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Abstract

Introduction: Disruption of metabolic function is a recognized feature of late onset

Alzheimer’s disease (LOAD). We sought to determine whether similar metabolic path-

ways are implicated in adults with Down syndrome (DS) who have increased risk for

Alzheimer’s disease (AD).

Methods: We examined peripheral blood from 292 participants with DS who com-

pleted baseline assessments in the Alzheimer’s Biomarkers Consortium–Down Syn-

drome (ABC-DS) using untargeted mass spectrometry (MS). Our sample included 38

individuals who met consensus criteria for AD (DS-AD), 43 who met criteria for mild

cognitive impairment (DS-MCI), and 211 who were cognitively unaffected and stable

(CS).

Results: We measured relative abundance of 8,805 features using MS and 180 puta-

tivemetaboliteswere differentially expressed (DE) among the groups at false discovery
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rate-corrected q< 0.05. From the DE features, a nine-feature classifier model classified

the CS and DS-AD groups with receiver operating characteristic area under the curve

(ROC AUC) of 0.86 and a two-feature model classified the DS-MCI and DS-AD groups

withROCAUCof 0.88.Metabolite set enrichment analysis across the three groups sug-

gested alterations in fatty acid and carbohydratemetabolism.

Discussion:Our results reveal metabolic alterations in DS-AD that are similar to those

seen in LOAD. The pattern of results in this cross-sectional DS cohort suggests a

dynamic time course of metabolic dysregulation which evolves with clinical progres-

sion fromnon-demented, toMCI, toAD.Metabolomicmarkersmaybeuseful for staging

progression of DS-AD.

K EYWORD S

Alzheimer’s disease, carbohydrate metabolism, Down syndrome, energy metabolism, fatty acid

metabolism, lipid metabolism, metabolism, metabolomics, mild cognitive impairment

1 INTRODUCTION

Down syndrome (DS) is the most common neurodevelopmental dis-

order, affecting more than 250,000 individuals in the United States.1

The syndrome is characterized by triplication of the 21st chromosome

(Ch21) which contains the APP gene encoding the amyloid precursor

protein (APP).2 Overexpression of APP results in accelerated amyloid

beta (A𝛽) accumulation, leading to the development of the hallmark

neuropathology of Alzheimer’s disease (AD) in most individuals with

DS by age 40.3–5 Despite the same genetic risk for AD neuropathology

from birth, age at onset of AD clinical symptoms varies across individ-

uals with DS, with some showing cognitive impairment as early as the

mid 30s while others maintain cognitive stability until their early 70s.6

This strongly suggests that factors in addition to increasingA𝛽 accumu-

lation are involved in individual trajectories of AD in DS (DS-AD).

Several metabolic pathways have been implicated as modifiers of

AD risk in the neurotypical population including inflammation and

immune response,7 oxidative stress,8 lipid metabolism,9 and single

carbon metabolism.10 Alterations in these same metabolic pathways

are also characteristic of people with DS and there is growing appre-

ciation of the role of inflammation,11 oxidative stress,12,13 and lipid

and energy metabolism14–16 as risk factors for cognitive decline and

dementia in adults with DS. Several genes on Ch21 including S100𝛽 ,

SOD1, PIGP, and BACH1 are linked to these metabolic pathways and

may also contribute toDS-AD risk beyond that directly due to A𝛽 accu-

mulation. Further, early accumulation of A𝛽 may lead to dysregula-

tion of these and other pathways, which may modify individual DS-

AD trajectories in ways to accelerate or delay symptom onset. Deep

metabolomic analysis of people with DS can capture alterations in

these and other metabolic pathways that serve to modify trajectories

of risk and resilience.

There is now great interest in developing early biomarkers of

preclinical AD to identify those at highest risk for developing late

onset Alzheimer’s disease (LOAD) and to determine when to inter-

vene when effective therapies become available.17–19 To date, most

fluid DS-AD biomarker investigations have focused on traditional

biomarkers obtained from blood or cerebrospinal fluid (CSF) that char-

acterize the proteopathy required for neuropathological diagnosis,

namely A𝛽1-42, total tau, and phospho-tau.20–25 However, other stud-

ies in DS have shown promising results for novel biomarkers such

as the neurofilament light chain (NF-L) protein26,27 and markers of

inflammation.28 Regarding A𝛽 , results from blood biomarker studies

generally show higher A𝛽 levels in people with DS compared to neu-

rotypical controls,29 but the relationship between A𝛽 and DS-AD is

inconsistent.30 Many studies show higher A𝛽 levels in DS-AD relative

to non-demented individuals with DS20,23,25,31 but others show lower

levels.31,32 With the overexpression of APP from birth, A𝛽 levels may

not be as informative for diagnosis or predicting onset of clinical symp-

toms in DS as in the neurotypical population. Given that most people

with DS will develop AD, the main role of a biomarker (or combination

of biomarkers) is to informwhen symptoms aremost likely to begin.

Metabolomic analysis may be ideally suited to answering this ques-

tion in the case of DS-AD because the time course of biological pro-

cesses measured by metabolomic analysis is much shorter than pro-

teomic, transcriptomic, and genomic or epigenomic levels and thusmay

be a more accurate representation of the current phenotypic state.33

Furthermore, because small molecule end products of metabolism are

most proximate to the clinical phenotype, they may more accurately

reflect small changes in pathobiology that affect the phenotype.34

To date, there have been some metabolomic biomarker stud-

ies applied to DS and most have focused on characterizing the

metabolomeof younger individualswithDS, including children.35 Cara-

causi et al. found increased levels of key metabolites involved in mito-

chondrial metabolism including pyruvate, succinate, fumarate, lactate,

and formate, that were generally consistent with the 3:2 gene dosage

model of trisomy21.36 These findings in a pediatric DS sample are
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provocative because they suggest chronic alterations of cellular energy

metabolism in DS, which may contribute to A𝛽 accumulation and pro-

duce individual trajectories of DS-AD over the lifespan.

In a cross-sectional study, Borelli et al. found overall hypogalacto-

sylation in adults with DS (age range: 10–58 years, median age = 26)

compared to non-DS controls (age range 12–52 years, median age =
31), but an age-related increase in several glycomic features suggesting

accelerated aging in DS.36 These results suggest that glycosylation

may be associated with an aging phenotype in DS that only partially

overlaps with aging in neurotypical individuals. They also suggest

that altered glycosylation may be associated with DS-AD, given the

age-related risk of DS-AD. However, this study did not examine this

directly.

In a third study by our group,37 we used untargeted metabolomics

to examinemetabolic pathways in adultswithDSandDS-AD.We found

higher levels of lactate, pyruvic acid, and methyladipic acid in addition

to lower levels of uridine in the participants with DS-AD relative to

participants with DS, but without AD. We consider these findings in

adults with DS-AD an extension of those from Caracausi et al. in chil-

dren with DS. Together, both studies suggest that disruption of energy

metabolism, particularlymitochondrialmetabolism, is a prominent fea-

ture of DS andDS-AD.

Here, we sought to examine the metabolic differences that charac-

terize stages of cognitive and functional impairment over the course of

DS-AD, from cognitively stable, to mild cognitive impairment (MCI), to

DS-AD. We hypothesized that the pathobiology of DS-AD and LOAD

overlap significantly in a final common pathway that includes cellular

energy metabolism.We predicted that metabolic alterations of DS-AD

progression would be similar to those seen in LOAD.

2 METHODS

2.1 Participants

All participants for this study were enrolled in Alzheimer’s Biomarkers

Consortium-Down Syndrome (ABC-DS; https://www.nia.nih.gov/

research/abc-ds), a multi-site, longitudinal cohort study of adults with

DS over age 25. The ABC-DS is designed to discover biomarkers of

DS-AD at eight clinical performance sites including The University of

California Irvine, Columbia University IrvingMedical Center, The Insti-

tute for Basic Research in Developmental Disabilities, Massachusetts

General Hospital, The University of Wisconsin-Madison, The Univer-

sity of Pittsburgh, Barrow Institute, andCambridgeUniversity (UK). All

ABC-DS participants undergo deep clinical and cognitive phenotyping,

neuroimaging including positron emission tomography (PET) amyloid

and tau and structural and functional magnetic resonance imaging

(MRI), and CSF and blood collection at 16-month intervals. All ABC-DS

protocols and procedures are approved by the respective local clinical

performance site Institutional Review Boards. Informed consent is

obtained from all participants where possible, otherwise assent is

obtained from the participant and informed consent obtained from the

participant’s proxy or legally authorized representative.

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the litera-

ture on the relationship between markers of metabolism

found in peripheral blood and dementia status in adults

with Down syndrome (DS) using traditional sources

including PubMed, GoogleScholar, and ResearchGate.

We found very few published studies directly address-

ing themetabolic characteristics of mild cognitive impair-

ment and clinical Alzheimer’s disease (AD) in adults with

DS. Several studies examinedmetabolism in childrenwith

DS, but did not directly address AD. We felt this is a

neglected area of study given the strong risk for AD in

adults with DS.

2. Interpretation: We found strong evidence of fatty acid

and cellular energy metabolic differences which might

underlie AD-related clinical and cognitive decline in peo-

ple with DS.

3. Future directions: These findings call for a prospective

study to examine within-individual longitudinal changes

in metabolism that may be useful for understanding the

evolution of AD in people with DS.

A total of 353 adults with DS were enrolled in ABC-DS at the time

of the Wave I data freeze (January 15, 2019) and 329 had (1) suffi-

cient data to make a clinical consensus decision and (2) a blood sam-

ple for analysis. The 329 DS participants were classified into four non-

overlapping groups by expert ABC-DS clinicians who considered all

available clinical and cognitive measures.

We classified participants into four groups, generally consistent

with the recommendations of the AAMR-IASSID Working Group for

the Establishment of Criteria for the Diagnosis of Dementia in Indi-

viduals with Developmental Disability.38,39 Participants were classi-

fied as cognitively unaffected and stable (CS) if there was no evidence

of clinically significantly cognitive or functional decline from baseline

based on caregiver report and medical record review. We classified

participants as mild cognitive impairment (DS-MCI) if they had shown

somecognitive and/or functional declineover andabovewhatwouldbe

expectedwith aging per se, but not severe enough to indicate the pres-

ence of DS-AD. Participants were classified as DS-AD if there was evi-

dence of substantial decline in cognitive function and activities of daily

living compared to caregiver-reported baseline and medical record

review. Finally, we classified individuals with cognitive and functional

impairment that could be better explained by changes in life circum-

stance (eg, staff changes, bereavement) or medical conditions unre-

lated toAD (eg, severe sensory loss, chronic pain, psychiatric diagnosis,

seizure disorder) as “unable to determine” and these participants were

excluded from this study. The consensus conference was able to con-

fidently classify 312 participants and unable to confidently classify 17

DS participants.

https://www.nia.nih.gov/research/abc-ds
https://www.nia.nih.gov/research/abc-ds
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TABLE 1 Participant characteristics

N (M/F) Age (SEM) BMI (SEM) %with ApoE 𝜺4
*

Cognitively unaffected and stable (CS) 211 (109/102) 42.16 (0.59) 31.99 (0.5) 21.3% (45/211)

Mild cognitive impairment (Down syndrome [DS]-MCI) 43 (30/13) 52.21 (1.06) 28.89 (0.95) 34.9% (15/43)

Alzheimer’s Disease (DS-AD) 38 (18/20) 54.39 (0.93) 30.15 (1.1) 36.8% (14/38)

∗The groups differed in proportion with 𝜀4 (𝜒2 = 6.52, P< .05).

DNA samples were genotyped for two apolipoprotein (APOE)

single-nucleotide polymorphisms (SNPs; rs429358 and rs7412) with

the kompetitve allele specific PCR (KASP) genotyping system (LGC

Genomics). Genotype data for these two SNPs were used to define

APOE 𝜀2, 𝜀3, and 𝜀4 alleles. Participants with at least one copy of the

APOE 𝜀4 allele were classified as APOE 𝜀4 carriers. A total of 20 par-

ticipants were missing APOE data and were excluded from the analy-

sis. In total, 292 DS participants had a consensus clinical classification,

an available blood sample, and APOE status for inclusion in this study.

Characteristics of the participants can be found in Table 1.

2.2 Blood collection and processing

All blood collection and processing methods were harmonized across

all ABC-DS sites. Venous blood was collected from the median

cubital vein using standard venipuncture technique into a 10 mL

ethylenediaminetetraacetic acid (EDTA; Lavender top) vacutainer

blood collection tube. The EDTA tube was the first tube collected,

followed by Sodium Heparin, Serum Separator, and PAXgene tubes.

Given the general considerations of working with people with DS,

we did not attempt to standardize blood collection procedures with

regard to prescribedmedication administration, prandial state, or time

of day. After venipuncture, collection tubes were gently inverted 8 to

10 times, placed on wet ice, then centrifuged to separate the plasma

component. Centrifugation took place in a chilled (4◦C) centrifuge for

10 minutes at a site-specific RPM equivalent to 2000 × g. The plasma

fraction was aliquoted in 250 𝜇L units to individual 500 𝜇L siliconized

cryovials, and stored at −80◦C at local ABC-DS clinical performance

sites. Time from blood draw to storage at −80◦ was estimated to

be <3 hours. The vials were shipped from the local ABC-DS sites

on dry ice via overnight courier to the National Cell Repository for

Alzheimer’s Disease at Indiana University, where they were stored at

−80◦ until sent in one shipment to the Lombardi Cancer Center Shared

Resource Facility Metabolomics Core at Georgetown University for

mass spectrometry (MS) analyses. The time in storage fromblood draw

toMS for all samples was<2 years.

2.3 Untargeted UPLC-ESI-QTOF-MSmetabolomics

We used ultra-performance liquid chromatography electro-spray

ionization-quadrupole-time of flight-mass spectrometry (UPLC-ESI-

QTOF-MS;Xevo-G2 QTOF, Waters Corporation) based data acquisi-

tion for untargeted metabolomic profiling as described in our previ-

ous work.9,37,40,41 Briefly, we prepared plasma samples for MS by sol-

vent extraction and resolved using reverse phase chromatography on

an Acquity UPLC (Waters Corp.) online with a QTOF-MS in the posi-

tive and negative electrospraymodewith optimized run parameters. A

total of 8805 features (4790 ESI+ detection mode; 4015 ESI- detec-

tionmode) representing putativemetabolites were identified bymass-

to-charge ratio (m/z) and retention time (RT) after processing of raw

spectral data using XCMS software.42 We submitted these putative

metabolites to differential expression (DE) analysis. A subset of rele-

vant metabolites were identified using tandemMS.

3 STATISTICAL METHODS

3.1 Differential expression analysis of metabolite
features

We used R version 3.6.1 and the limma package to assess DE of indi-

vidual metabolites as a function of clinical status (CS/DS-MCI/DS-AD).

IndividualF-statisticswerederived for eachmetabolite feature passing

quality control thresholding as we have implemented previously.37,43

Because metabolomic abundance measurements are often positively

skewed, we logarithm transformed abundance values prior to analy-

sis consistent with other applications of surrogate variable analysis

(SVA).43,44 Resulting F-test statistic P-values were false discovery rate

(FDR)-corrected to reduce the multiple testing burden, resulting in a

corresponding q-value.45 An FDR q< 0.05was considered significantly

DE.We quantified themagnitude of group-wise DE as the logarithm of

thegroup-wise fold changeprovidedby the limma function topTableF().

Because fold change is only capable of representing pairwise compar-

isons, we explicitly make note of the groups compared for the remain-

der of this article when necessary.We also explicitly indicate the refer-

ence condition (eg, CS, DS-MCI) from which fold-change comparisons

aremade.

3.2 Parametrization of nuisance variability in the
peripheral metabolome

In addition to metabolite variability attributable to disease pro-

gression, the plasma metabolome is likely to reflect physiological

processes and technical artefacts unrelated to neurological disease.

This is a challenge because (1) these confounding factors have the
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potential to limit reproducibility of differential expression findings

and (2) the identity and number of these variables may be incom-

pletely known a priori. We have previously proposed and employed

SVA to approximate these confounders (eg, due to sample age, ana-

lytical batch, medication status) in high-dimensional metabolomic

data.37,43,46

We used the “be” method47 to estimate a non-zero number of sur-

rogate variables which we included as covariates in further DE analy-

ses conducted using limma (SVs = 25). Because APOE 𝜀4 carrier status

was significantly disproportionate among the three groups (𝜒2 = 6.52,

P < .05), and 𝜀4 may impact peripheral metabolic processes related to

dementia in DS,48 we explicitly directed SVA to consider the presence

of this allele in fitting the 25 SVs obtained here.

3.3 Metabolite set enrichment analysis of LC-MS
metabolites

We used the Mummichog software library to generate statistical

inferences regarding metabolic pathway alterations in the DS-AD

participants.49 To minimize false positives, we used the most recent

Mummichog 2 software, which enforces RT matching across puta-

tively related mass features (personal communication; Dr. Shuzhao

Li 9/2018). We specified instrument accuracy as 7 ppm. Significance

thresholds for DE calling were selected over the list of all nominal P-

values generated by the precedingDE analysis.49 In all comparisons for

metabolite set enrichment analyses, we considered a nominal P-value

< .05 to be DE.

3.4 Machine learning classifier models for group
prediction

We submitted all metabolite features found to be significantly DE at

the q < .05 level per pairwise contrast to predictive modelling. To

integrate surrogate variable derived information into our modelling

analysis and maximally leverage available data, we took an empirical

Bayesian approach (ie, empiricalBayesLM in the R package WGCNA)

and residualized all metabolite abundances by their corresponding

sample-level loadings on each SV. This resulted in an augmented

metabolite expression matrix free of nuisance variability attributable

to each of the 25 SVs parametrized here. These data were further log

transformed, quantile normalized, and adjusted to have unit variance

and zeromean (ie, z-scaled, autoscaled).9,40,43

It is possible that choices in machine learning algorithm and

resampling scheme selection may affect model performance in a

way unrelated to underlying disease-associated signal in the plasma

metabolome. To address this, we evaluated several resampling

schemes (ie, 10-fold cross validation [CV], Monte Carlo CV) and algo-

rithmic approaches (ie, least absolute shrinkage and selection operator

[LASSO]-regularized logistic regression, linear support vector machine

[SVM]) in parallel. We evaluated classification performance quanti-

tatively using receiver operating characteristic area under the curve

(ROC AUC) statistics and qualitatively according to the distribution

of prediction accuracy (Figure S1 in supporting information). In all

cases, plotted ROC curves reflect testing/validation performance, as

opposed to classification over the training data set, which is likely

to yield overoptimistic estimates of model strength.43 In the case

of our modeling efforts contrasting DS-MCI and DS-AD, we found

the FDR-significant feature space to be small (ie, 17 features) and

thus unsuitable for LASSO-regularized variable selection. In this case,

we prioritized a subset of these features using a linear SVM-based

approach.50

3.5 Targeted LC-MS/MSmetabolomics

We used multiple reaction monitoring mass spectrometry (MRM

MS/MS) targeted analysis of the putatively identified metabolites

selected by LASSO and SVM feature selection algorithms. Briefly, we

mixed plasma samples (25 𝜇l) with 300 𝜇l of methanol: chloroform

(2:1). To this, we added 100 𝜇l of water and chloroform, separately.

The samples were vortexed and incubated on ice for 10 minutes. We

centrifuged the samples at 13,000 rpm at 60◦C for 15 minutes. The

upper aqueous layer was transferred to a separate vial and dried under

a stream of nitrogen. We reconstituted the samples in ACN:water

(50:50) containing 1 𝜇g/mL of internal standard (tyrosine-15N). The

supernatant was transferred to an MS vial and 5 𝜇l of sample was

used for analysis. The LC and MRM methods used in this study were

optimized in the metabolomics core at Georgetown in collaboration

with Sciex. The sample queuewas randomized and solvent blankswere

injected to assess sample carryover using four biological replicates for

each comparative group.

4 RESULTS

4.1 Plasmametabolites are differentially expressed
as a function of cognitive status

We identified 8,805 putative metabolites across negative and positive

mode LC-MS analyses.We found noDE features comparing the CS and

DS-MCI groups under the multiple testing correction (all FDR q > .05;

Figure 1A). This contrast was consequently not considered a candidate

for further classification modeling. However, a total of 180 features

were DE at the FDR q < .05 level across the pairwise DS-MCI versus

DS-AD, and CS versus DS-AD contrasts (Figure 1 B&C).

4.2 Differentially expressedmetabolite features
predict cognitive status

In the case of the DS-AD versus CS contrast, 163 features FDR q < .05

were submitted to LASSO-regularized regression modelling using 10-

fold CV. Considering only the subset of features selected over at least

50% of resampling epochs, the algorithm selected nine metabolites
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F IGURE 1 Differentially expressedmetabolite features. Volcano plots showing differential expression (DE) of individual features for each of
the three comparisons: cognitively unaffected and stable (CS) versus Down syndrome-mild cognitive impairment (DS-MCI; A), DS-MCI versus
Down syndrome-Alzheimer’s disease (DS-AD; B), and CS versus DS-AD (C).We enforced false discovery rate (FDR) q< 0.05, but no fold change
criterion for DE. There were noDE features for the CS versus DS-MCI comparison, 17 DE features for the DS-MCI versus DS-AD comparison, and
163DE features for the CS versus DS-AD comparison. The red horizontal line represents the cut-off for FDR and red circles represent DE features
in each plot

(Figure 2A), which were combined in a logistic regression classifier

model. The 10-fold CV of this model showed strong discrimination of

the CS and DS-AD groups (ROC AUC = 0.87, 95% confidence interval

[CI]= 0.81–0.95). Sensitivity was 0.84 (95%CI= 0.84 - 0.96) and speci-

ficity was 0.87 (95%CI= 0.83–0.92). This finding was confirmed by the

more rigorous 100-fold Monte Carlo CV (ROC AUC = 0.86, 95%CI =
0.73–0.94) and the alternative SVM modelling approach (ROC AUC

= 0.87, 95%CI = 0.78-0.94; Figure 3A). Classification accuracy for the

100-foldMonte Carlo CVwas 78.8% (Figure S1A).

We also created classificationmodels for theDS-ADversusDS-MCI

contrast, using the set of 17 DE features (FDR q < .05). The LASSO-

based feature selection method was unable to produce stable results

given the sparsity of the featurematrix, sowe used SVM-based feature

selection. The SVM algorithm selected five features (Figure 2B), which

when combined in a logistic regressionmodel, classified theDS-ADand

DS-MCI groups with ROC AUC = 0.89 (95%CI = 0.83–0.96). Sensitiv-

ity was 0.79 (95%CI = 0.78–0.86) and specificity was 0.86 (95%CI =
0.76–0.96). This finding was supported by the more rigorous 100-fold

Monte Carlo CV (ROCAUC= 0.88; 95%CI= 0.76–0.97) and the alter-

native SVMmodelling approach (ROCAUC=0.86, 95%CI=0.78–0.97;

Figure 3B). Classification accuracy for the 100-fold Monte Carlo CV

was 78.1% (Figure S1B).

OurMS approach was untargeted in nature meaning that definitive

identification of the metabolites selected for the classification models

is necessary. Using the tandem LC-MS/MS technique we were able to

definitely identify seven of the nine features in the DS-AD versus CS

contrast andtwo of the five features in the DS-AD versus DS-MCI con-

trast (Table 2 and red outlines in Figure 2A&B). Classification models

using the smaller metabolite sets of definitely identified metabolites

(n = 7 and n = 2) produced ROC performance characteristics that did

not differ significantly from the models using the putatively identified

metabolites (Figure 4, A&B).

4.3 Differentially expressed LC-MSmetabolites
underscore role of energy and lipidmetabolism in
DS-AD progression

Although we were able to form effective, robust classifiers of cog-

nitive status for (1) DS-AD versus CS and (2) DS-AD versus DS-MCI

comparisons, the underlying biochemical perturbations driving this

discriminability could only be inferred from the few definitively iden-

tified metabolites included in the classifier models. Furthermore, it

was not clear whether semantic biological meaning could be distilled

from the DS-MCI versus CS contrast in spite of a lack of FDR q <

.05 significant features. To evaluate this, all DE features on the basis

of group-wise DE nominal P-values were putatively identified based

on m/z and mobile phase column RT. We submitted these features

to metabolic set enrichment analysis for high-level semantic charac-

terization and systems biochemical interpretation.49 Corroborating

earlier reports from our group in an independent cohort of DS adults,

we again find that known metabolic pathways involved in fatty

acid/lipid metabolism and central carbon/carbohydrate metabolism

appear perturbed in peripheral blood plasma with dementia pro-

gression (Table 3). Interestingly, metabolic pathways characterizing

contiguous phenotype transitions (ie, CS vs DS-MCI and DS-AD vs

DS-MCI) appear particularly enriched with metabolites involved in

fatty acid metabolism. Fatty acid metabolism in the brain has been

increasingly linked to neuropathology and cognitive integrity in LOAD;

however, the overall metabolic contributions to AD progression

remain unclear broadly.51 That fatty acid metabolism involving both

biosynthesis and oxidation may index these transitions specifically

is an intriguing idea implicating well-understood genetic programs

and metabolic regulatory mechanisms. In addition to their role as

biomarker candidates, these findings may consequently suggest

novel therapeutic targets in DS-AD, and perhaps AD broadly, that are
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F IGURE 2 Features selected by themachine learning algorithms. This figure shows the group distributions of the nine features selected by the
least absolute shrinkage selection operator (LASSO) feature selection algorithm for the cognitively unaffected and stable (CS) versus Down
syndrome-Alzheimer’s disease (DS-AD) comparison (A) and the five features selected by the support vector machine (SVM) for the Down
syndrome-mild cognitive impairment (DS-MCI) versus DS-AD comparison. The boxplots show the distribution of metabolite abundances for each
groupwith each participant represented as a solid circle. The solid line in each box represents themedian while the lower and upper boundaries of
the box reflect the first and third quartiles. The whiskers reflect theminimum andmaximum values. The horizontal red line in each panel
represents the optimum cut-off for sensitivity and specificity in a univariate receiver operating characteristic area under the curve (ROCAUC).
Panels with red outlines are themetabolites definitively identified byMS/MS and are listed by name in Table 2. Panels without red outlines could
not be definitively identified byMS/MS
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F IGURE 3 Classification performance using putative metabolites. Receiver operating characteristic area under the curve (ROCAUC) for the
classificationmodels using the nine unidentified features for the cognitively unaffected and stable (CS) versus Down syndrome-Alzheimer’s
disease (DS-AD) comparison (A) and the five features for Down syndrome-mild cognitive impairment (DS-MCI) versus DS-AD comparison (B). For
the CS versus DS-AD comparison, the left panel shows strong classification using a logistic regressionmodel with 10-fold cross validation (ROC
AUC= 0.868), themiddle panel shows similar performance for the samemodel using amore rigorous 100-foldMonte Carlo cross validation
procedure (ROCAUC= 0.855), and the right panel shows consistent classification performance using an alternate support vector machine (SVM)
classification algorithm (ROCAUC= 0.859). In the DS-AD versus DS-MCI comparison (B) the left panel shows strong classification performance
using the logistic regressionmodel with 10-fold cross validation (ROCAUC= 0.891), themiddle panel shows similar performance with 10-fold
Monte Carlo resampling approach (ROCAUC= 0.881) and the right panel shows strong SVMperformance (ROCAUC= 0.885)

currently better understood in other types of metabolic pathology (eg,

type 2 diabetes; non-alcoholic fatty liver disease, NAFLD).

5 DISCUSSION

This is one of the first, large-scale blood-based investigations of

metabolic factors associated with aging and cognitive status in adults

with DS-AD. We used untargeted metabolomics to consider a broad

scope of metabolic alterations which can be followed up in subsequent

targeted metabolomic studies. We find strong evidence of metabolic

perturbations which characterize groups of people with DS who were

cognitively unaffected with stable cognition, DS-MCI, and DS-AD. In

general, changes in lipid metabolism including fatty acid biosynthe-

sis and degradation pathways characterize these phenotypic state

changes, with evidence of broad, cellular energy metabolic decline

present in adults with DS, from unimpaired to manifest DS-AD. It is

not clear from this study if these energy alterations begin in adulthood

or are present from birth, but this is an interesting avenue for future

research.

A valid concern with classification models derived from a large

number of parameters and a significantly fewer number of cases (here,

8805metabolites and 292 participants) is the risk of model overfitting

and lack of generalizability from the experimental sample to the pop-

ulation of interest. This remains a challenge in biomarker development

across many fields.18,43,52 Here, we attempted to mitigate model

overfitting by using machine learning algorithms for feature selection

to eliminate biases for particular metabolites or classes of metabolites.

Further, the logistic regression classificationmodelswere refined using

multiple re-sampling schemes (10-fold CV and 100-fold Monte Carlo

cross-validation) and cross-checked using a separate SVM model.

Finally, we attempted tominimize the effects of other known variables

(eg, APOE, sex, medications, age, etc) or unknown variables which

might produce false positive results or complicate interpretation using
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TABLE 2 Identities of themetabolites selected by LASSO and SVM algorithms

Comparison Ionmode Precursorm/z ( RT) Metabolite Compound name

CS versus DS-AD NEG 1100.522 (8.99) Metabolite 1 CDP-DG(22:5)

CS versus DS-AD POS 732.6076 (10.02) Metabolite 2 1-Oleoyl-2-myristoyl-sn-glycero-3-phosphocholine

CS versus DS-AD POS 723.4909 (10.01) Metabolite 3 1,2-Dioleoyl-sn-glycero-3-phosphate

CS versus DS-AD NEG 721.4582 (6.97) Metabolite 4 PA(15:0/20:2)

CS versus DS-AD POS 459.1245 (2.09) Metabolite 5 3,4,5-trihydroxy-6-(2-hydroxy-1,2-diphenylethoxy)

oxane-2-carboxylic acid

CS versus DS-AD NEG 840.6669 (0.3) Metabolite 6 PE-Nme(18:1)

CS versus DS-AD NEG 593.4771 (7.55) Metabolite 7 DG(15:0/18:4)

CS versus DS-AD NEG 1102.75 (0.3) Metabolite 8 -

CS versus DS-AD NEG 493.3887 (7.35) Metabolite 9 -

DS-MCI versus DS-AD POS 500.3502 (5.35) Metabolite 1 Oleyloxyethyl phosphorylcholine

DS-MCI versus DS-AD POS 840.521 (10.09) Metabolite 2 PS(20:0/20:3(8Z,11Z,14Z))

DS-MCI versus DS-AD POS 518.4922 (8.09) Metabolite 3 -

DS-MCI versus DS-AD POS 628.4103 (7.28) Metabolite 4 -

DS-MCI versus DS-AD POS 536.4959 (8.12) Metabolite 5 -

Abbreviations: AD, Alzheimer’s disease; CS, cognitively unaffected and stable; DS, Down syndrome; LASSO, least absolute shrinkage selection operator;MCI,

mild cognitive impairment; SVM, support vector machine

F IGURE 4 Classification performance using definitively identifiedmetabolites. These receiver operating characteristic (ROC) plots show the
classificationmodel performance using the sevenMS/MS definitively identifiedmetabolites for the cognitively unaffected and stable (CS) versus
Down syndrome-Alzheimer’s disease (DS-AD) comparison (A) and the two definitively identifiedmetabolites for the DS-AD versus Down
syndrome-mild cognitive impairment (DS-MCI) comparison (B). The classification performance from these reduced set of metabolites is not
significantly different from the larger sets used in Figure 3. The consistency of the ROCAUC across the resampling schemes (10-fold CV and
100-foldMonte Carlo CV) and classificationmodels (logistic regression and support vector machine) shows the overall stability of themodels and
argues against overfitting
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TABLE 3 Metabolic set enrichment analysis

KEGGPathway Pathways CS versus DS-MCI DS-MCI versus DS-AD CS versus DS-AD

Fatty acidmetabolism Fatty acid oxidation, peroxisome 0.04025

Fatty acidmetabolism Leukotrienemetabolism 0.03823

Fatty acidmetabolism De novo fatty acid biosynthesis 0.04537 0.00067

Fatty acidmetabolism Fatty acid activation 0.00445 0.00067

Fatty acidmetabolism Fatty acid oxidation 0.00462 0.00622

Fatty acidmetabolism Omega-3 fatty acid metabolism 0.00975 0.01874

Lipid metabolism Glycerophospholipidmetabolism 0.02185 0.01244

Amino acidmetabolism Arginine and prolinemetabolism 0.03748 0.00857

Metabolism of xenobiotics by

cytochrome P450

Xenobiotics metabolism 0.03487

Fatty acidmetabolism Linoleatemetabolism 0.01218

Fatty acidmetabolism Saturated fatty acids beta-oxidation 0.02823

Fatty acidmetabolism Omega-6 fatty acid metabolism 0.02823

Fatty acidmetabolism Carnitine shuttle 0.0037 0.01462

Lipid metabolism Phosphatidylinositol phosphate

metabolism

0.00639 0.00202

Nucleotidemetabolism Purinemetabolism 0.00302 0.00202

Neuroactive ligand-receptor

interaction

Dynorphinmetabolism 0.02773 0.04016 0.04949

Lipid metabolism Limonene and pinene degradation 0.03445 0.04193

Lipid metabolism Bile acid biosynthesis 0.04655

Lipid metabolism Glycosylphosphatidylinositol

(GPI)-anchor biosynthesis

0.04193

Lipid metabolism Vitamin D3metabolism 0.04865

Lipid metabolism/Carbohydrate

metabolism

Glycosphingolipidmetabolism 0.04672

Carbohydratemetabolism Hexose phosphorylation 0.04193

Carbohydratemetabolism Pentose phosphate pathway 0.00588

Carbohydratemetabolism Galactosemetabolism 0.04193

Carbohydratemetabolism Fructose andmannosemetabolism 0.04193

Nucleic acid/Purinemetabolism;

Carbohydratemetabolism

Vitamin B1 (thiamin) metabolism 0.04193

Carbohydratemetabolism/Glycan

biosynthesis andmetabolism

Aminosugarsmetabolism 0.04193

Glycan biosynthesis andmetabolism Heparan sulfate degradation 0.04193

Glycan biosynthesis andmetabolism Keratan sulfate degradation 0.04193

Glycan biosynthesis andmetabolism Chondroitin sulfate degradation 0.04193

Glycan biosynthesis andmetabolism Sialic acid metabolism 0.04672

KEGG, Kyoto Encyclopedia of Genes and Genomes (https:www.genome.jp/kegg/).

Contrasts highlighted in red involved fatty acid metabolism pathways.

Contrasts highlighted in green involve lipid metabolic pathways.

Contrasts highlighted in yellow involve cellular energymetabolic pathways.

* P values reflect significant enrichment of metabolites on the relevant KEGG pathways.

the surrogate variable approach. In aggregate, the models produced

consistent and robust classification results with ROC AUC’s ranging

from 0.84 to 0.90 and accuracies around 78%. These classification

models need to be replicated in additional cohorts, but appear robust

and consistent with previous literature from our group and others

implicating lipid- and energy-related metabolites as possible markers

of DS-AD progression. While large-scale external replication is the

current gold standard for biomarker validation, multiple independent

observations of the same phenomena on a smaller scale are also

useful for validating a set of results and we would consider other

attempts to replicate these findings in small to medium sized cohorts

valuable.

http://www.genome.jp/kegg/
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The metabolite enrichment set analysis also produced findings that

are consistent with the extant literature regarding the involvement of

lipidmetabolism in LOAD.53–55 These lipid alterationsmay not be inde-

pendent from the hallmark neuropathology of LOAD. With respect to

plaque formation, it has been observed that membrane lipid compo-

sitional changes may increase amyloidogenic processing of APP. The

mechanism for this is thought to involve increased proximity of the 𝛽-

secretase (BACE1) enzyme and its substrate APP via lipid rafts, which

overall serves to promote BACE1 activity and amyloidogenesis.56 It

has also been proposed that the tauopathy and neurofibrillary tangle

(NFT) formation that are hallmarks of LOAD may be subject to lipid-

dependent mechanisms; tau paired helical filament aggregation may

initiate at the plasma membrane and lipids (ie, phospholipids, choles-

terol, sphingomyelins) have been isolated from paired helical filaments

derived from LOAD brain.57,58

There is also a growing appreciation of lipidmetabolic alterations in

DS. For example, individuals with DS have peripheral lipid metabolism

that differs from euploid siblings independent of body weight.59 Fur-

thermore, our group has recently reported evidence of lipid and small-

molecule metabolic alterations in the peripheral blood of adults with

DS as a function of cognitive impairment.37 Although it is possible

that our peripheral metabolomic analyses reported here index DS-

AD associated pathology directly at the cellular or subcellular level

within the CNS, there is increasing reason to suspect that peripher-

ally evident metabolic alterations (eg, of lipids, bioenergetically rele-

vant small molecules) may co-occur with cognitive decline and reflect

disease progression in a manner not entirely dependent on CNS

metabolism.55,60–64 It is challenging to contextualize lipid physiological

findings in both the dementing and pre-symptomatic brain across mul-

tiple levels of organization (eg, single neuron/glial cell, autonomously

considered CNS tissue, cross-organ-system communication).65–68 We

are therefore encouraged by the fact that, within the ABC-DS cohort,

we have recapitulated a previously identified, disease-associated

metabolic signature of dementia in an independent, expanded, and rig-

orously prospectively collected cohort of adults with DS.37 Consistent

with these earlier findings, we find lipid/fatty acidmetabolism and cen-

tral carbon pathwaymetabolites to be principally affected.

5.1 Lipidmetabolism in AD: shared vulnerabilities in
LOAD andDS-AD?

Lipid alterations may impact plaque formation via amyloid-processing

genes (presenilin 1-2; PSEN1-2) implicated in rare, heritable forms of

AD (familial Alzheimer’s disease [FAD]); however, there is substan-

tial reason to think that aberrant lipid metabolism may impact spo-

radic LOAD directly.69 Furthermore, the pattern of lipid alteration

in LOAD (versus other dementias such as frontotemporal, vascular,

Lewy body) may be relatively specific, suggesting a potential role of

these molecules in differential diagnosis.70 Importantly, the APOE 𝜀4

allele represents one of the earliest discovered and strongest common

risk variants predisposing individuals to LOAD specifically,71 although

it is only now being considered a therapeutic target in AD.72 apoE

serves to clear amyloid plaques within the aging brain, but is also cru-

cially important for intercellular lipid transport.73 APOE is expressed in

metabolically relevantperipheral tissues suchas the liver and is primar-

ily produced in the brain by glial cells (eg, astrocytes, microglia).74,75

Within the CNS, lipidated lipoprotein complexes (1) facilitate axonal

remodeling and survival in neurons through their uptake by the low-

density lipoprotein receptor (LDLR) and (2)modulatemicroglial inflam-

matory phenotype by signaling through LDLRs and triggering recep-

tor expressed on myeloid cells 2 (TREM2).74,76,77 The rare, recently

described R47H mutation in TREM2 represents another genetic,

lipid-associated risk factor impacting LOAD specifically and under-

scores the role of neuroinflammatory homeostasis and microglia in

AD.78–80

That glia disproportionately express APOE is an intriguing find-

ing, given that these cells have substantial capacity for lipid syn-

thesis and metabolic plasticity,81–85 whereas neurons routinely

avoid lipid catabolism for bioenergetic purposes under physio-

logic circumstances.86 This relationship may instead highlight the

non-metabolic (ie, bioactive signaling) roles of certain lipids (polyun-

saturated fatty acids [PUFAs]) which are produced substantially in

astrocytes, but exert neuroprotective and immunomodulatory roles

within neurons when taken up by these latter cells.87,88 Although the

role of glia in ADhas become substantially better understood,89–91 the

degeneration of neurons remains the factor most proximally driving

cognitive decline in AD.92–95

It is also in substantial part through lipidation of apoE that choles-

terol efflux is facilitated within the CNS. Although the brain repre-

sents 2% of total bodymass, it contains≈ 25% of the total unesterified

cholesterol.96 Thismay be of importance in ADgiven findings that indi-

viduals experiencing cognitive impairment (either due toMCI or mani-

fest AD) demonstrate up to 30% reduction inABCA1-mediated choles-

terol efflux into the CSF compared to cognitively intact controls.97

Interestingly, this parallels earlier reports suggesting that patients

experiencing AD or vascular dementia demonstrate elevated levels of

theplasmaoxysterol 24S-hydroxycholesterol (cerebrosterol). Thismay

suggest that enhanced flux of this metabolite across the blood-brain

barrier is associated with dementia severity.98 Crucially, oxysterols of

CNS origin can cross the blood-brain barrier and enter the plasma,

and studies in humans have confirmed that most of the oxysterol that

appears in peripheral circulation comes fromthebrain.96,99 Underscor-

ing our systems-level approach to AD metabolomics, it is worth not-

ing that oxysterols such as cerebrosterol represent a key biosynthetic

intermediate bridging sterol and primary bile acid synthesis. Bile acids

may be altered in AD as a function of cognitive impairment, reflect

the role of brain-gut axis dyshomeostasis in the disease, and suggest a

broader association of this metabolite class with dementia-associated

neuroinflammatory processes.100,101

Although peripheral dyslipidemia and poor metabolic control are

associated with dementia risk,102 there is paradoxically little corre-

spondence between and relatively low turnover of CNS relative to

peripheral cholesterol (ie, most CNS cholesterol is synthesized de

novo).96 Interestingly, APOE genotype is itself associated with effi-

ciency of cholesterol efflux, with the APOE 𝜀4 AD risk allele producing
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the greatest reduction and promoting the formation of lipid-depleted

apoE lipoprotein complexes in CSF.65,97,103

Although it is possible that APOE-driven LOAD risk is principally

mediated through effects on amyloid processing and deposition,104 it

is also feasible that direct effects of apoE-associated lipid trafficking

may impact the dementing brain.105 This is perhaps particularly rel-

evant, given that CNS tissues are metabolically heterogeneous (both

macro-anatomically and with respect to cell type) and may experience

suboptimal provisioning of lipids (eg, cholesterol, phospholipids) with

ADprogression in a cell-type or regionally dependentmanner. It is thus

possible that constraints upon lipoprotein (eg, apoE, apoJ/Clusterin)

mediated lipid trafficking are of substantial importance within the

dementing brain, perhaps compounding other core metabolic deficits

(ie, brain glucose hypometabolism) well established as features of

early AD in both euploid and DS populations.15,16,106–109 Moving

forward, it will be of great importance to better understand how

core AD neuropathology such as plaques and NFTs are differen-

tially impacted by lipid dyshomeostasis and metabolic/bioenergetic

stress.110

5.2 Systemicmetabolic alterations in DS-AD:
evidence beyond the brain

One limitation of the present study is that the untargetedmetabolomic

(ie, LC-MS) approaches used do not permit unambiguous chemical

identification of individual dementia-associated metabolites in periph-

eral blood.49,111 Nonetheless, our statistical approaches to better

delineate disease-associated signals within the plasma metabolome

and characterize systems-level biochemical alterations revealed sev-

eral metabolic pathways (ie, lipid/fatty acid and central carbon

metabolism) which demonstrated a significantly overrepresented

number of differentially expressed LC-MS features. Potentially repre-

sentinghigh-valuedruggable targets, these findings remain challenging

to interpret.

It is noteworthy that recent work in AD metabolomics has

attempted to link disease-associated alterations within the periph-

eral blood metabolome to corresponding alterations in the CNS

metabolome,55,112 thereby grounding peripheral blood biochemical

alterations as surrogate biomarkers for CNS lipid abnormalities. Due

to the extensive, “connective” role of the cardiovascular system, it is,

however, unclear if these blood plasma perturbations uniquely reflect

brain pathology, as opposed to pathological alterations of other organ

systems. In recent years, AD has been increasingly understood as

a metabolic disease,63 necessarily implicating structures beyond the

CNS. This is certainly applicable to DS, which is marked by substan-

tially elevated, genetically penetrant risk for both AD and type 1

diabetes.113–115 It is similarly reflected in the variety of biomolecules

recently implicated inADviametabolomics approaches. Inmany cases,

while thesemolecules possess currently underappreciated roleswithin

the CNS, their conventional roles in peripheral, metabolically active

tissues remain physiologically better understood. It will be important

for future work in adults with DS-AD to better contextualize the het-

erogeneity of these molecules and implicated physiological processes

with respect to core AD pathophysiology. Rather than simply reflect-

ing an imperfect signal of brain metabolism, the peripheral plasma

metabolome may instead index broader metabolic derangement asso-

ciatedwith disease progression.116–128 To the extent that this suggests

interventional targets and effective biomarkers, this may prove to be

an advantage rather than a shortcoming of peripheral metabolomic

approaches within DS-AD.
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