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REVIEW ARTICLE

Controls on explosive-effusive volcanic
eruption styles
Mike Cassidy 1, Michael Manga2, Kathy Cashman3 & Olivier Bachmann4

One of the biggest challenges in volcanic hazard assessment is to understand how and why

eruptive style changes within the same eruptive period or even from one eruption to the next

at a given volcano. This review evaluates the competing processes that lead to explosive and

effusive eruptions of silicic magmas. Eruptive style depends on a set of feedback involving

interrelated magmatic properties and processes. Foremost of these are magma viscosity, gas

loss and external properties such as conduit geometry. Ultimately, these parameters control

the speed at which magmas ascend, decompress and outgas en route to the surface, and thus

determine eruptive style and evolution.

W ith the increasing global population and stress on natural resources, volcanoes
threaten more lives every day. Explosive volcanic eruptions can have devastating
societal impacts on nearby populations, covering entire countries in ash, ruining

crops, killing livestock and causing a huge loss of human life. These eruptions can also have
global effects, with the potential to impact air traffic, air quality, global temperatures and bio-
geochemical cycles. Conversely, lava flow or dome-forming (effusive) eruptions are generally less
hazardous, with impacts focused in the area immediately surrounding the volcano, although
eruptions of large mafic lava flows can destroy property and may have adverse effects on regional
air quality1. Therefore, the style of volcanism dictates the types of hazards posed by a volcano.
An important problem is that any one volcano can erupt either explosively or effusively, and a
single eruptive episode may include multiple and rapid changes in eruptive style2. Out of the 106
eruptions greater than or equal to Volcano Explosivity Index (VEI) 3 since 2000, 61% of these
comprised both effusive and explosive activity (Global Volcanism Program, 20133). Additionally,
our current understanding of the geophysical, geodetic and geochemical signals detected by
volcano monitoring does not provide either an adequate framework to reliably forecast the initial
eruption style and size, or the temporal evolution of eruptive activity. This ambiguity limits the
ability of authorities to prepare for and mitigate against volcanic hazards. It is thus critical to
understand the factors that control whether a volcano erupts effusively or explosively, and to
integrate this information into models that provide realistic eruption scenarios. This goal is
considered to be one of the three grand challenges in volcano science4.

In this review, we focus on the shall-owest parts of the magmatic system, from the subvolcanic
magma storage to conduit flow and surface events (upper ~10 km; Fig. 1 and Table 1). In this low
pressure environment, processes such as crystal and bubble growth (Fig. 1b) affect the perme-
ability, rheology, extent of outgassing, and fragmentation depth and mechanisms (Fig. 1b and
Table 1) of the magma in the plumbing system. Furthermore, even processes that occur at the
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surface such as dome collapse, earthquakes, ice melting or land-
slides can exert pressure changes that may propagate downwards
altering the stress fields and affecting the decompression rate
(Fig. 1 and Table 1). Albeit not discussed in detail, processes
occurring deeper in the crust (below ~10 km) can also exert
important controls on properties and parameters such as magma
production rate, density, buoyancy, composition, volatile contents
and viscosity. We stress that these properties can vary during
storage and ascent (for instance, through the process of magma
crystallization and differentiation, when the silica content of the
magma, viscosity of the melt and residual volatile contents
increase) and may play non-trivial roles in controlling eruptive
styles. Indeed, processes with roots in the mid-to-upper crust, such
as magma recharge (inducing mixing/mingling) and crustal
assimilation, may significantly alter many of the critical magma
(intrinsic) properties or parameters, including temperature,
rheology, volatile solubility, magmatic overpressure, dissolved and
exsolved gas content, bubble and crystal content, and magma
ascent rate (Table 1). This contribution focuses on intermediate to
more silicic compositions, i.e., high viscosity magmas. A caveat to
this approach is that whole-rock compositional classifications can
be misleading in the frame of eruptive style, since crystal-rich
magmas, even of mafic compositions (basalts and andesites), may
have more silicic ‘melt’ compositions, and taken with their crystal-
rich assemblage, can make these magmas more rheologically
analogous to silicic magmas5,6.

An important distinction to make when discussing eruptive
style transitions is the time scale over which these occur. Tran-
sitions between effusive and explosive volcanism can occur dur-
ing a single eruptive phase, e.g., during dome growth and collapse
episodes, and Vulcanian explosions. Transitions in eruptive style
at the same volcano can also occur over several eruptions, e.g., a
lava flow and a Plinian eruption separated by a repose interval.
Here we highlight that the first type of transition (within single
eruptive phase) is dominantly affected by shallow processes
(within the conduit <3 km), whereas the second type may also be
controlled by conditions and processes within the magma reser-
voir and early ascent in the conduit (>3–10 km).

The explosive versus effusive issue in volcano forecasting has
been approached by many different fields and disciplines,

including petrology, geochemistry, fluid dynamics, numerical
modelling, gas geochemistry and rock deformation. Recent and
often multidisciplinary breakthroughs in this research, however,
attribute the controls on eruptive styles to different volcano
properties (Table 1). Therefore, we aim to reconcile this complex
body of research and to frame discussions of eruptive style for a
wide audience. The review describes different causes and feed-
backs involved in both explosive and effusive silicic eruptions. We
provide data synthesis of magma ascent and decompression rates,
we collate the parameters and properties that play a role in
eruptive style and include statistics regarding the abundance and
timing of effusive–explosive transitions. This review aims to not
only to summarize the recent literature, but also to provide ideas
for potential new research directions, including ways that the
community can link to this body of research to volcano mon-
itoring with the goal of improving the forecasting of explosive and
effusive behaviour.

Factors promoting explosive volcanism
The various properties or parameters that influence volcano
explosivity may affect eruptive style in contradictory ways
(Table 1). For instance, the injection of magma into the storage
reservoir (Fig. 1) may lead to either explosive or
effusive eruptions7,8. These contradictions exist because there is
no single way to generate an explosive eruption. This section
describes the processes that may lead to explosive activity, which
is reviewed in this section from storage to surface.

Effusive–explosive transitions between eruptive episodes.
Where transitions in eruptive style at the same volcano occur over
several eruptions, these changes may be closely linked to the
mechanism that triggered the eruption. A common example of
eruptive activity driven by processes at depth involves injection of
new magma into a subvolcanic reservoir9–12. Explosive eruptions
can be triggered under these conditions by either heating, which
causes convection and vesiculation9 or mobilizes crystal-rich
magmas13,14; addition of volume, which increases the over-
pressure of the magma system on the confining walls15; and/or
fluxing of volatiles that increases buoyancy7,12,16. However,
magma injection may also lead to effusive volcanism, by
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Fig. 1 Annotated volcano schematic, illustrating the range of processes that can affect eruptive style from storage to surface, prior to or during volcanic
eruptions. a Shows how fragmentation is a function of the melt viscosity and strain rate. Fast strain rates (i.e., high decompression rates) favour brittle
fragmentation as it passes the glass transition for a given viscosity. At slow strain rates, magma generally behaves as a liquid. Figure adapted from
Gonnermann and Manga105. b Shows the cycle of volatile outgassing, from nucleation, coalescence to densification from permeability and porosity data in
Rust and Cashman80, figure reproduced from Cashman and Sparks5, under fair usage terms
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decreasing the viscosity of the system through heating and
resorption of crystals which lower viscosity8,17 and reducing the
water content, if the influxing magma is water-poor18. Reduced
viscosity can change the nature of fragmentation (Fig. 1a), inhi-
biting brittle failure and enhancing non-explosive loss of volatiles.
The process of magma mixing is therefore complex and its effect
on volcano explosivity is likely dependent on the degree of
mixing, presence of exsolved volatiles, extent of volatile and heat

transfer and time between mixing and eruption15. In these
examples, where the same volcano exhibits different styles of
eruptions, the explosive eruptions occur when there is limited8 or
no magma injections18,19. Instead, cooling and crystallization of
dominantly anhydrous crystals, leading to second boiling20 can
promote overpressurization in the reservoir, driving faster magma
ascent and more explosive activity. Even subtle changes in visc-
osity alone (~0.5 log Pa/s) in these instances as a result of heating,

Table 1 Here, various magma properties (intrinsic) or extrinsic parameters (highlighted in bold) are given, which have been
suggested to affect volcano explosivity. Their controls are given along with brief explanations of how this can affect eruptive
style. Not all these references will be discussed in the text, but this serves as a reference table for the reader to seek out more
detail. Deeper controls on eruptive style, not addressed in this table, include magma composition, buoyancy, and magma
production rate

Properties/parameters What controls this? How does this affect eruptive style?

Tectonic regime/stress
field

Regional faulting, edifice load, pressure differential
between magma and surface

Alterations to the stress field such as unloading via flank/dome
collapse can alter magma ascent rates40,225, e.g., rapid
decompression from 12MPa at Mt St Helens leads to explosive
fragmentation54

Magma ascent rate Stress field, magma buoyancy, volatiles, conduit
geometry, chamber overpressure, viscosity

Faster ascent (e.g., >0.1 m/s per second), thus less time for
outgassing, generally promotes explosive eruption37,65,136,182 (See
supplementary data 1 and Fig. 5)

Dissolved and exsolved
volatile content

Magma petrogenesis &composition, pressure/
depth solubility, saturation degree, gas and magma
influx

When volatiles are coupled to the magma, they increase buoyancy
and ascent speed, if not lost during ascent25,26,28,37,133,143,145,226,227

Magma rheology/viscosity Magma and volatile composition, temperature,
crystal and bubble content, strain rates

High viscosity inhibits release of volatiles promoting closed-system
degassing8,41,228. Small changes of viscosity by ~0.5 (log Pa/s), may
dictate whether an eruption becomes effusive or explosive18,21

Magma chamber
overpressure

Magma production rate, dome growth/collapse,
magma recharge, exsolved volatiles

High overpressures (typically, 0–20 MPa137) may drive faster ascent
speeds15,38,73, but this parameter is not well constrained

Magma temperature Magma composition, magmatic injections, shear in
conduit, time in storage/ascent, latent heat of
exsolution and crystallization

Affects the magma viscosity, crystal content and volatile solubility
can promote more open-system degassing and effusive8,71,229.
These studies showed that changes as small as 80 °C can lead to
changes between effusive and explosive eruption

Rate of decompression When coupled, the magma ascent rate, speed of
release of pressure, unloading events, stress field

Same effects as magma ascent rate, these are normally coupled.
However, fast decompression via unloading can lead to rapid
downward-propagating fragmentation wave52,54. Typical
decompression rates of explosive eruptions are: 1 MPa/s and typical
effusive rates (0.0001MPa/s) (Supplemental data 1 and Fig. 5)

Crustal properties (e.g.,
conduit wall permeability)

Regional geology, stress field, fracture networks,
anisotropy, discontinuities.

More permeable crust (and isotropic) leads to open-system degassing
and thus generally less explosive36,73,117. However, the rate of
outgassing through conduit walls is several orders of magnitude lower
than vertical outgassing loss through conduit shear zones230

Porosity and permeability
of magma

Brittle deformation, fractures, bubble connectivity,
bubble number density, decompression rate,
viscosity, crystal content.

Higher porosity and permeability promote more of outgassing and
alters fragmentation56,75,83,88,181,231. Magma must reach percolation
threshold for efficient gas permeability, which ranges from 30 to
78% in vesiculating systems87. Magmas may repeatedly fracture
and heal thus varying permeability and outgassing58,77,97,112,232

Crystal and bubble content Magma composition and rheology, magma ascent
rate, P-T conditions on ascent, hetero vs
homogenous bubble nucleation, crystal
fractionation and assimilation, magma and gas
influx

Affects the viscosity, permeability and efficiency of
outgassing83,88,133–135,137,233. Buoyancy-driven outgassing is
efficient (40–50% volatiles outgas) where crystallinities are
between 40–70%135. Homogeneous nucleation leads to delayed
disequilibrium degassing48,50. High bubble number densities leads
to less outgassing and more explosive eruptions, e.g., ~1015 m−3 for
Mt St Helens explosive eruptions234, and ~5 orders of magnitude
less for effusive Soufriere Hills lava dome eruptions83,197

Conduit and vent
geometry

Erosion during explosions, magma accretion on
walls, magma rheology, crustal structure and
properties

Can affect the ascent speed and the magma extrusion rate at the
surface122,123,235. Modelling shows that doubling conduit radius
from 10 to 20m increases ascent rate 4 times45

External assimilation (e.g.,
surface water, carbonates)

Regional geology, hydrothermal system,
geographic setting (e.g., glacial regions)

Explosive expansion and fragmentation of silicate glass68.
Experiments on rhyolites show higher kinetic energy release by wet
compared to dry experiments (>100m/s different in ejection
velocity)236. Additional volatiles may come from carbonates,
experiments show, carbonate can completely breakdown in <10min
within melts at temperatures of 1200 C and 0.5 GPa66

Magma depth/pressure Density and buoyancy contrast between crust and
magma, crustal structure/discontinuities

Affects solubility of different volatiles, buoyancy and affects local
stress field, thus altering ascent138. Explosive phonolite eruptions
derived from magma source from 1–6 km depth and water saturated35
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crystallization or compositional changes may determine the
eruptive style21.

Effusive–explosive transitions within single eruptive episodes.
Where both eruptive styles exist with a single eruption phase, a
common eruptive trend is from explosive to effusive activity
(Fig. 2). A plot using the known durations of eruptive periods and
occurrence of a climactic eruption (VEI ≥ 4 in this instance),
within these periods (containing dome growth and smaller
explosions) from the Domehaz database22, shows that almost
70% of climactic Plinian eruptions occur within the first quarter
of an eruptive period (Fig. 2). The remaining 30% of the climactic
eruptions occur in the latter half of their respective eruptive
period, showing that there are many instances where large
explosions occur during, or after dome growth (e.g., Pinatubo,
Philippines, 1991, Mt Mazama, USA 2850 BC). The most com-
mon eruptive transition from explosive to effusive has been
previously attributed to volatile gradients, where the first explo-
sive phases tap the volatile-rich top of the magma body23 and the
latter phases sample drier, degassed magmas at the bottom.
However, volatile contents from melt inclusions generally show
no discernible difference between effusive and explosive erup-
tions17. Higher dissolved volatile contents (in particular H2O)
should promote faster ascent through exsolution-driven expan-
sion24, as is sometimes the case18,25–28. However, similarly high-
water contents can also lead to slow ascent rates and effusive
eruptions17,29–31. This issue is compounded by the difficulty in
gaining accurate dissolved volatile data for magmas32–34.
Nevertheless, as volatile measurement techniques improve, the
relative importance of the different volatiles (e.g., CO2 versus
H2O), as well as tracking volatile saturation evolution in affecting
eruptive style may prove to be insightful19,35.

As dissolved volatile contents do not appear to be the
dominant control, the explosive to effusive transition
within single eruptive episodes has been attributed to differences
in degassing regimes (closed- versus open-system degassing;
Fig. 3)36. The changes in degassing behaviour are related to
magma ascent, which controls how efficiently gas is lost from the
magma37. In this instance, the first explosive eruptions are driven

by fast ascent speeds leading to closed-system degassing. Fast
magma ascent leads to explosive fragmentation, potentially
through both volatile overpressure in bubbles and high-strain
rates due to rapid acceleration. Following this, lava extrusion
occurs as a result of open-system degassing related to the slower
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ascent of the magma as the overpressure declines38,39. For
explosive Plinian eruptions, Scandone et al.40 suggest that these
require the development of a fully connected conduit. When this
happens, magma ascent rates will depend on the decompression
rate, which in turn is a function of the pressure within the magma
reservoir, the location of the fragmentation surface, the viscosity,
and the geometry of the conduit41. All four parameters will
change with time. For this reason, large explosive eruptions
exhibit steady Plinian behaviour for only limited periods of time
(typically hours, where ‘Plinian’ is a term used for towering
volcanic plumes erupted from a single vent). Plinian eruptions
commonly transition to ignimbrite-forming eruptions as the
shallow vent widens; alternatively, if the pressure differential
driving the eruption decreases rapidly, then the eruption may
become effusive or cease altogether40. Fluctuations between
effusive and explosive behaviour during the course of eruptions
can be entirely modulated by stress changes caused by the
eruption, for instance, decompression during the eruption has
been known to tap deeper magma bodies (e.g., Eyjafjallajokull,
Iceland42). Further insights into this transition can also be gained
from direct observations. For instance, during the 2011 rhyolitic
eruptions of Cordon Caulle, Chile, the initial Plinian episode was
followed by ‘effusive’ lava flows, which were in fact accompanied
by mild explosive activity43,44. This explosive to effusive
transition however does not always occur, as evidenced by the
cluster of climactic explosive eruptions at the end of an eruptive
period (Fig. 2), showing that there are other ways to cause
transitions into explosive behaviour. This may make future
eruptive activity difficult to predict in our current state of
knowledge, as demonstrated by the ongoing (2017–2018) activity
at Agung volcano, Indonesia.

Magma ascent and decompression. Magma ascent and decom-
pression rates (mostly coupled) are perhaps the most critical
parameters controlling volcanic style37. In Fig. 4, we simplify
magma ascent into fast and slow, referring to an average velocity
from the storage system to the surface. In reality, magma ascent
rate will vary considerably from the reservoir to the surface
depending on the relative changes in vesicularity (buoyancy),
exsolved and dissolved volatile content, overpressure at depth
relative to surface, magma rheology and conduit geometry. We
mostly refer to magma ascent rather than decompression here as
magma ascent rate is more meaningful for volcano monitoring
purposes.

Despite a range of different techniques used to estimate these
ascent or decompression rates (Fig. 5 and Supplementary data 1),
there is a distinction between rates of effusive versus
explosive eruptions. This divide seems to occur around 0.001
MPa/s, 0.1 m/s (Fig. 5); however, this is not a strong divisional
boundary, but a gradational range of rates (e.g., 0.0001–0.005
MPa/s, and 0.005–0.25 m/s), where transitional and pulsatory
effusive and explosive activity is more likely. For example, there
are numerous places where ascent rates for explosive eruptions
are low (e.g., associated with small Vulcanian eruptions at
Chaparrastique, El Salvador and Colima, Mexico) and effusive
ascent rates are high (e.g., rapid dome growth at Chaiten, Chile,
following initial Plinian eruption). There is likely a weak
correlation with composition, where lower viscosity basaltic
andesites reach faster ascent rates compared to rhyolites, but this
requires further investigation. We must also point out several
caveats to this data set, (1) these are syn-eruptive rates and do not
necessarily show magma ascent prior to eruption, (2) these are
average rates, whereas magma ascent and decompression are
dynamic processes, which evolve from storage to surface, (3) the
plot comprises many different types of eruptions of differing
scales, e.g., small Vulcanian eruptions plotted along with large
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voluminous Plinian eruptions of Taupo. Nevertheless, it shows
that syn-eruptive magma ascent and decompression rates have a
strong control on eruptive style, due to their role in governing
open- versus closed-system degassing feedback cycles, which
influence the extent of outgassing prior to, and during an
eruption (Fig. 3).

Although the controls on magma ascent and decompression
rate can be broadly identified, their relative importance is not yet
clear. Sparks and Melnik41 suggested that magmatic ascent at
Soufrière Hills volcano was linked directly to magma chamber
overpressure. The magma chamber and conduit acted as energy
capacitors, storing energy from elastic deformation of the wall
rock, until the pressure overcame a threshold, which then drove
fast ascent and explosive eruptions. Thomas and Neuberg45 used
a suite of conduit flow models to determine the dominant factors
controlling magma ascent, based on the Soufrière Hills volcano.
In this study, conduit diameter and excess pressure in the magma
chamber were among the dominant controlling variables, but the
single most important parameter was the volatile content
(dissolved+ exsolved and assumed as only water). This is because
volatiles lower the melt viscosity and also lead to greater
exsolution and production of exsolved volatiles, thereby increas-
ing magma buoyancy. Meanwhile, other parameters such as
density and the external stress field, simulated by varying the

pressure at the surface, were deemed to be less important, the
latter becoming more influential at shallower levels. This is
consistent with the observations that eruptions from deep magma
storage, where the pressure difference between the source and the
surface is highest, do not always produce explosive eruptions, and
that many eruptions sourced from shallow magmas can be very
explosive. Furthermore, in the cases where pressure at the surface
is confined, e.g., for subglacial eruptions, explosive eruptions can
also occur46.

Explosive eruptions are modulated in part by the conditions of
bubble formation (vesiculation), which require both nucleation
and growth. The exsolution of volatiles within a magma is
controlled by the decompression rate, the degree of volatile
saturation, availability of nucleation sites, surface tension and
viscosity of the magma47. Therefore, when the decompression
rate is high, the volatiles may not be able to degas from the
magma in equilibrium with their relative solubilities. This is
termed disequilibrium degassing and it may lead to volatile
supersaturation and high overpressures (>100MPa), so that when
vesiculation does occur, it occurs at higher rates than equilibrium
degassing and thus may increase ascent speeds and volcano
explosivity48. Disequilibrium degassing is more common in silicic
magmas, due to their higher viscosities and lower diffusivities that
tend to resist bubble nucleation. Nucleation directly from silicic
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melt (termed 'homogeneous' nucleation) requires supersaturation
pressures that are high enough to overcome the high melt-vapour
surface tension (>120–350MPa48,49), depending on the melt
viscosity. Such supersaturation pressures are unrealistically high
(often higher than inferred storage pressures (see recent review by
Shea50) and the evidence for homogenous bubble nucleation in
natural magmas is limited. In many cases, a component of
'heterogeneous' nucleation (nucleation of crystal surfaces) may be
required. Clearly further studies are necessary here, such as
careful petrological work along with numerical models to
investigate the role of disequilibrium degassing and crystallization
on ascent dynamics51.

Slower magma ascent leading to explosive eruptions. Fast
ascent (e.g., >0.1 m/s), where melt and exsolved gas remain
coupled, will almost always lead to explosive eruptions (Fig. 5).
However, the contrary is not true, as slowly ascending magmas
(e.g., <0.01 m/s), can also cause explosive eruptions (e.g., Inyo
volcanic chain, USA52). An extreme example of the explosive
potential of slowly ascending magmas is provided by the 1980
eruption of Mt. St. Helens, USA. Here, 2 months before the
explosive eruption, magma ascended at a rate of ~0.01 m/s into
the shallow system, creating a cryptodome40,53. The eruption was
eventually triggered by failure of the edifice because of pressure
from the growing cryptodome54. This rapid unloading event
created a downward-propagating decompression wave that
caused a runaway effect of gas expansion, rapid ascent, and
fragmentation of deeper-seated magma whereby a fully connected
conduit was established between the surface and the deep-seated
magma reservoir40. The Mt St Helens example demonstrates both
of the two main types of fragmentation mechanisms, rapid
decompression. The sustained Plinian phase of the eruption
results from the other type of fragmentation that arises from the
rapid acceleration of gas-rich magma. In this instance, vesicula-
tion and bubble growth create high strain rates to cause brittle
fracturing of the magma as it goes through the glass transition55

(Fig. 1a), the higher porosity from rapid vesiculation also helps to
lower the fragmentation threshold, i.e., the pressure drop required
to fragment the material56.

Explosive eruptions from slowly ascending magmas may also
be pulsatory and modulated by competition between slow magma
ascent and build-up of overpressure beneath a viscous lava plug at
the top of the magma columns leading to transitions in explosive
activity. Sparks and Melnik41 show that feedbacks between
degassing and crystallization during slow ascent can increase
viscosity and thus cause pressurization of the magma in the upper
parts of the conduit during dome growth; this model was
calibrated using patterns in tilt and seismic signals at the Soufriere
Hills volcano, Montserrat. Slow ascent, coupled with sealing of
pores by lava, pyroclasts, or cristobalite57–59 also allow exsolved
volcanic gases to accumulate at shallow levels. Under these
conditions, gas pressurization can be contained by the elastic
deformation of the wall rocks until this overpressure exceeds the
strength of the confining rock60–62. Failure of the capping plug
causes high-intensity explosions known as Vulcanian eruptions;
downward-propagating decompression waves following plug
failure can rapidly evacuate the volcanic conduit to depths of a
few km63,64. Subsequent slow re-filling of this conduit re-starts
the Vulcanian eruption cycle. Confirmation of this heuristic
model is provided by measurements of emitted volatiles,
particularly SO2, where gas exhalations can be correlated with
the repose times between eruptions65.

External forces. Transitions in explosivity may be influenced by
external factors independent of other magmatic variables (Fig. 4

and Table 1). These usually occur at the shallow level (<1 km) or
at the surface. Rapid changes to the edifice such as sector col-
lapses can trigger top-down fragmentation as discussed in the Mt
St. Helens eruption above. Another example is the assimilation of
external materials such as carbonate, which can also promote
explosive volcanism through the formation and rapid expansion
of CO2 bubbles, these exsolved volatiles, when coupled to the melt
may drive faster ascent and thus increase explosivity at volcanoes
such as Merapi, Popocatepetl and Vesuvius (Table 166,67). Sudden
explosive activity can also be caused by external water and
magma interaction, driven primarily by the volumetric expansion
as the water is superheated, leading to explosive fragmentation68.
At the most explosive end, more than 30% of the available
thermal energy can be converted into mechanical energy, most of
which is emitted as shock waves, which may enhance fragmen-
tation within the conduit and vent69.

Keeping magma from erupting explosively
The acceleration, fragmentation and explosive eruption of magma
are powered by the exsolution of volatiles dissolved in the melt
and the expansion of these gases once they form bubbles70.
Exsolution accompanies ascent and decompression because the
solubility of volatiles decreases with decreasing pressure, though
increases in temperature caused by deformation71 or recharge
may also lead to exsolution8. Key to preventing explosive erup-
tion is thus to keep pressure within bubbles from getting so high
that the melt around bubbles ruptures72 or to remove gases from
ascending magma73.

The escape of gas from rising silicic (high viscosity) magmas
requires that the magma is permeable. Over the past decades,
great progress has been made in measuring and modelling per-
meability, and more recently recognizing that permeability is a
highly transient property74–79. Prior to fragmentation or brittle
failure, magmas become permeable as bubbles become connected.
Permeability is an evolving quantity, increasing as bubbles grow
and coalesce and the magma deforms, and decreasing as gas loss
causes bubbles to collapse (Fig. 3b36,80–83). Permeability devel-
opment is moderately sensitive to decompression rate, but
strongly affected by variations in melt composition (viscosity) and
crystallinity84,85. The signatures of bubble growth and gas loss are
recorded in the textures of volcanic rocks86. Extensive measure-
ments of permeability on quenched magmas87 suggest that
magma permeability exerts a leading order control on whether
magma is able degas fast enough during ascent to avoid
fragmenting88.

A combination of slow ascent or decompression, and efficient
gas loss (high permeability) promote effusive activity89,90. Fig-
ure 6 shows the consequences of degassing by porous gas flow on
magma ascent and properties within the conduit. Ascent is
computed using the equations presented in Degruyter et al.83 (see
methods). The model solves for the one-dimensional two-phase
vertical flow of magma and gas, assumes equilibrium exsolution,
includes a model for the dependence of permeability on bubble
size and gas volume fraction, and accounts for the pressure
dependence of water solubility and the effect of dissolved water
and crystals on melt viscosity. We assume there is no critical
porosity (percolation threshold) to initiate gas flow. Further
details and model parameters are summarized in the figure cap-
tion. Effusive eruption is promoted by a lower number density of
bubbles that leads to larger bubbles (Fig. 6c) and hence higher
permeability and greater gas velocity (Fig. 6b) and loss (Fig. 6e).
Higher viscosity, in the examples shown in Fig. 6 provided by
higher crystallinity, leads to slower magma ascent and hence
permits more time for gas to escape from the rising magma.
Pressure decreases during ascent, and the rate of pressure
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decrease is controlled by the resistance to ascent, which involves
feedbacks between exsolution, viscosity and gas escape ('out-
gassing'). Once magma fragments, it leads to lower pressures at a
given depth within the conduit (in the fragmented magma) and
thus exsolution and higher melt viscosities.

Permeability is an even more dynamic quantity after magma
undergoes brittle failure. High strain rates can also fracture
magma54,55 and this fracturing can promote further nucleation91.
Fractures can be transient in viscous magma because viscous
deformation allows cracks to anneal and heal92–94 but strain is
not immediately localized to fractures, permitting efficient out-
gassing95. Transient fractures, can also create temporary

pathways that can transport ash, in addition to gas. A signature of
these transient processes is preserved in fragment-filled veins
called 'tuffisites43,58,96–98' or texturally banded rocks in lava
domes99–101. Weak venting through such pathways can also
accompany otherwise effusive eruptions44,102. Magma fracture
may occur preferentially at the margins of conduits where strain
rates are highest103,104 and can be magnified by shear heating
and strain localization77,105–110. Magma fracture and welding
is commonly preserved at the microscale in the form of
fractured crystals, cuspate vesicles and xenocrystic (foreign)
material111–113. Accounting for feedbacks between fracturing and
degassing in models such as that shown in Fig. 6 is complicated
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by our limited understanding of permeability and welding, pro-
cesses that are time dependent and sensitive to the poorly con-
strained fragment size distributions114,115.

Gas escape is further enhanced if the surrounding country rock
is permeable, a property ignored in Fig. 6, in which case the
degassing efficiency is controlled by both the permeability ani-
sotropy, which controls the directionality of gas escape, the wall
rock permeability, and the ambient pressure in the wall rock, e.g.,
lithostatic, hydrostatic or atmospheric73,116–118. The deformation
that accompanies magma ascent can promote failure in the sur-
rounding rocks and hence gas escape119, delivering gases to the
hydrothermal systems surrounding magma bodies120. The
transport of gases, and their interaction with the surrounding
rock or domes that cap conduits, create minerals that act to seal
cracks so that country rock and dome permeability will also be
transient116,121.

Although conduit geometry, permeability and crustal proper-
ties are clearly important factors in controlling magma ascent and
outgassing, due to the difficultly in constraining these, only
relatively few studies exist and these mostly focus on
modelling122,123. Conduit wall permeability can alter significantly
when progressively heated by reducing open porosity and thus
limiting outgassing during ascent117. Conduit geometry has a
fundamental effect on magma ascent, and the conduit may widen
to accommodate higher magmatic overpressures, discharge rates
and higher viscosity magma, and thus may contribute to the
positive feedback mechanism to increase magma ascent
rate124,125. However, more integrated field studies on exposed
volcanic conduits, along with petrology and numerical simula-
tions would be beneficial in this area96,126,127.

The interacting processes described above involve both positive
and negative feedbacks between magma ascent and gas loss.

Positive feedbacks occur when faster ascent enhances bubble
nucleation, which in turn produces smaller bubbles and reduced
permeability83, and shear deformation that causes heating and
vesiculation71. Negative feedbacks include the sealing of melt,
dome and country rock fractures as a result of gas loss59,128;
heating of the wall rock to create a viscous 'brake' by inhibiting
frictional slides109,129; deformation during ascent that increases
permeability and gas loss by promoting bubble coalescence; and
crystallization driven by gas loss that increases magma viscosity
and slows ascent. The combination of positive and negative
feedbacks is one way to generate episodicity or even periodicity in
eruption rate130.

Visualizing the controls on eruptive styles
Despite the range of different properties (Table 1), processes
(Figs. 1 and 3), and scenarios (Fig. 4), controls on silicic eruption
styles can, we propose, be characterized more simply, by com-
bining some variables schematically: Fig. 7 shows changes in
ascent rate from storage to surface as a function of outgassing
efficiency. The ascent rate is largely a product of the overpressure,
crustal stress field, conduit radius, viscosity and buoyancy (driven
by volatile exsolution and decompression) of the magma, while
outgassing efficiency is dominantly controlled by the viscosity,
pressure or solubility, time (linked inherently to ascent rate),
bubble nucleation/coalescence, permeability of magma and con-
duit wall rock, and fragmentation processes . The graded dis-
tinction between effusive and explosive regimes in Fig. 7
combines most of the properties laid out in Table 1 and highlights
that some magmas will inherently be able to outgas efficiently.
For example, a low viscosity or permeable magma will require
faster ascent or decompression rates to generate an explosive
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eruption, as faster decompression inhibits outgassing prior to,
and during an eruption. In contrast, for a magma that has a low
outgassing efficiency, such as a high-viscosity rhyolite, an
explosive eruption may occur at slower ascent speeds relative to
lower viscosity magmas, since it is likely that the volatiles will be
retained within the magma during closed-system degassing
(Fig. 7). This is reflected in the different starting positions on the
outgassing efficiency axis for the various eruptive scenarios (A-
D). Andesite melts are inherently more efficient at outgassing due
to their lower viscosity relative to rhyolites, and they also com-
monly contain more crystals, which may help to channelize
exsolved volatiles to further enhance outgassing efficiency via
veining and capillary fracturing85,131,132. However, magmas rich
in crystals have also been proposed to reduce outgassing133,134,
and there is likely a ‘sweet-spot’ of enhanced buoyancy-driven
volatile outgassing (40–50% volatiles outgas) when crystallinities
are between 40–70%135.

Also plotted are the different explosive eruption scenarios (as
referred to in Fig. 4), each with their dominant control. All ascent
paths for the different scenarios begin from a stationary magma
body in storage and continue to the point of eruption at the
surface (eruption photo on Fig. 7). For eruptive scenarios that
endure closed-system degassing during magma decompression
and volatile exsolution, the exsolved volatiles remain coupled to
the melt (Scenario A). Uninterrupted, this closed-system degas-
sing feedback (Fig. 3b), driven from the ‘bottom-up’may lead to a
runaway process that ultimately leads to explosive fragmentation
in a Plinian eruption (e.g., Chaiten, 2008; Scenario A or ‘Ascent
controlled’136. Where open-system degassing occurs, such as at
the start of Scenarios B and C (Fig. 7), the opposite feedback will
occur (Fig. 3a), making an effusive silicic eruption more likely
(section 3). However, this cycle can be broken in two ways: either
the viscosity increases, via decompression crystallization and
volatile exsolution, thereby dramatically reducing the outgassing
efficiency (e.g., Vulcanian and sub-Plinian eruptions of Soufrière
Hills volcano; Scenario B or ‘Viscosity controlled’137); or the
exsolved volatiles become sealed, accumulate, and then experi-
ence high decompression rates once the plug is broken (e.g.,
Scenario C or ‘Exsolved gas accumulation and plug control,’ e.g.,
Galeras60). These scenarios are common in dome-forming vol-
canoes that have frequent Vulcanian or sub-Plinian eruptions and
where activity can rapidly fluctuate and transition between
effusive–explosive eruptions (dashed lines in Fig. 7), or even
occur contemporaneously44. Scenario D highlights the ‘top-down’
process (Scenario D or ‘Decompression wave-controlled’ in
Fig. 7) which can be largely independent of ascent rate and solely
controlled by decompression, via a downward-propagating
decompression wave, triggering explosive fragmentation (yellow
dotted lines in Fig. 7) (e.g., Mt. St. Helens54).

These eruptive scenarios and type examples show that there is
a fine balance between open- and closed-system degassing at the
start of magma ascent from storage. Once one mode of degassing
is preferred at this early stage this may, in some instances, trigger
the aforementioned feedbacks and thus dictate the style of the
initial eruption phase. Closed-system degassing could occur either
when early outgassing is inhibited by high viscosity or low
degrees of melt/vapour segregation138 thus increasing magma
ascent rate, or alternatively when fast initial magma ascent (dri-
ven by overpressure, buoyancy, decompression, etc41)
limits outgassing. This ‘chicken or the egg’ situation is often
governed by processes and conditions at depth and thus it
is particularly important to constrain the magmatic storage
conditions. This includes the properties, and processes at the
deep storage level, such as the rheology, overpressure,
initial outgassing mechanisms, exsolved plus dissolved volatile
contents and the role of wall rocks, as these may be critical for

driving the initial feedbacks and thus governing eruptive
behaviour.

Remaining knowledge gaps
This review highlights recent progress in understanding the
dominant factors that control volcano explosivity. However,
because of interactions between complex processes and multiple
interrelated parameters, open questions remain. In this section,
processes and parameters that are poorly understood will be
discussed, along with where potential future research should be
directed. We then highlight how the most important parameters
can be monitored to enable eruptive style to be forecast.

Of the different explosive eruption scenarios displayed in
Fig. 7, some are better understood than others. For instance,
decompression waves (top-down eruptions) have been replicated
in the lab139, while moderate sized eruptions (VEI 2-3) occur
relatively frequently and thus have benefited from direct obser-
vations and measurement (e.g., Soufrière Hills140). However, the
least well understood are the most explosive, the Plinian erup-
tions (driven from the bottom-up). The fact that the climactic
Plinian eruptions do not only occur at the start of an eruptive
period, but also at the end (Fig. 2), highlights that these eruptions
are not simply driven by larger gas accumulation and plug-
controlled eruptions, but are more complex, likely driven by a
combination of different processes141. This means that numerical
conduit flow models used to simulate Plinian eruptions are still
limited142. Most conduit flow models assume isothermal, equili-
brium degassing, steady-state flow with constant conduit geo-
metry, inlet pressure, and neglect mechanical and thermal
feedbacks with the surrounding crust142. These assumptions,
despite being partly unrealistic, are used because the processes
that govern conduit evolution are complex and cannot always be
formulated into a set of equations with known parameters. This is
an area where a new generation of models coupled to magma
reservoir processes are required, together with better constraints
on physical processes and parameters involved in the models.

The presence of exsolved volatiles (gas bubbles) in the magma
is known to increase buoyancy and ascent speed143, factors that
may lead to higher explosivity144. However, Degruyter et al.145

suggest that during recharge events the presence of exsolved
volatiles in the magma reservoir may lower explosivity. They
attribute this to an increase in magma reservoir compressibility,
dampening pressurization, which allows for a significant amount
of recharge and heating before eruption, thus enhancing conduit
outgassing and slowing down ascent. Evidently the role of
exsolved volatiles requires further testing and constraining to
understand its role in ascent dynamics, using volcanic gas mea-
surements30, analogue and petrological experiments to develop
petrological indicators133,143, and numerical modelling145.

Forecasting eruptive style
Understanding the dominant parameters and processes that affect
eruptive style and striving to measure these by volcano mon-
itoring, may be the most promising way to improve forecasts of
eruption style and explosivity. However, we face a number of
challenges highlighted in the following paragaraphs.

Eruptive transitions that occur within a single phase (e.g.,
scenarios B, C and D; Fig. 7), are inherently difficult to forecast
via monitoring. In these instances, changes can be fast (minutes
to hours) and they can be modified by shallow-conduit and vent
dominated processes such as conduit shear, development of
anisotropy, permeable outgassing, dome collapses and the for-
mation of tuffisites. Here, new work on degassing and time-
dependent evolution of permeability and strength during defor-
mation may help in forecasting time intervals where overpressure
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may build to generate explosions146. Shallow processes such as
these may be related to short deformation cycles, and long-period
and hybrid seismicity thought to be related to excess fluid
pressure137.

Eruption transitions that occur across different eruptions at the
same volcano (e.g., scenario A, Fig. 7) are dominantly governed
from the bottom-up and can be linked to processes occuring
within the magmatic plumbing system, and thus offer more
promise in forecasting volcanic behaviour. Seismicity, deforma-
tion and gas measurements may be used to interpret conditions in
the magma plumbing system. For instance, long period earth-
quakes, seismic velocity changes and ‘drumbeat’ seismicity have
been used to detect magmatic ascent109,119,147; pre-eruptive,
InSAR and tilt data were linked to the rate of pressure change and
resulting explosivity of an eruption148,149; and increases in CO2

relative to SO2 phases have been recorded before some explosive
eruptions150,151. However, those monitoring techniques require
much refinement before volcanologists can, in near real-
time predict future behaviours of a given volcano. Combining
these measurements with constraints from petrology, fieldwork
and modelling will be key to diagnosing the future dominant
eruptive styles for each volcano.

Under most circumstances, rapid magma ascent requires a pre-
existing pathway, or conduit. Conduit formation and evolution
are challenging to study. The duration of shallow seismicity weeks
to months prior to many volcanic eruptions suggest that this is in
part related to conduit creation, although various other processes
can create seismicity (e.g., White and McCausland152 and refer-
ences therein). The data compilation by White and McCaus-
land152 reveals that the onset of eruptive activity is commonly
phreatic and is closely followed by a magmatic eruption. The type
of pre-eruptive seismicity is also key as earthquake type may
change from high frequency (rock breakage) to low frequency
(involvement of fluids) as the eruption initiation is approa-
ched153. These patterns form the basis of the Failure Forecast
Method for predicting eruptive activity, which is predicated on
patterns of exponentially increasing rates of seismicity as a failure
threshold is approached154–156. Despite the conceptual appeal of
the model, successful applications of the technique have been
limited, in part because of the material complexity of volcanic
edifices157. A modified approach has been suggested by Bell
et al.158, which includes appropriate error distributions to the
forecast method. In addition to seismicity, magma overpressure
can be monitored geodetically159 and degassing efficiency can be
assessed using pre- and post-eruptive volatile emissions121.
Together these observations suggest that under many conditions,
each new eruption requires construction of a new conduit, and
may involve interaction with shallow hydrothermal systems, and
that the actual trigger for explosive eruption is often difficult to
identify.

Multiple existing monitoring datasets have shown that explo-
sive eruptions are often preceded by short but intense periods of
unrest, with increased rates and magnitudes of both seismicity
and deformation160. Hence, future efforts will benefit from real-
time multi-parameter modelling and hazard alert systems. Once
an eruption has started, constraining lava effusion rate and
volume of mass erupted using thermal imagery, radar and aerial
photogrammetry has proven to be useful in monitoring and
forecasting changes in explosivity104,161,162. Future studies such
as these, along with integrated studies linking monitoring data
with geological, petrological, and numerical modelling163–165 will
improve explosivity forecasting. In addition, drilling upper
magmatic reservoirs and adjacent wall rocks will provide in situ
information that can be linked directly to geophysical measure-
ments166–170.

Finally, collating previous eruptive records22,171 and the
development and analysis of large volcanic monitoring datasets,
with the co-operation of multiple observatories around the world,
e.g., WovoDat172 and Global Volcanism Program3, will be critical
if we are to more accurately forecast whether an impending
eruption will be effusive or explosive.

Methods
Equations describing magma ascent in the conduit. We treat magma as two
distinct phases: gas and melt+ crystals (the latter hereafter called magma). These
two phases can move with respect to each other and are coupled through drag
forces and equations of state. The formulation of the governing equations and
closure models are summarized in Degruyter et al.83 that in turn builds on models
developed by Kozono and Koyaguchi173,174 (Fig. 6).

Conservation of mass for the melt and gas are, respectively,

d ρmum 1� ϕð Þ� �
dz

¼ � dn
dz

q ð1Þ

and

d ρgugϕ
� �

dz
¼ dn

dz
q: ð2Þ

Subscripts m and g denote the magma and gas phases respectively, ρ is density, ϕ is
the gas volume fraction and n the gas mass fraction, q is the total mass flux, u is
velocity and z is the vertical coordinate.

Conservation of momentum for the gas and melt are, respectively,

ρmum 1� ϕð Þ dum
dz

¼ � 1� ϕð Þ dP
dz

� ρm 1� ϕð Þg þ Fmg � Fmw ð3Þ

and

ρgugϕ
dug
dz

¼ �ϕ
dP
dz

� ρgϕg � Fmg � Fgw ð4Þ

where P is pressure (assumed the same in both phases), g is gravity, Fmg is the
friction between gas and magma, Fmw and Fgw are the friction between the magma
and gas and the conduit walls, respectively.

We neglect energy conservation, though temperature T will enter through its
effects of material properties such as gas density and melt viscosity.

The magma phase is assumed to be incompressible and the gas density is
computed from the ideal gas law

ρg ¼
P
RT

ð5Þ

where R is the specific gas constant. Solubility is approximated by

n ¼ c0 � sP1=2

1� sP1=2
for n � 0 ð6Þ

where c0 is the initial (dissolved) water content of the magma, and s is the
saturation constant.

Closure of the conservation of mass and momentum equations requires models
for the friction terms. Prior to fragmentation, we assume resistance to ascent is
governed by Stokes flow and hence

Fmw ¼ 8μmum
r2c

for ϕ � ϕf ð7Þ

and Fmw= 0 for ϕ > ϕf where ϕf is the gas volume fraction at fragmentation, rcis the
conduit radius, and μm is the magma viscosity. In contrast, Fgw= 0 for ϕ ≤ ϕf and

Fgw ¼ λ

4rc
ρgu

2
g for ϕ>ϕf ð8Þ

where λ is a drag coefficient controlled by the roughness of the conduit.
The gas-magma coupling described by Fmg is more complex as it depends on

the geometry of the pore space and pressure gradients prior to fragmentation, and
how particles are coupled to the gas after fragmentation. Here we use the model of
Yoshida and Koyaguchi175 to smooth the transition between non-fragmented and
fragmented magma over an interval ϕf <ϕ � ϕt and t ¼ ðϕ� ϕtÞ=ðϕf � ϕtÞ:

Fmg ¼

μg
k1
þ ρg

k2
ug � um

��� ���h i
ϕ 1� ϕð Þ ug � um

� �
forϕ � ϕf

μg
k1
þ ρg

k2
ug � um

��� ���h i1�t
3CD
8ra

ρg ug � um

��� ���h it
ϕ 1� ϕð Þ ug � um

� �
forϕf <ϕ � ϕt

3CD
8ra

ρgϕ 1� ϕð Þ ug � um
� �

ug � um

��� ���forϕ>ϕt

8>>>>><
>>>>>:

ð9Þ
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where CD is a drag coefficient and ra the size of fragments after fragmentation. k1
and k2 are the Darcian k1 and inertial k2 permeabilities, respectively, in
Forcheimer’s law

dP
dz

¼ μg
k1

ug þ
ρg
k2

u2g : ð10Þ

For the permeabilities, we use the model of Degruyter et al.176

k1 ¼
ftbrbð Þ2
8

ϕmc ð11Þ

and

k2 ¼
ftbrb
f0

ϕ
1þ3m

2
c ð12Þ

where rb is the bubbles radius and ftb is the ratio of the throat radius connecting
adjacent bubbles to the bubble radius, and ϕc is the connected porosity that we
relate to the tortuosity τ using Archie’s law

τ2 ¼ ϕ1�m
c ð13Þ

where m is a fitting constant. The bubble radius is calculated from the number of
bubbles per unit volume Nd and gas volume fraction100

rb ¼
ϕ

4π
3 Ndð1� ϕÞ

� �1=3

ð14Þ

For the magma viscosity we combined a model for the effects of temperature and
dissolved water on melt viscosity μ (C,T)177 with a model for the effects of crystals
θ (χ)178, where χ is the crystal volume fraction

μm ¼ μ C;Tð Þθ χð Þ: ð15Þ
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