where the last inequality is by Lemma 2 in Li et al. [2023]. It remains to bound the last term on the

right hand side, and we apply the same trick as in Proposition 1 in Li et al. [2023] here. Since u is

an Gaussian vector on the tangent space TxM (dimension is d), we can calculate the expectation

using the integral directly (denote g = gradf(x) and omit the subscript x for simplicity):

E(∥⟨gradf(x), u⟩u∥4) = 1

κ(d)

∫
Rd

⟨g, x⟩4∥x∥4e−
1
2
∥x∥2dx

≤ 1

κ(d)

∫
Rd

∥x∥4e−
τ
2
∥x∥2⟨g, x⟩4e−

1−τ
2

∥x∥2dx ≤ 1

κ(d)

(
4

τe

)2 ∫
Rd

⟨g, x⟩4e−
1−τ
2

∥x∥2dx

=
1

κ(d)

(
4

τe

)2(1

1− τ

)d/2−2 ∫
Rd

⟨g, x⟩4e−
1
2
∥x∥2dx = 48

(
1

τe

)2(1

1− τ

)d/2−2

∥g∥4,

where κ(d) :=
∫
Rd e

− 1
2
∥x∥2dx is the constant that normalizes Gaussian distribution, the second

inequality is by the following fact: xpe−
τ
2
x2 ≤ (p

τe)
p/2, the second equality is by change of variables

and the last equality is by Ex∼N (0,Id)⟨g, x⟩
4 = 3∥g∥4. Taking τ = 4/d gives the desired result. □

76

We now provide the convergence result for Zo-RASA (Algorithm 6). We remind the readers that

we assume C = 1 in both Assumptions 3.3.1 and 3.3.4. We would first need to utilize the following

Lemma 3.3.5, which is an analog to Lemma 3.2.2.

Lemma 3.3.5. Suppose Assumptions 3.2.1, 3.3.1, 3.3.2, 3.3.3 and 3.3.4 hold, and {xk, gk} is

generated by Algorithm 5. We have

E∥gk − gradf(xk)∥2xk ≤ Γkσ̃
2
0 + Γk

k∑
i=1

((1 + τi−1)τi−1

Γi

L2∥gi−1∥2
xi−1

β2
+

τ2i−1

Γi
σ̃2
i−1 + τkσ̂

2
)
,

where the expectation E is taken with respect to all random variables up to iteration k, including the

Gaussian variables {ui}ki=1 in the zeroth-order estimator (3.2), and σ̃2
k is defined in (3.9). Further,

from the definition of τk in (3.4), we have

N∑
k=1

τkE∥gk − gradf(xk)∥2xk ≤
N−1∑
k=0

(
(1 + τk)τk

L2E∥gk∥2
xk

β2
+ τ2k σ̃

2
k + τkσ̂

2

)
+ σ̃2

0,

N∑
k=1

τ2kE∥gk − gradf(xk)∥2xk ≤
N−1∑
k=0

(
(1 + τk)τ

2
k

L2E∥gk∥2
xk

β2
+ τ3k σ̃

2
k + τ2k σ̂

2

)
+

N∑
k=1

τ2k σ̃
2
0.

Proof. The proof is almost identical to the proof of Lemma 3.2.2, and we thus omit the details.

Note that here we need to utilize Assumption 3.3.1 to show d(xi, xi+1)2 ≤ t2i ∥gi∥2xi . □

To show the bound for the term E∥P xk

xk+1g
k+1 − gk∥2

xk , we further need to utilize the following

bound for ∥gk∥xk first.

Lemma 3.3.6. Consider gk given by Algorithm 6. Suppose Assumption 3.2.1, 3.3.1, 3.3.2, 3.3.3

and 3.3.4 hold. Then, we have E∥gk∥2
xk ≤ µ2L2(d+6)3+2(d+4)G2 and E∥gk∥4

xk ≤ µ4L4

2 (d+12)6+

3d2G4, where the expectation E is taken with respect to all random variables up to iteration k.

Proof. Note that we have

∥gk∥2xk = ∥(1− τk−1)T k−1(gk−1) + τk−1T k−1(Gk−1
µ)∥2xk

≤ (1− τk−1)∥gk−1∥2xk−1 + τk−1∥Gk−1
µ ∥2xk−1 .

Taking expectation conditioned on Fk−1, we have by Lemma 3.2.1 that E[∥gk∥2
xk |Fk−1] ≤ (1 −

τk−1)E∥gk−1∥2
xk−1 + τk−1(µ

2L2(d + 6)3 + 2(d + 4)∥gradf(xk−1)∥2
xk−1). We remove the conditional

77

expectation by law of total expectation, also by Assumption 3.3.2 we have that

E∥gk∥2xk ≤ (1− τk−1)E∥gk−1∥2xk−1 + τk−1(µ
2L2(d+ 6)3 + 2(d+ 4)G2).

Denote Ak = E∥gk∥2
xk , note that we have Ak ≤ (1− τk−1)Ak−1 + τk−1(µ

2L2(d+ 6)3 + 2(d+ 4)G2).

Again from Lemma 3.2.1 we have A0 ≤ µ2L2(d+6)3+2(d+4)G2, from which and using induction,

we conclude that Ak = E∥gk∥2
xk ≤ µ2L2(d+6)3 +2(d+4)G2. As for the fourth moment, note that

E(∥gk∥2xk)
2 ≤ E

(
(1− τk−1)∥gk−1∥2xk−1 + τk−1∥Gk−1

µ ∥2xk−1

)2
≤(1− τk−1)E∥gk−1∥4xk−1 + τk−1E∥Gk−1

µ ∥4xk−1 ,

≤(1− τk−1)E∥gk−1∥4xk−1 + τk−1

(
µ4L4

2
(d+ 12)6 + 3d2∥gradf(xk)∥4xk

)
where the last inequality is by Lemma 3.3.4. The final result follows similarly to the second moment

case. □

Now we are ready to study the difference between gk and gk+1.

Lemma 3.3.7. Suppose Assumptions 3.2.1, 3.3.1, 3.3.2, 3.3.3 and 3.3.4 hold, and take τk as in

(3.4). Then, we have

N∑
k=1

E∥P xk

xk+1g
k+1 − gk∥2xk ≤

4L2

β2

N−1∑
k=0

(1 + τk)τ
2
kE∥gk∥2xk + 4

N∑
k=0

(τ2k + τ3k)σ̃
2
k

+

[
4σ̃2

0 + 4σ̂2 +
8

β2

(
µ4L4

2
(d+ 12)6 + 3d2G4

)] N∑
k=0

τ2k ,

(3.18)

where the expectation E is taken with respect to all random variables up to iteration k, which includes

the random variables u in the zeroth-order estimator (3.3).

78

Proof. Since

∥P xk

xk+1g
k+1 − gk∥2xk = ∥gk+1 − P xk+1

xk gk∥2xk+1

≤2∥gk+1 − T kgk∥2xk+1 + 2∥T kgk − P xk+1

xk gk∥2xk+1

≤2τ2k∥Gk
µ − gk∥2xk + 2d(xk+1, xk)2∥gk∥2xk

≤4τ2k∥Gk
µ − gradf(xk)∥2xk + 4τ2k∥gradf(xk)− gk∥2xk + 2

τ2k
β2
∥gk∥4xk ,

where the second inequality is by the update and Assumption 3.3.1, and the last inequality is by

Assumption 3.3.1. Now taking the expectation conditioned on Fk−1 we get:

E[∥P xk

xk+1g
k+1 − gk∥2xk |Fk−1] ≤ 4τ2kE[∥Gk

µ − gradf(xk)∥2xk |Fk−1]

+ 4τ2kE[∥gradf(xk)− gk∥2xk |Fk−1] + 2
τ2k
β2

E[∥gk∥4xk |Fk−1].

Thus we have (by law of total expectation):

N∑
k=1

E∥P xk

xk+1g
k+1 − gk∥2xk

≤4
N∑
k=1

τ2kE∥Gk
µ − gradf(xk)∥2xk + 4

N∑
k=1

τ2kE∥gradf(xk)− gk∥2xk +
2

β2

N∑
k=1

τ2kE∥gk∥4xk

≤4
N∑
k=1

τ2k σ̃
2
k + 4

N∑
k=1

τ2kE∥gradf(xk)− gk∥2xk +
8

β2

(
µ4L4

2
(d+ 12)6 + 3d2G4

) N∑
k=1

τ2k

where the second inequality is by Lemmas 3.2.1 and 3.3.6. The desired result follows by applying

Lemma 3.3.5 to the above inequality. □

We now state the main result in Theorem 3.3.2, as an analog to Theorem 3.2.1. Notice that

different from Theorem 3.2.1, we do not need N = Ω(d) in case (ii), in view of Remark 3.2.2 and

Assumption 3.3.2.

Theorem 3.3.2. Suppose Assumptions 3.2.1, 3.3.1, 3.3.2, 3.3.3 and 3.3.4 hold. In Algorithm

6, we set µ = O
(

1
Ld3/2N1/4

)
and β ≥

√
dL. Then the following holds.

(i) If we choose τ0 = 1, τk = 1/
√
N , k ≥ 1 and mk ≡ 8(d + 4), k ≥ 0, then we have

1
N+1

∑N
k=0 E∥gradf(xk)∥2xk ≤ O(1/

√
N).

79

(ii) If we choose τ0 = 1, τk = 1/
√
dN , k ≥ 1, m0 = d and mk = 1 for k ≥ 1, then we have

1
N+1

∑N
k=0 E∥gradf(xk)∥2xk ≤ O(

√
d/N).

Here the expectation E is taken with respect to all random variables up to iteration k, which includes

the random variables u in zeroth-order estimator (3.3).

Proof of Theorem 3.3.2. The proof is very similar to the proof of Theorem 3.2.1. We first

will have the following inequality analogue to (3.14):

1

8β2

N∑
k=0

τkE∥gk∥2xk ≤W 0 +
1

2β

N∑
k=0

τkσ̂
2 +

2

β

N∑
k=0

(τ2k + τ3k)σ̃
2
k

+
1

2β
[4σ̃2

0 + 4σ̂2 +
8

β2
(
µ2L2

2
(d+ 12)6 + 3d2G4)]

N∑
k=0

τ2k

Note that we still need (3.12a) to show the above inequality.

We then directly provide the result corresponding to (3.16):

N∑
k=1

τk
2
E∥gradf(xk)∥2xk ≤ (8β2 + 16L2)

(
W 0 +

1

2β

N∑
k=0

τkσ̂
2 +

2

β

N∑
k=0

(τ2k + τ3k)σ̃
2
k

+
1

2β
[4σ̃2

0 + 4σ̂2 +
8

β2
(
µ2L2

2
(d+ 12)6 + 3d2G4)]

N∑
k=0

τ2k

)
+

N−1∑
k=0

τ2k σ̃
2
k +

N−1∑
k=0

τ2k σ̂
2 + σ̃2

0

(3.19)

Now by Assumption 3.3.2, we have σ̃2
k ≤ σ2

k +
8(d+4)
mk

G2, which is exactly the reason we don’t need

to show an inequality similar to (3.12b).

For case (i) in Theorem 3.3.2, (3.19) can be rewritten as

1

N + 1

N∑
k=0

E∥gradf(xk)∥2xk ≤
c1W (x0, g0)√

N
+ c2σ̂

2 +
c3

1
N

∑N
k=0 σ̃

2
k√

N
+

c4√
N

σ̃2
0,

for some absolute positive constants c1, c2, c3 and c4. The proof for case (i) is completed by noting

that (see (3.9)) σ̂2 = O(1/
√
N), 1

N

∑N
k=0 σ̃

2
k = O(1) and σ̃2

0 = O(1).

For case (ii) in Theorem 3.3.2, (3.19) can be rewritten as

1

N + 1

N∑
k=0

E∥gradf(xk)∥2xk ≤ c′1W (x0, g0)

√
d

N
+ c′2σ̂

2 +
c′3

1
N

∑N
k=0 σ̃

2
k√

dN
+ c′4

√
d

N
σ̃2
0,

80

for some positive constants c′1, c
′
2, c

′
3 and c′4. The proof of case (ii) is completed by noting that

σ̃2
0 = O(1), σ̂2 = O(1/

√
N) and 1

N

∑N
k=0 σ̃

2
k = O(d). □

Remark 3.3.2. By the technique discussed in Remark 3.2.1, to obtain an ϵ-approximate sta-

tionary point in Definition 3.2.1 we need an oracle complexity of O(d/ϵ4).

3.4. Numerical experiments

3.4.1. k-PCA. We now provide numerical results on the k-PCA problem to demonstrate the

effectiveness of the Zo-RASA algorithms. For a given centered random vector z ∈ Rn, the k-

PCA problem corresponds to finding the subspace spanned by the top-k eigenvectors of its positive

definite covariance matrix Σ = E[zz⊤]. Formally, we have the following problem on the Stiefel

manifold:

min
X∈St(n,r)

f(X) := −1

2
tr(X⊤E[zz⊤]X).(3.20)

Note that the dimension of the Stiefel is given by d = nr − r(r + 1)/2.

For any Y = XQ where Q ∈ Rr×r, and Q⊤Q = QQ⊤ = Ir, we have f(X) = f(Y). Hence, we

can equivalently view (3.20) as the following minimization problem on the Grassmann manifold:

min
[X]∈Gr(n,r)

f([X]) := −1

2
tr(X⊤E[zz⊤]X).

Note that the dimension of the Grassmannian is given by d = r(n− r).

We solve (3.20) using Algorithm 6 and compare it with the zeroth-order Riemannian SGD

method from Li et al. [2023]. In all the experiments, we used projecting vector transport rather

than parallel transport for Stiefel manifolds, due to the aforementioned facts that parallel trans-

port is time-consuming to numerically compute on Stiefel manifold, and has no closed form. In

the stochastic zeroth-order setting, for each query point Xk, the stochastic oracle returns a noise

estimate of f(x) based on a single observation zk, i.e. F (Xk; zk) = −1/2 tr((Xk)⊤zkz
⊤
k X

k). For

our experiments, we assume zk is sampled from a centered Gaussian distribution with covariance

matrix given by Σ =
∑r

i=1 λiviv
⊤
i +

∑n
i=r+1 λiviv

⊤
i , where V = [v1, ..., vn] is an orthogonal matrix.

The first r λis are uniform random numbers in [100, 200] and the last n − r are uniform random

81

numbers in [1, 50]. For our experiments, we fix r and try different n (reflected in different rows in

Figure 3.1).

We set N = 50000 × n for Zo-RASA and one-batch Zo-RSGD (Zo-RSGD-1) algorithms, while

N = 50000 for our mini-batch Zo-RSGD algorithm (Zo-RSGD-m). The reason here is that for

Zo-RSGD-m, we take m = n = O(d) since we fix r and change n. While the theoretical result

in Li et al. [2023] requires the batch-size m to be O(d/ϵ2), they empirically observed reasonable-

order batch-sizes suffices. For Zo-RASA, according to our theory, we again take τk = 0.01/
√
N and

β = 100. For Zo-RSGD-1 and Zo-RSGD-m, we set tk as tk = 10−4/
√
N and tk = 5 × 10−4/

√
N

respectively.

For all algorithms, we again compare the function value, norm of the Riemannian gradient

and the principal angles between the current iterate and the optimal subspace. Figures 3.1 plots

the results. The experimental results provide support for the proposed algorithms (and the estab-

lished theory), demonstrating that the proposed Zo-RASA algorithm is more efficient in terms of

decreasing the Riemannian gradient and principal angles compared to conventional zeroth-order

Riemannian stochastic gradient descent methods that utilize mini-batches.

3.4.2. Identification of a fixed rank symmetric positive semi-definite matrix. We

now provide another numerical example from Bonnabel [2013]. Consider a matrix-version linear

model as in Tsuda et al. [2005]:

yt = tr(Wxtx
⊤
t) = x⊤

t Wxt

where xt ∈ Rn is the input and yt ∈ R is the output, and the unknown matrix W ∈ Rn×n is a

positive semi-definite matrix with a fixed rank r (r ≤ n). Denote the set

S+(n, r) = {W ∈ Rn×n|W = W⊤, rank(W) = r}(3.21)

which is the set of positive definite matrices with rank r. The problem is thus formulated as a

matrix least square problem

min
W∈S+(n,r)

f(W) :=
1

2
Ex,y(x

⊤Wx− y)2(3.22)

82

(a) Optimality gap (b) ∥gradf(Xt)∥ (c) Principal angles

Figure 3.1. Results for kPCA (3.20) with n ∈ {10, 30, 50} (corresponding to three
rows) and r = 5. The resulting manifold (Stiefel) dimensions are d = {35, 135, 235}.
The x-axis is the number of zeroth-order oracle calls (i.e. number of function value
calls).

Notice that W can be represented as W = GG⊤ where G ∈ Rn,r is a matrix with full column

rank. Also notice that for any orthogonal matrix O ∈ Rr×r we have W = GOO⊤G⊤ = GG⊤,

we have the following quotient representation of the set of fixed rank positive definite matrices

S+(n, r) ≃ Rn×r
∗ /O(r), where the right hand side represents the set of equivalent classes:

[G] = {GO|O ∈ O(r)}.

83

We could thus conduct our experiment on the quotient manifold Rn×r
∗ /O(r), with the following

re-formulated problem:

min
[G]∈Rn×r

∗ /O(r)
f(G) :=

1

2
Ex,y(x

⊤GG⊤x− y)2(3.23)

The manifold S+(n, r) has dimension d = nr−r(r−1)/2 and is not a compact manifold. We test

(3.23) to show the efficiency of our proposed algorithm even without the compactness assumption

(Assumption 3.3.2) which we need to conduct our theoretical analysis.

We solve (3.23) using Algorithm 6 and compare it with the zeroth-order Riemannian SGD

method from Li et al. [2023]. In all the experiments, we used again retraction and projecting vector

transport rather than exponential mapping and parallel transport. The ground-truth G⋆ ∈ Rn×r is

sampled randomly with standard Gaussian entries. For our experiments, we sample x ∼ N (0, Id)

and construct y = x⊤Wx noiselessly. Specifically, given a query point Gt and a Gaussian sample xt

with yt = x⊤
t G

⋆(G⋆)⊤xt, the stochastic zeroth-order oracle gives the value 1
2(x

⊤
t G

t(Gt)⊤xt − yt)
2.

For our experiments, we fix r and test with different n (reflected in different rows in Figure 3.2).

We set N = 5000 × n for Zo-RASA and one-batch Zo-RSGD (Zo-RSGD-1) algorithms, while

N = 5000 for our mini-batch Zo-RSGD algorithm (Zo-RSGD-m) for the same reason as the kPCA

experiments. For Zo-RASA, according again to our theory, we again take τk = 10−3/
√
N and

β = 100. For Zo-RSGD-1 and Zo-RSGD-m, we set tk = 10−5/
√
N .

For all algorithms, we again compare the function value, norm of the Riemannian gradient and

the quantity ∥Gt(Gt)⊤ − G⋆(G⋆)⊤∥ which measures the error to the ground truth positive semi-

definite matrix. Figures 3.2 plots the results. It’s worth noticing here that mini-batch Zo-RSGD

seems to work the worst in the plots, which is due to the fact that we take the step sizes the

same for Zo-RSGD-1 and Zo-RSGD-m. The reason we cannot enlarge the step size for Zo-RSGD-m

is that the projectional retraction and projectional vector transport requires solving a Sylvester

equation which leads to numerical stability issues if the step sizes become large (see Boumal et al.

[2014] for details). The experimental results provide support for the proposed algorithms (and the

established theory), demonstrating that the proposed Zo-RASA algorithm is more efficient in terms

of decreasing the Riemannian gradient and function values compared to conventional zeroth-order

Riemannian stochastic gradient descent methods that utilize mini-batches.

84

(a) Optimality gap (b) ∥gradf(Gt)∥ (c) ∥Gt(Gt)⊤ −G⋆(G⋆)⊤∥

Figure 3.2. Results for (3.23) with n ∈ {10, 30, 50} (corresponding to three rows)
and r = 5. The resulting manifold as defined in (3.21) are d = {40, 140, 240}
dimensional, respectively. The x-axis is the number of zeroth-order oracle calls (i.e.
number of function value calls).

85

CHAPTER 4

Federated Learning Algorithms on Riemannian Manifolds

In this chapter, we consider the finite-sum FL problem over a Riemannian manifold M as in

(1.3), which we restate here:

(4.1) min
x∈M

f(x) :=
1

n

n∑
i=1

fi(x)

where fi : M → R are smooth but not necessarily (geodesically) convex. Each of the fi (or

the data associated with fi) is stored in different client/agent that could have different physical

locations and different hardware. This makes the mutual connection impossible Konečnỳ et al.

[2016]. Therefore, there is a central server that can collect the information from different agents

and output a consensus that minimizes the summation of the loss functions from all the clients.

The aim of such a framework is to utilize the computation resources of different agents while still

maintain the data privacy by not sharing data among all the local agents. Thus the communication

is always between the central server and local servers. This setting is commonly observed in modern

smart-phone-APP based machine learning applications Konečnỳ et al. [2016]. We emphasize that

we always consider the heterogeneous data scenario where the functions fi’s might be different

and have different optimal solutions. This problem is inherently hard to solve because each local

minima will empirically diverge the update from the global optimum Li et al. [2020], Mitra et al.

[2021].

It is noted that most FL algorithms are designed for the unconstrained setting and convex con-

straint setting [Charles and Konečnỳ, 2021, Karimireddy et al., 2020, Konečnỳ et al., 2016, Li et al.,

2019, Malinovskiy et al., 2020, McMahan et al., 2017, Mitra et al., 2021, Pathak and Wainwright,

2020], and FL problems with nonconvex constraints such as (4.1) have not been considered. The

main difficulty for solving (4.1) lies in aggregating points over a nonconvex set, which may lead to

the situation where the averaging point is outside of the constraint set.

86

One motivating application of (4.1) is the federated kPCA problem

(4.2) min
X∈St(d,r)

f(X) :=
1

n

n∑
i=1

fi(X), where fi(X) = −1

2
tr(X⊤AiX),

where St(d, r) = {X ∈ Rd×r|X⊤X = Ir} denotes the Stiefel manifold, and Ai is the covariance

matrix of the data stored in the i-th local agent. When r = 1, (4.2) reduces to classical PCA

(4.3) min
∥x∥2=1

f(x) :=
1

n

n∑
i=1

fi(x), where fi(x) = −
1

2
x⊤Aix.

Existing FL algorithms are not applicable to (4.2) and (4.3) due to the difficulty on aggregating

points on nonconvex set.

4.0.1. Main Contributions. We focus on designing efficient federated algorithms for solving

(4.1). Our main contributions are:

(1) We propose a Riemannian federated SVRG algorithm (RFedSVRG) for solving (4.1). We prove

that the convergence rate of our RFedSVRG algorithm is O(1/ϵ2) for obtaining an ϵ-stationary

point. This result matches that of its Euclidean counterparts Mitra et al. [2021]. To the best of

our knowledge, this is the first algorithm for solving FL problems over Riemannian manifolds

with convergence guarantees.

(2) The main novelty of our RFedSVRG algorithm is a consensus step on the tangent space of the

manifold. We compare this new approach with the widely used Karcher mean approach. We

show that our method achieves certain ”regularization” property and performs very well in

practice.

(3) We conduct extensive numerical experiments on our method for solving the PCA (4.3) and

kPCA (4.2) problems with both synthetic and real data. The numerical results demonstrate

that our RFedSVRG algorithm significantly outperforms the Riemannian counterparts of two

widely used FL algorithms: FedAvg McMahan et al. [2017] and FedProx Li et al. [2020].

4.1. The RFedSVRG Algorithm

The most challenging task for FL on Riemannian manifolds is the consensus step. Suppose the

central server receives x(i), i ∈ St ⊂ [n] from each of the local clients at round t, the question is

87

how the central server aggregates the points to output a unique consensus. In Euclidean space, the

most straightforward way is to take the average 1
k

∑
i∈St

x(i) with k = |St|. However, this approach

does not apply to the Riemannian setting due to the loss of linearity: the arithmetic average of

points can be outside of the manifold. A natural choice for the consensus step on the manifold is

to take the Karcher mean of the points Tron et al. [2012]:

(4.4) xt+1 ← argmin
x

1

k

∑
i∈St

d2(x, x(i)),

where xt+1 is the next iterate point on the central server. This is a natural generalization of the

arithmetic average because d2(x, y) = ∥x− y∥2 in Euclidean space. However, solving (4.4) can be

time consuming in practice.

We propose the following tangent space consensus step:

(4.5) xt+1 ← Expxt

(
1

k

∑
i∈St

Exp−1
xt

(x(i))

)
,

where we project each of the point x
(i)
t back to the tangent space TxtM and then take their average

on the tangent space. The consensus step (4.5) has several advantages over the Karcher mean

method (4.4). First, (4.5) is of closed-form and easy to compute. Second, (4.5) still coincides with

the arithmetic mean when the manifold reduces to the Euclidean space. Third, the tangent space

mean (4.5) can easily be extended to the following moving average mean:

Expxt

(
β

k

∑
i∈St

Exp−1
xt

(x(i))

)
,

which corresponds to (1 − β)xt +
β
k

∑
i∈St

x(i) in the Euclidean space, while the Karcher mean

cannot be easily extended in this scenario. Last, (4.5) has the following ”regularization” property

as the distance between two consensus points can be controlled, and the Karcher mean method

(4.4) does not have this kind of property.

Lemma 4.1.1. For the update defined in (4.5), it holds that d(xt+1, xt) ≤ 1
k

∑
i∈St

d(x(i), xt).

To further illustrate this ”regularization” property of the tangent space mean (4.5), we consider

an (extreme) example on the unit sphere S2 (see Figure 4.1) . Here we take xt on the north pole

88

TxtS2xt

O

ξ(1)

ξ(2)

x(1)x(2)

Figure 4.1. Comparison of two consensus methods on S2

and two point from the local server as x(1) and x(2), also ξ(i) = Exp−1
xt

(x(i)) ∈ TxtM. Then the

tangent space mean (4.5) would yield the original point xt, whereas the Karcher mean could yield

any point on the vertical great circle, depending on the starting point in solving the optimization

problem (4.4).

FedAvg [McMahan et al., 2017] and FedProx [Li et al., 2020] are two widely used algorithms for

FL problems in Euclidean space. We now discuss their plain extensions to the manifold optimization

situation. As a review, at each iteration, FedAvg minimizes the local loss fi for fixed steps using

gradient descents:

(4.6) x
(i)
ℓ+1 ← x

(i)
ℓ − η(i)∇fi(x(i)ℓ+1),

while FedProx solves a local proximal point subproblem:

(4.7) x(i) ← argmin
x

fi(x) +
µ

2
∥x− xt∥2.

For RFedAvg, which is the Riemannian counterpart of FedAvg, (4.6) is replaced by

x
(i)
ℓ+1 ← Exp

x
(i)
ℓ

(
−η(i)gradfi(x(i)ℓ)

)
.

For RFedProx, which is the Riemannian counterpart of FedProx, (4.7) is replaced by

(4.8) x
(i)
t+1 ← argmin

x∈M
fi(x) +

µ

2
d2(x, xt),

89

where d(x, y) is the geodesic distance between x and y. In the implementation of RFedProx, (4.8)

is solved by Riemannian gradient descent:

(4.9) x
(i)
ℓ+1 ← Exp

x
(i)
ℓ

(−η(i)gradhi(x(i)ℓ)), ℓ = 0, ..., τi − 1.

RFedAvg and RFedProx are described in Algorithms 7 and 8, respectively.

Algorithm 7: Riemannian FedAvg algorithm

input : n, k, T , {η(i)}, {τi}
output: xT
for t = 0, ..., T − 1 do

Uniformly sample St ⊂ [n] with |St| = k;

for each agent i in St do
Receive xt from the central server;

for ℓ = 0, ..., τi − 1 do

x
(i)
ℓ+1 ← Exp

x
(i)
ℓ

(
−η(i)gradfi(x(i)ℓ)

)
;

end

Send the obtained x
(i)
τi to the central server;

end

The central server aggregates the points by the tangent space mean (4.5);

end

Algorithm 8: Riemannian FedProx Algorithm

input : n, k, T , µ, γ
output: xT
for t = 0, ..., T − 1 do

Uniformly sample St ⊂ [n] with |St| = k;

for each agent i in St do
Receive xt from the central server;

Obtain x(i) ← argminx∈M fi(x) +
µ
2d

2(x, xt) upto a γ approximate solution;

Send the obtained x(i) to the central server;

end

The central server aggregates the points by the tangent space mean (4.5);

end

Our RFedSVRG algorithm is presented in Algorithm 9, which is a non-trivial manifold extension

of the FSVRG algorithm Konečnỳ et al. [2016].

90

For RFedSVRG, the local gradient update becomes

(4.10) x
(i)
ℓ+1 ← Exp

x
(i)
ℓ

[
−η(i)

(
gradfi(x

(i)
ℓ)− P

xt→x
(i)
ℓ

(gradfi(xt)− gradf(xt))
)]

,

which matches the existing manifold SVRG work Zhang et al. [2016b]. The introduction of the

parallel transport P
xt→x

(i)
ℓ

is necessary because we need to ”transport” all the vectors to the same

tangent space to conduct addition and subtraction. The algorithm utilizes the gradient information

at the previous iterate gradf(xt), thus avoids the ”client-drift” effect and correctly converges to the

global stationary points. This is confirmed by both the theory and the numerical experiments.

Algorithm 9: Riemannian FedSVRG Algorithm (RFedSVRG)

input : n, k, T , {η(i)}, {τi}
output: Option 1: x̃ = xT ; or Option 2: x̃ is uniformly sampled from {x1, ..., xT }
for t = 0, ..., T − 1 do

Uniformly sample St ⊂ [n] with |St| = k;

for each agent i in St do

Receive x
(i)
0 = xt from the central server;

for ℓ = 0, ..., τi − 1 do
Take the local gradient step (4.10).

end

Send x̂(i) (obtained by one of the following options) to the central server

• Option 1: x̂(i) = x
(i)
τi ;

• Option 2: x̂(i) is uniformly sampled from {x(i)1 , ..., x
(i)
τi };

end

The central server aggregates the points by the tangent space mean (4.5);

end

4.2. Convergence analysis

In this section we analyze the convergence behaviour of the RFedSVRG algorithm (Algorithm 9).

Before we proceed to the convergence results, we briefly review the necessary assumptions, which

are standard assumptions for optimization on manifolds Boumal et al. [2018], Zhang and Sra [2016].

Assumption 4.2.1 (Smoothness). Suppose fi is Li-smooth as defined in Definition 1.2.6. It

implies that f is L-smooth with L =
∑n

i=1 Li.

91

Now we give the convergence rate results for Algorithm 9. Specifically, Theorem 4.2.1 gives the

convergence rate of Algorithm 9 with τi = 1, Theorem 4.2.2 gives the convergence rate of Algorithm

9 with τi > 1, and Theorem 4.2.3 gives the convergence rate of Algorithm 9 when the objective

function is geodescially convex.

Theorem 4.2.1 (Nonconvex, Algorithm 9 with τi = 1). Suppose the problem (4.1) satisfies

Assumption 4.2.1. If we run Algorithm 9 with Option 1 in Line 8, η(i) ≤ 1
L and τi = 1 (i.e.

only one step of gradient update for each agent), then the Option 1 of the output of Algorithm 9

satisfies:

(4.11) min
t=0,...,T

∥gradf(xt)∥2 ≤ O
(
L(f(x0)− f(x∗))

T

)
.

Remark 4.2.1. Our proof of Theorem 4.2.1 relies heavily on the choice of τi = 1 and the

consensus step (4.5). When τi > 1, we need to introduce multiple exponential mappings at multiple

points for each iteration, which makes the convergence analysis much more challenging due to the

loss of linearity. Moreover, the aggregation step makes the situation even worse. However, we are

able to show the convergence of Algorithm 9 with τi > 1 when k = 1. Our numerical experiments

show the effectiveness of the RFedSVRG algorithm with both τi = 1 and τi > 1.

To prove the convergence of Algorithm 9 with τi > 1, we also need the following regularization

assumption over the manifoldM due to Zhang et al. [2016b].

Assumption 4.2.2 (Regularization over manifold). The manifold is complete and there exists

a compact set D ⊂ M (diameter bounded by D) so that all the iterates of Algorithm 9 and the

optimal points are contained in D. The sectional curvature is bounded in [κmin, κmax]. Moreover,

we denote the following key geometrical constant that captures the impact of manifold:

(4.12) ζ =

√

|κmin|D
tanh

(√
|κmin|D

) , if κmin < 0

1, if κmin ≥ 0.

Notice that this assumption holds when the manifold is a sphere or a Stiefel manifold (since

they are compact). Now we are ready to give the convergence rate result of Algorithm 9 with τi > 1

and k = 1, the proof of which is inspired by Zhang et al. [2016b].

92

Theorem 4.2.2 (Nonconvex, Algorithm 9 with τi > 1 and k = 1). Suppose the problem (4.1)

satisfies Assumptions 4.2.1 and 4.2.2. If we run Algorithm 9 with Option 2 in Line 8, k = 1,

τi = τ > 1, η(i) = η ≤ O(1
nLζ2

), then the Option 2 of the output of Algorithm 9 satisfies:

E∥gradf(x̃)∥2 ≤ O
(
ρ(f(x0)− f(x∗))

τT

)
,

where ρ is an absolute constant specified in the proof and the expectation is taken with respect to

the random index i, as well as the randomness introduced by the Option 2.

Finally, we have the convergence result when the objective function of (4.1) is geodesically

convex.

Theorem 4.2.3 (Geodesic convex). Suppose the problem (4.1) satisfies Assumption 4.2.1 and

4.2.2. Also the functions fi’s are geodesically convex (see Definition 1.2.4) in D (as in Assumption

4.2.2). If we run Algorithm 9 with Option 1 in Line 8, τi = 1, St = [n] (full parallel gradient),

and η = η(1) = · · · = η(n) ≤ 1
2L , then the Option 1 of the output of Algorithm 9 satisfies:

(4.13) f(xT)− f∗ ≤ O
(
Ld2(x0, x

∗)

T

)
.

4.3. Proofs

In this section we provide the proofs of lemmas and theorems mentioned in the previous section.

We first finish the proof of Lemma 4.1.1:

Proof of Lemma 4.1.1. By Cauchy-Schwarz inequality we have

d(xt+1, xt) = ∥Exp−1
xt

(xt+1)∥

= ∥1
k

∑
i∈St

Exp−1
xt

(x(i))∥ ≤ 1

k

∑
i∈St

∥Exp−1
xt

(x(i))∥ = 1

k

∑
i∈St

d(xt, x
(i)).

□

Now we turn to the proof of Theorem 4.2.1. We would utilize the following lemma:

Lemma 4.3.1. Under the same settings as Theorem 4.2.1, we have

f(xt+1)− f(xt) ≤ −η(i)t ∥gradf(xt)∥2 +
(η

(i)
t)2L

2
∥gradf(xt)∥2.

93

Proof of Lemma 4.3.1. From the update we know that

x
(i)
ℓ+1 ← Exp

x
(i)
ℓ

[
−η(i)t

(
gradfi(x

(i)
ℓ)− P

xt→x
(i)
ℓ

(gradfi(xt)− gradf(xt))
)]

i.e.

Exp−1

x
(i)
ℓ

(x
(i)
ℓ+1)← −η

(i)
t

(
gradfi(x

(i)
ℓ)− P

xt→x
(i)
ℓ

(gradfi(xt)− gradf(xt))
)
.

When τi = 1, x
(i)
0 = xt thus

Exp−1
xt

(x
(i)
1)← −η(i)t

(
gradfi(xt)− P

xt→x
(i)
1

(gradfi(xt)− gradf(xt))
)
= −η(i)t gradf(xt)

Using Lipschitz smooth of fi again and the tangent space mean (4.5), we have

f(xt+1)− f(xt) ≤⟨Exp−1
xt

(xt+1), gradf(xt)⟩+
L

2
d2(xt+1, xt)

=⟨1
k

∑
i∈St

Exp−1
xt

(x
(i)
1), gradf(xt)⟩+

L

2
∥1
k

∑
i∈St

Exp−1
xt

(x
(i)
1)∥2

=− η
(i)
t ∥gradf(xt)∥2 +

(η
(i)
t)2L

2
∥gradf(xt)∥2,

where we used the tangent space mean (4.5) for the first equality. □

Now we are ready to present the proof of Theorem 4.2.1.

Proof of Theorem 4.2.1. By taking η(i) ≤ 1
L , from Lemma 4.3.1 we have

f(xt+1)− f(xt) ≤ −
1

2L
∥gradf(xt)∥2.

Summing this inequality over t = 0, 1, . . . , T , we obtain

1

2L

T∑
t=0

∥gradf(xt)∥2 ≤ f(x0)− f(xT+1) ≤ f(x0)− f(x∗),

which yields (4.11) immediately. □

Before we present the proof of Theorem 4.2.2, we need the following lemma, which is adopted

from Zhang et al. [2016b].

Lemma 4.3.2 (Lemma 2 in Zhang et al. [2016b]). Consider Algorithm 9 with Option 2. Suppose

we run randomly chosen local agent i at the t-th outer iteration. If we run the local agent i for τi

94

local gradient steps (4.10) with initial point xt, then it holds:

(4.14) E∥gradf(x(i)ℓ)∥2 ≤ Rℓ −Rℓ+1

δℓ
, ℓ = 0, ..., τi − 1,

where the expectation is taken with respect to the randomly selected index i, Rℓ := E[f(x(i)ℓ) +

cℓ∥Exp−1
xt

(x
(i)
ℓ)∥2], cℓ = cℓ+1(1 + βη + 2ζL2η2) +L3η2 and δℓ = η − cℓ+1η

β −Lη2 − 2cℓ+1ζη
2. Here β

is a free constant to be determined and we take cτi = 0 in the recursive definition.

Now we turn to the proof of Theorem 4.2.2:

Proof of Theorem 4.2.2. Since k = 1, without loss of generality, we denote i as the agent

that we choose at the t-th iteration. Moreover, we denote η = η(i) because there is only one agent.

From (4.14), we note that if we set η < 1
L+2cℓ+1ζ

(1− cℓ+1

β), then we have δ(i) := minℓ=0,...,τi δℓ > 0.

In this case, summing (4.14) over ℓ = 0, 1, ..., τi − 1 yields

(4.15)
1

τi

∑
ℓ=0,...,τi−1

E∥gradf(x(i)ℓ)∥2 ≤ R0 −Rτi

τiδ(i)
≤ E

(
f(xt)− f(x

(i)
τi)

τiδ(i)

)
,

since R0 = f(xt) and Rτi = E[f(x(i)τi)+cℓ∥Exp−1
xt

(x
(i)
τi)∥2] ≥ E[f(x(i)τi)]. Now we take β = Lζ1/2/n1/3

and η = 1/(10Ln2/3ζ1/2)1. From the recurrence cℓ = cℓ+1(1 + βη + 2ζL2η2) + L3η2 and cτi = 0 we

have

c0 =
L

100n4/3ζ

(1 + θ)τi − 1

θ
,

where

θ = ηβ + 2ζη2L2 =
1

10n
+

1

50n4/3
∈
(

1

10n
,

3

10n

)
is a parameter. If we take τi = ⌊10n/3⌋ such that (1 + θ)τi < (1 + 3

10n)
τi < e, then

c0 ≤
L

10n1/3ζ
(e− 1),

1It is straightforward to verify that η < 1
L+2cℓ+1ζ

(1− cℓ+1

β
) with this choice of η for ℓ = 0, ..., τi.

95

and δ(i) is bounded by

δ(i) ≥
(
η − c0η

β
− η2L− 2c0ζη

2

)
≥ η

(
1− e− 1

10ζ3/2
− 1

10n2/3ζ1/2
− e− 1

50nζ1/2

)
≥ η

2
=

1

20Ln2/3ζ1/2
,

where the last inequality is by ζ, n ≥ 1. Note that this lower bound of δ(i) is independent from the

choice of local agent i.

Now summing (4.15) over t = 0, ..., T − 1 with δ(i) ≥ η
2 we get

(4.16)
1

T

∑
t=0,...,T−1

1

τi

∑
ℓ=0,...,τi−1

E∥gradf(x(i)ℓ)∥2 ≤ 2∆

τηT
,

where ∆ = f(x0)− f∗.

Now using the Option 2 of the output of Algorithm 9, we get

E∥gradf(x̃)∥2 ≤ ∆ρ

τT
,

where ρ = η
2 = 1

20Ln2/3ζ1/2
. □

Before we present the proof of Theorem 4.2.3, we need the following lemma Zhang and Sra

[2016].

Lemma 4.3.3 (Corollary 8 in Zhang and Sra [2016]). Suppose the sectional curvature of M is

lower bounded by κmin and we update xt+1 ← Expxt
(−ηtgt). Suppose also that the update sequence

{xt} ⊂ D where D is a compact set with diameter D, then for any x ∈M it holds:

(4.17) ⟨−gt,Exp−1
xt

(x)⟩ ≤ 1

2ηt
(d2(xt, x)− d2(xt+1, x)) +

ζηt
2
∥gt∥2.

where ζ is given in (4.12).

We now present the proof of Theorem 4.2.3.

96

Proof of Theorem 4.2.3. From Lemma 4.3.3 we get

(4.18) ⟨1
k

∑
i∈St

Exp−1
xt

(x(i)),Exp−1
xt

(x)⟩ ≤ 1

2
(d2(xt, x)− d2(xt+1, x)) +

ζ

2
∥1
k

∑
i∈St

Exp−1
xt

(x(i))∥2,

which is equivalent to (since we assume St = [n] and η(i) = η):

(4.19) −η⟨ 1
n

∑
i=1,...,n

gradfi(xt),Exp
−1
xt

(x)⟩ ≤ 1

2
(d2(xt, x)− d2(xt+1, x))+

ζ

2
∥ 1
n

∑
i=1,...,n

Exp−1
xt

(x(i))∥2.

Now use the geodesic convexity of fi and (4.19), we have (denote ∆t := f(xt) − f(x∗) and

∆i
t := fi(xt)− fi(x

∗))

∆i
t ≤ −⟨gradfi(xt),Exp−1

xt
(x∗)⟩.

Summing this inequality over i = 1, ..., n, we get

(4.20)

∆t ≤− ⟨
1

n

∑
i=1,...,n

gradfi(xt),Exp
−1
xt

(x∗)⟩

≤ 1

2η
(d2(xt, x

∗)− d2(xt+1, x
∗)) +

ζ

2η
∥ 1
n

∑
i=1,...,n

Exp−1
xt

(x(i))∥2

≤ 1

2η
(d2(xt, x

∗)− d2(xt+1, x
∗)) +

ζη

2n
∥gradf(xt)∥2.

Again from Lemma 4.3.1 we get

(4.21) ∆t+1 −∆t ≤ (−η(i)t +
(η

(i)
t)2L

2
)∥gradf(xt)∥2.

Now multiply (4.21) by ζ and add it to (4.20), we get

(4.22) ζ∆t+1 − (ζ − 1)∆t ≤ ζ

(
η

2n
− η +

η2L

2

)
∥gradf(xt)∥2 +

1

2η
(d2(xt, x

∗)− d2(xt+1, x
∗)).

Now take η ≤ 1
2L , we know that η

2n − η + η2L
2 ≤ 0, thus

(4.23) ζ∆t+1 − (ζ − 1)∆t ≤
1

2η
(d2(xt, x

∗)− d2(xt+1, x
∗)).

Summing this up over t from 0 to T − 1 we get

(4.24) ζ∆T +
T−1∑
t=0

∆t ≤ (ζ − 1)∆1 +
d2(x0, x

∗)

2η
.

97

Also by (4.21) we know ∆t+1 ≤ ∆t, thus

(4.25) ∆T ≤
ζD2

2η(ζ + T − 2)
.

□

4.4. Numerical experiments

We now show the performance of RFedSVRG and compare it with two natural ideas for solving

(4.1): Riemannian FedAvg (RFedAvg) and Riemannian FedProx (RFedProx), which are natural

extensions of FedAvg McMahan et al. [2017] and FedProx Li et al. [2020] to the Riemannian

setting. Algorithms RFedAvg and RFedProx are descried in the supplementary material of our

published version [Li and Ma, 2023]. We conducted our experiments on a desktop with Intel Core

9600K CPU, 32GB RAM and NVIDIA GeForce RTX 2070 GPU. For the codes of operations

on Riemannian manifolds we used the ones from the Manopt and PyManopt packages Boumal

et al. [2014], Townsend et al. [2016]. Since the logarithm mapping (the inverse of the exponential

mapping) on the Stiefel manifold is not easy to compute Zimmermann and Hüper [2021], we adopted

the projection-like retraction Absil and Malick [2012] and the inverse of it Kaneko et al. [2012] to

approximate the exponential and the logarithm mappings, respectively.

We tested the three algorithms on PCA (4.3), kPCA (4.2) and PSD Karcher mean (see the

appendix of our published version [Li and Ma, 2023]) problems. For all problems, we measure the

norm of the global Riemannian gradients. Additionally, we also measure the sum of principal angles

Zhu and Knyazev [2013] for kPCA. 2

4.4.1. Comparison of the two consensus methods (4.4) and (4.5). We first compare

the two consensus methods (4.4) and (4.5). To this end, we randomly generate xt and k = 100

points x(i) on the unit ball Sd−1 with different dimensions d. We then compare the distances

1
k

∑
i d

2(xt, x
(i)), 1

k

∑
i d

2(xt+1, x
(i)) and d2(xt, xt+1), as well as the CPU time for computing them.

Note that the smaller these distances are, the better. To calculate the Karcher mean, we run the

Riemannian gradient descent method starting at xt until the norm of the Riemannian gradient is

2For the loss f in (4.2), note that f(X) = f(XQ) for any orthogonal matrix Q ∈ Rr×r. As a result, the optimal
solution of f(X) only represents the eigen-space corresponds to the r-largest eigenvalues. Therefore we need the
principal angles to measure the angles between the subspaces.

98

Table 4.1. Comparison of the two consensus methods (4.4) and (4.5). Here

h(x) := 1
k

∑
i d

2(x(i), x), CPU time is in seconds and the experiments are repeated
and averaged over 10 times.

Dim d h(xt)
Karcher mean (4.4) Tangent space mean (4.5)

d2(xt+1, xt) h(xt+1) Time d2(xt+1, xt) h(xt+1) Time
100 2.478 2.469 2.813 0.706 0.025 2.427 0.004
200 2.472 2.484 2.804 0.641 0.025 2.422 0.004
500 2.469 2.469 2.795 0.725 0.024 2.421 0.005

smaller than ϵ = 10−6. The results are shown in Table 4.1. From Table 4.1 we see that the tangent

space mean (4.5) is indeed better than Karcher mean (4.4) in terms of both quality and CPU time.

4.4.2. Experiments on synthetic data. In this section, we report the results of the three

algorithms for solving PCA (4.3) and kPCA (4.2) on synthetic data. We first generate the dataXi ∈

Rd×p whose entries are drawn from standard normal distribution. We then set Ai := XiX
⊤
i . Notice

that under this experiment setting the data in different agents are homogeneous in distribution,

which provides a mild environment for comparing the behaviour of the proposed algorithms. We

test highly heterogeneous real data later.

Experiments on PCA. We test the three algorithms on the standard PCA problem (4.3).

The data generation process follows Section 4.4.2. We test our codes with different numbers of

agents n and set k = n/10 as the number of clients we pick up for each round. We terminate the

algorithms if the number of rounds of communication exceeds 600. We sample 10000 data points

in R100 and partition them into n agents, each of which contains equal number of data. We test

RFedSVRG with one iteration for each local agents, i.e. τi = 1 and test RFedAvg and RFedProx with

τi = 5 iterations in (4.9). We use the constant stepsizes for all three algorithms, and take µ = n/10

for each choice of n. The results are presented in Figure 4.2, from which we see that only RFedSVRG

can efficiently decrease ∥gradf(xt)∥ to an acceptable level.

Experiments on kPCA.. We now test the three algorithms on the kPCA problem (4.2). In the

first experiment we sample 10000 data points in R200 and partition them into n agents, each of

which contains equal number of data. We test our codes with different number of agents n, and

again set k = n/10. Here we take (d, r) = (200, 5). The results are given in Figure 4.3, where we

see that RFedSVRG can efficiently decrease ∥gradf(xt)∥ and the principal angle in all tested cases.

99

0 100 200 300 400 500 600
Round of communication

10 3

10 2

10 1

100

No
rm

 o
f g

ra
df

(x
k)

RFedavg
RFedprox
RFedSVRG

(a) n = 500

0 100 200 300 400 500 600
Round of communication

10 2

10 1

100

No
rm

 o
f g

ra
df

(x
k)

RFedavg
RFedprox
RFedSVRG

(b) n = 1000

0 100 200 300 400 500 600
Round of communication

10 1

No
rm

 o
f g

ra
df

(x
k)

RFedavg
RFedprox
RFedSVRG

(c) n = 2500

Figure 4.2. Results for PCA (4.3). The y-axis denotes ∥gradf(xt)∥. For each
figure, the experiments are repeated and averaged over 10 times.

0 100 200 300 400 500 600
Round of communication

10 2

10 1

100

101

102

No
rm

 o
f g

ra
df

(x
k)

RFedavg
RFedprox
RFedSVRG

0 100 200 300 400 500 600
Round of communication

10 1

100

101

No
rm

 o
f g

ra
df

(x
k)

RFedavg
RFedprox
RFedSVRG

0 100 200 300 400 500 600
Round of communication

10 1

100
No

rm
 o

f g
ra

df
(x

k)

RFedavg
RFedprox
RFedSVRG

0 100 200 300 400 500 600
Round of communication

100

No
rm

 o
f g

ra
df

(x
k)

RFedavg
RFedprox
RFedSVRG

0 100 200 300 400 500 600
Round of communication

10 2

10 1

100

101

An
gl

e
be

tw
ee

n
x t

 a
nd

 x
*

RFedavg
RFedprox
RFedSVRG

(a) (n, k) = (50, 5)

0 100 200 300 400 500 600
Round of communication

10 1

100

An
gl

e
be

tw
ee

n
x t

 a
nd

 x
*

RFedavg
RFedprox
RFedSVRG

(b) (n, k) = (100, 10)

0 100 200 300 400 500 600
Round of communication

2 × 100

3 × 100

4 × 100

6 × 100

An
gl

e
be

tw
ee

n
x t

 a
nd

 x
*

RFedavg
RFedprox
RFedSVRG

(c) (n, k) = (500, 50)

0 100 200 300 400 500 600
Round of communication

2 × 100

3 × 100

4 × 100

6 × 100

An
gl

e
be

tw
ee

n
x t

 a
nd

 x
*

RFedavg
RFedprox
RFedSVRG

(d) (n, k) = (1000, 100)

Figure 4.3. Results for kPCA. The y-axis of the figures in the first row denotes
∥gradf(xt)∥, and the y-axis of the figures in the second row denotes the principal
angle between xt and x∗. The experiments are repeated and averaged over 10 times.

In the second experiment we test the effect of the number of inner loops τi. We generate 10000

standard Gaussian vectors. We set (d, r) = (200, 5), k = 10 and n = 100 so that p = 100. We

choose τ = [1, 10, 50, 100] for the inner steps for all three algorithms. The results are presented in

Figure 4.4. From this figure we again observe the great performance of RFedSVRG.

4.4.3. Experiments for kPCA on real data. We now show the numerical results of the

three algorithms on real data. We focus on the kPCA problem (4.2) and three real data sets: the

Iris dataset Forina et al. [1998], the wine dataset Forina et al. [1998] and the MNIST hand-written

100

0 100 200 300 400 500
Round of communication

10 1

100

101

No
rm

 o
f g

ra
df

(x
k)

RFedavg
RFedprox
RFedSVRG

0 50 100 150 200 250 300
Round of communication

100

101

No
rm

 o
f g

ra
df

(x
k)

RFedavg
RFedprox
RFedSVRG

0 25 50 75 100 125 150 175 200
Round of communication

100

101

No
rm

 o
f g

ra
df

(x
k)

RFedavg
RFedprox
RFedSVRG

0 25 50 75 100 125 150 175 200
Round of communication

100

101

No
rm

 o
f g

ra
df

(x
k)

RFedavg
RFedprox
RFedSVRG

0 100 200 300 400 500
Round of communication

100

An
gl

e
be

tw
ee

n
x t

 a
nd

 x
*

RFedavg
RFedprox
RFedSVRG

(a) τ = 1

0 50 100 150 200 250 300
Round of communication

100

An
gl

e
be

tw
ee

n
x t

 a
nd

 x
*

RFedavg
RFedprox
RFedSVRG

(b) τ = 10

0 25 50 75 100 125 150 175 200
Round of communication

100

An
gl

e
be

tw
ee

n
x t

 a
nd

 x
*

RFedavg
RFedprox
RFedSVRG

(c) τ = 50

0 25 50 75 100 125 150 175 200
Round of communication

100

An
gl

e
be

tw
ee

n
x t

 a
nd

 x
*

RFedavg
RFedprox
RFedSVRG

(d) τ = 100

Figure 4.4. Results for kPCA (4.2) with different number of inner loops τ =
[1, 10, 50, 100]. The y-axis of the figures in the first row denotes ∥gradf(xt)∥, and
the one in the second row denotes the principal angle between xt and x∗. The
experiments are repeated and averaged over 10 times.

dataset LeCun et al. [1998]. For all three datasets, we calculate the first r principal directions and

the true optimal loss value directly. We can thus compute the principal angles between the iterate

and the ground truth. The experiments are repeated and averaged for 10 random initializations.

For the first two datasets, we randomly partition the datasets into 10 agents and at each

iteration we take k = 5 agents. The Figures 4.5 and 4.6 show that RFedSVRG is able to effectively

decrease the norm of Riemannian gradient and the principal angles while the other two are not as

efficient. We also draw the scatter plots of the dataset toward the principal subspaces computed

by RFedSVRG, which show that the algorithm indeed grasps the principal direction of the datasets.

For the MNIST hand-written dataset, the (training) dataset contains 60000 hand-written images

of size 28× 28, i.e. d = 784. This is a relatively large dataset and we test the proposed algorithms

with different number of clients. The results are shown in Figure 4.7 where the efficiency of

RFedSVRG is demonstrated again.

4.5. Conclusions

In this chapter, we studied the federated optimization over Riemannian manifolds. We proposed

a Riemannian federated SVRG algorithm and analyzed its convergence rate to an ϵ-stationary point.

101

0 50 100 150 200 250 300
Round of communication

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

No
rm

 o
f g

ra
df

(x
t)

RFedavg
RFedprox
RFedSVRG

(a) Gradient norm

0 50 100 150 200 250 300
Round of communication

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

Pr
in

cip
al

 a
ng

le
 b

et
we

en
 x

t a
nd

 x
*

RFedavg
RFedprox
RFedSVRG

(b) Principal angle

0.750.500.250.000.250.500.75
0.4

0.2
0.0

0.2

0.4
0.2

0.0
0.2
0.4
0.6

(c) Scatter plot

Figure 4.5. Results for kPCA (4.2) on Iris dataset. The data is in R4 (d = 4) and
we take r = 3. The first figure is the norm of Riemannian gradient ∥gradf(xt)∥ and
the second is the principal angle between xt and the true solution x∗, whereas the
last figure is the scatter plot of projected data on to the subspace defined by the
output of RFedSVRG.

0 250 500 750 1000 1250 1500 1750 2000
Round of communication

10 6

10 5

10 4

10 3

10 2

10 1

100

No
rm

 o
f g

ra
df

(x
t)

RFedavg
RFedprox
RFedSVRG

(a) Gradient norm

0 250 500 750 1000 1250 1500 1750 2000
Round of communication

10 5

10 4

10 3

10 2

10 1

100

101

Pr
in

cip
al

 a
ng

le
 b

et
we

en
 x

t a
nd

 x
*

RFedavg
RFedprox
RFedSVRG

(b) Principal angle

1.000.750.500.250.000.250.50
0.75

0.50
0.25
0.00

0.25
0.50

0.75

0.6
0.4
0.2

0.0
0.2
0.4
0.6

(c) Scatter plot

Figure 4.6. Results for kPCA (4.2) with wine dataset. The data is in R13 (d = 13)
and we take r = 3. The first figure is the norm of Riemannian gradient ∥gradf(xt)∥
and the second is the principal angle between xt and the true solution x∗, whereas
the last figure is still the scatter plot of projected data on to the subspace defined
by the output of RFedSVRG.

To the best of our knowledge, this is the first federated algorithm over Riemannian manifolds

with convergence guarantees. Numerical experiments on federated PCA and federated kPCA were

conducted to demonstrate the efficiency of the proposed method. Developing algorithms with lower

communication cost, better scalability and sparse solutions are some important topics for future

research.

102

0 200 400 600 800 1000 1200 1400
Round of communication

101

103

105

107

No
rm

 o
f g

ra
df

(x
t)

RFedavg
RFedprox
RFedSVRG

(a) Gradient norm

0 200 400 600 800 1000 1200 1400
Round of communication

10 6

10 4

10 2

100

Pr
in

cip
al

 a
ng

le
 b

et
we

en
 x

t a
nd

 x
*

RFedavg
RFedprox
RFedSVRG

(b) Principal angle

Figure 4.7. Results for kPCA (4.2) with MNIST dataset. The data is in R784

(d = 784) and we take n = 200 and r = 5. Fig (a) is the norm of Riemannian
gradient gradf(xt) and Fig (b) is the principal angle between xt and the true solution
x∗. We take k = n/10 and τ = 5 for all algorithms.

103

CHAPTER 5

Riemannian Alternating Direction Method of Multipliers

5.1. Introduction

In this chapter we consider solving the nonsmooth manifold constrained problem in (1.4) which

we generalize and restate here:

min
x

F (x) := f(x) + g(Ax)

s.t. x ∈M,

(5.1)

where f is smooth and possibly nonconvex, g is nonsmooth but convex,M is an embedded subman-

ifold in Rn, and matrix A ∈ Rm×n. Throughout this paper, the smoothness, Lipschitz continuity,

and convexity of functions are interpreted as the functions are being considered in the ambient

Euclidean space. If M = Rn, then problem (5.1) reduces to the Euclidean case, and there exist

efficient methods such as proximal gradient method, accelerated proximal gradient method, and

ADMM for solving it. If the nonsmooth function vanishes, i.e., g ≡ 0, then problem (5.1) reduces to

a smooth problem over manifold, and it can be solved by various methods for smooth Riemannian

optimization. Therefore, the main challenge of solving (5.1) lies in the fact that there exist both

manifold constraint and nonsmooth objective in the problem. As a result, a very natural idea to

deal with this situation is to split the difficulty caused by the manifold constraint and nonsmooth

objective. In particular, one can introduce an auxiliary variable y and rewrite (5.1) equivalently as

min
x,y

f(x) + g(y)

s.t. Ax = y, x ∈M.

(5.2)

ADMM is a good candidate for solving (5.2), because it can deal with the nonsmooth objective

and the manifold constraint separately and alternately. Here we point out that there exist many

ADMM-like algorithms for problems with nonconvex objective [Jiang et al., 2019, Themelis and

104

Patrinos, 2020, Yang et al., 2017, Zhang et al., 2022]. However, these algorithms do not allow the

constraint set to be nonconvex. Therefore, they do not apply to the case where manifold constraints

are present. In the following, we give a brief literature review on ADMM-like algorithms that allow

manifold constraint – a nonconvex constraint set.

The idea of splitting the nonsmooth objective and manifold constraint in (5.1) is not new. The

first algorithm for this purpose is the SOC (splitting orthogonality constraints) algorithm proposed

by Lai and Osher [2014]. SOC for solving (5.1) splits the problem in the following way:

min
x,y

f(x) + g(Ax)

s.t. x = y, y ∈M,

(5.3)

and iterates as follows:

xk+1 := argmin
x

f(x) + g(Ax) + ⟨λk, x− yk⟩+ ρ

2
∥x− yk∥22

yk+1 := argmin
y∈M

⟨λk, xk+1 − y⟩+ ρ

2
∥xk+1 − y∥22

λk+1 := λk + ρ(xk+1 − yk+1),

(5.4)

where λ denotes the Lagrange multiplier and ρ > 0 is a penalty parameter. Note that the x-

subproblem in (5.4) is an unconstrained problem, which can be solved by proximal gradient method

and many others, and the y-subproblem corresponds to a projection onto the manifold M. A

closely related algorithm named MADMM (manifold ADMM), proposed in Kovnatsky et al. [2016]

for solving (5.2), iterates as follows:

xk+1 := argmin
x∈M

f(x) + ⟨λk, Ax− yk⟩+ ρ

2
∥Ax− yk∥22

yk+1 := argmin
y

g(y) + ⟨λk, Axk+1 − y⟩+ ρ

2
∥Axk+1 − y∥22

λk+1 := λk + ρ(Axk+1 − yk+1).

(5.5)

In (5.5), the x-subproblem is a Riemannian optimization with smooth objective which can be solved

by Riemannian gradient method, and the y-subproblem corresponds to the proximal mapping of

function g. However, there lacks convergence guarantees for both SOC and MADMM.

105

When the nonsmooth term in (5.1) vanishes, i.e., g ≡ 0, an ADMM for nonconvex optimization

can be used to solve (5.1) as illustrated in Wang et al. [2019]. Since g ≡ 0, the problem (5.1)

reduces to

min
x,y

f(x) + IM(y)

s.t., x = y,

(5.6)

where IM is the indicator function of manifoldM. The ADMM for solving (5.6) iterates as follows:

xk+1 := argmin
x

f(x) + ⟨λk, x− yk⟩+ ρ

2
∥x− yk∥22

yk+1 := argmin
y∈M

⟨λk, xk+1 − y⟩+ ρ

2
∥xk+1 − y∥22

λk+1 := λk + ρ(xk+1 − yk+1).

(5.7)

The convergence of (5.7) is established in Wang et al. [2019] under the assumption that f is Lipschitz

differentiable. Note that the convergence only applies when g ≡ 0. The ADMM studied in Wang

et al. [2019] does not apply to (5.1) when the nonsmooth function g presents.

Another ADMM was proposed in Lu et al. [2018] for solving a particular smooth Riemannian

optimization problem: the sparse spectral clustering. This problem can be cast below.

min
P,U
⟨L,UU⊤⟩+ g(P),

s.t. P = UU⊤, U⊤U = I,

(5.8)

where L is a given matrix, g is a smooth function that promotes the sparsity of UU⊤. The ADMM

for solving (5.8) iterates as follows.

Uk+1 := argmin
U⊤U=I

⟨L,UU⊤⟩+ ⟨Λk, P k − UU⊤⟩+ ρ

2
∥P k − UU⊤∥2F

P k+1 := argmin
P

g(P) + ⟨Λk, P − Uk+1(Uk+1)⊤⟩+ ρ

2
∥P − Uk+1(Uk+1)⊤∥2F

Λk+1 := Λk + ρ(P k+1 − Uk+1(Uk+1)⊤).

(5.9)

Note that the ADMM in Lu et al. [2018] requires the smoothness on the objective function as well,

and it does not apply to the case where the objective function is nonsmooth. Zhang et al. [2020]

106

proposed a proximal ADMM which solves the following problem:

min f(x1, . . . , xN) +

N−1∑
i=1

gi(xi)

s.t. xN = b−
N−1∑
i=1

Aixi

xi ∈Mi ∩ Xi, i = 1, . . . , N − 1,

(5.10)

where f is a smooth function, gi is a nonsmooth function,Mi is a Riemannian manifold, and Xi is a

convex set. The authors of Zhang et al. [2020] established the iteration complexity of the proposed

proximal ADMM for obtaining an ϵ-stationary point of (5.10). A notable requirement in (5.10) is

that the last block variable (i.e., xN) must not appear in the nonsmooth part of the objective, nor

be subject to manifold constraints. This is in sharp contrast to problem (5.2), where one block

variable is associated with the manifold constraint, and the other block variable is associate with

the nonsmooth part of the objective.

Other than ADMM-type algorithms, there also exist some other algorithms for solving (5.1).

Here we briefly discuss two of them: Riemannian subgradient method and Riemannian proximal

gradient method. Because the objective function of (5.1) is nonsmooth, it is a natural idea to use

Riemannian subgradient method [Borckmans et al., 2014, Ferreira and Oliveira, 1998, Grohs and

Hosseini, 2016a,b, Hosseini, 2015, Hosseini and Uschmajew, 2017, Hosseini et al., 2018, Li et al.,

2021] to solve it. The Riemannian subgradient method for solving (5.1) updates the iterate by

xk+1 = Retrxk(−ηkvk),

where vk is a Riemannian subgradient of F at M, ηk > 0 is a stepsize, and Retr denotes the

retraction operation. Convergence of this method is established in Ferreira and Oliveira [1998]

when F is geodesically convex, and iteration complexity is analyzed in Li et al. [2021] when F is

weakly convex over the Stiefel manifold. Another representative algorithm for solving (5.1) is the

manifold proximal gradient method (ManPG), which was proposed recently by Chen et al. [2020].

107

A typical iteration of ManPG is given below:

vk := argmin
v∈T

xk
M
⟨gradf(xk), v⟩+ 1

2t
∥v∥2 + g(A(xk + v))

xk+1 := Retrxk(αvk),

(5.11)

where t > 0 and α > 0 are stepsizes, TxM denotes the tangent space ofM at x, and gradf denotes

the Riemannian gradient of f . Chen et al. [2020] analyzed the iteration complexity of ManPG

for obtaining an ϵ-stationary point of (5.1). Moreover, Chen et al. [2020] suggested to solve the

subproblem for determining vk in (5.11) by a semi-smooth Newton method [Chen et al., 2020, Xiao

et al., 2018]. Huang and Wei [2022] extended ManPG to more general manifold and Huang and Wei

[2019] also designed an accelerated ManPG that demonstrates superior numerical behaviour than

the original ManPG. In a more recent work, Zhou et al. [2022] proposed an augmented Lagrangian

method that solves the manifold constrained problems with nonsmooth objective. Note that similar

to ManPG, the algorithms in Huang and Wei [2019, 2022], Zhou et al. [2022] all require solving a

relatively difficult subproblem which needs to be solved by semi-smooth Newton algorithm. In this

paper we do not need to deal with difficult subproblems – all steps of our algorithms are explicit

and easy-to-compute.

Our contributions. In this paper, we propose a Riemannian ADMM (RADMM) for solving

(5.2) based on a Moreau envelope smoothing technique. Our RADMM for solving (5.2) contains

easily computable steps in each iteration. We analyze the iteration complexity of our RADMM

for obtaining an ϵ-stationary point to (5.2) under mild assumptions. Existing ADMM for solving

nonconvex problems either does not allow nonconvex constraint set, or does not allow nonsmooth

objective function. In contrast, our complexity result is established for problems with simultaneous

nonsmooth objective and manifold constraint. Numerical results of the proposed algorithm for

solving sparse principal component analysis and dual principal component pursuit are reported,

which demonstrate its superiority over existing methods.

Organizations. The rest of this paper is organized as follows. We propose our RADMM

in Section 5.2, whose iteration complexity is analyzed in Section 5.3. Section 5.4 is devoted to

applications and numerical experiments. We draw some concluding remarks in Section 5.5.

108

5.2. A Riemannian ADMM

We now introduce our RADMM algorithm. Our RADMM for solving (5.2) is based on the

Moreau envelope smoothing technique. In particular, we consider to smooth the function g in (5.2)

by adding a quadratic proximal term, which leads to:

min
x,y,z

f(x) + g(y) +
1

2γ
∥y − z∥2

s.t. Ax = z, x ∈M,

(5.12)

where γ > 0 is a parameter. Equivalently, (5.12) can also be rewritten as

min
x,z

f(x) + gγ(z)

s.t. Ax = z, x ∈M,

(5.13)

where gγ(z) = miny

{
g(y) + 1

2γ ∥y − z∥2
}

is the Moreau envelope of g Zeng et al. [2022], and it is

known that gγ is a smooth function when g is convex.

We need to point out that the idea of Moreau envelope smoothing has been proposed in Zeng

et al. [2022] for solving the following problem in Euclidean space:

(5.14) min
x

f(x) + g(x), s.t., Ax = b,

where f is smooth and g is weakly convex with easily computable proximal mapping. In particular,

the authors of Zeng et al. [2022] proposed an augmented Lagrangian method for solving the Mereau

envelope smoothed problem of (5.14). We apply the same idea of Moreau envelope smoothing and

design our RADMM algorithm.

We define the augmented Lagrangian function of (5.13) as:

(5.15) Lρ,γ(x, z;λ) = f(x) + gγ(z) + ⟨λ,Ax− z⟩+ ρ

2
∥Ax− z∥2.

109

A direct application of ADMM for solving (5.13) yields the following updating scheme:

xk+1 := argmin
x∈M

Lρ,γ(x, zk;λk)

zk+1 := argmin
z

Lρ,γ(xk+1, z;λk)

λk+1 := λk + ρ(Axk+1 − zk+1).

(5.16)

Now since the x-subproblem in (5.16) is usually not easy to solve, we propose to replace it with a

Riemannian gradient step, and this leads to our RADMM, which iterates as follows:

xk+1 := Retrxk(−ηkgradxLρ,γ(xk, zk;λk))

zk+1 := argmin
z

Lρ,γ(xk+1, z;λk)

λk+1 := λk + ρ(Axk+1 − zk+1),

(5.17)

where ηk > 0 is a stepsize, and gradxLρ,γ denotes the Riemannian gradient of Lρ,γ with respect to

x. The remaining thing is to discuss how to solve the z-subproblem in (5.17). It turns out that it

is closely related to the proximal mapping of function g, and can be easily solved as long as the

proximal mapping of g can be easily evaluated, as shown in the following lemma.

Lemma 5.2.1. The solution of the z-subproblem in (5.17) is given by

(5.18) zk+1 :=
γ

1 + γρ

(
1

γ
yk+1 + λk + ρAxk+1

)
,

where

(5.19) yk+1 := prox 1+ργ
ρ

g

(
Axk+1 +

1

ρ
λk

)
,

where proxh denotes the proximal mapping of function h, which is defined as

proxh(u) = argmin
v

h(v) +
1

2
∥u− v∥22.

Proof. The z-subproblem in (5.17) can be equivalently rewritten as

(5.20) (zk+1, yk+1) := argmin
z,y

g(y) +
1

2γ
∥y − z∥2 + ⟨λk, Axk+1 − z⟩+ ρ

2
∥Axk+1 − z∥2.

110

The optimality conditions of (5.20) are given by

0 =
1

γ
(zk+1 − yk+1)− λk + ρ(zk+1 −Axk+1),(5.21a)

0 ∈ ∂g(yk+1) +
1

γ
(yk+1 − zk+1).(5.21b)

It is easy to see that (5.21a) immediately yields (5.18). Plugging (5.18) into (5.21b) gives

0 ∈ 1 + γρ

ρ
∂g(yk+1) + yk+1 −

(
Axk+1 +

λk

ρ

)
,

which implies

yk+1 = argmin
y

1 + γρ

ρ
g(y) +

1

2

∥∥∥∥y − (Axk+1 +
λk

ρ

)∥∥∥∥2
2

,

i.e., (5.19) holds.

□

Our RADMM for solving (5.2) can therefore be summarized as in Algorithm 10. We can see

that all the steps can be easily computed and implemented.

Algorithm 10: A Riemannian ADMM

Given (x0, z0;λ0), stepsize ηk > 0, parameters ρ > 0 and γ > 0;

for k = 0, 1, ... do

Update xk+1 := Retrxk(−ηkgradxLρ,γ(xk, zk;λk));

Update yk+1 := prox 1+ργ
ρ

g

(
Axk+1 + 1

ρλ
k
)
;

Update zk+1 := γ
1+γρ

(
1
γ y

k+1 + λk + ρAxk+1
)
;

Update λk+1 := λk + ρ(Axk+1 − zk+1).

5.3. Convergence Analysis

In this section, we analyze the iteration complexity of Algorithm 10 for obtaining an ϵ-stationary

point of (5.2).

The following assumption is needed in the analysis.

Assumption 5.3.1. We assume f , g andM in (5.2) satisfy the following conditions.

111

(1) M ⊂ Rn is a compact and complete Riemannian manifold embedded in Euclidean space

Rn with diameter D;

(2) ∇f is Lipschitz continuous with Lipschitz constant L in the ambient space Rn;

(3) g is convex and Lipschitz continuous with Lipschitz constant Lg in the ambient space Rm.

Also sinceM is compact and ∇f is continuous, we can denote the maximum of the norm of f

as a constant M , i.e.,

(5.22) ∥∇f(x)∥ ≤M, ∀x ∈M.

Now we proceed to study the optimality of the problem (5.2). First, we note that the first-order

optimality conditions of (5.2) are given by (see, e.g., Yang et al. [2014]):

0 = gradxL(x∗, y∗, λ∗) = projTx∗ M

(
∇f(x∗) +A⊤λ∗

)
,

0 ∈ ∂yL(x∗, y∗, λ∗) = ∂g(y∗)− λ∗,

0 = Ax∗ − y∗,

x∗ ∈M,

(5.23)

where the Lagrangian function of (5.2) is defined as

L(x, y, λ) := f(x) + g(y) + ⟨λ,Ax− y⟩.

Based on this, we can define the ϵ-stationary point of (5.2) as follows.

Definition 5.3.1. For (x, y, λ) with x ∈M, denote

∂L(x, y, λ) :=

projTx M

(
∇f(x) +A⊤λ

)
∂g(y)− λ

Ax− y

 .

Then (x̄, ȳ, λ̄) with x̄ ∈ M is called an ϵ-stationary point of (5.2) if there exists G ∈ ∂L(x̄, ȳ, λ̄)

such that ∥G∥2 ≤ ϵ.

Before we present our main convergence results, we need the following lemmas. The first one

is a brief recap of the properties of Moreau envelope (see e.g. Beck [2017] Chapter 6).

112

Lemma 5.3.1 (Properties of Moreau envelope). Suppose g is a Lg Lipschitz continuous and

convex function. The Moreau envelope gγ(z) := miny g(y) +
1
2γ ∥z − y∥2 satisfies the following:

(1) 0 ≤ g(z)− gγ(z) ≤ γL2
g;

(2) ∇gγ(z) = 1
γ (z − proxγg(z));

(3) gγ(z) is Lg Lipschitz continuous;

(4) gγ(z) is 1/γ Lipschitz smooth, i.e. ∇gγ(z) is Lipschitz continuous with parameter 1/γ.

Now we proceed to bound the difference of dual sequence by the primal sequence.

Lemma 5.3.2 (Bound dual by primal). For the updates of Algorithm 10, we have:

(5.24) ∥λk+1 − λk∥ ≤ 1

γ
∥zk+1 − zk∥.

Proof. Note that the optimality conditions of the z-subproblem in (5.17) is given by:

(5.25) ∇gγ(zk+1)− λk + ρ(zk+1 −Axk+1) = 0,

which, together with the λ update in (5.17), yields

(5.26) ∇gγ(zk+1) = λk+1.

The desired result (5.24) follows from Lemma 5.3.1. □

We now provide the smoothness notion over manifolds, which is also known as Lipschitz-type

gradient for pullbacks.

Definition 5.3.2. [Boumal et al., 2018] Function f is called L1-geodesic smooth on complete

Riemannian manifoldM if ∀x ∈M and ∀v ∈ TxM, it holds that

(5.27) f(Retrx(v)) ≤ f(x) + ⟨gradf(x), v⟩+ L1

2
∥v∥2.

The following lemma is from Boumal et al. [2018], which bridges the smoothness on the manifold

with the smoothness in the ambient Euclidean space.

Lemma 5.3.3. [Boumal et al., 2018] Suppose M ∈ E is a compact and complete Riemannian

manifold embedded in Euclidean space E and f is L-Lipschitz smooth in E, then f is also L1-geodesic

113

smooth, where L1 is determined by the manifoldM and f . Specifically, it can be shown (see Boumal

et al. [2018]) that there exist positive constants α and β so that ∀x ∈M and ∀η ∈ TxM,

∥Retrx(η)− x∥ ≤ α∥η∥, and ∥Retrx(η)− x− η∥ ≤ β∥η∥2.

As a result, it can be shown that

L1 =
L

2
α2 +Mβ,

where M is the upper bound of the gradient, which is defined in (5.22).

Now we are ready to present the smoothness of the augmented Lagrangian function (5.15).

Lemma 5.3.4. For any {(zk, λk)} generated in Algorithm 10, the augmented Lagrangian function

Lρ,γ(x, zk, λk) defined in (5.15) is Lρ-geodesic smooth with respect to x ∈M, where

(5.28) Lρ =
L+ ρ∥A⊤A∥2

2
α2 + (M + ∥A∥2Lg + ρ∥A⊤A∥2D + ∥A∥2(2Lg + ρ∥A∥2D))β,

and ∥B∥2 denotes the spectral norm of matrix B.

Proof. We first show that {zk}, {λk}, k = 0, 1, . . ., generated in Algorithm 10 are uniformly

bounded. Note that from (5.26), we have

(5.29) ∥λk∥ = ∥∇gγ(zk)∥ ≤ Lg,

where the inequality follows from the facts that g is Lg-Lipschitz continuous (Assumption 5.3.1)

and Lemma 5.3.1.

From the update of λk+1, i.e., λk+1 := λk + ρ(Axk+1 − zk+1), we have

zk+1 = (λk − λk+1)/ρ+Axk+1,

which, together with (5.29) and Assumption 5.3.1, immediately implies

(5.30) ∥zk+1∥ ≤ 2Lg

ρ
+ ∥A∥2D.

114

We now show that the gradient of Lρ,γ(x, zk, λk), i.e., ∇xLρ,γ(x, zk, λk) = ∇f(x) + A⊤λk +

ρA⊤(Ax− zk), is uniformly upper bounded ∀x ∈M. To this end, we note that

∥∇xLρ,γ(x, zk, λk)∥ ≤∥∇f(x)∥+ ∥A⊤λk∥+ ρ∥A⊤(Ax− zk)∥

≤∥∇f(x)∥+ ∥A∥2∥λk∥+ ρ∥A⊤A∥2∥x∥+ ρ∥A∥2∥zk∥

≤M + ∥A∥2Lg + ρ∥A⊤A∥2D + ∥A∥2(2Lg + ρ∥A∥2D),

(5.31)

where the last inequality is due to (5.29), (5.30) and Assumption 5.3.1.

Moreover, we have

∥∇xLρ,γ(x1, zk, λk)−∇xLρ,γ(x2, zk, λk)∥ ≤∥∇f(x1)−∇f(x2)∥+ ρ∥A⊤A(x1 − x2)∥

≤L∥x1 − x2∥+ ρ∥A⊤A∥2∥x1 − x2∥.
(5.32)

By applying Lemma 5.3.3 together with (5.31) and (5.32), we immediately obtain the desired

result. □

Now we give the following lemma regarding the decrease of the augmented Lagrangian function

Lρ,γ .

Lemma 5.3.5. For the sequence {(xk, zk, λk)} generated in Algorithm 10, we have:

Lρ,γ(xk+1, zk+1, λk+1)− Lρ,γ(xk, zk, λk)

≤
(

1

ργ2
− ρ

2

)
∥zk+1 − zk∥2 −

(
1

ηk
− Lρ

2

)
∥Retr−1

xk (x
k+1)∥2,

(5.33)

where Lρ is defined in (5.28).

Proof. First, we have

Lρ,γ(xk+1, zk+1, λk+1)− Lρ,γ(xk+1, zk+1, λk)

= ⟨λk+1 − λk, Axk+1 − zk+1⟩

=
1

ρ
∥λk+1 − λk∥2 ≤ 1

ργ2
∥zk+1 − zk∥2,

(5.34)

where the inequality is from Lemma 5.3.2.

115

Second, we have,

Lρ,γ(xk+1, zk+1, λk)− Lρ,γ(xk+1, zk, λk)

=gγ(z
k+1)− gγ(z

k) + ⟨λk, zk − zk+1⟩+ ρ

2
(∥Axk+1 − zk+1∥2 − ∥Axk+1 − zk∥2)

=gγ(z
k+1)− gγ(z

k) + ⟨λk + ρ(Axk+1 − zk+1), zk − zk+1⟩ − ρ

2
∥zk+1 − zk∥2

≤− ρ

2
∥zk+1 − zk∥2,

(5.35)

where the inequality is by convexity of gγ and ∇gγ(zk+1) = λk+1 = λk + ρ(Axk+1 − zk+1).

Third, by Lemma 5.3.4 and (5.27), we obtain

Lρ,γ(xk+1, zk, λk)− Lρ,γ(xk, zk, λk)

≤ ⟨gradxLρ,γ(xk, zk, λk),Retr−1
xk (x

k+1)⟩+ Lρ

2
∥Retr−1

xk (x
k+1)∥2

= −
(

1

ηk
− Lρ

2

)
∥Retr−1

xk (x
k+1)∥2,

(5.36)

where the equality follows from the x-update in Algorithm 10.

Combining (5.34), (5.35), and (5.36) yields the desired result (5.33).

□

The following lemma shows that the augmented Lagrangian function Lρ,γ is lower bounded.

Lemma 5.3.6. If ργ ≥ 1, then the sequence {Lρ,γ(xk, zk, λk)} is uniformly lower bounded by

F ∗ − γL2
g, where F ∗ is the optimal value of (5.1).

Proof. By the 1/γ Lipschitz smoothness of gγ (see Lemma 5.3.1) and ∇gγ(zk) = λk, we get

gγ(Ax) ≤ gγ(z) + ⟨∇gγ(z), Ax− z⟩+ 1

2γ
∥Ax− z∥2,

116

which implies

Lρ,γ(xk, zk, λk) = f(xk) + gγ(z
k) + ⟨λk, Axk − zk⟩+ ρ

2
∥Axk − zk∥2

≥ f(xk) + gγ(Ax
k) +

(
ρ

2
− 1

2γ

)
∥Axk − zk∥2

≥ f(xk) + gγ(Ax
k)

≥ f(xk) + g(Axk)− γL2
g

≥ F ∗ − γL2
g,

where the third inequality follows from Lemma 5.3.1. □

The following lemma gives an upper bound for Gk ∈ ∂L(xk, yk, λk).

Lemma 5.3.7. Denote the iterates of Algorithm 10 by {(xk, yk, zk, λk)}. There exists Gk ∈

∂L(xk, yk, λk), ∀k ≥ 1, as defined in Definition 5.3.1, such that:

∥Gk∥2 ≤ 2

η2k
∥Retr−1

xk (x
k+1)∥2 + 2(ρ2∥A∥22 + 1)

ρ2γ2
∥zk − zk−1∥2 + 2γ2L2

g.

Proof. From (5.21a), (5.21b) and the update of λk+1 in Algorithm 10, we know that λk ∈

∂g(yk) for k = 1, 2, Therefore, there exist Gk ∈ ∂L(xk, yk, λk) such that

∥Gk∥2 =∥projT
xk

M

(
∇f(xk) +A⊤λk

)
∥2 + ∥Axk − yk∥2

≤∥projT
xk

M

(
∇f(xk) +A⊤λk

)
∥2 + 2∥Axk − zk∥2 + 2∥zk − yk∥2.

Now from the x update of Algorithm 10, we know that

projT
xk

M

(
∇f(xk) +A⊤λk

)
= − 1

ηk
Retr−1

xk (x
k+1)− projT

xk
M(ρA⊤(Axk − zk)).

117

Therefore, we have

∥Gk∥2 ≤
∥∥∥∥ 1

ηk
Retr−1

xk (x
k+1) + projT

xk
M(ρA⊤(Axk − zk))

∥∥∥∥2 + 2∥Axk − zk∥2 + 2∥zk − yk∥2

≤ 2

η2k
∥Retr−1

xk (x
k+1)∥2 + 2ρ2∥projT

xk
M(A⊤(Axk − zk))∥2 + 2∥Axk − zk∥2 + 2∥zk − yk∥2

≤ 2

η2k
∥Retr−1

xk (x
k+1)∥2 + 2ρ2∥A∥22∥Axk − zk∥2 + 2∥Axk − zk∥2 + 2∥zk − yk∥2

=
2

η2k
∥Retr−1

xk (x
k+1)∥2 + 2(ρ2∥A∥22 + 1)∥Axk − zk∥2 + 2∥zk − yk∥2.

Now by the update of λk in Algorithm 10 and (5.24) we have ρ∥Axk − zk∥ = ∥λk − λk−1∥ ≤
1
γ ∥z

k − zk−1∥. By (5.21b) we have zk − yk ∈ γ∂g(yk) so that ∥zk − yk∥ ≤ γLg. Combining these

results we get

∥Gk∥2 ≤ 2

η2k
∥Retr−1

xk (x
k+1)∥2 + 2(ρ2∥A∥22 + 1)∥Axk − zk∥2 + 2∥zk − yk∥2

≤ 2

η2k
∥Retr−1

xk (x
k+1)∥2 + 2(ρ2∥A∥22 + 1)

ρ2γ2
∥zk − zk−1∥2 + 2γ2L2

g,

which gives the desired result. □

Finally, we have the following convergence result for Algorithm 10.

Theorem 5.3.1. Denote the iterates of Algorithm 10 by {(xk, yk, zk, λk)}. For a given tolerance

ϵ > 0, we set ρ = 1/ϵ, γ =

√
2
ρ2

+
ρ2∥A∥22+1

ρ3Lρ
= O(ϵ), also ηk = η = 1

Lρ
. Note that our choices of ρ

and γ guarantees that ργ > 1. Then there exist Gk ∈ ∂L(xk, yk, λk), k = 1, 2, . . ., such that

min
k=1,...,K

∥Gk∥2 ≤ ϵ2,

provided that

K = O
(

1

ϵ4

)
.

That is, Algorithm 10 generates an ϵ-stationary point to Problem (5.2) in O(ϵ−4) iterations.

Proof. From Lemma 5.3.7, there exist Gk ∈ ∂L(xk, yk, λk), k = 1, 2, . . . such that

∥Gk∥2 ≤ 2

η2k
∥Retr−1

xk (x
k+1)∥+ 2(ρ2∥A∥22 + 1)

ρ2γ2
∥zk − zk−1∥2 + 2γ2L2

g,

118

which, combining with (5.33) and ηk = 1/Lρ, yields

∥Gk∥2 ≤ 4

ηk

(
Lρ,γ(xk, zk, λk)− Lρ,γ(xk+1, zk+1, λk+1)

)
+

(
2(ρ2∥A∥22 + 1)

ρ2γ2
∥zk − zk−1∥2 − 4

ηk

(
ρ

2
− 1

ργ2

)
∥zk − zk+1∥2

)
+ 2γ2L2

g.

Now by taking γ, ρ and ηk = η as described in the theorem, it is easy to verify that

2(ρ2∥A∥22 + 1)

ρ2γ2
≤ 4

ηk

(
ρ

2
− 1

ργ2

)
.

Therefore, we have

∥Gk∥2 ≤ 4

ηk

(
Lρ,γ(xk, zk, λk)− Lρ,γ(xk+1, zk+1, λk+1)

)
+

(
4

ηk

(
ρ

2
− 1

ργ2

)
∥zk − zk−1∥2 − 4

ηk

(
ρ

2
− 1

ργ2

)
∥zk − zk+1∥2

)
+ 2γ2L2

g.

Now by summing this inequality over k = 1, . . . ,K and using Lemma 5.3.6, we get

1

K

K∑
k=1

∥Gk∥2 ≤ 4

ηK
(Lρ,γ(x1, z1, λ1)− F ∗ + γL2

g) +
2ρ

ηK
∥z1 − z0∥2 + 2γ2L2

g.

Since we take γ = O(ϵ), ρ = 1
ϵ and η = 1

Lρ
= O(ϵ), to ensure mink=1,...,K ∥Gk∥2 ≤ ϵ2, we need

K = O(1
ϵ4
). □

5.4. Applications and Numerical Experiments

Problem (5.1) finds many applications in machine learning, statistics and signal processing. For

example, K-means clustering [Carson et al., 2017], sparse spectral clustering [Lu et al., 2018, Park

and Zhao, 2018], and orthogonal dictionary learning [Demanet and Hand, 2014, Qu et al., 2016,

Spielman et al., 2012, Sun et al., 2017a,b] are all of the form of (5.1). In this section, we present

two representative applications of (5.1) and then report the numerical results of our Algorithm 10

for solving them.

Example 1. Sparse Principal Component Analysis (PCA). Principal Component Anal-

ysis, proposed by Pearson [1901] and later developed by Hotelling [1933], is one of the most funda-

mental statistical tools in analyzing high-dimensional data. Sparse PCA seeks principal components

with very few nonzero components. For given data matrix A ∈ Rm×n, the sparse PCA that seeks

119

the leading p (p < min{m,n}) sparse loading vectors can be formulated as

min
X

F (X) := −1

2
Tr(X⊤A⊤AX) + µ∥X∥1

s.t. X ∈ St(n, p),

(5.37)

where Tr(Y) denotes the trace of matrix Y , the ℓ1 norm is defined as ∥X∥1 =
∑

ij |Xij |, µ > 0 is a

weighting parameter. This is the original formulation of sparse PCA as proposed by Jolliffe et al.

[2003], where the model is called SCoTLASS and imposes sparsity and orthogonality to the loading

vectors simultaneously. When µ = 0, (5.37) reduces to computing the leading p eigenvalues and the

corresponding eigenvectors of A⊤A. When µ > 0, the ℓ1 norm ∥X∥1 can promote sparsity of the

loading vectors. There are many numerical algorithms for solving (5.37) when p = 1. In this case,

(5.37) is relatively easy to solve because X reduces to a vector and the constraint set reduces to a

sphere. However, there has been very limited literature for the case p > 1. Existing works, including

d’Aspremont et al. [2007], Journee et al. [2010], Ma [2013], Shen and Huang [2008], Zou et al. [2006],

do not impose orthogonal loading directions. As discussed in Journee et al. [2010], “Simultaneously

enforcing sparsity and orthogonality seems to be a hard (and perhaps questionable) task.” We

refer the interested reader to Zou and Xue [2018] for more details on existing algorithms for solving

sparse PCA.

Example 2. Orthogonal Dictionary Learning (ODL) and Dual principal component

pursuit (DPCP). In ODL, one is given a set of p (p ≫ n) data points y1, . . . ,yp ∈ Rn and

aims to find an orthonormal basis of Rn to represent them compactly. In other words, by letting

Y = [y1, . . . ,yp] ∈ Rn×p, we want to find an orthogonal matrix X ∈ Rn×n and a sparse matrix

A ∈ Rn×p such that Y = XA. Since X is orthogonal, we know that A = X⊤Y . This naturally

leads to the following matrix version of ODL [Demanet and Hand, 2014, Qu et al., 2016, Spielman

et al., 2012, Sun et al., 2017a,b]:

min
X
∥Y ⊤X∥1

s.t. X ∈ St(n, n).

(5.38)

Here, the ℓ1 norm is used to promote the sparsity of A = X⊤Y , and the constraint set St(n, n) is

known as the orthogonal group, which is a special case of the Stiefel manifold.

120

Another representative application of (5.38) is robust subspace recovery (RSR) [Lerman and

Maunu, 2018b, Lerman et al., 2015, Maunu et al., 2019, 2022]. RSR aims to fit a linear subspace

to a dataset corrupted by outliers, which is a fundamental problem in machine learning and data

mining. RSR can be described as follows. Given a dataset Y = [X ,O]Γ ∈ Rn×(p1+p2), where

X ∈ Rn×p1 are inlier points spanning a d-dimensional subspace S of Rn (d < p1), O ∈ Rn×p2 are

outlier points without linear structure, and Γ ∈ R(p1+p2)×(p1+p2) is an unknown permutation, the

goal is to recover the inlier space S, or equivalently, to cluster the points into inliers and outliers.

For a more comprehensive review of RSR, see the recent survey paper by Lerman and Maunu

[2018a]. The dual principal component pursuit (DPCP) is a recently proposed approach to RSR

that seeks to learn recursively a basis for the orthogonal complement S by solving (5.38) when X

reduces to a vector, i.e.,

(5.39) min
x̄∈Rn

f(x̄) := ∥Y ⊤x̄∥1 s.t. ∥x̄∥2 = 1,

The idea of DPCP is to first compute a normal vector x̄ to a hyperplane H that contains all inliers

X . As outliers are not orthogonal to x̄ and the number of outliers is known to be small, the normal

vector x̄ can be found by solving (5.39). It is shown in Tsakiris and Vidal [2018], Zhu et al. [2018]

that under certain conditions, solving (5.39) indeed yields a vector that is orthogonal to S, given

that the number of outliers p2 is at most on the order of O(p21). If d is known, then one can recover

S as the intersection of the p := n − d orthogonal hyperplanes that contain X , which amounts to

solving the following matrix optimization problem:

(5.40) min
X∈Rn×(n−d)

∥Y ⊤X∥1 s.t. X⊤X = In−d.

Note that (5.37)-(5.40) are all in the form of (5.1).

5.4.1. Numerical Experiments on Sparse PCA. In this subsection, we conduct experi-

ments to test the performance of our Riemannian ADMM for solving sparse PCA (5.37), and com-

pare it with the performance of ManPG Chen et al. [2020] and Riemannian subgradient method

Ferreira and Oliveira [1998], Li et al. [2021]. To apply Riemannian ADMM, we first rewrite (5.37)

121

as:

min
X,Y

− 1

2
Tr(X⊤A⊤AX) + µ∥Y ∥1

s.t. X = Y, X ∈ St(n, p).

(5.41)

Now we see that the nonsmooth function ∥ · ∥1 and the manifold constraint are associated with dif-

ferent variables. Thus, the two difficult terms are separated. Using the Moreau envelope smoothing,

the smoothed problem of (5.41) is given by:

min
X,Z

− 1

2
Tr(X⊤A⊤AX) + gγ(Z)

s.t. X = Z, X ∈ St(n, p),

(5.42)

where gγ(Z) := minY {µ∥Y ∥1 + 1
2γ ∥Y − Z∥2F }. The augmented Lagrangian function of (5.42) is

given by

Lρ,γ(X,Z; Λ) = −1

2
Tr(X⊤A⊤AX) + gγ(Z) + ⟨Λ, X − Z⟩+ ρ

2
∥X − Z∥2F .

Therefore, one iteration of our Riemannian ADMM 10 for solving (5.41) reduces to:

Xk+1 := RetrXk(−ηkprojT
Xk St(n,p)(−A⊤AXk + Λk + ρ(Xk − Zk)))

Y k+1 := proxµ(1+ργ)
ρ

∥·∥1

(
Xk+1 +

1

ρ
Λk

)
Zk+1 :=

γ

1 + γρ

(
1

γ
Y k+1 + Λk + ρXk+1

)
Λk+1 := Λk + ρ(Xk+1 − Zk+1).

(5.43)

The ManPG [Chen et al., 2020] for solving (5.37) updates the iterates as follows:

V k := argmin
V ∈T

Xk St(n,p)
⟨−A⊤AXk, V ⟩+ 1

2t
∥V ∥2 + µ∥A(Xk + V)∥1

Xk+1 := RetrXk(αV k),

(5.44)

where α and t are stepsizes. The authors of Chen et al. [2020] suggest to solve the V subproblem

by using a semi-smooth Newton method. The Riemannian subgradient method (RSG) [Ferreira

122

and Oliveira, 1998] for solving (5.37) updates the iterates as follows:

(5.45) Xk+1 := RetrXk(−ηkprojT
Xk St(n,p)(−A⊤AXk + µDk)), with Dk ∈ ∂∥Xk∥1.

We now describe the setup of our numerical experiment. The data matrix A ∈ Rm×n is

generated randomly whose entries follow the standard Gaussian distribution. We choose µ from

{0.5, 0.7, 1}, n from {100, 300, 500}, and p from {50, 100}. In our Riemannian ADMM, we set

γ = 10−8, ρ = 102 and ηk = η = 10−2. The code of ManPG is downloaded from the authors’

website of Chen et al. [2020] and default settings of the parameters are used. In RSG (5.45), we

set the stepsize ηk = η = 10−2 as a result of a simple grid search. For all three algorithms, we

terminate them when the change of the objective function in two consecutive iterations is smaller

than 10−8, which means

|F (Xk+1)− F (Xk)| < 10−8

for ManPG (5.44) and RSG (5.45), and

|F (Y k+1)− F (Y k)| < 10−8

for our RADMM (5.43), where F (X) := −1
2Tr(X

⊤A⊤AX) + µ∥X∥1. Moreover, we also terminate

the three algorithms when the maximal iteration number, which is set 1000, is reached. For different

combinations of µ, n and p, we report the objective value “obj” (F (Xk) for ManPG and RSG, and

F (Y k) for RADMM), CPU time and the sparsity of the solution “Spa” in Table 5.1. Here the

“sparsity” is the percentage of the zero entries of the iterate (Xk for ManPG and RSG, and Y k for

RADMM). Moreover, note that Y k in RADMM (5.43) is not on the Stiefel manifold, we thus report

the constraint violation “infeas”, which is defined as ∥(Y k)⊤Yk − Ip∥F , in Table 5.1 for RADMM.

From Table 5.1 we have the following observations: (i) both ManPG and RADMM generated very

sparse solutions, while RSG cannot generate sparse solutions; (ii) RSG is very slow. It cannot

decrease the objective value to the same level as ManPG and RADMM; (iii) RADMM is always

faster than ManPG, sometimes is about 10 to 20 times faster. (iv) In most cases, RADMM yields

iterates with better objective value than ManPG, and although Y k generated by RADMM is not

on the Stiefel manifold, the constraint violation is small – usually in the order of 10−6 ∼ 10−8.

123

Settings RSG ManPG RADMM
µ (n, p) obj CPU Spa obj CPU Spa obj CPU Spa infeas

0.5

(300, 50) 23.9783 0.5725 0 6.1015 1.6808 0.9964 6.0794 0.3550 0.9965 1.14e-6
(300, 100) 44.9207 1.4091 0 9.9683 16.9343 0.9966 9.4524 1.0113 0.9964 4.43e-6
(500, 50) 34.8607 1.1545 0 4.8868 1.7355 0.9977 4.7141 0.8379 0.9980 7.07e-8
(500, 100) 72.1180 2.2447 0 12.0830 15.4234 0.9980 11.7489 1.5738 0.9980 1.00e-7

0.7

(300, 50) 50.0266 0.5584 0 14.9053 1.7990 0.9965 14.9497 0.2860 0.9967 9.90e-8
(300, 100) 99.1306 1.4196 0 29.0171 16.7438 0.9966 28.9101 0.8185 0.9967 1.40e-7
(500, 50) 73.4292 1.1515 0 14.3927 1.9293 0.9978 14.2181 0.7760 0.9980 9.90e-8
(500, 100) 147.0228 2.2224 0 29.8765 16.9296 0.9980 29.6908 1.2075 0.9980 1.40e-7

1.0

(300, 50) 99.5018 0.5593 0 29.4374 2.2295 0.9967 29.6217 0.1879 0.9967 1.41e-7
(300, 100) 202.9473 1.4154 0 61.5334 16.0349 0.9965 61.0310 0.5699 0.9967 2.00e-7
(500, 50) 149.1125 1.1564 0 30.5119 1.8004 0.9980 30.4099 0.4336 0.9980 1.41e-7
(500, 100) 295.5895 2.2384 0 59.5210 18.3017 0.9980 59.5309 1.0377 0.9980 2.00e-7

Table 5.1. Comparison of RSG (5.45), ManPG (5.44), and RADMM (5.43) for
solving (5.37). The results are averaged for 10 repeated experiments with random
initializations.

To better illustrate the behavior of the three algorithms, we further draw some figures in Figure

5.1, to show how the objective function value decreases along with the CPU time. From Figure

5.1 we can clearly see that RGS quickly stops decreasing the objective value, while both ManPG

and RADMM can decrease the objective value to a much lower level. Moreover, RADMM is much

faster than ManPG.

We also compare our RADMM (5.43) with SOC [Lai and Osher, 2014] and MADMM [Kovnatsky

et al., 2016]. Before we present the numerical comparisons, we remind the reader that there is no

convergence guarantee for SOC and MADMM. The SOC (5.4) algorithm for solving problem (5.37)

actually solves the following equivalent problem:

min
X,Y

− 1

2
Tr(X⊤A⊤AX) + µ∥X∥1

s.t. X = Y, Y ∈ St(n, p).

(5.46)

The SOC iterates as follows.

Xk+1 := argmin
X

−1

2
Tr(X⊤A⊤AX) + µ∥X∥1 + ⟨Λk, X − Y k⟩+ ρ

2
∥X − Y k∥2F

Y k+1 := argmin
Y ∈St(n,p)

⟨Λk, Xk+1 − Y ⟩+ ρ

2
∥Xk+1 − Y ∥2F

Λk+1 := Λk + ρ(Xk+1 − Y k+1).

(5.47)

124

0 0.5 1 1.5 2 2.5 3 3.5

CPU time

102

103

F
un

ct
io

n
va

lu
e

RSG
ManPG
RADMM

(a) n = 300, p = 50

0 5 10 15 20 25 30 35

CPU time

102

103

F
un

ct
io

n
va

lu
e

RSG
ManPG
RADMM

(b) n = 300, p = 100

0 0.5 1 1.5 2 2.5

CPU time

102

103

F
un

ct
io

n
va

lu
e

RSG
ManPG
RADMM

(c) n = 500, p = 50

0 5 10 15 20 25 30

CPU time

102

103

F
un

ct
io

n
va

lu
e

RSG
ManPG
RADMM

(d) n = 500, p = 100

Figure 5.1. Comparison of the CPU time (in seconds) consumed among the
ManPG, RADMM and Riemannian gradient methods for solving (5.37) with µ = 1.
Each figure is averaged for 10 repeated experiments with random initializations.

In our numerical experiment, we chose to solve the X-subproblem using the proximal gradient

method. The MADMM (5.5) solves (5.41), and iterates as follows:

Xk+1 := argmin
X∈St(n,p)

−1

2
Tr(X⊤A⊤AX) + ⟨Λk, X − Y k⟩+ ρ

2
∥X − Y k∥2F

Y k+1 := argmin
Y

µ∥Y ∥1 + ⟨Λk, Xk+1 − Y ⟩+ ρ

2
∥Xk+1 − Y ∥2F

Λk+1 := Λk + ρ(Xk+1 − Y k+1).

(5.48)

125

In our numerical experiment, we chose to solve the X-subproblem using a Riemannian gradient

method.

We test our RADMM with SOC and MADMM with the following parameters: for SOC we

set ρ = 50 and η = 10−2, where η is the stepsize for the proximal gradient method for solving

the X-subproblem; for MADMM we set ρ = 100 and η = 10−2, where η is the stepsize for the

Riemannian gradient method for solving the X-subproblem; for RADMM we set ρ = 100, η = 10−2

and γ = 10−8. The parameters are obtained via simple grid searches, also we randomly initialize

three algorithms at the same starting point. For all the three algorithms we record the function

value and sparsity for the sequence on the manifold, i.e. Xk for MADMM and RADMM, and Y k

for SOC. For each algorithm, we terminate after 100 iterations. We present the function value

change curve in Figure 5.2. We also report the objective function values of the outputs (denoted as

“obj”), the sparsity (the percentage of zero entries, denoted as “Spa”) and the constraint violation

(∥Xk−Y k∥F for all three algorithms, denoted as “infeas”) in Table 5.2. From the top row of Figure

5.2 we can see that SOC is more efficient in terms of the iteration number, but from the bottom

row of Figure 5.2 we see that RADMM is more efficient in terms of the CPU time. This is exactly

because all steps in our RADMM are very easy to compute, and so the per-iteration complexity is

very cheap.

Settings SOC MADMM RADMM
(n, p) obj Spa infeas obj Spa infeas obj Spa infeas

(300, 50) 34.8851 0.7609 0.0060 29.2059 0.9967 0.0000 29.1197 0.9967 0.0000
(300, 100) 66.6870 0.6018 0.0072 59.6483 0.9967 0.0000 59.8210 0.9967 0.0000
(500, 50) 32.7199 0.8819 0.0040 29.4007 0.9980 0.0000 29.5003 0.9742 0.0000
(500, 100) 67.2337 0.7558 0.0082 59.7878 0.9977 0.0000 59.4491 0.9980 0.0000

Table 5.2. Comparison of SOC, MADMM and RADMM for solving (5.37) with
µ = 1. The results are averaged for 10 repeated experiments with random initial-
izations.

5.4.2. Numerical Experiments on ODL and DPCP. In this section, we test Algorithm

10 on the DPCP problem (5.40), which can be equivalently written as:

min
X,W

∥W∥1

s.t., W = Y ⊤X, X ∈ St(n, p).

(5.49)

126

0 50 100 150 200 250 300 350 400 450 500

Iterations

0

100

200

300

400

500

600

700

F
un

ct
io

n
va

lu
e

SOC
MADMM
RADMM

(a)

0 50 100 150 200 250 300 350 400 450 500

Iterations

0

200

400

600

800

1000

1200

1400

F
un

ct
io

n
va

lu
e

SOC
MADMM
RADMM

(b)

0 50 100 150 200 250 300 350 400 450 500

Iterations

0

100

200

300

400

500

600

700

800

900

F
un

ct
io

n
va

lu
e

SOC
MADMM
RADMM

(c)

0 50 100 150 200 250 300 350 400 450 500

Iterations

0

200

400

600

800

1000

1200

1400

1600

1800

F
un

ct
io

n
va

lu
e

SOC
MADMM
RADMM

(d)

10 -15 10 -10 10 -5 100

CPU time

0

100

200

300

400

500

600

700

F
un

ct
io

n
va

lu
e

SOC
MADMM
RADMM

(a) n = 300, p = 50

10 -15 10 -10 10 -5 100 105

CPU time

0

200

400

600

800

1000

1200

1400

F
un

ct
io

n
va

lu
e

SOC
MADMM
RADMM

(b) n = 300, p = 100

10 -15 10 -10 10 -5 100

CPU time

0

100

200

300

400

500

600

700

800

900

F
un

ct
io

n
va

lu
e

SOC
MADMM
RADMM

(c) n = 500, p = 50

10 -15 10 -10 10 -5 100 105

CPU time

0

200

400

600

800

1000

1200

1400

1600

1800

F
un

ct
io

n
va

lu
e

SOC
MADMM
RADMM

(d) n = 500, p = 100

Figure 5.2. Comparison of SOC, MADMM and RADMM for solving (5.37) with
µ = 1. The first row is the comparison of function value decrease w.r.t. number of
iterations, and the second row is w.r.t. CPU time consumed. Each figure is averaged
for 10 repeated experiments with random initializations.

Simple calculation shows that Algorithm 10 for the DPCP problem (5.40) iterates as follows.

Xk+1 := RetrXk(−ηkprojT
Xk St(n,p)(Y Λk + ρY (Y ⊤Xk − Zk)))

W k+1 := prox 1+ργ
ρ

∥·∥1(Y
⊤Xk+1 +

1

ρ
Λk)

Zk+1 :=
1

1/γ + ρ

(
1

γ
W k+1 + Λk + ρY ⊤Xk+1

)
Λk+1 := Λk + ρ(Y ⊤Xk+1 − Zk+1).

(5.50)

We compare the RADMM with iteratively reweighted least squares (IRLS) Lerman and Maunu

[2018b], Tsakiris and Vidal [2018], projected subgradient method (PSGM) Zhu et al. [2018]1 and

manifold proximal point algorithm (ManPPA) Chen et al. [2021a]. Note that the objective of the

1We remark that Maunu et al. [2019] proposed a similar Riemannian gradient descent algorithm for RSR by operating
on the subspace rather than its orthogonal complement.

127

problem:

min
X

F (X) := ∥Y ⊤X∥1

s.t. X ∈ St(n, p) = {X ∈ Rn×p|X⊤X = Ip}.
(5.51)

is separable column-wisely:

min
x1,...,xp

p∑
i=1

∥Y ⊤xi∥1

s.t. {x1, ..., xp} is orthonormal set.

(5.52)

PSGM and ManPPA conduct the minimization column-wisely. Therefore, in our experiment, we

can only record the function value at the outputs of PSGM and ManPPA. Meanwhile the IRLS

algorithm that we implemented here is a variant of the original column-wise algorithm for solving

(5.40) Lerman and Maunu [2018b], Tsakiris and Vidal [2018,?]. IRLS iterates as follows: first we

find the initialization by X0 := argminX∈St(n,p) ∥Y ⊤X∥2F and then the iterate is updated by

(5.53) Xk+1 ← argmin
X∈St(n,p)

∑
i

∥X⊤Yi∥22/max{δ, ∥(Xk)⊤Yi∥2}.

We follow the same experiment setting as Chen et al. [2021a]. More specifically, we construct

the data to be Y = [SR,O], S ∈ Rn×d with orthogonal column vectors, R ∈ Rd×p1 , O ∈ RN×p2 both

with random Gaussian entries. Here p1 and p2 are the numbers of inliers and outliers respectively

as described in Chen et al. [2020]. In our experiment we set p = 5, p1 = 500 and p2 = 1167, with

different choice of n. For our RADMM algorithm we set ρ = 40, γ = 4 · 10−9, η = 2 · 10−4. For

other algorithms, we use their default parameter settings from Chen et al. [2021a], Tsakiris and

Vidal [2018], Zhu et al. [2018]. For all the algorithm, we terminate them if the difference between

two consecutive function values is smaller than 10−6, i.e.

|F (Xk+1)− F (Xk)| < 10−6.

We initialize IRLS and RADMM with the same initial point as in Zhu et al. [2018]. Note that

PSGM and ManPPA sequentially solves the column-wise problems, and therefore they do not need

the initial point to be on the Stiefel manifold. In Figure 5.3, we show how the objective function

128

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

CPU time

176

178

180

182

184

186

188

190

192

194

F
va

l

Inlier p1=500, Outlier p2=1167, dimension of variable: 30x5

ManPPA
PSGM
IRLS
RADMM

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

CPU time

138

140

142

144

146

148

150

152

F
va

l

Inlier p1=500, Outlier p2=1167, dimension of variable: 50x5

ManPPA
PSGM
IRLS
RADMM

Figure 5.3. Function value ∥Y ⊤Xk∥1 versus CPU time. In this experiment we set
n ∈ {30, 50}, p = 5, p1 = 500 and p2 = 1167.

value changes along with the CPU time. We also record the CPU time and final objective function

value in Table 5.3. For RADMM, we also include the constraint violation (i.e. ∥W k − Y ⊤Xk∥F ,

denoted as “infeas” in the table) in Table 5.3. It can be seen from Figure 5.3 and Table 5.3 that

RADMM outputs the other three algorithms in terms of the objective function value.

Settings PSGM IRLS ManPPA RADMM
(n, p) obj CPU obj CPU obj CPU obj CPU infeas
(30, 5) 180.59 0.0131 177.66 0.0230 177.90 0.1164 173.28 0.3177 0.0003
(50, 5) 141.66 0.0215 142.61 0.0404 138.78 0.1820 136.62 0.3971 0.0007
(70, 5) 125.94 0.0429 118.97 0.0881 119.50 0.3532 116.39 0.4526 0.0074

Table 5.3. Summary of function value, CPU time (seconds) of proposed RADMM
Algorithm (5.50), comparing with PSGM Zhu et al. [2018], IRLS Lerman and Maunu
[2018b], Tsakiris and Vidal [2018] and ManPPA Chen et al. [2021a] algorithm. The
results are averaged for 10 repeated experiments with random generated data. In
this experiment we set p1 = 500 and p2 = 1167.

We also compare our RADMM (5.50) with SOC Lai and Osher [2014] and MADMM Kovnatsky

et al. [2016]. The SOC (5.4) algorithm for problem (5.40) actually solves the following equivalent

problem:

min
X,W

∥Y ⊤X∥1

s.t., X = W, W ∈ St(n, p),

129

and it iterates as:

Xk+1 := argmin
X

∥Y ⊤X∥1 + ⟨Λk, X −W k⟩+ ρ

2
∥X −W k∥2F

W k+1 := argmin
W∈St(n,p)

⟨Λk, Xk+1 −W ⟩+ ρ

2
∥Xk+1 −W∥2F

Λk+1 := Λk + ρ(Xk+1 −W k+1).

(5.54)

In our experiment, we chose to solve the X-subproblem by a subgradient method Beck [2017].

MADMM (5.5) solves (5.49), and updates the iterates as follows:

Xk+1 := argmin
X∈St(n,p)

⟨Λk, Y ⊤X −W k⟩+ ρ

2
∥Y ⊤X −W k∥2F

W k+1 := argmin
W

∥W∥1 + ⟨Λk, Y ⊤Xk+1 −W ⟩+ ρ

2
∥Y ⊤Xk+1 −W∥2F

Λk+1 := Λk + ρ(Y ⊤Xk+1 −W k+1).

(5.55)

In our experiment, we chose to solve the X-subproblem by a Riemannian gradient descent method.

The parameters are set as follows. For SOC we set ρ = 50 and η = 5 · 10−6, where η is the

stepsize for the subgradient step; for MADMM we set ρ = 50 and η = 10−6, where η is the stepsize

for the X update; for RADMM we set ρ = 50, η = 10−4 and γ = 10−9. Again, the parameters are

obtained via simple grid searches, also we randomly initialize three algorithms at the same starting

point. For all the three algorithms we record the function value for the sequence on the manifold,

i.e. Xk for MADMM and RADMM, and W k for SOC. We terminate the algorithms after 2000

iterations. We record the objective function values in Figure 5.4. We also report the objective

function values of the final output (denoted as “obj”) and the constraint violation (∥Xk −W k∥F

for SOC and ∥Y ⊤Xk −W k∥F for MADMM and RADMM, denoted as “infeas”) in Table 5.4. It

can be seen from Figure 5.4 and Table 5.4 that RADMM is more efficient in terms of CPU time,

despite small constraint violation.

5.5. Conclusions

In this chapter, we proposed a Riemannian ADMM for solving a class of Riemannian optimiza-

tion problem with nonsmooth objective function.

130

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Iterations

850

900

950

1000

1050

1100

1150

1200

1250

F
un

ct
io

n
va

lu
e

SOC
MADMM
RADMM

(a)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Iterations

650

700

750

800

850

900

950

F
un

ct
io

n
va

lu
e

SOC
MADMM
RADMM

(b)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Iterations

550

600

650

700

750

800

F
un

ct
io

n
va

lu
e

SOC
MADMM
RADMM

(c)

10 -15 10 -10 10 -5 100 105

CPU time

850

900

950

1000

1050

1100

1150

1200

1250

F
un

ct
io

n
va

lu
e

SOC
MADMM
RADMM

(a) (n, p) = (30, 5)

10 -15 10 -10 10 -5 100 105

CPU time

650

700

750

800

850

900

950

F
un

ct
io

n
va

lu
e

SOC
MADMM
RADMM

(b) (n, p) = (50, 5)

10 -15 10 -10 10 -5 100 105

CPU time

550

600

650

700

750

800

F
un

ct
io

n
va

lu
e

SOC
MADMM
RADMM

(c) (n, p) = (70, 5)

Figure 5.4. Comparison of SOC, MADMM and RADMM for solving (5.40). The
first row is the comparison of function value decrease w.r.t. number of iterations,
and the second row is w.r.t. CPU time consumed. Each figure is averaged for 10
repeated experiments with random initializations.

Settings SOC MADMM RADMM
(n, p) obj infeas obj infeas obj infeas
(30, 5) 860.9367 0.0000 860.8601 0.0019 860.8394 0.0021
(50, 5) 651.4294 0.0000 656.9796 0.0062 656.1095 0.0066
(70, 5) 551.2766 0.0000 564.4312 0.0137 563.8032 0.0097

Table 5.4. Comparison of SOC, MADMM and RADMM for solving (5.40). The
results are averaged for 10 repeated experiments with random initializations.

All steps of our Riemannian ADMM are easy to compute and implement, which gives the

potential to be applied to solving large-scale problems. Our method is based on a Moreau envelop

smoothing technique. How to design ADMM for solving (5.1) without smoothing remains an open

question for future work.

131

Bibliography

P.-A. Absil and J. Malick. Projection-like retractions on matrix manifolds. SIAM Journal on

Optimization, 22(1):135–158, 2012.

P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization algorithms on matrix manifolds. Princeton

University Press, 2008.

N. Agarwal, N. Boumal, B. Bullins, and C. Cartis. Adaptive regularization with cubics on manifolds.

Mathematical Programming, 188(1):85–134, 2021.

F. Alimisis, P. Davies, B. Vandereycken, and D. Alistarh. Distributed principal component analysis

with limited communication. Advances in Neural Information Processing Systems, 34, 2021.

C. Audet and W. Hare. Derivative-free and blackbox optimization, volume 2. Springer, 2017.

K. Balasubramanian and S. Ghadimi. Zeroth-order nonconvex stochastic optimization: Handling

constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics,

pages 1–42, 2021.

K. Balasubramanian, S. Ghadimi, and A. Nguyen. Stochastic multilevel composition optimization

algorithms with level-independent convergence rates. SIAM Journal on Optimization, 32(2):

519–544, 2022.

A. Beck. First-order methods in optimization. SIAM, 2017.

T. Bendory, Y. C. Eldar, and N. Boumal. Non-convex phase retrieval from STFT measurements.

IEEE Transactions on Information Theory, 64(1):467–484, 2017.

G. C. Bento, O. P. Ferreira, and J. G. Melo. Iteration-complexity of gradient, subgradient and prox-

imal point methods on Riemannian manifolds. Journal of Optimization Theory and Applications,

173(2):548–562, 2017.

D. A. Bini and B. Iannazzo. Computing the Karcher mean of symmetric positive definite matrices.

Linear Algebra and its Applications, 438(4):1700–1710, 2013.

132

S. Bonnabel. Stochastic gradient descent on Riemannian manifolds. IEEE Transactions on Auto-

matic Control, 58(9):2217–2229, 2013.

P. B. Borckmans, S. E. Selvan, N. Boumal, and P.-A. Absil. A Riemannian subgradient algorithm for

economic dispatch with valve-point effect. Journal of Computational and Applied Mathematics,

255:848–866, 2014.

N. Boumal. An introduction to optimization on smooth manifolds. Cambridge University Press,

2023.

N. Boumal and P. Absil. RTRMC: A Riemannian trust-region method for low-rank matrix com-

pletion. In Advances in neural information processing systems, pages 406–414, 2011.

N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre. Manopt, a Matlab toolbox for optimization

on manifolds. Journal of Machine Learning Research, 15(42):1455–1459, 2014. URL https:

//www.manopt.org.

N. Boumal, P.-A. Absil, and C. Cartis. Global rates of convergence for nonconvex optimization on

manifolds. IMA Journal of Numerical Analysis, 39(1):1–33, 2018.

S. Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and Trends® in

Machine Learning, 8(3-4):231–357, 2015.

D. Burago, Y. Burago, and S. Ivanov. A course in metric geometry, volume 33. American Mathe-

matical Society, 2022.

C. J. Burges. Dimension reduction: A guided tour. Now Publishers Inc, 2010.

H. Cai, D. Mckenzie, W. Yin, and Z. Zhang. Zeroth-order regularized optimization (zoro): Approx-

imately sparse gradients and adaptive sampling. SIAM Journal on Optimization, 32(2):687–714,

2022.

Y. Carmon and J. C. Duchi. Analysis of Krylov subspace solutions of regularized non-convex

quadratic problems. In Advances in Neural Information Processing Systems, pages 10705–10715,

2018.

T. Carson, D. G. Mixon, and S. Villar. Manifold optimization for k-means clustering. In 2017

International Conference on Sampling Theory and Applications (SampTA), pages 73–77. IEEE,

2017.

133

https://www.manopt.org
https://www.manopt.org

Z. Charles and J. Konečnỳ. Convergence and accuracy trade-offs in federated learning and meta-

learning. In International Conference on Artificial Intelligence and Statistics, pages 2575–2583.

PMLR, 2021.

A. Chattopadhyay, S. E. Selvan, and U. Amato. A derivative-free Riemannian Powell’s method,

minimizing hartley-entropy-based ICA contrast. IEEE transactions on neural networks and learn-

ing systems, 27(9):1983–1990, 2015.

F. Chazal and B. Michel. An introduction to topological data analysis: fundamental and practical

aspects for data scientists. Frontiers in artificial intelligence, 4, 2021.

P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh. ZOO: Zeroth order optimization based

black-box attacks to deep neural networks without training substitute models. In Proceedings of

the 10th ACM Workshop on Artificial Intelligence and Security, pages 15–26. ACM, 2017.

S. Chen, S. Ma, A. M.-C. So, and T. Zhang. Proximal gradient method for nonsmooth optimization

over the Stiefel manifold. SIAM Journal on Optimization, 30(1):210–239, 2020.

S. Chen, Z. Deng, S. Ma, and A. M.-C. So. Manifold proximal point algorithms for dual principal

component pursuit and orthogonal dictionary learning. IEEE Transactions on Signal Processing,

69:4759–4773, 2021a.

S. Chen, A. Garcia, M. Hong, and S. Shahrampour. Decentralized Riemannian gradient descent

on the Stiefel manifold. In International Conference on Machine Learning, pages 1594–1605.

PMLR, 2021b.

S. Chen, A. Garcia, M. Hong, and S. Shahrampour. On the local linear rate of consensus on the

Stiefel manifold. arXiv preprint arXiv:2101.09346, 2021c.

M. Cheng, T. Le, P.-Y. Chen, J. Yi, H. Zhang, and C.-J. Hsieh. Query-efficient hard-label black-box

attack: An optimization-based approach. arXiv preprint arXiv:1807.04457, 2018.

A. Cherian and S. Sra. Riemannian dictionary learning and sparse coding for positive definite

matrices. IEEE transactions on neural networks and learning systems, 28(12):2859–2871, 2016.

A. Conn, K. Scheinberg, and L. Vicente. Introduction to Derivative-Free Optimization, volume 8.

SIAM, 2009.

A. d’Aspremont, L. E. Ghaoui, M. I. Jordan, and G. R. G. Lanckriet. A direct formulation for

sparse PCA using semidefinite programming. SIAM Review, 49(3):434–448, 2007.

134

L. Demanet and P. Hand. Scaling law for recovering the sparsest element in a subspace. Information

and Inference, 3(4):295–309, 2014.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical

Image Database. In CVPR09, 2009.

P. Diaconis, S. Holmes, and M. Shahshahani. Sampling from a manifold. In Advances in modern

statistical theory and applications: a Festschrift in honor of Morris L. Eaton, pages 102–125.

Institute of Mathematical Statistics, 2013.

M. P. Do Carmo. Riemannian geometry, volume 6. Springer, 1992.

D. Drieß, P. Englert, and M. Toussaint. Constrained bayesian optimization of combined interac-

tion force/task space controllers for manipulations. In 2017 IEEE International Conference on

Robotics and Automation (ICRA), pages 902–907. IEEE, 2017.

J. C. Duchi, M. I. Jordan, M. J. Wainwright, and A. Wibisono. Optimal rates for zero-order convex

optimization: The power of two function evaluations. IEEE Transactions on Information Theory,

61(5):2788–2806, 2015.

A. Edelman, T. A. Arias, and S. T. Smith. The geometry of algorithms with orthogonality con-

straints. SIAM journal on Matrix Analysis and Applications, 20(2):303–353, 1998.

O. Ferreira and P. Oliveira. Subgradient algorithm on Riemannian manifolds. Journal of Opti-

mization Theory and Applications, 97(1):93–104, 1998.

R. S. Fong and P. Tino. Stochastic derivative-free optimization on riemannian manifolds. In

Population-Based Optimization on Riemannian Manifolds, pages 105–137. Springer, 2022.

M. Forina, R. Leardi, A. C, and S. Lanteri. PARVUS: An Extendable Package of Programs for

Data Exploration. Elsevier, Amsterdam, 01 1998. ISBN 0-444-43012-1.

P. I. Frazier. A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

K. A. Gallivan and P. Absil. Note on the convex hull of the Stiefel manifold. Technical note, 2010.

E. S. Gawlik and M. Leok. High-order retractions on matrix manifolds using projected polynomials.

SIAM Journal on Matrix Analysis and Applications, 39(2):801–828, 2018.

S. Ghadimi and G. Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic pro-

gramming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

135

S. Ghadimi, A. Ruszczynski, and M. Wang. A single timescale stochastic approximation method

for nested stochastic optimization. SIAM Journal on Optimization, 30(1):960–979, 2020.

D. Golovin, J. Karro, G. Kochanski, C. Lee, and X. Song. Gradientless descent: High-dimensional

zeroth-order optimization. arXiv preprint arXiv:1911.06317, 2019.

I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. arXiv

preprint arXiv:1412.6572, 2014.

A. Grammenos, R. Mendoza Smith, J. Crowcroft, and C. Mascolo. Federated principal component

analysis. Advances in Neural Information Processing Systems, 33:6453–6464, 2020.

P. Grohs and S. Hosseini. Nonsmooth trust region algorithms for locally Lipschitz functions on

Riemannian manifolds. IMA Journal of Numerical Analysis, 36(3):1167–1192, 2016a.

P. Grohs and S. Hosseini. ε-subgradient algorithms for locally Lipschitz functions on Riemannian

manifolds. Advances in Computational Mathematics, 42(2):333–360, 2016b.

M. Harandi, M. Salzmann, and R. Hartley. Dimensionality reduction on SPD manifolds: The

emergence of geometry-aware methods. IEEE transactions on pattern analysis and machine

intelligence, 40(1):48–62, 2017.

S. Hosseini. Convergence of nonsmooth descent methods via Kurdyka–Lojasiewicz inequality on

Riemannian manifolds. Hausdorff Center for Mathematics and Institute for Numerical Simula-

tion, University of Bonn (2015,(INS Preprint No. 1523)), 2015.

S. Hosseini and A. Uschmajew. A Riemannian gradient sampling algorithm for nonsmooth opti-

mization on manifolds. SIAM Journal on Optimization, 27(1):173–189, 2017.

S. Hosseini, W. Huang, and R. Yousefpour. Line search algorithms for locally Lipschitz functions

on Riemannian manifolds. SIAM Journal on Optimization, 28(1):596–619, 2018.

H. Hotelling. Analysis of a complex of statistical variables into principal components. Journal of

Educational Psychology, 24(6):417–441, 1933.

E. P. Hsu. Stochastic Analysis on Manifolds, volume 38. American Mathematical Soc., 2002.

W. Huang and K. Wei. An extension of fast iterative shrinkage-thresholding to Riemannian opti-

mization for sparse principal component analysis. arXiv preprint arXiv:1909.05485, 2019.

W. Huang and K. Wei. Riemannian proximal gradient methods. Mathematical Programming, 194:

371–413, 2022.

136

W. Huang, K. A. Gallivan, and P.-A. Absil. A Broyden class of quasi-Newton methods for Rie-

mannian optimization. SIAM Journal on Optimization, 25(3):1660–1685, 2015.

K. G. Jamieson, R. Nowak, and B. Recht. Query complexity of derivative-free optimization. In

Advances in Neural Information Processing Systems, pages 2672–2680, 2012.

N. Jaquier and L. Rozo. High-dimensional Bayesian optimization via nested Riemannian manifolds.

Advances in Neural Information Processing Systems, 33, 2020.

N. Jaquier, L. Rozo, S. Calinon, and M. Bürger. Bayesian optimization meets Riemannian manifolds

in robot learning. In Conference on Robot Learning, pages 233–246. PMLR, 2020.

B. Jiang, T. Lin, S. Ma, and S. Zhang. Structured nonconvex and nonsmooth optimization: Algo-

rithms and iteration complexity analysis. Computational Optimization and Applications, 72(1):

115–157, 2019.

I. Jolliffe, N.Trendafilov, and M. Uddin. A modified principal component technique based on the

LASSO. Journal of computational and Graphical Statistics, 12(3):531–547, 2003.

M. Journee, Y. Nesterov, P. Richtarik, and R. Sepulchre. Generalized power method for sparse

principal component analysis. J. Mach. Learn. Res., 11:517–553, 2010.

O. Kachan. Persistent homology-based projection pursuit. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition Workshops, pages 856–857, 2020.

T. Kaneko, S. Fiori, and T. Tanaka. Empirical arithmetic averaging over the compact Stiefel

manifold. IEEE Transactions on Signal Processing, 61(4):883–894, 2012.

S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh. Scaffold: Stochastic

controlled averaging for federated learning. In International Conference on Machine Learning,

pages 5132–5143. PMLR, 2020.

H. Kasai, H. Sato, and B. Mishra. Riemannian stochastic recursive gradient algorithm. In Inter-

national Conference on Machine Learning, pages 2516–2524, 2018.

J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik. Federated optimization: Distributed

machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527, 2016.

A. Kovnatsky, K. Glashoff, and M. M. Bronstein. MADMM: a generic algorithm for non-smooth

optimization on manifolds. In ECCV, pages 680–696, 2016.

137

R. Lai and S. Osher. A splitting method for orthogonality constrained problems. Journal of

Scientific Computing, 58(2):431–449, 2014.

G. Lan. First-order and Stochastic Optimization Methods for Machine Learning. Springer Nature,

2020.

J. Larson, M. Menickelly, and S. M. Wild. Derivative-free optimization methods. Acta Numerica,

28:287–404, 2019.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

J. A. Lee and M. Verleysen. Nonlinear Dimensionality Reduction. Springer Science & Business

Media, 2007.

J. M. Lee. Riemannian manifolds: an introduction to curvature, volume 176. Springer Science &

Business Media, 2006.

G. Lerman and T. Maunu. An overview of robust subspace recovery. Proceedings of the IEEE, 106

(8):1380–1410, 2018a.

G. Lerman and T. Maunu. Fast, robust and non-convex subspace recovery. Information and

Inference: A Journal of IMA, 7:277–336, 2018b.

G. Lerman, M. B. McCoy, J. A. Tropp, and T. Zhang. Robust computation of linear models by

convex relaxation. Foundations of Computational Mathematics, 15:363–410, 2015.

J. Leygonie, S. Oudot, and U. Tillmann. A framework for differential calculus on persistence

barcodes. Foundations of Computational Mathematics, pages 1–63, 2021.

C.-L. Li, K. Kandasamy, B. Póczos, and J. Schneider. High dimensional Bayesian optimization

via restricted projection pursuit models. In Artificial Intelligence and Statistics, pages 884–892,

2016.

J. Li and S. Ma. Federated learning on Riemannian manifolds. Appl. Set-Valued Anal. Optim. 5

(2023), 213-232, 2023.

J. Li, S. Ma, and T. Srivastava. A Riemannian ADMM. arXiv preprint arXiv:2211.02163, 2022.

J. Li, K. Balasubramanian, and S. Ma. Stochastic zeroth-order riemannian derivative estimation

and optimization. Mathematics of Operations Research, 48(2):1183–1211, 2023.

138

T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith. Federated optimization in

heterogeneous networks. Proceedings of Machine Learning and Systems, 2:429–450, 2020.

X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang. On the convergence of fedavg on non-iid data.

arXiv preprint arXiv:1907.02189, 2019.

X. Li, S. Chen, Z. Deng, Q. Qu, Z. Zhu, and A. M. C. So. Weakly convex optimization over Stiefel

manifold using Riemannian subgradient-type methods. SIAM J. Optimization, 31(3):1605–1634,

2021.

L. Lin, B. St. Thomas, H. Zhu, and D. B. Dunson. Extrinsic local regression on manifold-valued

data. Journal of the American Statistical Association, 112(519):1261–1273, 2017.

L. Lin, D. Lazar, B. Sarpabayeva, and D. B. Dunson. Robust optimization and inference on

manifolds. arXiv preprint arXiv:2006.06843, 2020.

C. Lu, J. Feng, Z. Lin, and S. Yan. Nonconvex sparse spectral clustering by alternating direction

method of multipliers and its convergence analysis. In Proceedings of the AAAI Conference on

Artificial Intelligence, volume 32, 2018.

C. Lyu, K. Huang, and H.-N. Liang. A unified gradient regularization family for adversarial exam-

ples. In 2015 IEEE International Conference on Data Mining, pages 301–309. IEEE, 2015.

S. Ma. Alternating direction method of multipliers for sparse principal component analysis. Journal

of the Operations Research Society of China, 1(2):253–274, 2013.

A. I. Maass, C. Manzie, D. Nesic, J. H. Manton, and I. Shames. Tracking and regret bounds for

online zeroth-order Euclidean and Riemannian optimization. SIAM Journal on Optimization, 32

(2):445–469, 2022.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models

resistant to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

G. Malinovskiy, D. Kovalev, E. Gasanov, L. Condat, and P. Richtarik. From local sgd to local

fixed-point methods for federated learning. In International Conference on Machine Learning,

pages 6692–6701. PMLR, 2020.

A. Marco, P. Hennig, J. Bohg, S. Schaal, and S. Trimpe. Automatic LQR tuning based on Gaussian

process global optimization. In 2016 IEEE international conference on robotics and automation

(ICRA), pages 270–277. IEEE, 2016.

139

A. Marco, P. Hennig, S. Schaal, and S. Trimpe. On the design of LQR kernels for efficient controller

learning. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pages 5193–

5200. IEEE, 2017.

J. Matyas. Random optimization. Automation and Remote control, 26(2):246–253, 1965.

T. Maunu, T. Zhang, and G. Lerman. A well-tempered landscape for non-convex robust subspace

recovery. Journal of Machine Learning Research, 20:1–59, 2019.

T. Maunu, C. Yu, and G. Lerman. Stochastic and private nonconvex outlier-robust PCA. Journal

of Machine Learning Research, 190:173–188, 2022.

L. McInnes, J. Healy, and J. Melville. UMAP: Uniform manifold approximation and projection for

dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient

learning of deep networks from decentralized data. In Artificial intelligence and statistics, pages

1273–1282. PMLR, 2017.

J. W. Milnor and J. D. Stasheff. Characteristic classes. Number 76. Princeton university press,

1974.

B. Mishra, H. Kasai, P. Jawanpuria, and A. Saroop. A Riemannian gossip approach to subspace

learning on Grassmann manifold. Machine Learning, pages 1–21, 2019.

A. Mitra, R. Jaafar, G. J. Pappas, and H. Hassani. Linear convergence in federated learning:

Tackling client heterogeneity and sparse gradients. Advances in Neural Information Processing

Systems, 34:14606–14619, 2021.

J. Mockus. Application of Bayesian approach to numerical methods of global and stochastic opti-

mization. Journal of Global Optimization, 4(4):347–365, 1994.

J. Mockus. Bayesian approach to global optimization: theory and applications, volume 37. Springer

Science & Business Media, 2012.

M. Mutny and A. Krause. Efficient high dimensional Bayesian optimization with additivity and

quadrature fourier features. In Advances in Neural Information Processing Systems, pages 9005–

9016, 2018.

J. A. Nelder and R. Mead. A simplex method for function minimization. The computer journal, 7

(4):308–313, 1965.

140

A. S. Nemirovski and D. B. Yudin. Problem complexity and method efficiency in optimization.

Wiley & Sons, 1983.

Y. Nesterov. Random gradient-free minimization of convex functions. Technical Report. Center for

Operations Research and Econometrics (CORE), Catholic University of Louvain, 2011.

Y. Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

Y. Nesterov and B. T. Polyak. Cubic regularization of Newton method and its global performance.

Mathematical Programming, 108(1):177–205, 2006.

Y. Nesterov and V. Spokoiny. Random gradient-free minimization of convex functions. Foundations

of Computational Mathematics, 17(2):527–566, 2017.

J. Nocedal and S. J. Wright. Numerical optimization. Springer, 1999.

C. Oh, E. Gavves, and M. Welling. BOCK: Bayesian optimization with cylindrical kernels. In

International Conference on Machine Learning, pages 3868–3877, 2018.

S. Park and H. Zhao. Spectral clustering based on learning similarity matrix. Bioinformatics, 34

(12):2069–2076, 2018.

R. Pathak and M. J. Wainwright. Fedsplit: An algorithmic framework for fast federated optimiza-

tion. Advances in Neural Information Processing Systems, 33:7057–7066, 2020.

K. Pearson. Liii. on lines and planes of closest fit to systems of points in space. The London,

Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559–572, 1901.

Q. Qu, J. Sun, and J. Wright. Finding a sparse vector in subspace: linear sparsity using alternating

directions. IEEE Trans. Information Theory, 62(10):5855–5880, 2016.

R. Rabadán and A. J. Blumberg. Topological Data Analysis for Genomics and Evolution: Topology

in Biology. Cambridge University Press, 2019.

E. Rio. Moment inequalities for sums of dependent random variables under projective conditions.

Journal of Theoretical Probability, 22(1):146–163, 2009.

P. Rolland, J. Scarlett, I. Bogunovic, and V. Cevher. High-dimensional Bayesian optimization via

additive models with overlapping groups. In International Conference on Artificial Intelligence

and Statistics, pages 298–307, 2018.

A. Ruszczyński. A linearization method for nonsmooth stochastic programming problems. Mathe-

matics of Operations Research, 12(1):32–49, 1987.

141

A. Ruszczynski. A stochastic subgradient method for nonsmooth nonconvex multilevel composition

optimization. SIAM Journal on Control and Optimization, 59(3):2301–2320, 2021.

A. Ruszczynski and W. Syski. Stochastic approximation method with gradient averaging for un-

constrained problems. IEEE Transactions on Automatic Control, 28(12):1097–1105, 1983.

H. Sato. Riemannian conjugate gradient methods: General framework and specific algorithms with

convergence analyses. SIAM Journal on Optimization, 32(4):2690–2717, 2022.

K. Scheinberg. Finite difference gradient approximation: To randomize or not? INFORMS Journal

on Computing, 34(5):2384–2388, 2022.

S. M. Shah. Distributed optimization on Riemannian manifolds for multi-agent networks. arXiv

preprint arXiv:1711.11196, 2017.

B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas. Taking the human out of the

loop: A review of Bayesian optimization. Proceedings of the IEEE, 104(1):148–175, 2015.

H. Shen and J. Z. Huang. Sparse principal component analysis via regularized low rank matrix

approximation. Journal of Multivariate Analysis, 99(6):1015–1034, 2008.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.

arXiv preprint arXiv:1409.1556, 2014.

J. C. Spall. Introduction to Stochastic Search and Optimization: Estimation, Simulation, and

Control, volume 65. John Wiley & Sons, 2005.

D. Spielman, H. Wang, and J. Wright. Exact recovery of sparsely-used dictionaries. In COLT,

2012.

C. Stein. A bound for the error in the Normal approximation to the distribution of a sum of

dependent random variables. In Proceedings of the Sixth Berkeley Symposium on Mathemati-

cal Statistics and Probability, Volume 2: Probability Theory. The Regents of the University of

California, 1972.

J. Sun, Q. Qu, and J. Wright. Complete dictionary recovery over the sphere i: Overview and the

geometric picture. IEEE Trans. Information Theory, 63(2):853–884, 2017a.

J. Sun, Q. Qu, and J. Wright. Complete dictionary recovery over the sphere ii: Recovery by

Riemannian trust-region method. IEEE Trans. Information Theory, 63(2):885–914, 2017b.

142

J. Sun, Q. Qu, and J. Wright. A geometric analysis of phase retrieval. Foundations of Computational

Mathematics, 18(5):1131–1198, 2018.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing

properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture

for computer vision. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 2818–2826, 2016.

A. Themelis and P. Patrinos. Douglas–Rachford splitting and admm for nonconvex optimization:

Tight convergence results. SIAM Journal on Optimization, 30(1):149–181, 2020.

J. Townsend, N. Koep, and S. Weichwald. Pymanopt: A python toolbox for optimization on

manifolds using automatic differentiation. Journal of Machine Learning Research, 17(137):1–5,

2016. URL http://jmlr.org/papers/v17/16-177.html.

N. Tripuraneni, N. Flammarion, F. Bach, and M. I. Jordan. Averaging stochastic gradient descent

on Riemannian manifolds. In Conference On Learning Theory, pages 650–687, 2018.

R. Tron, B. Afsari, and R. Vidal. Riemannian consensus for manifolds with bounded curvature.

IEEE Transactions on Automatic Control, 58(4):921–934, 2012.

M. C. Tsakiris and R. Vidal. Dual principal component pursuit. Journal of Machine Learning

Research, 2018.

K. Tsuda, G. Rätsch, and M. K. Warmuth. Matrix exponentiated gradient updates for on-line

learning and Bregman projection. Journal of Machine Learning Research, 6(Jun):995–1018,

2005.

C.-C. Tu, P. Ting, P.-Y. Chen, S. Liu, H. Zhang, J. Yi, C.-J. Hsieh, and S.-M. Cheng. AutoZOOM:

Autoencoder-based zeroth order optimization method for attacking black-box neural networks.

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 742–749,

2019.

L. W. Tu. An Introduction to Manifolds. Springer Science & Universitext, 2011.

B. Vandereycken. Low-rank matrix completion by Riemannian optimization. SIAM Journal on

Optimization, 23(2):1214–1236, 2013.

143

http://jmlr.org/papers/v17/16-177.html

B. Wang, S. Ma, and L. Xue. Riemannian stochastic proximal gradient methods for nonsmooth

optimization over the Stiefel manifold. The Journal of Machine Learning Research, 23(1):4599–

4631, 2022a.

J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor. Tackling the objective inconsistency problem

in heterogeneous federated optimization. Advances in neural information processing systems, 33:

7611–7623, 2020a.

L. Wang, R. Fonseca, and Y. Tian. Learning search space partition for black-box optimization

using monte carlo tree search. Advances in Neural Information Processing Systems, 33, 2020b.

T. Wang. On sharp stochastic zeroth-order Hessian estimators over Riemannian manifolds. Infor-

mation and Inference: A Journal of the IMA, 12(2):787–813, 2023.

T. Wang, Y. Huang, and D. Li. From the Greene–Wu convolution to gradient estimation over

Riemannian manifolds. arXiv:2108.07406, 2021.

X. Wang, Z. Tu, Y. Hong, Y. Wu, and G. Shi. Online optimization over Riemannian manifolds.

Journal of Machine Learning Research, 24(84):1–67, 2023.

Y. Wang, S. Du, S. Balakrishnan, and A. Singh. Stochastic zeroth-order optimization in high

dimensions. In International Conference on Artificial Intelligence and Statistics, pages 1356–

1365, 2018.

Y. Wang, W. Yin, and J. Zeng. Global convergence of ADMM in nonconvex nonsmooth optimiza-

tion. Journal of Scientific Computing, 78(1):29–63, 2019.

Z. Wang, F. Hutter, M. Zoghi, D. Matheson, and N. de Feitas. Bayesian optimization in a billion

dimensions via random embeddings. Journal of Artificial Intelligence Research, 55:361–387, 2016.

Z. Wang, B. Liu, S. Chen, S. Ma, L. Xue, and H. Zhao. A manifold proximal linear method for sparse

spectral clustering with application to single-cell RNA sequencing data analysis. INFORMS

Journal on Optimization, 4(2):200–214, 2022b.

M. Weber and S. Sra. Nonconvex stochastic optimization on manifolds via Riemannian Frank-Wolfe

methods. arXiv preprint arXiv:1910.04194, 2019.

K. Q. Weinberger and L. K. Saul. Unsupervised learning of image manifolds by semidenite pro-

gramming. In CVPR, 2004.

144

X. Xiao, Y. Li, Z. Wen, and L. Zhang. A regularized semi-smooth Newton method with projection

steps for composite convex programs. Journal of Scientific Computing, 76(1):364–389, 2018.

L. Yang, T. K. Pong, and X. Chen. Alternating direction method of multipliers for a class of

nonconvex and nonsmooth problems with applications to background/foreground extraction.

SIAM Journal on Imaging Sciences, 10(1):74–110, 2017.

W. H. Yang, L.-H. Zhang, and R. Song. Optimality conditions for the nonlinear programming

problems on Riemannian manifolds. Pacific J. Optimization, 10(2):415–434, 2014.

K. Yuan, I. Chatzinikolaidis, and Z. Li. Bayesian optimization for whole-body control of high-

degree-of-freedom robots through reduction of dimensionality. IEEE Robotics and Automation

Letters, 4(3):2268–2275, 2019.

J. Zeng, W. Yin, and D.-X. Zhou. Moreau envelope augmented Lagrangian method for nonconvex

optimization with linear constraints. Journal of Scientific Computing, 91(2):1–36, 2022.

H. Zhang and S. Sra. First-order methods for geodesically convex optimization. In Conference on

Learning Theory, pages 1617–1638. PMLR, 2016.

H. Zhang, S. J Reddi, and S. Sra. Riemannian SVRG: Fast stochastic optimization on Riemannian

manifolds. Advances in Neural Information Processing Systems, 29:4592–4600, 2016a.

H. Zhang, S. J. Reddi, and S. Sra. Fast stochastic optimization on Riemannian manifolds. ArXiv

e-prints, pages 1–17, 2016b.

J. Zhang and S. Zhang. A cubic regularized Newton’s method over Riemannian manifolds. arXiv

preprint arXiv:1805.05565, 2018.

J. Zhang, S. Ma, and S. Zhang. Primal-dual optimization algorithms over Riemannian manifolds:

an iteration complexity analysis. Mathematical Programming Series A, 184:445–490, 2020.

J. Zhang, W. Pu, and Z.-Q. Luo. On the iteration complexity of smoothed proximal alm for

nonconvex optimization problem with convex constraints. arXiv preprint arXiv:2207.06304, 2022.

P. Zhou, X. Yuan, S. Yan, and J. Feng. Faster first-order methods for stochastic non-convex

optimization on Riemannian manifolds. IEEE transactions on pattern analysis and machine

intelligence, 2019.

Y. Zhou, C. Bao, C. Ding, and J. Zhu. A semismooth Newton based augmented Lagrangian method

for nonsmooth optimization on matrix manifolds. Mathematical Programming, pages 1–61, 2022.

145

P. Zhu and A. V. Knyazev. Angles between subspaces and their tangents. Journal of Numerical

Mathematics, 21(4):325–340, 2013.

Z. Zhu, Y. Wang, D. Robinson, D. Naiman, R. Vidal, and M. Tsakiris. Dual principal component

pursuit: Improved analysis and efficient algorithms. Advances in Neural Information Processing

Systems, 31, 2018.

R. Zimmermann and K. Hüper. Computing the Riemannian logarithm on the Stiefel manifold:

metrics, methods and performance. arXiv preprint arXiv:2103.12046, 2021.

H. Zou and L. Xue. A selective overview of sparse principal component analysis. Proceedings of

the IEEE, 106(8):1311–1320, 2018.

H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. J. Comput. Graph.

Stat., 15(2):265–286, 2006.

146

	Abstract
	Acknowledgments
	Chapter 1. Introduction
	1.1. Basics on numerical optimization
	1.2. Basics on Riemannian manifolds
	1.3. Basic Riemannian optimization scheme

	Chapter 2. Stochastic Gradient-free Algorithms for Riemannian Optimization
	2.1. Introduction
	2.2. Zeroth-order Smooth (deterministic) Riemannian Optimization
	2.3. Stochastic Zeroth-order Riemannian Optimization Algorithms
	2.4. Numerical Experiments and Applications
	2.5. Conclusions

	Chapter 3. Zeroth-order Stochastic Averaging Algorithms for Riemannian Optimization
	3.1. Introduction
	3.2. Zeroth-order RASA for smooth manifold optimization
	3.3. RASA with retractions and vector transports
	3.4. Numerical experiments

	Chapter 4. Federated Learning Algorithms on Riemannian Manifolds
	4.1. The RFedSVRG Algorithm
	4.2. Convergence analysis
	4.3. Proofs
	4.4. Numerical experiments
	4.5. Conclusions

	Chapter 5. Riemannian Alternating Direction Method of Multipliers
	5.1. Introduction
	5.2. A Riemannian ADMM
	5.3. Convergence Analysis
	5.4. Applications and Numerical Experiments
	5.5. Conclusions

	Bibliography

