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A longitudinal model of human neuronal differentiation for 
functional investigation of schizophrenia polygenic risk
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Ophoff1,2,*

1Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, 
University of California, Los Angeles, California, USA

2Department of Human Genetics, David Geffen School of Medicine, University of California, Los 
Angeles, California, USA

Abstract

Background: Common psychiatric disorders are characterized by complex disease architectures 

with many small genetic effects that contribute and complicate biological understanding of their 

etiology. There is therefore a pressing need for in vitro experimental systems that allow for 

interrogation of polygenic psychiatric disease risk to study the underlying biological mechanisms.

Methods: We have developed an analytical framework that integrates genome-wide disease risk 

from GWAS with longitudinal in vitro gene expression profiles of human neuronal differentiation.

Results: We demonstrate that the cumulative impact of risk loci of specific psychiatric disorders 

is significantly associated with genes that are differentially expressed and upregulated during 

differentiation. We find the strongest evidence for schizophrenia, a finding that we replicate in an 

independent dataset. A longitudinal gene cluster involved in synaptic function primarily drives the 

association with SCZ risk.

Conclusions: These findings reveal that in vitro human neuronal differentiation can be used to 

translate the polygenic architecture of schizophrenia to biologically relevant pathways that can be 

modeled in an experimental system. Overall, this work emphasizes the use of longitudinal in vitro 
transcriptomic signatures as a cellular readout and the application to the genetics of complex traits.
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Introduction

Major psychiatric disorders feature a high heritability but have a largely unknown 

etiology(1, 2). The increasing sample sizes of genome-wide association studies (GWAS) 

successfully result in identification of more susceptibility loci for these disorders(3). A 

major challenge is to understand and interpret the cumulative impact of many loci that 

collectively contribute to psychiatric disease risk and how to translate this complex 

polygenic architecture to biological pathways that drive the underlying molecular and 

cellular disease processes. Lack of applicable in vitro model systems and a framework to 

study polygenic psychiatric risk hinders the translation of genetics findings to disease 

biology(4).

Early brain development has been implicated in psychiatric disorders such as schizophrenia 

(SCZ)(5–8), autism spectrum disorder (ASD)(9, 10), and self-reported depression (SRD)

(11). Differentiation of human embryonic stem cells (hESCs) into neuronal lineages has 

been demonstrated to hold great promise to model early brain development(12–14), and may 

thus offer a unique opportunity to study psychiatric disease biology in vitro. However, it has 

remained unclear whether the molecular dynamics underlying in vitro human neuronal 

differentiation are associated with polygenic psychiatric disease susceptibility.

We set out to investigate in vitro human neuronal differentiation in the context of polygenic 

psychiatric disease risk. To accomplish this, we performed a densely-sampled time series 

experiment and robustly detected transcriptome-wide changes across neuronal 

differentiation. To study the aggregate impact of risk loci, we integrated longitudinal in vitro 
gene expression signatures with GWAS summary statistics of major psychiatric disorders. 

We observe significant enrichment of genetic risk for multiple disorders in genes that are 

upregulated across differentiation. We further show that this effect is strongest for SCZ and 

primarily driven by a longitudinal gene cluster that is involved in synaptic functioning. 

These findings support to use of in vitro neuronal differentiation as a promising model 

system to study genetic psychiatric risk, particularly in the context of schizophrenia.

Methods and Materials

Approval for stem cell research

This study and all described work was approved by the University of California, Los 

Angeles Embryonic Stem Cell Research Oversight (ESCRO) committee.

In vitro human neuronal differentiation

WA09(H9)-derived hNSCs were commercially obtained (Gibco) as neural progenitors and 

subsequently expanded as adherent culture according to the manufacturer’s guidelines. Low 
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passage hNSCs (< 4 passage rounds) were plated in 12-well plates coated with poly-Dlysine 

(0.1 mg/mL, VWR) and laminin (4.52ug/cm2, Corning™) at 1.5×105 cells, which were 

equally distributed and subsequently cultured in expansion medium as described above. 

After 24h of proliferation, media was changed to neuronal differentiation medium consisting 

of Neurobasal® Medium (Gibco), 2% B-27® Serum-Free Supplement (Gibco), 2mM 

GlutaMax™-I Supplement, 0.05 mM β-mercaptoethanol (Gibco), and 1x Pen Strep. Media 

was changed every 2–3 days.

Experimental design and assessment of gene expression

Human neural stem cells were differentiated over a course of 30 days and RNA harvested at 

seven time points (day 0, 2, 5, 10, 15, 20, and 30) in triplicates or quadruplicates (n = 24). 

Genome-wide array-based transcriptome data was collected at the UCLA Neuroscience 

Genomics Core using Illumina’s HumanHT-12 v4 Expression BeadChip Kit.

Data preprocessing and quality control

Gene expression data was extracted using the Gene Expression Module in GenomeStudio 

Software 2011.1. Data was background corrected with subsequent variancestabilizing 

transformation and robust spline normalization was applied(15, 16). We excluded low 

quality probes and subsequently performed sample outlier detection by Euclidean distance 

and standardized connectivity. The FactoMineR package (v1.28) in R was used to perform 

principal component analysis (PCA). For subsequent downstream analyses, we used the 

normalized expression values of 19,012 high quality filtered probes for all 24 samples.

Transcriptome-based in vitro cellular identity

To investigate in vitro cellular identity across differentiation, we used transcriptomic 

signatures of cell-type specific genes of seven main cell types identified in the mouse 

cerebral cortex(17). We extracted normalized gene expression values of these genes for each 

cell type from our own in vitro dataset and calculated mean standardized expression levels of 

cell typespecific genes for each of the seven cell types across days of differentiation.

Transition mapping to a spatiotemporal atlas of early human brain development

To investigate global transcriptomic matching between in vitro gene expression profiles and 

in vivo gene expression profiles of neocortical brain regions, we applied transition mapping 

(TMAP), which is implemented in the online CoNTExT bioinformatic pipeline (https://

context.semel.ucla.edu)(14). Analyses were run for in vitro time points day-0 vs day-30, 

day-0 vs day-5, day-5 vs day-15, and day-15 vs day-30 across both temporal and spatial 

dimensions of human cortical development.

Time-series differential gene expression and cluster analysis

Two multivariate empirical Bayes models were used to identify differentially expressed 

genes across differentiation. We computed the one-sample T2-statistic and a probability of 

being differentially expressed using the mb.long() function in the Timecourse package (v 

1.42) and the betr() function in the BETR package (v 1.26) in R, respectively (18, 19). As 

both methods rank probes by their differential expression over time, differentially expressed 
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genes were classified as the union of the set of probes with a probability of 1.0 using BETR 

and an equally-sized set of top ranked probes using the T2-statistic. We subsequently applied 

fuzzy c-means clustering to all differentially expressed probes and computed cluster 

membership values using the fclusList() and membership() function in the Mfuzz package in 

R(20, 21). Clusters were annotated using Database for Annotation, Visualization, and 

Integrated Discovery (DAVID, v6.8) (22) and probes with a membership > 0.5.

Integration of GWAS data with in vitro transcriptomic signatures

Illumina probe IDs were mapped to Ensembl gene IDs using NCBI build 37.3, duplicate IDs 

removed, and gene boundaries extended symmetrically by 10kb to include regulatory 

regions. Annotation files were then created mapping each gene ID or chromosomal position 

with in vitro gene parameters of interest, such as T2-statistic and cluster membership values. 

These files were then used as input to Multi-marker Analysis of GenoMic Annotation 

(MAGMA) and stratified LD score regression (sLDSR) to integrate in vitro signatures with 

GWAS data and study the cumulative impact across risk loci.

GWAS summary statistics and ancestry matched reference panels

GWAS summary statistics were obtained for SCZ(23), major depressive disorder (MDD)

(24), SRD(11), bipolar disorder (BPD)(25), ASD(26), attention deficit hyperactivity disorder 

(ADHD)(27), cross disorder(28), Alzheimer’s disease (AD)(29), and adult human height(30) 

(Supplemental Table S2). For each trait we used the most recent GWAS summary statistics 

that was publically available at the time of the analysis. The 1000 Genomes Project Phase 3 

release (1KG) was used as reference panel to model ancestry-matched LD(31).

MAGMA gene-set analysis

MAGMA (v1.06)(32) was used to perform gene-set analyses of GWAS data. MAGMA uses 

a multiple regression framework to associate a continuous or binary gene variable to GWAS 

gene level p-values. For each GWAS phenotype, we generated gene-level p-values by 

computing the mean SNP association using the default gene model (‘snp-wise=mean’) with 

+/− 10kb extensions of gene boundaries and SNPs with minor allele frequency (MAF) > 5%. 

For each annotation, we then regressed gene-level GWAS test statistics on the corresponding 

gene annotation variable using the ‘--gene-covar’ function while adjusting for gene size, 

SNP density, and LD-induced correlations (‘--model correct=all’), which is estimated from 

an ancestrymatched 1KG reference panel. Testing only for a positive association, i.e. 

enrichment of GWAS signal, we report one-sided p-values along with the corresponding 

regression coefficient.

Stratified LD Score Regression

We applied an extension to stratified LD score regression (sLDSR), a statistical method that 

partitions SNP-based heritability (h2) from GWAS summary statistics(8). This allows us to 

quantify the effects of continuous-valued annotations on the heritability(33). For each 

annotation, we first estimated partitioned LD scores using the ldsc.py --l2 function with 

MAF > 5%, a 1 centimorgan (cm) window, and an ancestry-match 1KG reference panel. We 

ran sLDSR (ldsc.py --h2) for each annotation of interest while accounting for the full 
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baseline model, as recommended by the developers(8, 33), and an extra annotation of all 

genes detected in our in vitro model (n = 12,414). As we only test for a positive association, 

we report the contribution to the per-SNP h2 (t) and the associated one-sided p-value, which 

is calculated using standard errors that are obtained via a block jackknife procedure(8, 34).

Further details on experimental methods and statistical analyses are available in 

Supplemental Methods.

Results

Longitudinal in vitro gene expression profiling confirms neuron-specific differentiation 
and matches in vivo human cortical development

To study the molecular dynamics underlying in vitro human neuronal differentiation, we 

differentiated an hNSC line (WA09/H9) to a neuronal lineage across 30 days. Genome-wide 

gene expression profiles were assayed densely at seven time points in at least triplicates 

(n=24 samples). To verify that the data was in agreement with the intendend differentiation 

protocols, we investigated specific gene expression signatures over time. We first examined 

gene expression patterns of traditional gene markers(35, 36) and observed that neural stem 

cell and proliferation markers (MKI67, Nestin, and SOX2) are downregulated, while early 

neuronal markers (BDNF and DCX) are upregulated as differentiation progresses (Figure 

1A-B). MAP2, a more mature neuronal marker(35, 37), is first upregulated and subsequently 

downregulated at later time points, suggesting that the differentiated culture maintains a 

relatively immature neuronal identity. Next, we explored PCA on normalized gene 

expression values using the full transcriptome and found a large proportion of the variance in 

expression to be explained by the differentiation process, with minimal effects of technical 

variation (Figure 1C & S1). Investigation of transcriptome-based cell type-specific gene 

expression signatures of major classes of cell types in the cerebral cortex shows that relative 

neuronal gene expression increases as neuronal differentiation progresses over time (Figure 

1D). There is no evidence of glial- or endothelialspecific gene expression, which confirms a 

broadly neuronal in vitro cellular identity.

Having established that the in vitro differentiation process is predominantly neuronal, we 

applied transition mapping (TMAP) to assess the correspondence of longitudinal in vitro 
transcriptome data to in vivo signatures of both brain developmental stages and laminae of 

the human neocortex. We find significant matching between the in vitro longitudinal DGE 

profiles (day-0 vs day-30) and in vivo developmental stage from 4 weeks post-conception 

(PCW) to 24 PCW (Figure S2). This overlaps with the primary period of neurogenesis in the 

neocortex, which starts around 6 PCW(38, 39). To gain more insight into this overlap, we 

partitioned the TMAP analyses in three comparisons and examined how in vitro to in vivo 
matching progressed over time across differentiation. We see a clear progression in matching 

from early developmental stages to later stages (Figure 2A). For example, in vitro day-0 vs 

day-5 show strong overlap with in vivo period-1 (4–8 PCW) vs period-4 (13–16 PCW), 

while in vitro day-15 vs day-30 shows stronger overlap with in vivo period-2 (8–10 PCW) 

vs period-8 (birth-6M). Similarly, in vitro longitudinal DGE shows progression from overlap 

of early time points with inner laminae, to overlap with more upper cortical layers as in vitro 
neuronal differentiation advances (Figure 2B and S2).
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In vitro neuronal differentiation reveals specific longitudinal gene clusters

To identify biological pathways associated with neuronal differentiation, we applied an 

analysis framework specifically tailored to time-series gene expression data (see Methods 

and Supplemental Methods). A total of 7,734 probes, mapping to 5,818 genes, were 

differentially expressed over time (Figure S3). We find that these genes are, on average, 

more constrained to genetic variation compared to non-differentially expressed genes 

(section S2). Using only differentially expressed probes, we next applied fuzzy c-means 

clustering and identified eight distinct longitudinal gene clusters (Figure 3 and S4). For each 

probe, we generated a corresponding cluster membership value, representing the degree to 

which a gene belongs to a cluster. To identify most informative biological interpretation of 

each cluster, we analyzed genes with high cluster membership for enrichment of functional 

annotations using DAVID (Supplemental Methods and Table S1).

We identified three clusters with decreasing gene expression over time that are significantly 

enriched for cell division and RNA regulation and processing genes, reflective of stem cell 

proliferation and cell fate determination that is tightly controlled and regulated by RNA 

dependent processes(40). Second, there are three clusters showing increased gene expression 

levels over time that are primarily enriched for neuronal processes, such as neuron formation 

and synaptic function. Another independent cluster shows an inverted U-shaped expression 

pattern during development, enriched for genes involved in transcriptional regulation. The 

final cluster is enriched for genes involved in extracellular region and cell adhesions. These 

processes are important for cell connectivity and have also been implicated in cell 

proliferation and neuronal migration(41, 42). Together, these eight gene clusters reveal 

different biological mechanisms that are associated with neuronal differentiation and 

consistent with known biology of neurodevelopment. We hypothesize that the study of these 

longitudinal gene expression clusters can help decipher disease mechanisms involved in 

psychiatric phenotypes.

Differentially expressed genes are enriched for polygenic psychiatric disease risk

To examine how aggregate psychiatric disease risk is distributed across genes that are 

important for neuronal differentiation, we applied gene-set analysis and partitioning of h2 

with MAGMA and sLDSR, respectively. We used GWAS summary statistics from major 

psychiatric disorders in addition to Alzheimer’s disease (AD) and adult human height, which 

served as nonpsychiatric control phenotypes that are heritable and polygenic. Using a two-

step approach, we first investigated disease susceptibility on overall differential expression 

level and subsequently proceeded to deconstruct these associations across the longitudinal 

gene clusters. We find that genes that are differentially expressed are enriched for genetic 

risk of multiple psychiatric disorders. We find significant effects with MAGMA for SCZ 

(P=0.001), ADHD (P=0.002), and SRD (P=0.003) (Table 1 and Table S3). With sLDSR, we 

find nominally significant effects for SCZ (P=0.01) and SRD (P=0.02) and a suggestive 

association for ADHD (P=0.06) (Table 1 and Table S4). We observed a suggestive 

enrichment for BPD, and no enrichment for the cross disorder, ASD, MDD CONVERGE or 

for adult height and AD.
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We next investigated whether enrichment across differentially expressed genes was driven 

by up- or downregulation of genes during differentiation. For SCZ, we find that the effect is 

driven by genes that are upregulated (MAGMA P=5.0×10−7, sLDSR P=6.1×10−5) and not 

by genes that are downregulated (MAGMA P=0.98, sLDSR P=0.61) (Figure 4 and Figure 

S6). For SRD, we only find a stronger enrichment in upregulated genes with MAGMA 

(P=3.5×10−4), while ADHD shows no specific evidence for either up or downregulated 

genes.

Psychiatric disease risk aggregates to specific longitudinal gene clusters

Next, we explored the relationship between differentially expressed genes and disease risk 

on cluster level. For this analysis, we only included traits that show significant disease 

enrichment across differentially expressed genes using MAGMA after correcting for 

multiple testing (SCZ, ADHD, SRD) and our control traits (AD, height). These disease traits 

showed at least a nominally significant effect with sLDSR as well. Using both MAGMA and 

sLDSR, we integrated cluster membership values with GWAS summary statistics (n=5) and 

assessed whether genome-wide disease risk aggregates to any of the eight experimentally 

identified longitudinal gene clusters. Overall, MAGMA and sLDSR show a strong 

concordance across phenotypes and clusters (rho = 0.92, p<2.2×10−16, n=40, see also Figure 

S7). After Bonferroni correction (n=40), we find five significant phenotype-cluster 

associations with MAGMA and three with sLDSR (Figure 5 and Table S5/S6).

We find that multiple upregulated clusters show enrichment for SCZ with the strongest 

evidence for the synaptic function cluster (MAGMA P=1.8×10−7, sLDSR P=7.2×10−5) (see 

Figure S8). For SRD, we find significant associations in the transcription regulation 
(P=2.5×10−5) and the neuron formation (P=1.2×10−4) gene cluster with MAGMA only. 

While the analysis of adult height using all differentially expressed genes did not yield any 

evidence for enrichment of genetic signal, enrichment is observed at the cluster level. The 

cell connectivity cluster (P=3.7×10−4) is enriched for height, in addition to suggestive 

enrichments in the cell division and RNA regulation cluster, which are not present for any of 

the psychiatric phenotypes. Remarkably, across all 8 clusters the enrichments of SCZ and 

height are inversely correlated (rho=−0.85, P=0.011, n=8; see also section S3 and Figure 

S9–10).

Finally, in order to take into account the full spectrum of correlations and dependencies 

between clusters (Figure S11), we performed a conditional analysis for SCZ, the trait for 

which the strongest cluster enrichments are observed with both methods. Using the same 

MAGMA model, for each cluster, we conditioned on the highest gene members 

(membership > 0.5) of the other seven clusters (Table 2). We find that the SCZ enrichment is 

driven by the synaptic function cluster (p=2.88×10−3) only. The same conditional analysis 

for SRD, which only showed a significant enrichment with MAGMA, shows that this effect 

is primarily driven by the transcription regulation cluster (p=5.42×10−3) (Table S7).
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Replication in the CORTECON RNA-seq dataset shows strong concordance with discovery 
analyses

To evaluate reproducibility of our findings, we performed a comprehensive replication 

analysis in the CORTECON RNA sequencing (RNA-seq) dataset of in vitro human cortical 

differentiation(13). While the CORTECON project was executed using widely different 

experimental procedures (section S4.1), we detect largely overlapping transcriptomic 

patterns with the discovery dataset. Between datasets, we see robust sample correlations 

across the differentiation trajectory (section S4.2, Figure S12), including in stem cell and 

early neuronal gene marker expression patterns (section S4.4, Figure S14–15). We observe a 

highly significant overlap in differentially expressed genes (section S4.5) and in identified 

gene clusters (section S4.6, Figure S16–17). We in addition find that genes differentially 

expressed during 37 days of differentiation in CORTECON, which closely maps to 30 days 

of differentiation in the discovery set, are significantly associated with SCZ risk 

(beta=0.047, P=0.007, section S4.7). As in the discovery dataset, this association is driven 

by genes that are upregulated over time (P=0.008) but not downregulated (P=0.74). While 

the identified gene clusters show significant overlap with the eight gene clusters from the 

discovery analysis (Figure S17), we do not observe the association with SCZ risk to be 

distributed to a single gene cluster. To investigate whether similar genes are driving the 

association with SCZ risk between our discovery analysis and the CORTECON dataset, we 

adjusted our analysis in the CORTECON dataset for the synaptic gene cluster (n= 779 

genes) of the discovery analysis. We find that the strength of the association between SCZ 

risk and day-37 upregulated genes decreases when we account for synaptic genes from the 

discovery analysis (beta=0.044, P=0.031, section S4.7). We have highlighted a set of genes 

that have high membership to the synaptic gene cluster, are differentially expressed in 

CORTECON, and are significantly associated to SCZ based on the GWAS (Figure S18). 

Taken together this suggests that the same group of genes underlie the association between 

SCZ polygenic risk and transcriptomic signatures across differentiation and further 

demonstrates the concordance between both datasets.

Discussion

We investigated a longitudinal in vitro stem cell model of human neuronal differentiation to 

study psychiatric disease susceptibility based on evidence from GWAS. We confirmed that 

our in vitro model highlights transcriptomic profiles that are in line with an emerging 

neuronal identity that recapitulates signatures of in vivo cortical development across specific 

developmental time periods and laminae of the human neocortex. This is in line with 

previous findings(14) and highlights that longitudinal gene expression dynamics underlying 

our model of human neuronal differentiation can be informative to study genes and 

pathways involved in in vivo human cortical development. Importantly, neuronal cell 

types(43–45) and early brain development(7, 23, 46) have been postulated as integral 

components of SCZ disease susceptibility. Here, we observe that genes differentially 

expressed across neuronal differentiation are significantly associated with genome-wide 

disease risk of SCZ, a finding that we replicate in an independent dataset. Our findings 

suggest that SCZ risk aggregates to genes involved in synaptic functioning during 

development. Although not the only pathogenic process contributing to SCZ, synaptic 
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dysfunction is most strongly supported by genetic data, postmortem expression studies, and 

animal models(44, 47–51). We are the first to provide evidence for this hypothesis using a 

longitudinal in vitro cell-based model and aggregate polygenic disease risk. Our results 

suggest that high gene members of the synaptic function gene cluster enriched for SCZ 

(Figure S18), such as Calcium Voltage-Gated Channel Subunit Alpha 1C (CACNA1C), 

located at a genomewide significant SCZ locus(23), are suitable candidates for functional 

follow-up in this in vitro model. We find no evidence for AD, a late-onset non-psychiatric 

brain disease, nor for adult human height in this neuronal cluster. Together, our findings 

demonstrate that longitudinal transcriptomic signatures important for neuronal 

differentiation recapitulate the in vivo context and align with the genetic basis of the disease. 

SCZ disease biology, and in particular synaptic functioning, can thus be studied through 

these molecular processes captured by this in vitro model.

We also observed a significant enrichment of genetic signal with MAGMA for SRD in genes 

upregulated during differentiation, and show that this enrichment is predominantly driven by 

genes in the transcription regulation gene cluster. Interestingly, the SRD GWAS reported that 

the top SNPs were enriched for transcription regulation related to neurodevelopment(11), 

which is in line with our in vitro findings. We observed no enrichment of the GWAS of 

recurrent and severe MDD in Han-Chinese women(24). The latter sample represents the 

most genetically and phenotypically homogeneous GWAS of MDD. The fact that for these 

results no enrichment for any of our gene sets was observed may suggest that 

neurodevelopmental processes play a lesser role in MDD(52). Alternatively, larger sample 

sizes are needed to better capture the genome-wide genetic risk associated with MDD 

(Figure S19). Self-reported depression is a much broader phenotype that may include other 

psychiatric traits, which could drive the observed neurodevelopment and transcription 

findings. Although it remains unclear how these results and the application of the model 

extrapolate to the MDD phenotype, our approach does highlight enrichment in distinct 

clusters for SRD and SCZ and could help shed light on how these two complex traits differ 

in their etiology.

A strength of our approach is the longitudinal analysis framework that we developed. We 

implemented an experimental design across a dense and repeatedly sampled time-series and 

integrated longitudinal transcriptomic signatures with genome-wide disease risk using 

available GWAS summary statistics. This increases statistical power to directly investigate 

the cumulative impact of risk loci on genes important to our model system. While we 

specifically chose to perform our experiments across an isogenic background to minimize 

variation and maximize statistical power to identify transcriptomic signatures, our 

framework can easily be extended to a multi-sample design (e.g. cases vs controls)(19, 53), 

which makes it relevant for many diseasespecific experimental settings.

Our experimental procedure applied differentiation towards a broad neuronal phenotype. 

Our work does not exclude disease associations with specific subtypes of neuronal cells or 

other major brain cell types nor does it exclude cell non-autonomous changes that may 

contribute. We provide a proof-of-concept of an in vitro model of neuronal cells for studying 

complex diseases, such as SCZ, and present an analytical framework that includes 

longitudinal assessment of gene expression profiles. This approach can readily be extended 
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to study in vitro differentiation of other major brain cell types, such as astrocytes or 

oligodendrocytes. In addition, co-culture with astrocyte may facilitate a more mature 

neuronal culture(54, 55) and provide further insights into the temporal specificity of SCZ 

genetic risk. Although we show strong evidence for SCZ risk in early prenatal 

neurodevelopment, our findings do not preclude an additional contribution of postnatal 

neurodevelopment to the etiology of the disease(56–58).

In summary, as GWAS risk loci have small effect sizes and are abundantly distributed across 

the genome, new approaches are needed that allow for functional investigation of polygenic 

disease architectures. Embracing the polygenic nature of psychiatric disorders is an 

important step forward in translating findings from GWAS to disease biology52. Our 

approach allowed us to narrow down on potential core disease processes and opens up new 

avenues to study disease in the context of polygenicity. Future work may for example 

incorporate model perturbations to study aggregate disease risk in finer detail or use the 

model for functional finemapping of specific SCZ GWAS loci across an isogenic 

background in a controlled environment. Overall, this work contributes to understand the 

functional mechanisms that underlie psychiatric disease heritability and polygenicity in the 

post GWAS era.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. In vitro gene expression profiles confirm a neuron-specific differentiation process.
Relative gene expression of traditional stem cell (A) and neuronal (B) markers plotted across 

days of differentiation. (C) PCA of in vitro transcriptomic data with PC1 (x-axis) and PC2 

(y-axis) visualized. Variance explained per component is shown in parentheses. (D) 

Transcriptome-based cellular identity is shown by average expression of cell type specific 

genes across days of differentiation. The first number in the parentheses represents the 

number of genes for which the average expression is plotted. The second number represents 

the corresponding number of probes assayed. OPC = oligodendrocyte precursor cells, NFO 

= newly formed oligodendrocytes, MP = myelinating oligodendrocytes.
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Figure 2. In vitro gene expression profiles match in vivo human cortical development.
TMAP output visualizes the amount of overlap between in vitro and in vivo DGE profiles 

colored by – log10(p-value) (see figure S2 for more details on interpretation). Note that p-

values are shown on varying color scales between graphs. Abbreviations and numbering 

above maps correspond to schematic representations on the left (adopted from Stein et al., 

2014) of different developmental stages (A) and laminae (B). VZ = ventricular zone, SZ = 

subventricular zone, IZ = intermediate zone, SP=subplate zone, CPi= inner cortical plate, 

CPo = outer cortical plate, MZ = marginal zone, PCW = post conception weeks, M = 

months, Y = years, Period = developmental stage.
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Figure 3. Identified gene clusters highlight biological pathways important for neuronal 
differentiation.
Top significant functional annotations and corresponding enrichment score are shown for 

each gene cluster. Longitudinal gene expression is visualized for high member genes only 

(black line represents mean gene expression). Each cluster is color-coded with the number of 

genes at membership > 0.5 denoted. See table S1 for full annotation results.
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Figure 4. Schizophrenia polygenic risk lies in genes up-regulated during neuronal differentiation.
A more detailed investigation of the effect of differentially expressed genes on the 

heritability of SCZ, ADHD, and SRD. The y-axis denotes the –log10 P-value of the 

enrichment. No diff = genes that are not differentially expressed; Diff = log (T2-statistic) as 

shown in Table 1; Up = genes upregulated during differentiation; Down = genes 

downregulated during differentiation. The dotted line represents the threshold for P=0.0056 

(n=9 traits).
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Figure 5. Polygenic psychiatric risk is distributed across specific longitudinal gene clusters.
Results from sLDSC (diagonal pattern) and MAGMA (solid colors) are shown for each 

phenotype (labels on the right) colored by gene cluster. Gene cluster annotation and cluster 

expression pattern are shown on top. The y-axis states the –log10 (p-value). The dotted 

horizontal line represents the threshold for Bonferroni correction (p=0.05/40).
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Table 1.
Differentially expressed genes are enriched for polygenic risk of multiple psychiatric 
disorders.

Shown are results of MAGMA and sLDSR for differentially expressed genes. P-values highlighted in bold 

show phenotypes that survive multiple testing correction (n=9). See Table S3 and S4 for more details. Beta = 

regression coefficient, SE = standard error, Beta_std = change in Z-value given a change of one standard 

deviation in log T2 statistic, τ (tau) = the contribution to the per-SNP h2.

MAGMA sLDSC

Phenotype Beta (SE) Beta_std P-value τ (SE) P-value

Psychiatric

    Schizophrenia 0.022 (0.007) 0.094 0.001 1.70 × 10−9 (7.45 × 10−10) 0.01

    ADHD 0.014 (0.005) 0.059 0.002 1.92 × 10−9 (1.25 × 10−9) 0.06

    Self-reported depression 0.013 (0.005) 0.057 0.003 4.34 × 10−10 (2.10 × 10−10) 0.02

    Bipolar disorder 0.007 (0.005) 0.032 0.06 6.16 × 10−9 (3.64 × 10−9) 0.05

    Cross disorder 0.005 (0.005) 0.020 0.16 1.19 × 10−9 (1.00 × 10−9) 0.12

    MDD CONVERGE 0.000 (0.004) -0.001 0.51 6.07 × 10−9 (4.39 × 10−9) 0.08

    ASD 0.000 (0.004) -0.002 0.54 2.97 × 10−9 (3.48 × 10−9) 0.20

Neurodegenerative

    Alzheimer’s disease 0.003 (0.004) 0.015 0.22 1.30 × 10−10 (1.02 × 10−9) 0.45

Non-brain

    Height 0.009 (0.011) 0.037 0.21 −1.62 × 10−9 (1.36 × 10−9) 0.88
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Table 2.
The association with SCZ risk is driven by the synaptic function gene cluster.

Gene level association signal is regressed on cluster membership while adjusting for high membership genes 

of all other seven clusters. Shown are the results of the primary analysis (not adjusted for other clusters) and 

the conditional analysis with MAGMA. Beta = regression coefficient, SE = standard error.

MAGMA Primary MAGMA Conditional

Schizophrenia - clusters Beta (SE) P-value Beta (SE) P-value

Cell division -0.045 (0.017) 1.00 -0.047 (0.027) 0.96

RNA regulation -0.040 (0.017) 0.99 -0.044 (0.027) 0.95

RNA processing -0.006 (0.017) 0.64 -0.011 (0.024) 0.68

Neuron formation 0.048 (0.017) 2.12×10−3 0.018 (0.036) 0.30

Synaptic function 0.077 (0.017) 1.82×10−6 0.070 (0.026) 2.88×10−3

Cell signaling 0.052 (0.016) 6.88×10−4 0.032 (0.023) 0.08

Transcription regulation 0.048 (0.016) 1.67×10−3 0.019 (0.025) 0.22

Cell connectivity -0.061 (0.017) 1.00 -0.076 (0.026) 1.00
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