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Chapter 14 ®)
Reinventing Realistic Mathematics oo
Education at Berkeley—Emergence

and Development of a Course

for Pre-service Teachers

Dor Abrahamson, Betina Zolkower and Elisa Stone

Abstract A central principle of Realistic Mathematics Education (RME) is that
learners experience guided opportunities to reconstruct cultural practices and arte-
facts in the course of attempting to solve engaging problems using emerging resources
as structuring tools. The same principle plays out at the meta level, across ages, geog-
raphy, and functions, where instructors experience opportunities to reinvent RME as
they adapt its principles to satisfy specific design constraints and local needs. This
chapter recounts a collaborative effort to create at the Graduate School of Edu-
cation, University of California, Berkeley, graduate and undergraduate courses for
pre-service mathematics teachers that incorporates tenets of RME, while accommo-
dating to prescribed and emerging constraints of local contexts, such as stipulation
of federal funding, as well as the collective histories and prior schooling experiences
of pre-service teachers, most of whom are encountering this didactical approach for
the first time.
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14.1 Reinventing Realistic Mathematics Education at Tel
Aviv University: Dor’s Story

The story begins in the fall of 1992 when I, Dor Abrahamson enrolled as a graduate
student in the cognitive psychology master’s programme at Tel Aviv University.
Having served as a ‘big brother’ in Jerusalem, taught enrichment classes in the
periphery, and enjoyed some circumscribed adventures in designing instructional
devices, I arrived with a deep humanistic conviction that children’s prospects could
be greater than what educational systems offer. I was astonished by the epistemic
abyss between students’ natural perceptual sensitivities to the phenomenal world and
their confusion over mathematical propositions that model the very same phenomena.

Mathematics learning, I believed, should always begin from situated sensorimotor
experiences. There should be some engaging activity that gives rise to a surprising
problem; and through tackling this problem with available resources, the student
should arrive at new insights. Throughout, the teacher facilitates this activity by
highlighting relevant elements of the situation, providing these resources that pro-
ductively problematise the child’s judgments, shaping the child’s reflection on the
experience, and supporting a formulation of the insight in cultural structures that
mediate mathematical practices.

During the second year of my studies, I chose to focus my thesis on the early devel-
opment of multiplicative concepts. In particular, I was looking to evaluate empirically
an activity I had previously created for students to ground the concept of fractions
in proportional judgement of geometrically similar images. The activity involved an
elongated wooden contraption with a stretchable rubber ruler that enabled students
to measure the heights of vertically oriented parallel elements in pictures they had
judged as ‘the same.” For example, by stretching the ruler we find that Danny and
Snowman standing side by side are 2 and 3 units tall, respectively, whether in the
small, middle-sised, or large prints (see Fig. 14.1).

Yet, if we do not stretch the ruler and keep the small units from the small picture
on the left to measure the heights in the other pictures, then the heights of the three
pictures would measure at 2 and 3, 4 and 6, and 6 and 9. In particular, the difference
between Danny and Snowman’s heights then measures as 1, 2, and 3 units, respec-
tively. I was interested in understanding whether or not children’s tacit perceptual
expectations (‘same difference’) might cause cognitive conflict with the normative
quantification routines (‘different differences’!) and if, somehow, resolving this con-
flict may support students’ articulated understanding of proportional equivalence as
an entry into the multiplicative conceptual field.

My case studies had suggested that, indeed, children naturally expect pictorial
identity to imply uniform measures: “If it is the same picture, then the heights should
be the same, too.” They were invariably befuddled when I pointed out that the abso-
lute differences between these measured heights are different across the images: “If
these are the same pictures, then how can the difference be different?” And yet,
then they would reason: “The bigger the picture, the bigger the difference!” This
insight, which much later I would learn to theorize either as a hypostatic abstraction,
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Fig. 14.1 A ‘photograph’ of Danny and Snowman is printed in three different sizes; they always
measure as 2 and 3 units tall, respectively, but the absolute size of the measure unit changes across
the prints

reflective abstraction, or abductive inference..., would then impel the children to
further experimentation with larger pictures and finally to validation, to their great
gratification as well as to mine (Abrahamson, 2002, 2012).

Still back in the 1990s at Tel Aviv University, I sought to develop my thesis by
grounding my observations in the literature of the discipline. And yet that did not
prove to be too simple. The epistemic climate of cognitive psychology, at least the
climate of the leading experimental journals that populated our library, appeared
uninviting of a perspective on mathematics learning grounded in tacit perceptual
capacity. My quest brought me to the pinnacle of Tel Aviv University—the Education
Library that resided on the very top floor of the Sackler Faculty of Medicine. There,
amid stunning Mediterranean sunsets, I found it: a paper by Van den Brink and
Streefland (1979) that was about to change everything.

Van den Brink and Streefland discuss a conversation between Coen (8;0) and his
father about a poster showing a man and a whale. The child realised something was
wrong with the ratio between the man and the whale that had been exaggerated for
effect. Coen reasoned about this error by citing an image he had seen elsewhere.
That child was taken very seriously by the authors of the paper. It is precisely these
didactical materials and these forms of reasoning, they argued, that we should be
recruiting so as to promote and support meaningful mathematical learning. Finally,
I had found my ‘sensei’ in Realistic Mathematics Education (RME).

Fast-forward a decade or so, this chapter recounts the story of an international
effort, a mixed relay to carry the RME torch from Utrecht across the Atlantic, by
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way of Brooklyn, to the University of California Berkeley (UC Berkeley). Along the
way, this torch was carried by different athletes and took many forms, and yet we
have all been attempting to keep the essential flame alive. We describe how, at each
station westward, local objectives and contingencies shaped the specific materialisa-
tions of the RME didactics. In particular, we discuss the development of courses for
preparing pre-service mathematics teachers to design and facilitate problem-based
instruction inspired by RME. In the next section, Betina Zolkower, the second author,
will narrate her ongoing life-long investment in RME dissemination by way of South-
ern Argentina, the Netherlands, and Brooklyn, New York. A chance meeting with
Abrahamson, the first author, instigated the appropriation of Zolkower’s methods
for teaching mathematics in middle school courses to Berkeley, where it framed a
graduate-level course on cognition catering to pre-service mathematics teachers. At
the behest of Stone, the third author, and again with Zolkower’s support, this course
was re-redesigned into an undergraduate course for pre-service mathematics teach-
ers, part of Berkeley’s Cal Teach initiative. A successful staple of Cal Teach, since
then this course is taught annually by Abrahamson in collaboration with doctoral
students from the Graduate School of Education.

This chapter is not offered as a theoretical piece, neither should it count remotely
as experimental. Instead, we present a brief case study—a biography of sorts—with
a modest scope of generalisation, with the hope that this story might encourage
our fellow practitioners that Realistic Mathematics Education can and should be
reinvented in diverse guises. Fiat lux!

14.2 Meanwhile, in New York City: Betina’s Story

14.2.1 At the Graduate Center of City University of New York

In 1987, I, Betina Zolkower, enrolled in the PhD Sociology Program at the Graduate
Center of City University of New York. As a graduate student in that programme I
acquired analytical tools for inquiring into the mechanisms through which, notwith-
standing cycles or reforms and counter-reforms, mathematics education continues
to perpetuate social inequality by providing uneven opportunities to different socio-
economic status groups to acquire that form of academic capital that constitutes
successful performance in school mathematics. My thesis included fieldwork in
4th and 5th grade classrooms in Spanish Harlem attended by recently migrated,
Spanish-speaking children, many of them from Mexico. There I witnessed first-hand
the effects of camouflaging the ubiquitous, stereotypical word problems into sup-
posedly culturally relevant story problems. Rather than contributing meaning and
purpose to classroom activities, these micro-narratives added an extra layer of noise
to students’ efforts at deciphering the underlying mathematical structure of those
problems.



14 Reinventing Realistic Mathematics Education at Berkeley ... 259

14.2.2 Mathematics in the City: Learning and Practicing
Realistic Mathematics Education

‘Word problems are rather unappealing, dressed up problems in which the context is merely
window dressing for the mathematics put in there. One context can be changed for another
without substantially altering the problem [...]. The aim of RME, by contrast, is to place
oneself in the context and learn to think within it [...]. (Van den Heuvel-Panhuizen, 1996,
p- 20)

The experience of witnessing first-hand the negative effects of story and word prob-
lems on English language learners directed me towards RME, an approach premised
on the view of mathematics as a human activity that consists of mathematising sub-
ject matter from reality, including mathematics itself (Freudenthal, 1991), with the
aims of searching for generality, certainty, exactness, and brevity (Gravemeijer &
Terwel, 2000), and mathematics teaching/learning as guided reinvention: mathemat-
ics is best learned when students are guided to reinvent mathematising by organising
or structuring problematic situations embedded in realistic contexts and situations
using mathematical tools (Freudenthal, 1991). In other words, as they organise math-
ematically those situations, students are guided to reconstruct their initial, situated
material/mental activity, by verbalising, symbolising, and diagramming the rela-
tionships found therein. In Dutch, ‘zich realiseren’ means to imagine; thus, in this
broader sense, a situation is realistic insofar as it appears to the learner as reasonable
or imaginable (Freudenthal, 1991; Van den Heuvel-Panhuizen, 1996).

During the final stages of my doctoral studies, I joined Mathematics in the City, a
teacher enhancement project funded by the National Science Foundation and directed
by Catherine T. Fosnot in collaboration with two faculty members from the Freuden-
thal Institute, Willem Uittenbogaard and Maarten Dolk. Participation in this project
apprenticed me into mathematics learning, teaching, and teacher education from the
perspective of RME. In 1996, I visited the Freudenthal Institute to attend a summer
institute on the textbook series (in preparation) Mathematics in Context (National
Center for Research in Mathematical Sciences Education [NCRMSE] & Freudenthal
Institute, 1997-1998). This experience as well as the ongoing mentorship of Uit-
tenbogaard, with whom we collaborated in co-teaching lessons and co-facilitating
workshops and seminars, helped me appropriate Freudenthal’s ideas. I learned how to
plan and enact mini-lessons to strengthen students’ mental arithmetic skills; acquired
an eye for finding mathematisable matter in the world and using it as raw material
for instructional design; developed flexibility in using a variety of structuring models
(e.g., open and double number line, ratio table, bar model, notebook notation, combi-
nation charts); and appreciated the value of models as level-raising tools, the central
role of students’ constructions and productions in teaching/learning processes, and
the paramount function of teacher-guided interaction in expanding students’ potential
for making and exchanging mathematical meanings.
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14.2.3 At Brooklyn College

Since the fall of 2000, as a Brooklyn College faculty member, I have been teaching
initial and advanced methods courses as well as the capstone action-research course
for graduate students in the 5-9 Grade and 7—12 Grade programmes. In the capstone
course, my students, many of them beginning teachers, formulate researchable ques-
tions related to the teaching and learning of a specific mathematics topic, analyse
relevant units of the textbook series Mathematics in Context (National Center for
Research in Mathematical Sciences Education [NCRMSE] & Freudenthal Institute,
1997-1998), review literature on that topic (including seminal work by RME spe-
cialists) and, in light of all of the above, design and carry out a teaching experiment
to address those questions. Among the master’s theses I have directed are:

— Mathematising and didactising dissection puzzles

— Connecting geometry, measurement, estimation, and ratio and proportion through
problems involving large numbers

— Exploring whole-class share and discussion formats that maximise opportunities
for students to exchange mathematical ideas

— Teaching students to use diagrams as tools for solving non-routine problems

— The number line as a tool for solving linear equations

— Using geometric contexts to teach algebra.

All of the above show evidence of my students’ creative appropriation of RME
ideas.

A central principle of RME is the pivotal function of interaction in guiding students to
reinvent mathematical objects, ideas, tools, and strategies, hence the need to prepare
teachers to guide such exchanges in manners that support reinvention. With that in
mind, my courses include activities that focus on the multiple intersections between
language and mathematics. Worth highlighting among those is the interpretative
analysis of whole-group conversations conducted by highly experienced and effective
teachers. Treating the transcribed conversations as multi-semiotic texts (Halliday,
1994; O’Halloran, 2000), our interpretative analysis centres on the teachers’ choices
of grammar and vocabulary and the effect of these choices on expanding students’
mathematical meaning potential. Among the problems we studied, which found their
way into the Berkeley courses, are ‘What do you mean by relationship? (de Freitas &
Zolkower, 2009), ‘Chunking necklaces’ (Zolkower & de Freitas, 2010), ‘Numbers
on a triangle’ (Zolkower & Shreyar, 2007), ‘Ways to go’ (Zolkower & de Freitas,
2012), and ‘Marching ants’ (Zolkower, Shreyar, & Pérez, 2015).
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14.3 Reinventing Algebra Brick by Brick: A Graduate
Level Pre-service Mathematics Teaching Course

In May of 2008, following a chance meeting at a Spencer reception during
the annual meeting of the American Educational Research Association in New
York City, Zolkower and Abrahamson began collaborating on an RME-inspired
research project, Paradigmatic Didactical-Mathematical Problematic Situations. In
this section, we will revisit the construct of these situations, which evolved as our
means for importing Zolkower’s RME course from Brooklyn College to University
of California Berkeley. We will introduce the ‘Brick pyramid’ problem as well as our
graduate students’ work on it to exemplify its mathematical and didactical-mathe-
matical potential.

14.3.1 Paradigmatic Didactical-Mathematical Problematic
Situations

The project involved co-designing and evaluating a course in mathematical cognition,
learning, and teaching. As we define them, paradigmatic didactical-mathematical
problematic situations are activities evoked as contexts for collaborative inquiry into
the practices of mathematics, mathematics learning, and mathematics teaching. Our
experimental course builds upon and contributes to a body of work on rich problems
as contexts for teaching and learning to teach mathematics. Included in this growing
domain are: realistic modelling problems (Verschaffel & De Corte, 1997); emergent
modelling problems (Gravemeijer, 1999; Van den Heuvel-Panhuizen, 2003); prob-
lems that yield multiple solutions (Silver, Ghousseini, Gosen, Charamboulous, &
Font Strawhun, 2005; Zolkower & Shreyar 2007); model-eliciting tasks (Lesh, Mid-
dleton, Caylor, & Gupta, 2008); substantial learning environments (Wittmann, 1995,
2002); open-ended problems (Cifarelli & Cai, 2005); spiral tasks (Fried & Amit,
2005); and example-generating problems (Watson & Mason, 2005).

Our common interest in paradigmatic didactical-mathematical problematic situa-
tions sparked from noticing the potential of these activities, which we both had been
using independently, sporadically, and anecdotally, to engage classroom practition-
ers as well as researchers-in-training in reflective inquiry into a panoply of cognitive,
social, technological, and other aspects of mathematics teaching and learning. Con-
sequently, we designed and implemented a semester-long course based on guided
study and classroom try-outs of paradigmatic didactical-mathematical problematic
situations. Our experimental course is entirely organised and driven by them. Para-
phrasing Turkle and Papert’s (1991, p. 117) proverbial call to “put logic on tap, not
on top,” we place mathematics instruction theories on tap rather than on top. That is,
our problematic situations serve as scenarios for the targeted mathematical-didacti-
cal ideas to emerge out of participants’ guided engagement in those situations.
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Abrahamson first taught the course in the Fall Semester of 2008. Our research con-
sisted of investigating the effect of this course on participants’ mathematical under-
standings and didactical-mathematical abilities and disposition. Our data included
rich documentation from both the college sessions and the field-placement class-
rooms, where student—teachers tried out the same or similar problems (Zolkower
& Abrahamson, 2009). Central to the paper is a particular RME-style problem, the
‘Brick Pyramid’ problem, which we introduce and discuss below.

14.3.2 The ‘Brick Pyramid’ Problem

Figure 14.2 shows the ‘Brick Pyramid’ problem. Students are first presented a picture
of bricks configured in the shape of a triangle. The bricks’ numerical contents are
bound to each other by the following rule: in each brick triad, the number within the
top brick is the sum of the numbers in the two contiguous bricks directly below it. The
task is to solve the puzzle-like problem by filling in the missing numbers. The brick
pyramid discloses the top number and three more, thus creating an implicit system
of constraints that emerges as determining a single solution for each additional input
inserted, resulting in a structure with surprising mathematical relationships. The
instruction given to the students is: “Fill in the brick pyramid. How many solutions
did you find? Could there be more? Explain.”

Although this problem can be solved using formal algebraic tools, non-algebraic
and proto-algebraic (informal) methods can be used as well. Working with positive
integers and 0, one possible algebraic treatment begins by assigning to the bottom-
leftmost brick the variable x and then stepping upwards, sideways, and downwards,
abiding with the addition rule for each triad, until all the bricks have been filled (see
Fig. 14.3).

This process indicates that the range of possible values for x is 0-6 (see in Fig. 14.3
the expression “6 — x” for the bottom-rightmost brick), thereby giving seven solutions
with integers. Interestingly enough, the rightmost brick on the second row is the
only one where x cancels out, resulting in the constant value of 24, which is a
puzzling phenomenon that may merit an investigation of its own. For example, several

Fig. 14.2 ‘Brick Pyramid’ problem
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280
l 150 - x l 130 +x

‘ 75-x [ 75 | 55+x |

31 [ 44-x l 31+x 24 ]

‘ x ‘ 31-x l 13 | 18+ x | 6-x ]

Fig. 14.3 Algebraic treatment of the brick pyramid as a space shaped by numerical constraints

questions can come up: Why 24? How is this number, 24, related to the four given
constraints (280, 75, 31, and 13) and their respective locations on the pyramid?

Four graduate students (all names are pseudonyms) participated in the study:
Justin, Emily, and Nora, who are all three in their first year in a master’s programme,
and Zoran, who is in his second year in a doctoral programme. Zolkower, the designer
of this course, assisted Abrahamson, remotely, in facilitating this course. Occasion-
ally, Zolkower participated through video-conferencing. The focus lesson took place
during the fifth week of instruction of a Fall Semester. During the fifth week, course
participants were just beginning to become involved in school placement observa-
tions and other fieldwork-related assignments.

14.3.3 Reinventing Algebra by Thinking Aloud Together
About the Brick Pyramid and Beyond

In the subsection below, we analyse and discuss selected excerpts from a whole-
group conversation about the brick pyramid in the course. This text, made up of 432
turns (changes of speaker), consists of a series of exchanges whereby participants
engaged in thinking aloud together (Shreyar, Zolkower, & Pérez, 2010; Zolkower
& Shreyar, 2007; Zolkower, Shreyar, & Pérez, 2015) about the problem at hand.
Borrowing from Christie (2002), we parsed the conversation into episodes. These
are:

I. Opening: framing the problem
II. Solving the problem: thinking aloud together, scribbling, speaking, diagram-
ming, and gesturing
III. Comparing and contrasting approaches and moving forwards to ‘more alge-
braic’ approaches
IV. Reflecting back on the experience as reinventing algebra while moving forwards
towards algebraisation of the situation
V. Closure: considering the problem as a potential classroom activity while also
discussing it from the point of view of instructional design (for this latter part
readers are referred to Zolkower & Abrahamson, 2009).
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Fig. 14.4 Coding system for
labelling the cells {1}

{2.1} {2.2}

3.1 {3.2}
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{41} {4,2} {4.3} {4.4}

5.1} {5.2} 5.3}
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Below we describe the overt activities in this text, that is, what a non-omniscient
‘fly-on-the-wall’ observer, who is engaged in the solution process, would witness.
We begin with Episode II, when students began to think aloud together. In the interest
of brevity and clarity, we shall use the following coding system to refer to each of
the fifteen cells in the brick pyramid (see Fig. 14.4).

14.3.3.1 Episode II: Solving the Problem

Emily sets off the discussion by going up to the board and presenting her solution
procedure (see Fig. 14.5).
Explaining her work, Emily says the following:

...What I decided to do was, pick a value, put it somewhere in here [indicates bottom row],
build off of that. And I figured I'd pick a value that was under one of these given, permanent
numbers. So, I put a number here that’s less than 31. [indicates {5,2}] Any number I wanted.
[enters 17 into {5,2}] And I went with 17 because... I don’t know why....

In order to begin familiarizing herself with the problem, Emily inserts a value, 17,
which she selects somewhat arbitrarily, into an empty cell in the bottom row {5,2},
and then works that value so as to fill the entire pyramid according to the addition rule.
As it turns out, assigning that particular value to that cell-variable is not permissible
in this system. Yet, due to an arithmetic error, 45 — 13 = 22, this violation appears
to go unnoticed.

Next, Justin replaces Emily at the board and presents his solution (see Fig. 14.6).
Justin, possibly building off Emily’s work, is already more systematic than her, in
that he orients toward searching for the range of the solutions, and so his choices of
input numbers are governed by an attempt to determine one limit of this range.

As he solves, he articulates emergent insights:

Okay, so, 75 here, 31 here, 13 here, 280 here, oops, right. [enters values as he utters them]
And so, <what>1 did was, I looked at each box and thought, what are the limits bounding the
number in each box? [emphasises boxes with given values] So, I guess I kind of like started
up at the top, and I was like, well these have to be 75 or more, [indicates {2,1}, {2,2}] right,
and then.... [Nora points to the ‘less than’ constraints in Justin’s approach].



14 Reinventing Realistic Mathematics Education at Berkeley ... 265

Fig. 14.5 Emily uses numbers and moves from the bottom up; note diagonal lines connecting
between cells to express algebraic relations

Dor highlights the double-using issue, which affects the way one distributes the
values throughout the pyramid. Namely, Justin begins to realise that the pyramid can
be viewed as a system, rather than a collection of local overlapping three-cell triadic
structures; because each sum is constituted by addends below it, recursively, there
appears to be some overall systematic set of relations governing the distribution of
addends. However, Justin does not yet specify the nature of this system of relations.

Nora, commenting on Justin’s work, adds that in order to determine the range
of values, one would need to find the other limit, too. Dor comments on embodied
constructions of addition that, he believes, may be implicitly biasing the solution pro-
cedure. First, he suggests a view of addition as ‘adding up,” for example, a privileging
of an upward-adding construction of the problem, at the expense of attending to the
equally important downward constraints. Second, he portrays addition as ‘using up
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Fig. 14.6 Justin uses ‘numbers + or ‘greater than’ constraints and moves from the top down

resources’—once a value is used in one sum, e.g., in conjunction with the cell to the
right, it must be used again for the cell on the left, and this re-use might be violating
the grounding multi-modal dynamical images that tacitly underlie the sense of addi-
tion. Emily responds that, indeed, the sum of the numbers on the bottom row is not
equal to the number up top, so that her implicit model of the situation seems to have
shifted.

Nora thinks aloud:

So, if we did it in this square [indicates {5,4}], we would end up, maybe we would only have
to do, like, a fourth of 72, or something. Because then, by the time it gets up to the top, then
you’ll have the full 72 that you want. But then I don’t know if that takes into consideration...
I don’t know exactly how this ** but I think <it would fit it> somehow if you did some
fraction of 72, then, you know, it’s gonna be multiplied here, there’s gonna be... two of them
up here, and then that’ll count as one, and that’ll count as two, so that’s three. [indicates
boxes above {5,4}] If we had some number here, then we’d have that number, then twice
that number, then three times that number, and then...

If we had some number here [enters a into {5,2}], then... [draws next row] okay, well, kind
of ignoring the numbers that are already in there, once you go up here, so, well, it’s like what
you were saying, we feel like okay, if the a is here, then it’s already taken care of, we don’t
need to worry about it again, but actually it’s gonna — you have to count it again in this box
and in this box. [enters a into {4,1}, {4,2}] And then, when you come to the next level...
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Fig. 14.7 Nora enters a, then b; this links to Pascal’s triangle

Nora thus explores how—given the repeated use of addends—a sum that is written
fairly high in the pyramid could be viewed as constituted by the addends below it. She
recognises that the relation is not a direct distribution of the sum into equal parts, but
initially she cannot explain just how this distribution works or could be represented
to support this inquiry. A significant move forwards in the group’s collective inquiry
is when Nora uses algebraic symbols to explain how a numerical value on the bottom
‘ripples’ up (see Fig. 14.7). She distinguishes between values in the centre of the
bottom row (a) and those on the extremities (b), in terms of how much they contribute
to the upward accumulating sums.

Up to this point, participants have each made unique contributions to the collab-
orative problem-solving process. One can discern a progression from Emily’s first
hesitant exploration of a single solution through Justin’s analysis of the pyramid as
an emerging system of constraints to Nora’s introduction of algebraic symbols in an
attempt to spell out the spread of upward addend contributions of a single number
on the bottom row, depending on whether it is in a central or extreme brick, and
how two such ‘deltas’ (the spreading contribution tributaries) mingle in an addend
confluence. The instructor’s insistence that the work be done up at the board had two
related results. On the one hand, students were initially diffident to share half-baked
ideas. On the other hand, these ideas, like Nora’s a and b addends, appear to have
spread and mingled upwards, receiving at each level the input and reformulation of
additional minds on tap.
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Fig. 14.8 Zoran’s brick pyramid; he enters a, b, ¢, and d

14.3.3.2 Episode III: Comparing and Contrasting

Zoran elaborates on the work of Emily, Justin, Nora, and Dor, and he, too, recognises
the inadequacy of trial-and-error techniques to cope with the load of arithmetical con-
straints imposed by the pyramid system. He acknowledges the value of the algebraic
system introduced by Nora, to support this inquiry. Zoran introduces additional vari-
ables (a through d), in order to articulate general relations among the fifteen cells of
this particular pyramid (see Fig. 14.8).

Zoran continues discussing the distribution issue, talking in terms of ‘sets’: “With
this we have this set here, and this set here... this set is only going up to 31....” Zoran
concludes that it would be unreasonable to attempt the problem “purely arithmeti-
cally,” thereby calling for an algebraic approach.
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A+ q& L(y ér L/ d L)

Fig. 14.9 Emily again enters a, b, c, d, e in the bottom row, and the group notes an unexpected
association with Pascal’s triangle, albeit in inverted form

Emily, possibly building on Nora and Zoran’s suggestion, expands the number of
symbols to five (a through e) and uses these ‘variables’ to demonstrate attributes of
the pyramid family, regardless of the given numbers. In particular, Emily develops
the idea that Pascal’s triangle can be viewed as lodged upside-down in the pyramid
(Fig. 14.9).

Emily says:

Say you just have your numbers down here: a, b, ¢, d, e. [enters letters, as she utters them, into
the bottom row, in that order] Okay, there’s one of each of those, I'm just saying they’re...
distinct, or they could be <one> , I don’t know, um, they’re variables. So, to get here, you
doa + b, and thisis b + c...

.... this is sort of becoming the, uh, Pascal’s triangle in reverse. And this one would be b +
2c¢ + d. [enters value into {3,2}] This would be ¢ + 2d + e. [enters value into {3,3}] And
up here, I need to start making the bricks bigger. And now, we have a + 3b 4+ 3c + d, |
think. [enters sum into {2,1}] Someone correct me if I'm wrong. And then b + 3¢ + 3d + e.
[enters sum into {2,2}] And for the last one... Make it a little bigger...! [expands first box
borders] Okay. a + 4b + 6¢ + 4d + e. [enters sum into {1}] And then, <see> you have 1,
4, 6, 4, 1, just like this guy. [Indicates Pascal’s triangle fragment on the board] And this is
just like coefficients.
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Fig. 14.10 Nora again, now working with a single variable

14.3.3.3 Episode IV: Reflecting

The instructor introduces the following constructs, as they apply to the joint mathe-
matising effort under way: ‘sprouting’ of algebraic notation from speech and gesture
(Radford, 2003); ‘distributed cognition’ (Hutchins, 1995); ‘cognitive artefacts’ that
amplify reasoning (Norman, 1991); ‘working memory’ (Baddeley & Hitch, 1974);
and ‘hypostatic abstraction’ (Peirce, 1931-1958). This mini lecture may or may not
have had any direct impact on the collaborative solution process. In any case, Nora—
possibly also inspired by Emily and Zoran’s attempts—then suggests working with
a single variable x and expresses all of the numerical values using this variable (see
Fig. 14.10).
Nora explains:

So, I picked this box right here. Just because it was touching so many other things, I figured
I could get a lot of information out of it. [places x in {4, 2}] So this one is 31+x, and then
this is 106+x, and then this is 75—x, and this is, let’s see, x—13, and then....

As we have shown in the section above, the brick pyramid allows prospective (and in-
service) teachers to encounter central issues in the learning and teaching of algebra,
including: (1) symbol sense, informal sense-making, and formal algebra (Arcavi,
1994); (2) the relationship between language proficiency and algebraic learning



14 Reinventing Realistic Mathematics Education at Berkeley ... 271

(MacGregor & Price, 1999); (3) the role of realistic situations in developing algebra
tools (Van Reeuwijk, 1995; Van Reeuwijk & Wijers, 1997); (4) the challenges in
guiding the transition from informal to formal algebra (Nathan & Koellner, 2007;
Stacey & MacGregor, 2000; Swafford & Langrall, 2000); and (5) the complex inter-
play among algebraic thinking, algebraic generalisation, and algebraic symbolisation
(Linchevski, 1995; Radford, 2003, 2006; Van Ameron, 2003; Zazkis & Liljedahl,
2002).

In what sense is the Brick Pyramid is a paradigmatic problematic situation? In
his homage commentary on the life of Hans Freudenthal, Goffree (1993) likens
paradigmatic mathematical problems to scientific benchmark discoveries, following
which the scientists’ extant paradigm shifts and the world is forever seen in a new
way. Participants in our graduate course are mathematically literate adults, according
to normative standards, such that the algebraic machinery is quite at their fingertips,
ready for application. The question is whether, when, and how this application is
triggered. This paradigmatic didactical-mathematical problematic situation presents
a scenario that calls for mathematising but does not cue or furnish, in an explicit
manner, a specific toolbox, let alone a particular tool. Implicit in this principle is
the belief that didactical approaches that deny students the opportunity to search for
appropriate tools to structure or organise problematic situations have limited effects in
developing in them a genuine disposition towards mathematising. The Brick Pyramid
is not just a problem-solving tool. It is also and primarily a thinking device (Lotman,
1988). Lyrically speaking, the brick pyramid—once a curious inscribed structure on
a worksheet—becomes colourful, animated, mobilised, and enmeshed in multiple
intersecting dimensions of mathematical thinking, thereby functioning as a model
for thinking about the very meaning and purpose of algebra as a situated human
activity.

One might comment that developing paradigmatic didactical-mathematical prob-
lematic situations was little more than reinventing RME. We would proudly concede.
Our goal of building a graduate-level practicum on mathematics education posed for
us the problem of designing sets of interconnected vehicles and experiences around
them as means for facilitating encounters between prospective mathematics teachers
and Freudenthal’s didactical vision. In the course of seeking such architecture, the
paradigmatic didactical-mathematical problematic situations emerged in our dis-
course—first as ‘models of,” then as our ‘models for’—specifying what we view as
opportunities for teachers’ productive engagement in thinking about students’ think-
ing. Examining the Standards for Mathematics Education (Goffree & Dolk, 1995)
published by the Netherlands Institute for Curriculum Development (SLO) and the
Freudenthal Institute, we are both heartened to find correlates with our own insights
and awed to learn how far we have yet to go. In that volume, eighteen standards are
framed as spotlights: “When all eighteen spotlights are ‘on,” the entire educational
process becomes brightly illuminated” (Goffree & Dolk, 1995, p. 11).

Moving forwards, new problems of practice emerged for us. In particular, we
were commissioned to develop an undergraduate course for pre-service mathemat-
ics teachers. The next section describes the Education 130 course (hereafter called
EDUC 130)—its constitution and credo as well as a set of didactical heuristics that
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have evolved as our means of cultivating college cohorts of RME disciples from
graduates of the mainstream schooling in the United States.

14.4 An Undergraduate Course for Pre-service
Mathematics Teachers

University courses are complex cultural phenomena. They are born at the nexus of
institutional needs and individual convictions, evolve in negotiation with emerging
constraints from multiple and shifting stakeholders, and become blueprints for com-
munities of practice—emblems of departmental ethos and praxis. Semester after
semester, courses, like rivers, function as structures and schemes that host and shape
the trajectory of their contained water, and in turn are shaped by these waters. Similar
to the Heraclitean river, you can never quite step twice into the same course. In this
section, we explain the origins and tributaries of the EDUC 130 course, its credo as
it appears in the course syllabus, and the didactical heuristics that evolved over time.

The EDUC 130 course Knowing & Learning at UC Berkeley was designed and
implemented as part of Cal Teach, a new undergraduate teacher education programme
set within the College of Letters & Sciences, aimed at addressing the critical short-
age of mathematics and science teachers in California. In creating EDUC 130, fac-
ulty members of the Graduate School of Education were attempting to build a new
form of community—a haven safe from what we viewed as less productive aspects
of mainstream education, a space where pre-service mathematics teachers could
experience what it might be like to centre classroom instruction around guided col-
laborative activities of framing and solving rich, accessible, open-ended problems.
We were attempting to forge a new form of identity for pre-service mathematics
teachers as activist careerists—reflective practitioners, intuitive action researchers,
keen observers who keep experimenting with their resources and process. In creating
EDUC 130 we were thus asking what it might take to administer a course where such
a person could grow who would become our ideal teacher: inquisitive, reflective, and
knowledgeable of both subject matter and its didactics.

Regardless of the particularities in one’s image for the ideal teacher, this image
becomes the ‘product’ that the course should ‘deliver.” As such, the process of build-
ing EDUC 130 was akin to that of solving a design problem. The question was:
What should pre-service mathematics teachers’ experience in our course be so that
they become our ideal teachers? We therefore created a ‘course credo’ that specifies
our views on why and how teachers should become, in addition to educators, also
designers, researchers, and ‘hackers’ (fluent in current technological developments).
We placed the credo in our course syllabus.

Surely, though, we never expected this credo to effect any change. Such an expec-
tation would defeat the very assertion within the credo itself that hermetic definitions
rarely suffice as a form of instruction. We posted the text in our syllabus and let it
be. At the time, we had our course resources and a collective, unarticulated profes-
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sional know-how for making these resources work in our course. With time, this
unarticulated know-how would become articulated in the form of a set of didactical
heuristics, as we now explain. Still, the credo speaks to a vision. What we needed
was a means by which to achieve this vision. Enter our ‘didactical heuristics,” which
speak to how we might go about realising the credo.

Didactical heuristics are classroom routines for effective participation in the
course as well as in future practice as high-school teachers. These didactical heuris-
tics capture recurring framings, emphases, imagery, and metaphors that we use so
as to position and project the pre-service mathematics teachers into a new ‘figured
world’ of reform-oriented teachers (see Ma & Singer-Gabella, 2011). We view these
didactical heuristics as capturing our ‘tricks of the trade,” design solutions for intro-
ducing pre-service mathematics teachers to RME.

In developing EDUC 130, we never intended to develop a set of didactical heuris-
tics. Rather, these notions, which instantiate much of the course credo, sprouted
into our practice as useful means of explicating our instructional philosophy and
methodology, first to ourselves, then to each other, and finally to our colleagues. The
didactical heuristics are structures that emerged as our invented means of solving a
problem. The set of heuristics constitute EDUC 130’s collective models for solving a
problem of practice faced by college instructors, that is, the problem of bootstrapping
a community of practice (see Visintainer, Little, & Abrahamson, 2011).

We submit that these didactical heuristics constituted our emergent structures for
enabling and enhancing the solving of situated problems of practice. They were our
‘models of” teaching a RME course for pre-service mathematics teachers. They were
models that we were hence able to carry forth, document, and propagate as ‘models
for,” just as we are doing in this chapter.

14.5 Reflection: Reinventing Reinvention

Mathematics is said to have, for example, disciplinary value in habituating the pupil to
accuracy of statement and closeness of reasoning; it has utilitarian value in giving command
of the arts of calculation involved in trade and the arts; culture value in its enlargement of the
imagination in dealing with the most general relations of things; even religious value in its
concept of the infinite and allied ideas. But clearly mathematics does not accomplish such
results, because it is endowed with miraculous potencies called values; it has these values if
and when it accomplishes these results, and not otherwise. (Dewey, 1944, p. 245)

The proverbial human capacity to solve problems—a vital skill that is apparently so
desirable yet so rare these days that it has been rebranded in the U.S. educational
reform discourse as a 21st century skill—has been the vision of Realistic Mathematics
Education from its very incipience. Freudenthal makes the following bold statement
that connects the teaching of mathematics to youth ethos, mores, identity, and agency
in extra-mathematical realms of life.

Our cultural assets are too dangerous to be offered the youth as ready-made material. The
instruction we provide should create the opportunity for youth to acquire the cultural heritage
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by their own activity. They should learn that the self-reliance they claim elsewhere extends
to their own role in the learning process. (Freudenthal, 1971, p. 415)

What a vision! Mathematics education could fulfil the virtuous role of fostering youth
independence and empowerment. To make this vision a reality, college instructors
must cultivate a generation of pre-service mathematics teachers who are prepared
to offer high-school students experiences by which they can recognise their own
capacity to reason deeply as a means of solving problems. A teacher education
course guided by RME principles could thus possibly prepare high school students
for life.

We have described the evolution of our EDUC 130 course for pre-service math-
ematics teachers. The course is founded on the idea of preparing pre-service math-
ematics teachers by running them through the same problem-solving experiences
their own prospective high-school students will undergo. Once they become teach-
ers, EDUC 130 course participants are then to emulate our classroom practices ‘one
step down,” with them now as instructors and their high-school students solving and
reflecting on engaging problems.

Building a course is certainly a form of problem solving. And yet how does one
know whether and when the problem has been solved? We cannot quite look up the
correct answers at the end of the book! Still, a set of guiding principles may serve
as a book of sorts by which to evaluate our progress. It is in this sense that RME
has served us as a standard by which to evaluate the course design, its implementa-
tion, and its effects. And in so doing we have developed our own set of principles,
the didactical heuristics, that evolved as our practical means of apprenticing pre-
service mathematics teachers into RME. Yet we do not offer these cultural assets as
ready-made materials. Rather, we steer our college students to reinvent the didacti-
cal heuristics through guided reflection on their problem-solving experiences. In a
sense, the didactical heuristics constitute the emergent structures we have cultivated
through and for our own guided reinvention of RME at Berkeley.

In designing and promoting this course, we are conscious of valuing depth of
experiencing over breadth in coverage. When a college course is planned so as to
cover an entire methodology textbook, with its complementary readings, it seems
rather certain that one would get through the syllabus by the end of the course. How-
ever, when mathematical content, didactical subject matter knowledge, and assigned
readings are positioned as ancillary to the ‘actual’ learning, one may not be as cer-
tain to cover it all (and perhaps, even more troublesome, the course is unlikely
to be instructor-proof so as to enable standardisation). Yet, as a trade-off, there is
the perceived opportunity that participants would have rich experiences of learning
‘what really matters.” And what is it that matters, really? Learning to teach math-
ematics involves reflective back-and-forth movements between classroom practice
and instructional theory; mathematical content and didactical form; observing one’s
learning processes and observing those of others (Freudenthal, 1991). Our RME-
inspired course materials, activities, credo, and heuristics, in synergic unison with
our grounding of college-classroom discussions in actual school-classroom experi-
ences, engage future teachers and mathematics education researchers in working on



14 Reinventing Realistic Mathematics Education at Berkeley ... 275

and thinking through mathematics problems and mathematics learning and teaching
problems and, in so doing, contribute to the all-cherished goal of making mathematics
meaningful, relevant, and accessible for every student in every classroom.
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